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Abstract

This work studies nonconvex-nonconcave min-max problems on Riemannian manifolds. We
first characterize the local optimality of nonconvex-nonconcave problems on manifolds with
a generalized notion of local minimax points. We then define the stability and convergence
criteria of dynamical systems on manifolds and provide necessary and sufficient conditions of
strictly stable equilibrium points for both continuous and discrete dynamics. Additionally,
we propose several novel second-order methods on manifolds that provably converge to local
minimax points asymptotically. We validate the empirical benefits of the proposed methods
with extensive experiments.

1 Introduction

Min-max optimization has been the central focus in a variety of machine learning applications, including
generative adversarial networks (GANs) (Goodfellow et al., 2020), adversarial training (Madry et al., 2017),
optimal transport (Lin et al., 2020a; Jawanpuria et al., 2021), low-rank matrix/tensor completion (Jawanpuria
& Mishra, 2018; Nimishakavi et al., 2018), robust learning (El Ghaoui & Lebret, 1997), non-linear feature
learning (Rakotomamonjy et al., 2008; Aflalo et al., 2011; Jawanpuria et al., 2011; 2015b), online learning
(Bubeck et al., 2012), multi-task learning (Jawanpuria & Nath, 2012; Jawanpuria et al., 2015a), fair inference
(Madras et al., 2018), and reinforcement learning (Busoniu et al., 2008). When the objective function is
convex-concave, the well-known minimax theorem (Neumann, 1928; Sion, 1958) guarantees the existence of a
global (Nash) saddle point and there exist algorithms that converge to such global solutions (Tseng, 1995;
Nemirovski, 2004; Mokhtari et al., 2020a).

Despite the noteworthy progress in solving convex-concave min-max problems, many real-life applications
do not have the convex-concave structure. For general nonconvex-nonconcave min-max problems, even the
proper notions of local optimality are critically debated. Under such settings, the order of optimization
matters, e.g., in GANs and adversarial training, and this renders the notion of Nash saddle points improperly.
The recent work by Jin et al. (2020) introduces the notion of (local) minimax points, which better suits the
sequential nature of the problems and bears a close relation to the stable limiting points of the gradient
descent ascent dynamics (with timescale separation).

Another research direction on nonconvex-nonconcave optimization is to formulate min-max problems on
Riemannian manifolds (Zhang et al., 2022c; Jordan et al., 2022; Han et al., 2023b; Huang & Gao, 2023). The
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generalized Sion’s minimax theorem (Zhang et al., 2022c) allows many intractable nonconvex-nonconcave
problems to be solved efficiently on Riemannian manifolds, provided the objectives satisfy a generalized
notion of convexity and concavity along geodesics on manifolds. Nevertheless, there exists several problems on
manifolds without such generalized convexity or concavity structures, e.g., the robust Fréchet mean (Zhang
et al., 2022c), projection robust Wasserstein distance (Lin et al., 2020a), and orthonormal GAN (Müller et al.,
2019) problems, to name a few. It is, therefore, natural to ask:

how to define local optimality for general nonconvex-nonconcave problems on Riemannian manifolds and what
are algorithms that can converge to such local optimality?

We attempt to address the above questions by generalizing the notion of (local) minimax points to Riemannian
manifolds and studying the behaviors of various algorithms on manifolds relating to such optimal points. To
this end, our contributions are as follows.

• We generalize the concepts of minimax points for defining local optimality for nonconvex-nonconcave
min-max problems on Riemannian manifolds from the Euclidean space and explore various properties.
We also illustrate examples of such points.

• We introduce notions of stability and convergence for both continuous and discrete dynamical systems
on manifolds. We then show the relation between the limiting behaviors of the Riemannian gradient
descent ascent method and the generalized minimax points.

• We propose several novel second-order methods and prove that they asymptotically converge to local
minimax points.

• We demonstrate the efficacy of the proposed algorithms against existing baselines on a variety of
nonconvex-nonconcave problems, including the robust Fréchet mean, robust maximum likelihood
estimation, projection robust Wasserstein distance, and orthonormal GAN problems.

2 Related works

In the Euclidean space, most studies focus on (strongly)-convex-(strongly)-concave settings (Nemirovski,
2004; Mokhtari et al., 2020a;b; Golowich et al., 2020; Yoon & Ryu, 2021; Zhang et al., 2022b). However,
without the convex-concave structure, the problem is in general intractable. Thus, efforts have been devoted to
solving structured nonconvex-nonconcave problems, including assuming (strong)-concavity in the max-variable
(Thekumparampil et al., 2019; Lin et al., 2020b;c), imposing variational inequality conditions on the min-max
gradient operator (Song et al., 2020; Diakonikolas et al., 2021; Lee & Kim, 2021), and assuming a PL-like
condition (Nouiehed et al., 2019; Abernethy et al., 2019). For general nonconvex-nonconcave settings, existing
works have defined various notions of local optimality, such as local Nash saddle points (Daskalakis &
Panageas, 2018; Adolphs et al., 2019; Mazumdar et al., 2020), and local minimax points (Jin et al., 2020;
Zhang et al., 2022a), and have analyzed (local) convergence of algorithms to such local solutions (Daskalakis
& Panageas, 2018; Wang et al., 2019; Zhang et al., 2020; Fiez et al., 2020; Gao et al., 2022; Zhang et al.,
2022a). The work (Daskalakis et al., 2021) studies the complexity of identifying and solving constrained
nonconvex nonconcave problems. Daskalakis et al. (2021), in particular, focus on approximate local Nash
saddle points and linear convex constraints.

On Riemannian manifolds, min-max problems have attracted increasing attention. Zhang et al. (2022c)
generalize Sion’s minimax theorem to Riemannian manifolds and propose a Riemannian extra-gradient method
(namely RCEG) for geodesic-convex-geodesic-concave problems. Jordan et al. (2022) complete the analysis
of both Riemannian gradient descent ascent (RGDA) and RCEG for geodesic-(strongly)-convex-geodesic-
(strongly)-concave settings. Han et al. (2023b) extend the Hamiltonian gradient methods to Riemannian
min-max optimization and show convergence under the Riemannian PL condition on a proxy function. Huang
& Gao (2023); Wu et al. (2023) consider the nonconvex-(strongly)-concave min-max problems on manifolds.
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3 Preliminaries and notations

This section provides a summary of concepts we require in this work with a focus on notations. We defer the
detailed introduction to Appendix B.

A Riemannian manifold M is a manifold with a Riemannian metric on each tangent space TzM, ∀z ∈ M,
i.e., ⟨u, v⟩z for any u, v ∈ TzM. The induced norm is denoted as ∥ · ∥z. We also use TM to denote the
tangent bundle, the disjoint union of all tangent spaces. The geodesics γ : [0, 1] −→ M generalizes the straight
line segment, and the exponential map Expz : TzM −→ M generalizes the vector addition in Euclidean space.
Riemannian distance dist(z1, z2) is the length of the shortest geodesic connecting z1, z2 ∈ M. The (smooth)
inverse of the exponential map (when exists), namely the logarithm map, is denoted as Logz1 : M −→ Tz1M.
Parallel transport Γz2

z1
: Tz1M −→ Tz2M transports tangent vectors between tangent spaces. The covariant

derivative induced from the Riemannian connection is denoted as ∇, which allows differentiation of vector
fields on manifolds.

A Riemannian product manifold M = Mx × My admits a Riemannian manifold structure with induced
Riemannian metric from Mx,My. For a linear operator H on TzM, we can decompose its operation on

ξ = (u, v) ∈ TxMx × TyMy as H[ξ] =
(
Hxx Hxy

Hyx Hyy

) (
u
v

)
=

(
Hxx[u] +Hxy[v]
Hyx[u] +Hyy[v]

)
where Hxx : TxMx −→

TxMx, Hyy : TyMy −→ TyMy, Hxy : TyMy −→ TxMx, Hyx : TxMx −→ TyMy are linear operators. For a
linear operator G between tangent spaces, we denote G† as its adjoint operator.

For a bifunction f : Mx × My −→ R, we denote ∇xf(x, y),∇yf(x, y) as the Euclidean (partial)
gradient and gradxf(x, y), gradyf(x, y) as the Riemannian (partial) gradient. Furthermore, we let
Hessxf(x, y),Hessyf(x, y) be the Riemannian Hessian and grad2

xyf(x, y), grad2
yxf(x, y) be the Rieman-

nian cross-derivatives defined as grad2
xyf(x, y)[v] = Dygradxf(x, y)[v] for any v ∈ TyMy and similarly

for grad2
yxf(x, y). Geodesic (strong) convexity is a generalized notion of convexity along geodesics on mani-

folds. A function is called geodesic linear if it is both geodesic convex and geodesic concave. A bifunction
f(x, y) is called geodesic (strongly) convex (strongly) concave if f is geodesic (strongly) convex in x and
geodesic (strongly) concave in y.

Other notations. We use a ∧ b := min{a, b} and a ∨ b := max{a, b} for a, b ∈ R. We use [n] := {1, ..., n} for
n ∈ Z+, the set of positive integers. Suppose λi, i ∈ [n] are real eigenvalues of a self-adjoint operator. We
order the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn. We denote ∥ · ∥2, ∥ · ∥F as the Euclidean norm and the Frobenius
norm, respectively. We denote logm(·) as the principal matrix logarithm and define log det(·) := log(det(·)).

4 Minimax point for nonconvex-nonconcave min-max problems on manifolds

We consider the min-max problems on Riemannian manifolds as

min
x∈Mx

max
y∈My

f(x, y),

where f is at least twice differentiable and in general nonconvex-nonconcave in both Euclidean and geodesic
senses. Under such settings, the generalized Sion’s minimax theorem does not hold (Zhang et al., 2022c),
and the order of optimization matters. Without loss of generality, we assume minimization takes place first,
followed by maximization.

Recently, Zhang et al. (2022c); Jordan et al. (2022) have studied global saddle points on manifolds. Below,
the classic definitions of global and local Nash saddle points are generalized from the Euclidean space to
general manifolds.
Definition 1 (Global and local Nash saddle point). A point (x∗, y∗) is called a global Nash saddle point
if, for any (x, y) ∈ X × Y, we have f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). A point (x∗, y∗) is called a local Nash
saddle point if there exists ϵ > 0 such that for any (x, y) satisfying dist(x, x∗) ≤ ϵ,dist(y, y∗) ≤ ϵ, we have
f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗).

The conditions of optimality for local saddle points on manifolds are similar to those in Euclidean space.
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Proposition 1 (First-order and second-order conditions of local Nash saddle points). If a point (x∗, y∗) is a
local Nash saddle point of a twice continuously differentiable function f , then it satisfies (1) gradxf(x∗, y∗) =
0, gradyf(x∗, y∗) = 0, and (2) Hessxf(x∗, y∗) ⪰ 0 and Hessyf(x∗, y∗) ⪯ 0.

As shown in Jin et al. (2020), the Nash saddle point, be it local or global, may not exist in general for
nonconvex-nonconcave functions. Hence, Jin et al. (2020) have proposed the notion of global and local
minimax points in the Euclidean setting. In the following, we generalize it to Riemannian manifolds.
Definition 2 (Global minimax point). Consider two subsets X × Y ⊆ Mx × My, (x∗, y∗) is called a global
minimax point of f if, for any (x, y) ∈ X ×Y , it satisfies f(x∗, y) ≤ f(x∗, y∗) ≤ maxy′∈Y f(x, y′). Equivalently,
(x∗, y∗) satisfies y∗ = arg maxy∈Y f(x∗, y) and x∗ = arg minx∈X ϕ(x), where ϕ(x) := maxy∈Y f(x, y).
Definition 3 (Local minimax point). A point (x∗, y∗) is called a local minimax point of f : X ×Y −→ R if there
exists a constant δ0 > 0 and a function h satisfying limδ−→0 h(δ) = 0 for any δ ∈ (0, δ0] and any (x, y) ∈ X ×Y
satisfying dist(x, x∗) ≤ δ, dist(y, y∗) ≤ δ, we have f(x∗, y) ≤ f(x∗, y∗) ≤ maxy′:dist(y′,y∗)≤h(δ) f(x, y′).
Proposition 2 (Equivalent characterization of local minimaxity). Suppose f is continuous on X × Y. A
point (x∗, y∗) is a local minimax point if and only if y∗ is a local maximum of function f(x∗, y) and there
exists a δ0 > 0 such that x∗ is a local minimum of gδ(x) := maxy′:dist(y′,y∗)≤δ f(x, y′) for any δ ∈ (0, δ0].

A game-theoretic intuition for minimax points is that the max-player always maximizes its payoff based on
the observation of the min-player’s action, while the min-player chooses an overall optimal strategy without
knowing the action of the max-player. In particular, (Jin et al., 2020, Proposition 11) show that there always
exists a global minimax point due to the extreme value theorem on a compact domain, unlike the case for
Nash saddle points. However, the local minimax point may not exist. In addition, any local Nash saddle
point is a local minimax point.

Next, we provide first-order and second-order characterizations of local minimaxity on general Riemannian
manifolds, where we make use of the Riemannian Hessian and cross-derivative operators on tangent spaces.
Proposition 3 (First-order and second-order conditions). Suppose f is continuous and at least twice
differentiable and if (x∗, y∗) is a local minimax point, then it satisfies gradxf(x∗, y∗) = 0, gradyf(x∗, y∗) = 0.
In addition, (x∗, y∗) satisfies Hessyf(x∗, y∗) ⪯ 0. If further Hessyf(x∗, y∗) ≺ 0, then Hessxf(x∗, y∗) −
grad2

xyf(x∗, y∗) ◦ [Hessyf(x∗, y∗)]−1 ◦ grad2
yxf(x∗, y∗) ⪰ 0.

For completeness, we show the sufficient first-order and second-order conditions for local Nash and minimax
saddle points in Proposition 15 (Appendix). We now discuss several examples to elucidate the concepts of
local minimax points on Riemannian manifolds.
Proposition 4 (Examples of local minimax points). Let Sd

++ := {X ∈ Rd×d : X⊤ = X,X ≻ 0} be the
symmetric positive definite (SPD) manifold endowed with the affine-invariant metric (detailed in Appendix
C.2). Consider X,Y ∈ Sd

++ and define the set S∗ := {A | A ∈ Sd
++,det(A) = 1}.

(1) Any (X∗,Y∗) ∈ S∗ × S∗ is a global Nash saddle point and hence a local minimax point to function
f(X,Y) = c1(log det(X))2 + c2 log det(X) log det(Y) − c3(log det(Y))2. for any c1, c2, c3 > 0.

(2) Any (X∗,Y∗) ∈ S∗ × S∗ is a local minimax point but not a local Nash saddle point to function
f(X,Y) = −c1(log det(X))2 + c2 log det(X) log det(Y) − c3(log det(Y))2, for any c1, c2, c3 > 0 such
that c2 ≥ 2√

c1c3.

(3) Any (X∗,Y∗) ∈ S∗ × {I} is a local minimax point but not a local Nash saddle point to function
f(X,Y) = −c1(log det(X))2 + c2 log det(X) log det(Y) − c3∥logm(Y)∥2

F for any c1, c2, c3 > 0 such
that c2 ≥ 2√

c1c3√
d

.

Proposition 4 makes use of “quadratic” functions (log det(·))2 and ∥logm(Y)∥2
F on the SPD manifold.

(log det(·))2 is quadratic due to geodesic linearity of log det(·) (Vishnoi, 2018). ∥logm(Y)∥2
F is equivalent to

dist2(I,Y), i.e., the squared Riemannian distance. Hence, the functions are analogs of quadratic functions
in Euclidean space. However, we highlight that the example functions of the form (2) in Proposition 4 are
geodesic concave but not necessarily strongly concave in Y, unlike the quadratic functions in Euclidean space.
A consequence is that the local minimax point is not strict and there exists a continuum of such points.
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5 Stability and convergence of dynamics on manifolds

In this section, we introduce the notions of stability and asymptotic convergence rate of both continuous and
discrete dynamics on manifolds, which are essential for subsequent convergence analysis around minimax
points. Given the analysis is local around an equilibrium point, we make the following standard assumption.
Assumption 1. Dynamics considered in this paper are contained in a neighborhood of an equilibrium point
where the exponential map has a smooth inverse.

Such an assumption allows the linearization of arbitrary dynamics on manifolds around the equilibrium point,
in a similar vein as the linearization of nonlinear dynamics in Euclidean space.

5.1 Stability of continuous dynamics

We consider a continuous autonomous dynamical system ż(t) = G(z(t)) on a Riemannian manifold M, where
z(t) ∈ M, ż(t) ∈ Tz(t)M represents the time-derivatives, and G : M −→ TM is a vector field. We say z∗ is
an equilibrium point (or fixed point) if it satisfies G(z∗) = 0.

In Euclidean space, i.e., z(t) ∈ Rd, the stability of the dynamical system can be characterized via the (real-
parts) of Jacobian eigenvalues of G(z∗) at equilibrium (Khalil, 2002). Nevertheless, on general Riemannian
manifolds, the derivative of G(z∗) is not necessarily self-adjoint, and its eigenvalue/eigenvector may not exist
due to the lack of well-defined complex eigenvalue/eigenvector on tangent spaces.

Here, we approach the notion of stability via linearization of the dynamics and Lyapunov analysis.
Proposition 5. Consider a dynamics ż(t) = G(z(t)) on M, with an equilibrium point z∗. Let V (z(t)) :=
⟨Logz∗(z(t)), H[Logz∗(z(t))]⟩z∗ be a Lyapunov function for some self-adjoint positive definite operator H
on Tz∗M. Then, we have d

dt Logz∗(z(t)) = ∇G(z∗)[Logz∗(z(t))] + o(∥Logz∗(z(t))∥z∗) and d
dtV (z(t)) =

⟨Logz∗(z(t)),
(
H ◦ ∇G(z∗) + (∇G(z∗))† ◦H

)
[Logz∗(z(t))]⟩z∗ + o(∥Logz∗(z(t))∥2

z∗).

From Proposition 5, we see any dynamical system can be linearized around a fixed point, which is sufficient
for the asymptotic analysis in subsequent sections. In addition, d

dtV (z(t)) < 0 if and only if H ◦ ∇G(z∗) +
(∇G(z∗))† ◦H is negative definite for some positive definite operator H. This leads to the notion of equilibrium
stability on manifolds, which generalizes the classic notion of Lyapunov (asymptotic) stability in Euclidean
space.
Definition 4 (Strictly stable equilibrium). Consider any (autonomous) dynamical system on a Riemannian
manifold M as ż(t) = G(z(t)). An equilibrium point z∗ is called strictly stable if and only if H ◦ ∇G(z∗) +
(∇G(z∗))† ◦H is negative definite for some positive definite self-adjoint operator H on Tz∗M.

We next show that a strictly stable equilibrium can be equivalently characterized via the eigenvalues of a
matrix representation of H ◦ ∇G(z∗) + (∇G(z∗))† ◦H. The matrix representation is obtained with respect
to an orthonormal basis on tangent space. In this paper, this is also followed for any linear operator on a
tangent space.
Proposition 6. For a dynamical system ż(t) = G(z(t)) on a manifold M, an equilibrium z∗ is strictly stable
if and only if the matrix representation of ∇G(z∗) in an orthonormal basis of Tz∗M has all real parts of
eigenvalues negative.
Remark 1. Proposition 6 is mainly due to the energy preservation under an orthonormal coordinate
transform. We highlight that this result is independent of the choice of orthonormal basis because, as shown
in the proof, the change-of-basis transformation forms an isomorphism between the dynamics under different
coordinate systems and the stability can be studied under any basis.

5.2 Stability of discrete dynamics

In this section, we consider the asymptotic stability of a discrete dynamical system on manifolds, namely
zk+1 = Expzk

(η G(zk)) for some stepsize η > 0 with a fixed point z∗ satisfying G(z∗) = 0. This corresponds
to the geometric Euler discretization of the continuous dynamics ż(t) = G(z(t)) discussed in the previous
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section. The following proposition shows that similar to the continuous case, the discrete dynamics is also
locally linear around a fixed point.
Proposition 7. Consider a discrete dynamical system on M as zk+1 = Expzk

(η G(zk)) for some η > 0.
Define the Lyapunov function V (zk) := ⟨Logz∗(zk), H[Logz∗(zk)]⟩z∗ for some self-adjoint positive definite
operator H on Tz∗M. Then Logz∗(zk+1) = (id + η∇G(z∗))[Logz∗(zk)] + o(∥Logz∗(zk)∥z∗), and V (zk+1) −
V (zk) =

〈
Logz∗(zk),

(
(id + η∇G(z∗))† ◦H ◦ (id + η∇G(z∗)) −H

)
[Logz∗(zk)]

〉
z∗ + o(∥Logz∗(zk)∥2

z∗).

Hence, to ensure a decrease in the Lyapunov function near the fixed point z∗, we require (id + η∇G(z∗))† ◦
H ◦ (id + η∇G(z∗)) − H to be negative definite for some positive definite H. Here, id represents the
identity operator. Following similar arguments in Proposition 6, this is equivalent to requiring the matrix
representation of id + η∇G(z∗) in an orthonormal basis to have a spectral radius less than one.
Proposition 8. For a discrete dynamical system zk+1 = Expzk

(η G(zk)), a fixed point z∗ is called strictly
stable if and only if the matrix representation of id + η∇G(z∗) has all the eigenvalues with magnitude less
than one for some η > 0.

5.3 Stability equivalence and asymptotic convergence

The next proposition proves an equivalence between Propositions 6 and 8.
Proposition 9. For discrete dynamics zk+1 = Expzk

(η G(zk)) on manifolds, the following are equivalent.

(1) z∗ is a strictly stable equilibrium point.
(2) All the eigenvalues of the matrix representation of id + η∇G(z∗) have a magnitude lower than one

for some η > 0.
(3) All the eigenvalues of the matrix representation of ∇G(z∗) have real parts negative.

Proposition 9 allows us to define the asymptotic convergence rate of dynamical systems on Riemannian
manifolds.
Definition 5 (Asymptotic convergence rate). Consider a dynamical system zk+1 = Expzk

(η G(zk)) on M.
Suppose z∗ is a strictly stable fixed point. We say ρ := maxi |1 + ηλi| is the asymptotic convergence rate
of the system for some η > 0 such that |1 + ηλi| < 1 for all i, where λi are the eigenvalues of the matrix
representation of ∇G(z∗) in an orthonormal basis.
Remark 2. We remark that the notions of stability and asymptotic convergence are generalizations of the
counterparts in Euclidean space via coordinate representation. The notion of asymptotic convergence on
manifolds follows from the linearization in Proposition 7 where the dynamics evolve according to Logz∗(zk+1) =
(id + η∇G(z∗))[Logz∗(zk)] around a local neighborhood of z∗. Such a claim is formalized in the following
result, where the asymptotic convergence rate is related to the local linear convergence rate.
Proposition 10. Consider the discrete dynamical system zk+1 = Expzk

(η G(zk)). Let ρ = 1 − κ < 1 be the
asymptotic convergence rate of the system. Then, there exists a local neighborhood U ⊆ M around z∗ such
that for any z0 ∈ U , it satisfies dist(zk, z

∗) ≤ C(1 − κ/2)kdist(z0, z
∗) for some constant C > 0.

In the next section, we use the above results to analyze the asymptotic convergence behavior of timescale-
separated Riemannian gradient descent ascent (TSRGDA) method.

5.4 Asymptotic analysis of TSRGDA

In the Euclidean setup, Jin et al. (2020) analyze the limit points of (timescale-separated) gradient descent
ascent (TSGDA) and establish a relationship between stable limit points of TSGDA with local minimax point
and Nash saddle points. We attempt to generalize this analysis to the Riemannian gradient descent ascent
(RGDA) method on manifolds (Huang & Gao, 2023). In Figure 1, we show a schematic view of an iterative
algorithm on manifolds.

We consider timescale-separated RGDA (TSRGDA) with different stepsizes for descent and ascent directions,
i.e.,

TSRGDA: zk+1 = Expzk

(
η Gτ (zk)

)
= Expzk

(
−ητ gradxf(xk, yk)
η gradyf(xk, yk)

)
, (1)

6
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M

TzkM

z∗

zk

zk+1

ξ

Expzk(ξ)

Figure 1: Schematic view of Riemannian optimization. The algorithm iteratively updates z following a
direction ξ ∈ Tzk

M with the goal to reach z∗. This scheme encompasses all the proposed methods considered
in this paper.

where zk = (xk, yk) and τ > 0 is the separation parameter. From Proposition 9, it is equivalent to studying

the continuous version of such dynamics (η → 0) as ż(t) = Gτ (z(t)), Gτ (z(t)) =
(

−τ gradxf(x(t), y(t))
gradyf(x(t), y(t))

)
.

Let TSRGDA denote the set of strictly stable equilibrium points of dynamics (1), with parameter τ , and LNS :=
{z = (x, y) | gradzf(z) = 0,Hessxf(z) ≻ 0,Hessyf(z) ≺ 0}, i.e., the set of strictly local Nash saddle points
and LMiniMax := {z = (x, y) | gradzf(z) = 0, (Hessxf − grad2

xyf ◦ Hess−1
y f ◦ grad2

yxf)(z) ≻ 0,Hessyf(z) ≺ 0}
be the set of strictly local minimax points. The following result claims for any fixed timescale separation
parameter τ , there exist certain functions, where TSRGDA may converge to unmeaning points, which are
neither local Nash saddle nor local minimax points.

Proposition 11. For any fixed τ , we have LNS ⊂ TSRGDA, while there exists some functions such that
TSRGDA ̸⊂ LNS. Furthermore, for any fixed τ , there exists some functions such that LMiniMax ̸⊂ TSRGDA and
TSRGDA ̸⊂ LMiniMax.

The proof of Proposition 11 relies on Proposition 9 where we work with a matrix representation of ∇Gτ (z).
It has been further shown by Jin et al. (2020) that provided τ sufficiently small, the stable equilibrium points
of TSRGDA are strictly local minimax points (up to some degenerate points with respect to Hessyf(z)). A
follow-up work (Fiez & Ratliff, 2021) further derives a non-asymptotic construction of an upper bound to τ ,
which we extend to the Riemannian manifold settings as follows.

Proposition 12. Suppose z is a non-degenerate critical point of f , i.e., gradzf(z) = 0, Hessyf(z) is
non-degenerate. Then there exists τ0 > 0 such that for all τ ∈ (0, τ0), z ∈ TSRGDA if and only if z ∈ LMiniMax.

In addition, the asymptotic convergence rate is derived for TSRGDA, motivated by Zhang et al. (2020).

Theorem 1 (Asymptotic convergence of TSRGDA). Suppose z∗ ∈ LMiniMax and for some τ sufficiently
small, z∗ ∈ TSRGDA. Then the asymptotic convergence rate of TSRGDA to z∗ is given by maxi |1 + ηνi|,
where {νi}

dx+dy

i=1 are the eigenvalues of ∇Gτ (z∗) in an orthonormal basis, and η < mini

(
− 2R(νi)/|νi|2

)
,

with R(·) denoting the real part.

Remark 3. From (Jin et al., 2020, Lemma 40), we see when τ → 0, we have the eigenvalues of matrix
representation of ∇Gτ (z∗) asymptotically splits and converges to {−τλi}dx

i=1 and {−µj}dy

j=1, where λ1 ≥ ... ≥
λdx

> 0, µ1 ≥ ... ≥ µdy
> 0 are eigenvalues of (Hessxf − grad2

xyf ◦ Hess−1
y f ◦ grad2

yxf)(z∗) and −Hessyf(z∗),
respectively. In this limiting case, we see the convergence rate reduces to maxi |1 − ητλi| ∨ maxj |1 − ηµj |
with η < 2

τλ1∨µ1
.
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6 Second-order methods for nonconvex-nonconcave problems on Riemannian
manifolds

This section proposes various second-order methods that are guaranteed to converge to the local minimax
point, without requiring a sufficiently small stepsize (i.e., τ sufficiently small) for the minimization variable
as in TSRGDA. We also analyze a few recent Riemannian min-max algorithms proposed in the literature.

6.1 Riemannian follow-the-ridge and total gradient descent ascent methods

Riemannian follow-the-ridge. The Riemannian follow-the-ridge (RFR) generalizes the idea proposed
by Wang et al. (2019). Based on the definition of a strictly local minimax point (x∗, y∗), x∗ is a local
minimum of f(x, ψ(x)) where ψ : X −→ Y is an implicit function such that gradyf(x, ψ(x)) = 0 for any x in a
neighborhood of x∗ (due to implicit function theorem on manifolds, i.e., Theorem 5 in Appendix). In order
to ensure the condition gradyf(xk, ψ(xk)) = 0 is satisfied (approximately) at every iteration, a correction
term for the y player is added as Dxψ(xk)[Logxk

(xk+1)] ≈ Logyk
(yk+1). Specifically, each iteration starts by

updating xk as xk+1 = Expxk
(−ητgradxf(xk, yk)) and then updates yk as yk+1 = Expyk

(η gradyf(xk, yk) +
Dxψ(xk)[Logxk

(xk+1)]) where the latter term is computed following again the implicit function theorem
on manifolds, as Dxψ(xk)[Logxk

(xk+1)] = ητ
(
[Hessyf ]−1 ◦ grad2

yxf
)
(xk, yk)[gradxf(xk, yk)]. Suppose at

iteration k, we have gradyf(xk, yk) = 0, then we can show yk+1 ≈ ψ(xk+1) with gradyf(xk+1, ψ(xk+1)) = 0.

Using similar notations as before, we can write the dynamics compactly as

RFR: zk+1 = Expzk

(
η GRFR(zk)[gradf(zk)]

)
, GRFR(zk) =

(
−τ id 0

τ
(
Hess−1

y f ◦ grad2
yxf

)
(zk) id

)
.

Riemannian total gradient descent ascent. Total gradient descent ascent (Fiez et al., 2020) is closely
related to the follow-the-ridge update, where both methods have been shown to precondition the GDA update
with preconditioner being the transpose of each other (Zhang et al., 2020). The update of the Riemannian
version is given by

RTGDA: zk+1 = Expzk

(
η GRTGDA(zk)[gradf(zk)]

)
, GRTGDA(zk) =

(
−τ id τ

(
grad2

xyf ◦ Hess−1
y f

)
(zk)

0 id

)
.

It can be seen that GRTGDA(zk) = (GRFR(zk))† due to that grad2
xyf = (grad2

yxf)†. Hence, RFR and RTGDA
share similar convergence properties as stated below.
Theorem 2 (Asymptotic convergence of RFR and RTGDA). For any τ > 0, the following three statements
are equivalent: (1) z∗ is a strictly local minimax point; (2) z∗ is a strictly stable fixed point of RFR; and (3)
z∗ is a strictly stable fixed point of RTGDA. Moreover, the asymptotic convergence rate of RFR and RTGDA
to a strictly local minimax point is ρ = maxi |1 − ητλi| ∨ maxj |1 − ηµj | for η < 2

τλ1∨µ1
, where λi, µj are the

same eigenvalues as in Theorem 1.

Remark 4. Compared to TSRGDA in Theorem 1 and Remark 3, we see RTGDA and RFR achieve the
same (limiting) asymptotic convergence rate with an arbitrary choice of τ , which is in general numerically
favorable.

6.2 Riemannian Newton gradient descent and Newton follow-the-ridge.

The Euclidean Newton gradient descent method (Zhang et al., 2020) updates the max player with a Newton
step, which allows the maximization step to be solved accurately and is more favorable when the maximization
problem is ill-conditioned, i.e., Hessyf(z∗) has a large eigenvalue gap. The Riemannian Newton gradient
descent (RNGD) is given by

RNGD: xk+1 = Expxk

(
− ητgradxf(zk)

)
, yk+1 = Expyk

(
− ηHess−1

y f(zk)[gradyf(xk+1, yk)]
)
,

where the negative sign in the max variable is because the Newton step is the same for both minimization
and maximization problems.
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Another related algorithm, known as the Newton follow-the-ridge (Gao et al., 2022) method, presents a
first-order approximation to the maximization step of the Newton gradient descent. On general Rieman-
nian manifolds, by Taylor approximation of gradyf(xk+1, yk), we have gradyf(xk+1, yk) ≈ gradyf(zk) −
ητgrad2

yxf(zk)[gradxf(zk)] where substituting this approximation to RNGD yields the Riemannian Newton
follow-the-ridge (RNFR) as

RNFR: zk+1 = Expzk

(
η GRNFR(zk)[gradf(zk)]

)
, GRNFR(zk) =

(
−τ id 0

τ(Hess−1
y f ◦ grad2

yxf)(zk) −ζHess−1
y f(zk)

)
.

We remark that Gao et al. (2022) use ζ ′id − ζHess−1
y f(zk) in place of −ζHess−1

y f(zk) for the max variable.
Since we motivate our RNFR from Taylor approximation, we decide to exclude ζ ′id, where the subsequent
analysis does not differ significantly. In addition, based on the discussion in the previous section, we propose
a Riemannian Newton total gradient descent ascent (RNTGDA) by simply taking the adjoint of GRNFR.
Specifically, let GRNTGDA(zk) = (GRNFR(zk))† we directly consider the update on general Riemannian
manifolds as

RNTGDA : zk+1 = Expzk
(η GRNTGDA(zk)[gradf(zk)]) = Expzk

(η (GRNFR(zk))†[gradf(zk)]).

Below, we present the convergence guarantees for RNFR and RNTGDA.
Theorem 3 (Asymptotic convergence of RNFR and RNTGDA). For any τ > 0, the following three statements
are equivalent: (1) z∗ is a strictly local minimax point; (2) z∗ is a strictly stable fixed point of RNFR; and (3)
z∗ is a strictly stable fixed point of RNTGDA. When choosing ζ = 1/η, the asymptotic convergence rate of
RNFR and RNTGDA to a strictly local minimax point is ρ = maxi |1 − ητλi| where η < 2

τλ1
and λis are the

eigenvalues of
(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗).

Remark 5. Compared to the convergence of RFR and RTGDA, the asymptotic convergence rate of RNFR
and RNTGDA does not depend on the eigenvalues of Hessyf(z∗). Thus, when Hessyf(z∗) is ill-conditioned,
we obtain an improved convergence rate with the Newton step for the max player.

6.3 Riemannian Hamiltonian and consensus methods (RHM/RCON)

Riemannian Hamiltonian and consensus methods (Han et al., 2023b) are motivated by the minimization of
gradient norm as a proxy problem to the original min-max problem. The updates of the methods are

RHM/RCON: zk+1 = Expzk

(
ηH(zk)

)
= Expzk

(
η(βG(zk) − (∇G(zk))†[G(zk)])

)
, (2)

where G(zk) = (−gradxf(zk), gradyf(zk)) and η > 0, β ≥ 0. We also let H(zk) = βG(zk)− (∇G(zk))†[G(zk)]
Particularly the update (2) is called the Riemannian Hamiltonian method (RHM) when β = 0 and called
the Riemannian consensus method (RCON) when β > 0. The methods are shown to converge linearly to
stationary points of the min-max problem, provided the Riemannian Hamiltonian function, i.e., ∥G(zk)∥2

zk
,

satisfies the general Riemannian PL condition.

The below result shows that for general nonconvex-nonconcave functions, RHM/RCON may converge to
undesirable stable fixed points.
Proposition 13. The strictly stable fixed points of RHM and RCON may contain local minima, maxima,
minimax, or maximin points.

7 Experiments

In this section, we evaluate the proposed second-order algorithms – RFR, RTGDA, RNGD, RNFR, and
RNTGDA (proposed and analyzed in Section 6) – on a variety of problems and compare them against the
below baselines. The code is available at https://github.com/andyjm3/nonconvex-nonconcave-mfd.

• RGDA (Jordan et al., 2022): It is a first-order method with same stepsize for the min and max
variables.
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• TSRGDA (studied in Section 5.4): variant of the RGDA method but with different stepsizes for
min and max variables, i.e., timescale separated.

• RCEG (Zhang et al., 2022c; Jordan et al., 2022): The Riemannian corrected extra-gradient method
is a first-order method where the search direction is modified by taking gradient from the past iterate.

• RHM (Han et al., 2023b): the Riemannian Hamiltonian method with fixed stepsize.
• RCON (Han et al., 2023b): the Riemannian consensus method with fixed stepsize. It is based on

the RHM search direction but now combined with the gradient descent accent direction.

All our experiments are done in Matlab with the Manopt package (Boumal et al., 2014) except for the
GAN experiments (Section 7.4), where we use the Geoopt package with Pytorch (Kochurov et al., 2020).
For the proposed second-order methods, the Hessian inverse is computed via conjugate gradient on tangent
space (Boumal, 2020, Algorithm 6.2), with practical implementation details given in Appendix C. For all the
experiments, we stop the algorithms either when the optimality gap (or gradient norm wherever applicable)
falls below a threshold or the maximum iteration count is reached. The experiments in Section 7.1 show that
RTGDA and RNTGDA empirically perform similarly to RFR and RNFR, respectively (this also follows from
the theoretical analysis in Sections 6.1 and 6.2). Therefore, for all other subsequent experiments, we remove
RTGDA and RNTGDA from our comparisons.

7.1 Quadratic optimization

We evaluate the algorithms on the functions discussed in Proposition 4.

Logdet quadratic problem. The first example is the following quadratic optimization problem with the
log-determinant (logdet) function, i.e.,

min
X∈Sd

++

max
Y∈Sd

++

c1(log det(X))2 + c2 log det(X) log det(Y) + c3(log det(Y))2 (3)

for c1, c2, c3 ∈ R. We consider both nonconvex-geodesic-concave as well as geodesic-convex-concave settings,
i.e., c1 = −1, c2 = 5, c3 = −1 and c1 = 1, c2 = 10, c3 = −1. We respectively label the two problems as
LD:NCGC and LD:GCC, representing nonconvex-geodesic-concave and geodesic convex-concave logdet quadratic
problems. The Riemannian gradient and second-order derivatives for the problem are derived in Lemma 4.

From Proposition 4, we see that the local minimax points (X∗,Y∗) of problem LD:NCGC satisfy det(X∗) =
det(Y∗) = 1. For the problem LD:GCC, the global saddle points are shown to also satisfy the same conditions
as in (Han et al., 2023b, Proposition 8). Hence for both problems, we use the same criterion | det(X) − 1| +
| det(Y) − 1| for measuring the optimality gap as in Han et al. (2023b).

Riemannian distance quadratic problem. We now consider a modification to (3), where (log det(Y))2 is
replaced with dist2(I,Y), i.e.,

min
X∈Sd

++

max
Y∈Sd

++

c1(log det(X))2 + c2 log det(X) log det(Y) + c3dist2(I,Y), (4)

where we recall the Riemannian distance on Sd
++ with the affine-invariant metric is dist2(A,B) =

∥logm(A−1/2BA−1/2)∥2
F. For this problem instance, we consider the setting c1 = −1, c2 = 5, c3 = −1,

which we label as RD:NCGC, which is a nonconvex-geodesic-(strongly)-concave problem. The Riemannian
gradient and second-order derivatives are given in Lemma 5. From Proposition 4, we see the local minimax
points (X∗,Y∗) satisfy det(X∗) = 1,Y∗ = I. We use | det(X) − 1| + dist2(Y∗, I) to measure the optimality
gap.

Experiment setup and results. For experiments, we consider d = 30 and tune stepsizes for all the methods.
For RCON, we also tune γ after fixing the same stepsize as RHM. We fix ζ = 1 for RNFR and RNTGDA.
The results are plotted in Figure 2, where we show the optimality gap as a function of both iteration counts
and time. For the RD:NCGC problem, we also plot the gradient norm against time. Examining the plots, we
make the following observations.
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Figure 2: Experiments on the quadratic optimization problems (3) and (4) on the SPD manifold. We observe
faster convergence of proposed second-order methods against the benchmarks particularly for nonconvex-
nonconcave settings (LD:NCGC, RD:NCGC).

• For all the problem instances, our proposed second-order methods perform competitively among
the baselines. They perform the best in terms of both iteration and runtime for the two nonconvex-
geodesic-concave problems (LD:NCGC, RD:NCGC).

• We observe very similar convergence behavior of RFR and RTGDA as well as RNFR and RNTGDA.
This empirical observation matches the theoretical analysis as they share the same preconditioner
(up to a transpose) and have the same asymptotic convergence rate.

• For the geodesic convex-concave problem (LD:GCC), Figure 2(a), we see RHM/RCON outperforms
other methods in terms of the number of iterations. As the proxy problem for RHM/RCON satisfies
the Riemannian PL condition as demonstrated in (Han et al., 2023b, Proposition 8), RHM and
RCON have better convergence rates.

• Among the methods that use first-order information, we observe that TSRGDA outperforms RGDA
and RCEG. This suggests using different stepsizes for minimization and maximization updates is
essential to improve the convergence.

7.2 Robust Fréchet mean

The robust Fréchet mean (RFM) computation problem on the SPD manifold (Zhang et al., 2022c; Han et al.,
2023b) can be formulated as the task of finding the Fréchet mean (of a set of SPD matrices) with eigenvalues
bounded away from zero, i.e.,

min
M∈Sd

++

max
x∈Sd

x⊤Mx + α

n

n∑
i=1

dist2(M,Mi), (5)

where α > 0 is the regularization parameter and Sd := {x ∈ Rd : x⊤x = 1} is the sphere manifold. This
problem is geodesic strongly convex in M and in general nonconcave for x. We derive the Riemannian
gradient and second-order derivatives in Lemma 6. We use the gradient norm as a measure of distance to
optimality.

Experiment setup and results. We follow the experimental setting in Zhang et al. (2022c); Han et al.
(2023b) for generating the sample SPD matrices with bounded eigenvalues in [λ0, λ1]. We choose d = 50,
n = 40, λ0 = 0.2, λ1 = 4.5, α = 0.1 as in Han et al. (2023b).
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Figure 3: Experiments on the robust Fréchet mean (RFM) and robust maximum likelihood estimation (RMLE)
problems. For RFM, we observe that RNGD and RNFR achieve the fastest convergence. The other converging
method is RHM, although its convergence is slow. All other baselines converge to undesired points that are
not stationary. For RMLE, the only two converging algorithms are RFR and RNFR, while first-order methods
(RGDA, TSRGDA, and RCEG), RNGD, and RHM/RCON either do not converge or converge slowly.

From Figures 3a and 3b, we see that RNGD and RNFR outperform others in both in number of iterations
required and runtime. RHM converges as well, but slowly. RFR and all other first-order methods fail to
converge suggesting that the Newton step provides a better-conditioned maximization update.

7.3 Robust maximum likelihood estimation

The robust maximum likelihood estimation problem (Bertsimas & Nohadani, 2019; Zhang et al., 2022c) is
formulated as follows. Given an observed data matrix X ∈ Rn×d where n, d are respectively the number of
samples and feature dimension, the objective is

min
δ∈Sd

max
µ∈Rd,Σ∈Sd

++

−nd

2 log(2π) − n

2 log det(Σ) − 1
2

n∑
i=1

(xi − δ − µ)⊤Σ−1(xi − δ − µ), (6)

where we choose the constraint set for the perturbation as a sphere, i.e., the perturbed samples are unit-
distance away from the original ones. We adopt the reformulation in (Hosseini & Sra, 2020, Theorem 1) to
transform problem (6) to be geodesic concave in the maximization variable. If y⊤

i = [x⊤
i 1] ∈ Rd+1 for all i

be the augmented data, then an equivalent problem to (6) is

min
δ∈Sd+1

max
S∈Sd+1

++

−n

2 log det(S) − 1
2

n∑
i=1

(yi − δ)⊤S−1(yi − δ), (7)

where we ignore the constants. Although the problem is geodesic concave in S, it is in general nonconvex in
δ. The Riemannian gradient and second-order derivatives are derived in Lemma 7.

Experiment setup and results. We use the fisheriris dataset from Matlab, which consists of n = 150
samples in d = 4 dimension. We augment the given data matrix with a column of ones and solve the
reformulated problem (7). We observe in Figures 3c, 3d that RFR and RNFR converge faster, whereas others
either do not converge or converge slowly.

7.4 Orthonormal generative adversarial networks

Lastly, we evaluate the proposed second-order methods on the application of generative adversarial network
(GAN), which optimizes a game between a generator and a discriminator network. In particular, we consider
the orthonormal GAN (Brock et al., 2019; Müller et al., 2019), where the weights of the discriminator are
constrained to be orthonormal. Such a constraint has shown to improve training stability and generalization
capability (Müller et al., 2019). To this end, we formulate the objective of the orthonormal GAN (OGAN)
problem as

min
{WG

ℓ
}

max
{WD

ℓ
}:WD

ℓ
∈St(dℓ,dℓ+1)

1
n

n∑
i=1

(
log

(
σ(D(xi))

)
+ log

(
1 − σ(D(G(zi)))

))
,
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Figure 4: OGAN on a mixture of Gaussians. The top row plots samples generated from the generator and
the bottom row plots prediction from the discriminator on the entire 2d domain where the pixel intensity
represents the predicted probability. Although all the algorithms achieve good sample quality for the generator,
only the discriminator optimized by RNGD and RNFR is fooled completely by the generator, suggesting that
the Newton step is crucial for stabilizing training.
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Figure 5: Experiments on orthonormal generative adversarial network (OGAN) on a mixture of Gaussians
where we see RNGD and RNFR converge within a few iterations, while the others fail to converge.

where we denote σ(·) as the sigmoid function, xi as the input samples, zi as the input noise, usually following
a Gaussian distribution, We also use D and G to represent the discriminator and generator networks,
respectively. The weights of l-th layer of generator and ℓ-the layer of discriminator are denoted as WG

l ,WD
ℓ ,

and St(d, r) (with r ≤ d) represents the set of column orthonormal matrices (i.e., the Stiefel manifold).

Experiment setup and results. We consider the mixture of 8 Gaussians example as in Zhang et al. (2020)
and use the same network architecture where both the generator and discriminator have 3 hidden layers, each
with 256 units and ReLU activation. The dimension of the prior zi is 100 and the batch size is set as 512.
Following Han et al. (2023b), we parameterize the orthonormal weights only for the second last layer of the
discriminator. To examine the local convergence, we use the pre-trained network parameters in Zhang et al.
(2020) (after projecting to the manifold) as initialization. For RFR, RNGD, and RNFR, we use 20 iterations
for the conjugate gradient method (that is used to compute the Hessian inverse). We fix the stepsize for
the generator to be 0.001 for all methods and tune the stepsize of the discriminator. We set the maximum
number of iterations to 5000 for RGDA, RCEG, RHM, and RCON, 200 for RFR, and 100 for RNGD and
RNFR.

Figures 5a and 5b show the gradient norm in terms of both iteration and runtime, respectively, averaged over
five random runs. We observe that RNGD and RNFR converge within a few iterations while other methods
do not. The significant convergence speed justifies the additional per-iteration cost in computing the Hessian
inverse. We further plot the generated samples and discriminator prediction in Figure 4. We notice that
despite generating high-quality samples by all methods, only RNGD and RNFR trick the discriminator to
predict uniformly almost everywhere.
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8 Concluding remarks

This work studies nonconvex-nonconcave min-max Riemannian optimization and introduces the notion of
minimax points for defining local optimality on manifolds. It generalizes the analysis from the Euclidean
space. We also quantify the stability and asymptotic convergence for dynamics on manifolds that allow
studying the limiting behaviors of various existing algorithms under the nonconvex-nonconcave regimes.
As an additional novel contribution, we propose a class of second-order methods with provable asymptotic
convergence to local minimax points. The experiments show the merits of the proposed methods. In particular,
for many nonconvex-nonconcave problems – robust Fréchet mean, robust maximum likelihood estimation,
and orthonormal generative adversarial networks – the only methods converging to the local minimax are the
proposed second-order methods.

To the best of our knowledge, this is the first work that systematically studies nonconvex-nonconcave min-max
optimization problems on manifolds. However, there remain many open challenges and questions. One question
is whether non-asymptotic convergence to local minimax points can be shown for the methods proposed
on manifolds. Convergence under stochastic settings can be also an interesting direction. Furthermore,
there exist various other notions of local optimality for min-max problems in Euclidean space. It would
be interesting to study those on manifolds and verify the (non-)convergence of existing methods to such
optimality. Similarly, developing acceleration schemes for solving min-max optimization on manifolds is a
challenging but interesting research problem.

References
Jacob Abernethy, Kevin A Lai, and Andre Wibisono. Last-iterate convergence rates for min-max optimization.

arXiv:1906.02027, 2019.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. In
Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Local saddle point optimization:
A curvature exploitation approach. In International Conference on Artificial Intelligence and Statistics, pp.
486–495. PMLR, 2019.

Jonathan Aflalo, Aharon Ben-Tal, Chiranjib Bhattacharyya, Jagarlapudi Saketha Nath, and Sankaran Raman.
Variable sparsity kernel learning. J. Mach. Learn. Res., 12(17):565–592, 2011.

Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, and Aurelien Lucchi. A continuous-time perspective for
modeling acceleration in Riemannian optimization. In International Conference on Artificial Intelligence
and Statistics, pp. 1297–1307. PMLR, 2020.

Dimitris Bertsimas and Omid Nohadani. Robust maximum likelihood estimation. INFORMS Journal on
Computing, 31(3):445–458, 2019.

Rajendra Bhatia. Positive definite matrices. In Positive Definite Matrices. Princeton university press, 2009.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Available online, May, 3, 2020.

Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a Matlab toolbox for
optimization on manifolds. The Journal of Machine Learning Research, 15(1):1455–1459, 2014.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38
(2):156–172, 2008.

14



Published in Transactions on Machine Learning Research (08/2023)

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in min-max
optimization. Advances in Neural Information Processing Systems, 31, 2018.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-max
optimization. In Annual ACM SIGACT Symposium on Theory of Computing, pp. 1466–1478, 2021.

Jelena Diakonikolas, Constantinos Daskalakis, and Michael I Jordan. Efficient methods for structured
nonconvex-nonconcave min-max optimization. In International Conference on Artificial Intelligence and
Statistics, pp. 2746–2754. PMLR, 2021.

Ahmed Douik and Babak Hassibi. Manifold optimization over the set of doubly stochastic matrices: A
second-order geometry. IEEE Transactions on Signal Processing, 67(22):5761–5774, 2019.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with uncertain data. SIAM
Journal on matrix analysis and applications, 18(4):1035–1064, 1997.

Tanner Fiez and Lillian J Ratliff. Local convergence analysis of gradient descent ascent with finite timescale
separation. In International Conference on Learning Representation, 2021.

Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg games:
Equilibria characterization, convergence analysis, and empirical study. In International Conference on
Machine Learning, pp. 3133–3144. PMLR, 2020.

Yihang Gao, Huafeng Liu, Michael K Ng, and Mingjie Zhou. HessianFR: An efficient hessian-based follow-
the-ridge algorithm for minimax optimization. arXiv:2205.11030, 2022.

Kenneth R Garren. Bounds for the Eigenvalues of a Matrix, volume 4373. National Aeronautics and Space
Administration, 1968.

Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman Ozdaglar. Last iterate is slower
than averaged iterate in smooth convex-concave saddle point problems. In Conference on Learning Theory,
pp. 1758–1784. PMLR, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Riemannian accelerated gradient methods
via extrapolation. In International Conference on Artificial Intelligence and Statistics, pp. 1554–1585.
PMLR, 2023a.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, Pawan Kumar, and Junbin Gao. Riemannian Hamiltonian
methods for min-max optimization on manifolds. SIAM Journal on Optimization, 33(3):1797–1827, 2023b.

Reshad Hosseini and Suvrit Sra. An alternative to EM for Gaussian mixture models: batch and stochastic
Riemannian optimization. Mathematical Programming, 181(1):187–223, 2020.

Feihu Huang and Shangqian Gao. Gradient descent ascent for minimax problems on Riemannian manifolds.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Minhui Huang, Shiqian Ma, and Lifeng Lai. A Riemannian block coordinate descent method for computing the
projection robust Wasserstein distance. In International Conference on Machine Learning, pp. 4446–4455.
PMLR, 2021.

P. Jawanpuria, N. T. V. Satya Dev, and B. Mishra. Efficient robust optimal transport: formulations and
algorithms. In IEEE Conference on Decision and Control, 2021.

Pratik Jawanpuria and Bamdev Mishra. A unified framework for structured low-rank matrix learning. In
International Conference on Machine Learning, 2018.

15



Published in Transactions on Machine Learning Research (08/2023)

Pratik Jawanpuria and Jagarlapudi Saketha Nath. A convex feature learning formulation for latent task
structure discovery. In International Conference on Machine Learning, 2012.

Pratik Jawanpuria, Jagarlapudi Saketha Nath, and Ganesh Ramakrishnan. Efficient rule ensemble learning
using hierarchical kernels. In International Conference on Machine Learning, 2011.

Pratik Jawanpuria, Maksim Lapin, Matthias Hein, and Bernt Schiele. Efficient output kernel learning for
multiple tasks. In Advances in Neural Information Processing Systems, 2015a.

Pratik Jawanpuria, Jagarlapudi Saketha Nath, and Ganesh Ramakrishnan. Generalized hierarchical kernel
learning. J. Mach. Learn. Res., 16(20):617–652, 2015b.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave minimax
optimization? In International Conference on Machine Learning, pp. 4880–4889. PMLR, 2020.

Michael I Jordan, Tianyi Lin, and Emmanouil-Vasileios Vlatakis-Gkaragkounis. First-order algorithms for
min-max optimization in geodesic metric spaces. Advances in Neural Information Processing Systems,
2022.

Hassan K Khalil. Nonlinear systems. Prentice-Hall, Upper Saddle River, NJ, 2002.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
arXiv:2005.02819, 2020.

Jiří Lebl. Basic analysis: Introduction to real analysis. volumn II, 2009.

Sucheol Lee and Donghwan Kim. Fast extra gradient methods for smooth structured nonconvex-nonconcave
minimax problems. Advances in Neural Information Processing Systems, 34:22588–22600, 2021.

Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael Jordan. Projection robust Wasserstein
distance and Riemannian optimization. Advances in Neural Information Processing Systems, 33:9383–9397,
2020a.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pp. 6083–6093. PMLR, 2020b.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In Conference
on Learning Theory, pp. 2738–2779. PMLR, 2020c.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and transferable
representations. In International Conference on Machine Learning, pp. 3384–3393. PMLR, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv:1706.06083, 2017.

Eric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On gradient-based learning in continuous games.
SIAM Journal on Mathematics of Data Science, 2(1):103–131, 2020.

Jorma K Merikoski and Ravinder Kumar. Inequalities for spreads of matrix sums and products. Applied
Mathematics E-Notes, 4(150-159):9, 2004.

Bamdev Mishra, NTV Satyadev, Hiroyuki Kasai, and Pratik Jawanpuria. Manifold optimization for non-linear
optimal transport problems. arXiv:2103.00902, 2021.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and optimistic
gradient methods for saddle point problems: Proximal point approach. In International Conference on
Artificial Intelligence and Statistics, pp. 1497–1507. PMLR, 2020a.

Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of o(1/k) for optimistic
gradient and extragradient methods in smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 30(4):3230–3251, 2020b.

16



Published in Transactions on Machine Learning Research (08/2023)

Jan Müller, Reinhard Klein, and Michael Weinmann. Orthogonal Wasserstein GANs. arXiv:1911.13060,
2019.

Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229–251, 2004.

J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100(1):295–320, 1928.

Madhav Nimishakavi, Pratik Jawanpuria, and Bamdev Mishra. A dual framework for low-rank tensor
completion. In Conference on Neural Information Processing Systems (NeurIPS), 2018.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving a class of
non-convex min-max games using iterative first order methods. Advances in Neural Information Processing
Systems, 32, 2019.

François-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In International conference
on machine learning, pp. 5072–5081. PMLR, 2019.

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl. J. Mach. Learn.
Res., 9(83):2491–2521, 2008.

Maurice Sion. On general minimax theorems. Pacific J. Math., 8(4):171–176, 1958.

Chaobing Song, Zhengyuan Zhou, Yichao Zhou, Yong Jiang, and Yi Ma. Optimistic dual extrapolation for
coherent non-monotone variational inequalities. Advances in Neural Information Processing Systems, 33:
14303–14314, 2020.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient algorithms for
smooth minimax optimization. Advances in Neural Information Processing Systems, 32, 2019.

Paul Tseng. On linear convergence of iterative methods for the variational inequality problem. Journal of
Computational and Applied Mathematics, 60(1-2):237–252, 1995.

Nisheeth K Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics, and convexity.
arXiv:1806.06373, 2018.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A follow-the-ridge
approach. In International Conference on Learning Representations, 2019.

Xidong Wu, Zhengmian Hu, and Heng Huang. Decentralized riemannian algorithm for nonconvex minimax
problems. arXiv:2302.03825, 2023.

TaeHo Yoon and Ernest K Ryu. Accelerated algorithms for smooth convex-concave minimax problems with
O(1/k2) rate on squared gradient norm. In International Conference on Machine Learning, pp. 12098–12109.
PMLR, 2021.

Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang Yu. Newton-type methods for minimax optimization.
arXiv:2006.14592, 2020.

Guojun Zhang, Pascal Poupart, and Yaoliang Yu. Optimality and stability in non-convex smooth games.
Journal of Machine Learning Research, 23:35–1, 2022a.

Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the convex
concave saddle point problems. Mathematical Programming, 194(1-2):901–935, 2022b.

Peiyuan Zhang, Jingzhao Zhang, and Suvrit Sra. Minimax in geodesic metric spaces: Sion’s theorem and
algorithms. arXiv:2202.06950, 2022c.

17



Published in Transactions on Machine Learning Research (08/2023)

A Organization of Appendix

The appendix sections are organized as follows.

• Appendix B provides a preliminary introduction to Riemannian geometry and Riemannian opti-
mization.

• Appendix C discusses the practical implementation of the proposed algorithms in the main text,
including the evaluation of the Hessian inverse and ingredients for the Riemannian geometries
considered in this work.

• Appendix D includes additional experimental results on the problem of computing projection robust
Wasserstein distance.

• Appendix E derives some useful lemmas for the proofs of the main results.

• Appendices F-J present the proofs for the main results.

B Preliminaries on Riemannian geometry and Riemannian optimization

This section introduces the basics of Riemannian geometry and optimization with a focus on the essential
concepts required for this work. We refer readers to Absil et al. (2009); Boumal (2020) for a detailed exposition
of the topics.

Riemannian geometry. A Riemannian manifold M is a smooth manifold equipped with a smooth inner
product structure, i.e., a Riemannian metric on each tangent space TzM, ∀z ∈ M, which is denoted as
⟨u, v⟩z for any u, v ∈ TzM. Riemannian metric induces a norm ∥u∥z :=

√
⟨u, u⟩z. We also use TM to denote

the tangent bundle, which is the disjoint union of all tangent spaces. A geodesic γ : [0, 1] −→ M generalizes
the straight line segment in Euclidean space, which is the locally shortest curve with zero acceleration. The
exponential map, Expz : TzM −→ M and for any u ∈ TzM, Expz(u) is defined such that there exists a
geodesic γ with γ(0) = z, γ′(0) = u and γ(1) = Expz(u). Riemannian distance dist(z1, z2) is defined as the
length of the distance minimizing geodesic connecting z1, z2 ∈ M. In a uniquely geodesic neighborhood
U , the exponential map has a smooth inverse, namely the logarithm map, i.e., Logz1 : U −→ Tz1M. In
such a neighbourhood, we can express dist(z1, z2) = ∥Logz1(z2)∥z1 = ∥Logz2(z1)∥z2 . Parallel transport
Γz2

z1
: Tz1M −→ Tz2M is a linear isometric map between tangent spaces such that the vector field along a

curve connecting z1, z2 is parallel.

This paper also considers the product of Riemannian manifolds, i.e., M = Mx × My, which also admits a
Riemannian manifold structure, with the Riemannian metric induced from Mx,My. That is, for any z =
(x, y) ∈ M, (u, v), (u′, v′) ∈ TzM, ⟨(u, v), (u′, v′)⟩z = ⟨u, u′⟩Mx

x + ⟨v, v′⟩My
y where we denote ⟨·, ·⟩Mx , ⟨·, ·⟩My

as Riemannian metrics on Mx,My, respectively. We will make use of a linear operator on the tangent
space of Riemannian product manifolds, i.e., H : TzM −→ TzM. We can write out its operation on

ξ = (u, v) ∈ TxMx × TyMy as H[ξ] :=
(
Hxx Hxy

Hyx Hyy

) (
u
v

)
=

(
Hxx[u] +Hxy[v]
Hyx[u] +Hyy[v]

)
where Hxx : TxMx −→

TxMx, Hyy : TyMy −→ TyMy, Hxy : TyMy −→ TxMx, Hyx : TxMx −→ TyMy are linear operators. Here
we slightly abuse the block-matrix notation for representing the decomposition. For a linear operator
G : TxMx −→ TyMy between tangent spaces, we denote its adjoint operator (with respect to Riemannian
metrics) as G† : TyMy −→ TxMx such that for any ux ∈ TxMx, uy ∈ TyMy, ⟨uy, G[ux]⟩My

y = ⟨ux, G
†[uy]⟩Mx

x .
We use ∇ to denote the covariant derivative induced from the Riemannian connection. On a product manifold,
its Riemannian connection is derived from the product connection (Boumal, 2020, Exercise 5.4).

Riemannian optimization. For a real-valued function f : M −→ R, its Riemannian gradient gradf(z)
is the tangent vector that satisfies ⟨gradf(z), ξ⟩z = Df(z)[ξ] for any ξ ∈ TzM. The Riemannian Hessian
Hessf(z) : TzM −→ TzM is a self-adjoint, linear operator, defined as the covariant derivative of the Riemannian
gradient, i.e., Hessf(z) = (∇gradf)(z). A geodesic convex set U ⊆ M is a subset where every two points
are joined with a geodesic that lies entirely in the set. A function f : M −→ R is called µ-geodesic strongly
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convex in U is for any z1, z2 ∈ U , there exists a geodesic γ connecting them such that d2g(γ(t))
dt2 ≥ µ for all

t ∈ [0, 1] for some µ ≥ 0. If µ = 0, the function is called geodesic convex. A function is called geodesic linear
if it is both geodesic convex and geodesic concave.

Riemannian min-max optimization. For a bifunction f : Mx ×My −→ R, we denote ∇xf(x, y),∇yf(x, y)
as the Euclidean (partial) gradient and gradxf(x, y), gradyf(x, y) as the Riemannian (partial) gradient
with respect to x, y respectively. A bifunction f(x, y) is geodesic (strongly) convex (strongly) concave
if it is geodesic (strongly) convex in x and geodesic (strongly) concave in y. For the bifunction f(x, y),
its Riemannian Hessian is derived in (Han et al., 2023b, Proposition 9), given by Hess(x,y)f(x, y)[ξ] =(

Hessxf(x, y) grad2
xyf(x, y)

grad2
yxf(x, y) Hessyf(x, y)

) (
u
v

)
, where grad2

xyf(x, y) : TyMy −→ TxMx is the Riemannian cross deriva-

tives, computed as grad2
xyf(x, y)[v] = Dygradxf(x, y)[v] and similarly for grad2

yxf(x, y). It has been shown
in (Han et al., 2023b, Proposition 10) that grad2

xyf(x, y), grad2
yxf(x, y) are adjoint operators due to self-

adjointness of Riemannian Hessian.

C Implementation and Riemannian geometries

C.1 Practical considerations

The second-order methods introduced in this section all require evaluating the Hessian inverse. In order to
ensure efficient computation in real applications, we adopt the following practical implementation strategies
whenever necessary.

Conjugate gradient and regularization. In order to compute Hess−1
y f(x, y)[v], we consider solving a

linear system (Hessyf)2(x, y)[s] = Hessyf(x, y)[v] for s ∈ TyMy. This can be solved via a conjugate gradient
algorithm on tangent space (Boumal, 2020, Section 6.3). To ensure (Hessyf)2(x, y) is strictly positive definite,
we add a regularization term to the linear system as ((Hessyf)2 + ϵ id)(x, y)[s] = Hessyf(x, y)[v] for some
sufficiently small ϵ > 0. Such a strategy has also been considered in the Euclidean space (Wang et al., 2019;
Zhang et al., 2020; Gao et al., 2022). In all the experiments, we simply set ϵ = 0.

Use of general retraction in place of exponential map. When the exponential map is inaccessible or
computationally costly to evaluate, a general retraction (Retr : TM −→ M) can be used to approximate the
exponential map, usually to the first order. With retraction, the resulting dynamics is zk+1 = Retrzk

(η G(zk)),
and can be similarly linearized using inverse retraction (Retr−1 : M −→ TM), and Proposition 7 holds, i.e.,
Retr−1

z∗ (zk+1) = (id + η∇G(z∗))[Retr−1
z∗ (zk)] + o(∥Retr−1

z∗ (zk)∥z∗) (see Han et al. (2023a) for more details).
Hence the same notions of stability and asymptotic convergence in Section 5.3 apply, and the convergence
analysis for various methods also holds.

For the experiments, we use the exponential map whenever such an operation is well-defined, e.g., on SPD
and sphere manifolds. For the Stiefel and doubly stochastic manifolds, we use the retraction operation.

C.2 Riemannian geometries of manifolds of interest

Symmetric positive definite (SPD) manifold. The SPD manifold of size d is denoted as Sd
++ :=

{X ∈ Rd×d : X⊤ = X,X ≻ 0} where the affine-invariant metric ⟨U,V⟩X = tr(X−1UX−1V) is considered
(Bhatia, 2009), for U,V ∈ TXSd

++. The exponential map is given by ExpX(U) = Xexpm(X−1U) where
expm(·) denotes the principal matrix exponential. The corresponding logarithm map is given by logX(Y) =
Xlogm(X−1Y). Its Riemannian gradient of a real-valued function f is derived as gradf(X) = X∇f(X)X
and the Riemannian Hessian is Hessf(X)[U] = Dgradf(X)[U] − {UX−1gradf(X)}S = X∇2f(X)[U]X +
{U∇f(X)X}S where we use {A}S := (A + A⊤)/2.

Sphere manifold. The sphere of size d is Sd := {x ∈ Rd : x⊤x = 1}. The sphere manifold is a Riemannian
manifold with the Euclidean metric. The exponential map is given by Expx(u) = cos(∥u∥2)x + sin(∥u∥2) u

∥u∥2

and the logarithm map is Logx(y) = arccos(x⊤y) (I−xx⊤)(y−x)
∥(I−xx⊤)(y−x)∥2

. The Riemannian gradient and Riemannian
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Figure 6: Experiments on the projection robust Wasserstein distance (PRWD) computation problem on the
fragmented hypercube. We see all methods, except RHM and RNFR, perform competitively.

Hessian are respectively gradf(x) = (I − xx⊤)∇f(x) and Hessf(x)[u] = (I − xx⊤)∇2f(x)[u] − x⊤∇f(x)u
for any u ∈ TxSd.

Stiefel manifold. The Stiefel manifold St(d, r) := {X ∈ Rd×r : X⊤X = I} with the Euclidean inner
product. We consider the QR-based retraction in the experiment, which is RetrX(U) = qf(X + U) where
qf(·) extracts the Q-factor from the QR decomposition. Let the orthogonal projection to the tangent space
be denoted as PX(U) = U − X{X⊤U}S. Then, the Riemannian gradient and Riemannian Hessian are given
by gradf(X) = PX(∇f(X)) and Hessf(X)[U] = PX(∇2f(X)[U] − U{X⊤∇f(X)}S).

Doubly stochastic manifold. The doubly stochastic manifold (or coupling manifold) between two discrete
probability measures µ, ν with marginals a ∈ Rm,b ∈ Rn is the set Π(µ, ν) = {Γ ∈ Rm×n : Γij > 0,Γ1n =
a,Γ⊤1m = b}. It can be equipped with the Fisher information metric, defined as ⟨U,V⟩Γ =

∑
i,j(UijVij)/Γij

for any U,V ∈ TΓΠ(µ, ν). The retraction is given by RetrΓ(U) = Sinkhorn(Γ ⊙ exp(U ⊘ Γ)) where exp,⊙,⊘
are elementwise exponential, product, and division operations.

D Additional experiments on projection robust Wasserstein distance problem

We consider the problem of computing the subspace robust Wasserstein distance between two discrete
probability measures (Paty & Cuturi, 2019; Lin et al., 2020a; Huang et al., 2021), i.e.,

min
Γ∈Π(µ,ν)

max
U∈St(d,r)

m∑
i=1

n∑
j=1

( 1
mn

Γij∥U⊤xi − U⊤yj∥2
2 + ϵΓi,j

(
log(Γij) − 1

))
,

where µ =
∑m

i=1 aiδxi
, ν =

∑n
j=1 bjδyj

are discrete probability measures. We denote Π(µ, ν) = {Γ ∈ Rm×n :
Γij > 0,

∑
i Γij = bj ,∀j ∈ [n],

∑
j Γij = ai,∀i ∈ [m]} as the set of doubly stochastic matrices, which form a

Riemannian manifold (Douik & Hassibi, 2019; Mishra et al., 2021). The Riemannian gradient and second-order
derivatives are given in Lemma 8. The problem is nonconvex-nonconcave, and hence, we track the gradient
norm for comparing convergence behaviors of various algorithms.

Experiment setup and results. We consider the same fragmented hypercube example as in Lin et al.
(2020a); Han et al. (2023b), concerning a uniform distribution on [−1, 1]d and a push-forward map T (x) =
x+2sign(x)⊙(

∑k
i=1 ei), where sign(·) denotes the elementwise sign of x and ei are the i-th canonical basis in Rd.

We consider the same choice of parameters in generating the samples as d = 30, r = 5, k = 2, n = 100, ϵ = 0.2.
We exclude RCEG in the experiment because there is no well-defined logarithm map (or inverse retraction)
operations for double stochastic manifold. In Figures 6a, 6b, we see that all methods, except RNFR and
RHM, perform competitively. Even though we see matching convergence in iterations, TSRGDA is slightly
superior due to its less costly per-iteration computation.

E Useful results

This section derives several useful results for the analysis presented in this paper. Appendices E.1 and
E.2 allow to relate the spectrum of any linear operator on tangent space to its matrix representation via a
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coordinate transform. This is crucial for quantifying local minimax points. Appendix E.3 provides inverse
and implicit function theorem on manifolds, which proves to be useful for relating dynamical systems under
different representations (i.e., Proposition 6).

E.1 Spectrum of tangent space linear operators

First, we recall the definition of eigenvalues and eigenvectors of a tangent space operator.

Definition 6. For some x ∈ M, let A : TxM −→ TxM be a linear operator. A tuple (λ, u) for some
λ ∈ R, u ∈ TxM is called an eigenpair of A if A[u] = λu.

It is important to notice here that the eigenvalues need to be real. Thus, based on Definition 6, a general
non-self-adjoint operator can have no eigenpair, unlike the case in Euclidean space where complex eigenvalues
and eigenvectors are well-defined.

The next lemma shows that for eigenpairs that exist for a linear operator (not necessarily self-adjoint), they
can be equivalently written in terms of a matrix representation of the operator on an orthonormal basis. It
should be emphasized that only real eigenpairs are preserved when switching back and forth between the
matrix representation and the abstract operator.

Lemma 1 (Eigenpairs in basis). Suppose we are given an orthonormal basis (e1, ..., ed) of a tangent space
TxM. Then for some λ ∈ R, u ∈ TxM, we have A[u] = λu if and only if A⃗u⃗ = λu⃗ where u⃗ = [⟨u, ei⟩x]i, A⃗ =
[⟨ei, A[ej ]⟩x]ij are the vector/matrix representations in the basis.

Proof of Lemma 1. Taking the inner product with ei, i = 1, ..., d for A[u] = λu on both sides gives ⟨A[u], ei⟩x =
λu⃗i, for all i where u⃗i = ⟨u, ei⟩x is the i-th component of vector u⃗. Hence it remains to show the i-th component
of A⃗u⃗ is equal to ⟨A[u], ei⟩x. This can be seen from the linearity of A, i.e.,

[A⃗u⃗]i =
d∑

j′=1
⟨ei, A[ej′ ]⟩x⟨u, ej′⟩x =

〈
ei, A

[ d∑
j′=1

⟨u, ej′⟩ej′
]〉

x
= ⟨ei, A[u]⟩x,

where we note u =
∑d

i=1⟨u, ei⟩xei.

Furthermore, we can extend such a result to tangent space operators on a Riemannian product manifold.

Lemma 2 (Eigenpairs in basis on product manifold). Consider a product Riemannian manifold M =
Mx × My of dimension dx × dy. Let a linear operator be T : TzM −→ TzM and we denote its elements
Txx : TxM −→ TxM, Tyy : TyM −→ TyM, Txy : TyM −→ TxM, Tyx : TxM −→ TyM be linear operators, not
necessarily self-adjoint.

Suppose that we are given an orthonormal basis Bx = (e1, ..., edx
),By = (w1, ..., wdy

). Also suppose that
for some λ ∈ R, ξ ∈ TzM such that (λ, ξ) is an eigenpair of Tz. Then, we have Tz[ξ] = λξ if and only if
T⃗z ξ⃗ = λξ⃗ where ξ⃗ = [u⃗, v⃗] ∈ Rdx+dy where u⃗ = [⟨u, e1⟩x, ..., ⟨u, edx

⟩x] and v⃗ = [⟨v, w1⟩y, ..., ⟨v, wdy
⟩y] and T⃗z =[

T⃗xx, T⃗xy

T⃗yx, T⃗yy

]
∈ R(dx+dy)×(dx+dy) with T⃗xx = [⟨ei, Txx[ej ]⟩x]ij , T⃗xy = [⟨ei, Txy[wj ]⟩x]ij , T⃗yx = [⟨wi, Tyx[ej ]⟩y]ij ,

T⃗yy = [⟨wi, Tyy[wj ]⟩x]ij.

Proof of Lemma 2. If (λ, ξ) is an eigenpair of Tz, then Tz[ξ] = λξ and we set ξ = (u, v) with u =∑dx

i=1⟨u, ei⟩xei, v =
∑dy

j=1⟨v, wj⟩ywj . Substituting the expressions to the Tz[ξ] and taking inner product with
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basis in Bx,By respectively yields
−−→
Tz[ξ] :=

[−−−−→
Txx[u] +

−−−→
Txy[v]

−−−→
Tyx[u] +

−−−→
Tyy[v]

]
where

[−−−−→
Txx[u] +

−−−→
Txy[v]

]
i

=
〈
ei, Txx

[ dx∑
j=1

⟨u, ej⟩xej

]〉
x

+
〈
ei, Txy

[ dy∑
j=1

⟨v, wj⟩ywj

]〉
x

=
〈
ei,

dx∑
j=1

⟨u, ej⟩xTxx[ej ] +
dy∑

j=1
⟨v, wj⟩yTxy[wj ]

〉
x

=
dx∑

j=1
⟨ei, Txx[ej ]⟩x⟨u, ej⟩x +

dy∑
j=1

⟨ei, Txy[wj ]⟩x⟨v, wj⟩y

=
[
T⃗xx[u⃗] + T⃗xy[v⃗]

]
i
, ∀i ∈ [1, dx],[−−−→

Tyx[u] +
−−−→
Tyy[v]

]
i

=
[
T⃗yx[u⃗] + T⃗yy[v⃗]

]
i
,∀i ∈ [dx + 1, dy],

where we apply the linearity of the operators. Hence,
−−→
Tz[ξ] = T⃗z ξ⃗. Similarly taking the inner product for

the RHS (i.e., λξ), we have
−→
λξ = λξ⃗. For the converse, we can show if T⃗z ξ⃗ = λξ⃗, Tzξ = λξ using similar

arguments via linearity of operators.

We also remind of a result for similar operators.
Proposition 14 (Similar operators). Consider a Riemannian manifold M and x ∈ M, let A,B be linear
operators on TxM. We say A,B are similar if there exists a non-degenerate operator C such that A =
C−1 ◦B ◦ C−1. In addition, if A,B are similar, then they share the same (real) eigenvalues.

E.2 Coordinate transform

Lemma 3 (Coordinate transform is isometric isomorphism). Given an orthonormal basis {e1, ..., ed} on a
tangent space TzM, the coordinate transform ϕ : TxM −→ Rd, defined by ϕ(u) = [⟨u, ei⟩z]di=1 is an isometric
isomorphism (i.e., a bijective isometry) between the tangent space and the Euclidean space.

Proof of Lemma 3. First, given the coordinate transform, we can write for any u ∈ TzM, u =
∑d

i=1⟨u, ei⟩zei.
The mapping ϕ it is invertible and we can write the inverse ϕ−1(u⃗) =

∑d
i=1 u⃗iei such that (ϕ−1 ◦ ϕ)(u) =∑d

i=1⟨u, ei⟩zu = u and (ϕ ◦ ϕ−1)(u⃗) = u⃗. In addition, we have for any u, v ∈ TzM, u⃗, v⃗ ∈ Rd,

⟨ϕ(u), ϕ(v)⟩2 =
d∑

i=1
⟨u, ei⟩z⟨v, ei⟩z = ⟨u,

d∑
i=1

⟨v, ei⟩zei⟩z = ⟨u, v⟩z,

⟨ϕ−1(u⃗), ϕ−1(v⃗)⟩z = ⟨
d∑

i=1
u⃗iei,

d∑
j=1

v⃗jej⟩z =
d∑

i=1
u⃗iv⃗j = ⟨u⃗, v⃗⟩2,

where we use the orthonormality of the basis.

E.3 Inverse and implicit function theorem on manifolds

Theorem 4 (Inverse function theorem on smooth manifolds (Boumal, 2020, Theorem 4.16)). Let G : Mx −→
My be a smooth map on two smooth manifolds Mx,My. If DG(x) is invertible at x ∈ Mx, then there exists
an open subset Ux ⊂ Mx that contains x and Uy ⊂ My that contains G(x) such that G|Ux : Ux −→ Uy is a
diffeomorphism.
Theorem 5 (Implicit function theorem on smooth manifolds). Consider a differentiable function F :
Mx × My −→ TMy defined on the smooth product manifolds Mx × My. Suppose z∗ = (x∗, y∗) ∈ Mx × My

such that F (x∗, y∗) = 0 and ∇yF (x∗, y∗) is invertible where ∇y denotes the covariant derivative on My.
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Then, there exists an open subset U = Ux × Uy ⊂ Mx × My where x∗ ∈ Ux, y
∗ ∈ Uy and a differentiable

function Ψ : Mx → My such that Ψ(x∗) = y∗ and for all x ∈ Ux, Ψ(x) is the unique point in Uy such that
F (x,Ψ(x)) = 0. In addition, we have DxΨ(x∗) = −

(
(∇yF )−1 ◦ DxF

)
(z∗).

Proof of Theorem 5. The proof is motivated by (Lebl, 2009, Theorem 8.5.6) in Euclidean space. We start by
defining a map F̄ : U −→ Mx × TMy as F̄ (x, y) := (x, F (x, y)). We recall that the tangent bundle TMy is
also a smooth manifold, and therefore, Mx × TMy too is a smooth product manifold. The derivative of map
F̄ , for any ξ = (u, v) ∈ TzU , is derived as DF̄ (z) : TzU −→ TxMx × TF (x,y)My

DF̄ (z)[ξ] =
(

u
DxF (x, y)[u] + ∇yF (x, y)[v]

)
.

Evaluated at z∗, it is easy to see when DF̄ (z∗)[ξ] = 0 if and only if ξ = 0 (because ∇yF (z∗) is invertible).
Thus, it follows that DF̄ (z) is invertible. By the inverse function theorem (Theorem 4), there exists an
open subset V that contains F (z∗) = (x∗, 0) and F̄ |U : U −→ V is invertible. That is, for any (x, v) ∈ V, we
have F̄ (F̄−1(x, v)) = (x, v). Let F̄−1 = (F̄−1

1 , F̄−1
2 ) such that F̄ (F̄−1

1 (x, v), F (F̄−1
1 (x, v), F̄−1

2 (x, v))) = (x, v).
This leads to F (x, F̄−1

2 (x, v)) = v for any v ∈ V . Set v = 0 yields F (x, F̄−1
2 (x, 0)) = 0. Let Ψ(x) := F̄−1

2 (x, 0)
and it can be verified that Ψ(x) is one-to-one as F̄−1

2 (x, 0) is one-to-one and hence the uniqueness.

Finally, we take derivative of F (x,Ψ(x)), which is the zero map. This leads to

0 = DxF (x,Ψ(x))[u] = DxF (x,Ψ(x))[u] + ∇yF (x,Ψ(x))
[
DxΨ(x)[u]

]
for any u ∈ TxMx. Thus it follows that for x∗, y∗ = Ψ(x∗), DxΨ(x∗) = −((∇yF )−1 ◦ DxF )(z∗).

F Proofs of Section 4

Proof of Proposition 2. The proof can be trivially adapted from the Euclidean counterpart in Jin et al.
(2020).

Proof of Proposition 3. (1) First, we prove the first-order condition. By Proposition 2, y∗ is the local maximizer
of f(x∗, y), and therefore (based on Proposition 4.5 in Boumal (2020)), we have gradyf(x∗, y∗) = 0. From
the definition of a local minimax point, we know that f(x∗, y∗) ≤ minx:dist(x,x∗)≤δ maxy:dist(y,y∗)≤h(δ) f(x, y)
for any δ ≤ δ0. For any x′ = Expx∗(u) with ∥u∥x∗ ≤ δ, denote y′ = arg maxy:dist(y,y∗)≤h(δ) f(x′, y). Then,

0 ≤ f(x′, y′) − f(x∗, y∗) = f(x′, y′) − f(x∗, y′) + f(x∗, y′) − f(x∗, y∗)
≤ f(x′, y′) − f(x∗, y′) = ⟨gradxf(x∗, y′), u⟩x∗ + o(∥u∥x∗) = ⟨gradxf(x∗, y∗), u⟩x∗ + o(∥u∥x∗).

Since the inequality holds for any u with ∥u∥x∗ −→ 0, we have gradxf(x∗, y∗) = 0.

(2) We now prove for the second-order condition. By the fact that y∗ is a local maximizer of f(x∗, y), we
have by standard result Hessyf(x∗, y∗) ⪯ 0. In addition, by Taylor expansion on f , we have

f(Expx∗(ux),Expy∗(uy)) = f(x∗, y∗) + 1
2 ⟨ux,Hessxf(x∗, y∗)[ux]⟩x∗ + ⟨ux, grad2

xyf(x∗, y∗)[uy]⟩x∗

+ 1
2 ⟨uy,Hessyf(x∗, y∗)[uy]⟩y∗ + o(∥ux∥2

x∗ + ∥uy∥2
y∗),

where we use the fact that Riemannian cross derivatives are adjoint with respect to the Riemannian metric.
Since Hessyf(x∗, y∗) is invertible, define h̃(δ) := 2∥[Hessyf(x∗, y∗)]−1 ◦ grad2

yxf(x∗, y∗)∥y∗δ, that satisfies
h̃(δ) → 0 as δ → 0. Hence it can be shown that −([Hessyf(x∗, y∗)]−1 ◦ grad2

yxf(x∗, y∗))[ux] + o(∥ux∥x∗) =
arg max∥uy∥y∗ ≤max{h(δ),h̃(δ)} f(Expx∗(ux),Expy∗(uy)) for any h(δ). By definition of (x∗, y∗) as local minimax
point,

0 ≤ max
∥uy∥y∗ ≤h(δ)

f(Expx∗(ux),Expy∗(uy)) − f(x∗, y∗)

≤ max
∥uy∥y∗ ≤max{h(δ),h̃(δ)}

f(Expx∗(ux),Expy∗(uy)) − f(x∗, y∗)

= 1
2 ⟨ux,

(
Hessxf(x∗, y∗) − grad2

xyf(x, y) ◦ [Hessyf(x, y)]−1 ◦ grad2
yxf(x, y)

)
[ux]⟩x∗ + o(∥ux∥2

x∗).
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Since the inequality holds for any ux, the proof is complete.

Proposition 15 (Sufficient conditions for local Nash saddle points and local minimax points). Let a point
(x∗, y∗) satisfy: (1) gradxf(x∗, y∗) = 0, gradyf(x∗, y∗) = 0 and (2) Hessxf(x∗, y∗) ≻ 0,Hessyf(x∗, y∗) ≺ 0.
Then, the point is a (strict) local Nash saddle point.

If a point (x∗, y∗) satisfies gradxf(x∗, y∗) = 0, gradyf(x∗, y∗) = 0 and Hessyf(x∗, y∗) ≺ 0, Hessxf(x, y) −
grad2

xyf(x, y) ◦ [Hessyf(x, y)]−1 ◦ grad2
yxf(x, y) ≻ 0, then (x∗, y∗) is a (strict) local minimax point.

Proof of Proposition 15. The proof follows a similar vein from Proposition 3 and (Jin et al., 2020, Proposition
20).

Proof of Proposition 4. (1) By the definition of a global Nash saddle point, we see when (X∗,Y∗) ∈ S∗,
f(X∗,Y∗) = 0 and it satisfies −(log det(Y))2 = f(X∗,Y) ≤ f(X∗,Y∗) ≤ f(X,Y∗) = (log det(X))2. Then,
from (Jin et al., 2020, Proposition 11), we can conclude (X∗,Y∗) is a local minimax point.

(2) For the second claim, we follow the definition of local minimax point in Definition 3. It is easy to
verify that when (X∗,Y∗) ∈ S∗ × S∗, −c3(log det(Y))2 = f(X∗,Y) ≤ f(X∗,Y∗) = 0 for all Y ∈ Y.
On the other hand, consider maxY:dist(Y∗,Y)≤h(δ) f(X,Y) for X such that dist(X∗,X) ≤ δ. First we can
derive the Riemannian Hessian as Hessyf(X,Y)[V] = −2c3tr(Y−1V)Y for any symmetric matrix V. We
can show the Riemannian Hessian is negative semidefinite with respect to the Riemannian metric, i.e.,
⟨Hessyf(X,Y)[V],V⟩X = −2c3(tr(Y−1V))2 ≤ 0. Hence f(X,Y) is geodesic concave in Y (but not strongly
concave, e.g. when V = 0). Hence by first-order conditions and compactness of the domain, we can show
the maximum is attained either when gradyf(X,Y) = 0 or on the boundary of the constraint set. The
Riemannian gradient can be derived as gradyf(X,Y) = (c2 log det(X) − 2c3 log det(Y))Y. Given Y ∈ Sd

++,
gradyf(X,Y) = 0 if and only if c2

2c3
log det(X) = log det(Y). The task is thus to show given certain δ, h(δ), and

X such that dist(X∗,X) ≤ δ we can always find Y satisfying dist(Y∗,Y) ≤ h(δ) such that gradyf(X,Y) = 0.

To see this, first we recall that the Riemannian distance is

dist2(A,B) = ∥logm(A−1B)∥2
F =

d∑
i=1

(
log

(
λi(A−1B)

))2
.

We notice that for any A ∈ S∗, any B ∈ Sd
++, it satisfies log det(A−1B) = log det(A−1) + log det(B) =

log det(B). In addition, we notice that log det(B) =
∑d

i=1 log(λi(B)). Hence, suppose we choose Y such that
log

(
λi((Y∗)−1Y)

)
= c2

2c3
log(λi((X∗)−1X)) for all i ∈ [d]. Since both X∗,Y∗ ∈ S∗, we can verify

log det(Y) = log det((Y∗)−1Y) = c2

2c3
log det((X∗)−1X) = c2

2c3
log det(X),

which satisfies gradyf(X,Y) = 0. Now we just need to show dist2(Y∗,Y) is bounded. To this end, we write

dist2(Y∗,Y) =
d∑

i=1

(
log

(
λi

(
(Y∗)−1Y

)))2 = c2
2

4c2
3

d∑
i=1

(
log

(
λi((X∗)−1X)

))2 = c2
2

4c2
3

dist2(X∗,X).

Hence, we can simply choose h(δ) = c2
2c3
δ, and under such choice, we can always find Y given X under

the constraints such that gradyf(X,Y) = 0. Such choice leads to ϕ(X) := maxY:dist(I,Y)≤h(δ) f(X,Y)
= ( c2

2
4c3

− c1)(log det(X))2. When c2 ≥ 2√
c1c3, we have c2

2
4c3

− c1 ≥ 0. Hence ϕ(X) ≥ f(X∗,Y∗) = 0.

Finally, to show it is not a local Nash saddle point, it suffices to see that ⟨U,Hessxf(X∗,Y∗)[U]⟩X∗ =
−2c1(tr(U))2 ≤ 0, which violates the second-order characterization of local Nash saddle points (Proposition
1).

(3) For the third claim, first we see that f(X∗,Y) ≤ f(X∗,Y∗) = 0 for all Y ∈ Y. Then, we consider
maxY:dist(I,Y)≤h(δ) f(X,Y) for X with dist(I,X) ≤ δ. From the standard result (e.g. (Alimisis et al., 2020,
Lemma 2)), we notice that the Hessyf(X,Y)[V] is negative definite for SPD manifold with affine-invariant
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metric (because the curvature is negative). Hence f(X,Y) is geodesic strongly concave in Y. We similarly
take the first-order conditions where gradyf(X,Y) is computed as

gradyf(X,Y) = c2 log det(X)Y + 2c3LogY(I) = c2 log det(X)Y + 2c3{Ylogm(Y−1)}S

= O
(
c2 log det(X)Λ − 2c3Λ log(Λ)

)
O⊤,

where we consider the eigendecomposition of Y = OΛO⊤ (Λ is a positive diagonal matrix) and denote
{A}S := (A + A⊤)/2 and logm(A) as the principal matrix logarithm of A ∈ Sd

++. We also use log(A) as
elementwise logarithm. It can be verified that gradyf(X,Y) = 0 if and only if c2 log det(X)Λ−2c3Λ log(Λ) = 0.
Given Λ > 0, this is equivalent to c2 log det(X)I = 2c3 log(Λ). Hence the λi(Y) = exp( c2

2c3
log det(X)) for

all i if and only if gradyf(X,Y) = 0. Given that dist2(I,X) =
∑d

i=1
(

log(λi(X))
)2 ≤ δ2 and suppose

λi(Y) = exp( c2
2c3

log det(X)). Then,

dist2(I,Y) =
d∑

i=1

(
log(λi(Y))

)2 = dc2
2

4c2
3

(log det(X))2 = dc2
2

4c2
3

(
d∑

i=1
log(λi(X)))2 ≤ d2c2

2
4c2

3
δ2,

where we use the fact that (
∑d

i=1 ai)2 ≤ d
∑d

i=1 a
2
i in the last inequality. Let h(δ) = dc

2 δ. Then, we can
always ensure gradyf(X,Y) = 0 by choosing Y with λi(Y) = exp( c

2 log det(X)), for all i.

Under a such choice of Y, we obtain log det(Y) = dc2
2c3

log det(X) and dist2(I,Y) = dc2
2

4c2
3
(log det(X))2, which

gives

ϕ(X) = max
Y:dist(I,Y)≤h(δ)

f(X,Y) = −c1(log det(X))2 + dc2
2

2c3
(log det(X))2 − dc2

2
4c3

(log det(X))2

= (dc
2
2

4c3
− c1)(log det(X))2.

When dc2
2

4c3
− c1 ≥ 0, we have ϕ(X) ≥ 0 = f(X∗,Y∗). Hence, the proof is complete.

G Proofs of Section 5

Proof of Proposition 5. First, we study the linearization of the dynamics Logz∗(z(t)) on Tz∗M as follows.

d

dt
Logz∗(z(t)) = DLogz∗(z(t))[ż(t)] = DLogz∗(z(t))[G(z(t))] =

(
DLogz∗(z(t)) ◦ Γz(t)

z∗

)
[Γz∗

z(t)G(z(t))]

= Γz∗

z(t)G(z(t)) + o(∥Logz∗(z(t))∥z∗), (8)

where the last equality is from the proof of (Han et al., 2023a, Lemma 3) where it has been shown that
DLogz∗(z(t)) ◦ Γz(t)

z∗ is locally identity.

Next from Taylor expansion on G(z(t)), we obtain

Γz∗

z(t)G(z(t)) = ∇G(z∗)[Logz∗(z(t))] + o(∥Logz∗(z(t))∥z∗), (9)

where we notice G(z∗) = 0. Finally combining the results (9) with (8) gives the first result. Next,

d

dt
V (z(t)) = 2

〈
Logz∗(z(t)), H

[ d
dt

Logz∗(z(t))
]〉

z∗

= 2
〈
Logz∗(z(t)), H

[
∇G(z∗)[Logz∗(z(t))]

]〉
z∗ + o(∥Logz∗(z(t))∥2

z∗)
=

〈
Logz∗(z(t)),

(
H ◦ ∇G(z∗) + (∇G(z∗))† ◦H

)[
Logz∗(z(t))]

]〉
z∗ + o(∥Logz∗(z(t))∥2

z∗),

where (∇G(z∗))† represents the adjoint operator of ∇G(z∗).
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Proof of Proposition 6. From Proposition 5, we consider the linear dynamical system locally as
d
dt Logz∗(z(t)) = ∇F (z∗)[Logz∗(z(t))]. Let ϕ : Tz∗M −→ Rd be a coordinate transform via an orthonor-
mal basis, which represents tangent vectors in terms of its coordinates. It can be easily verified that ϕ
defines an isomorphism between the tangent space and the Rd. Thus under the coordinate system, let
u(t) := ϕ(Logz∗(z(t)) and then the dynamical system can be described as

u̇(t) =
(
Dϕ(ϕ−1(u(t))) ◦ ∇F (z∗)

)
[(ϕ−1(u(t))],

with an equilibrium point u∗ = ϕ(0z∗), where 0z∗ denotes the 0 tangent vector at Tz∗M. Consider a
Lyapunov function V (Logz∗(z(t))) = ⟨Logz∗(z(t)), H[Logz∗(z(t))]⟩z∗ . The induced Lyapunov function under
the coordinate system is given by Vϕ(u(t)) := V (ϕ−1(u(t))). We can show that

d

dt
Vϕ(u(t)) =

(
DV (ϕ−1(u(t))) ◦ Dϕ−1(u(t))

)
[u̇(t)]

=
(
DV (ϕ−1(u(t))) ◦ [Dϕ(ϕ−1(u(t)))]−1)

[u̇(t)]
=

(
DV (ϕ−1(u(t))) ◦ [Dϕ(ϕ−1(u(t)))]−1 ◦ Dϕ(ϕ−1(u(t))) ◦ ∇F (z∗)

)
[(ϕ−1(u(t))]

=
(
DV (ϕ−1(u(t))) ◦ ∇F (z∗)

)
[(ϕ−1(u(t))] = d

dt
V ((ϕ−1(u(t))),

where the second equality is due to the inverse function theorem. Hence we see the stability analysis of z(t)
is equivalent to that of u(t).

Finally, we notice that ϕ is linear and is independent of t. Hence, we have u̇(t) =
(
ϕ ◦ ∇F (z∗) ◦ ϕ−1)

[u(t)].
Let G := ϕ ◦ ∇F (z∗) ◦ ϕ−1 be the matrix representation of ∇F (z∗) under the coordinate system. Hence the
dynamical system of interest is completely described in Euclidean space as u̇(t) = G[u(t)]. By Definition 4,
u∗ = ϕ(0z∗) is strictly stable if there exists a positive definite matrix H such that HG+G⊤H is negative
definite. This is equivalent to requiring G to have all real parts of its eigenvalues negative (see for example
(Khalil, 2002, Theorem 3.6)).

Proof of Proposition 7. The first result follows similarly from the proof of (Han et al., 2023a, Lemma 3). And
the second result follows by substituting the first result in the definition of the Lyapunov function.

Proof of Proposition 8. The proof follows similarly as the proof of Proposition 6 and applies the equivalence
between the eigenvalue and matrix definiteness characterization of stability (see for example (Khalil, 2002,
Exercise 3.52)).

Proof of Proposition 9. First (1)⇔(2) is verified in Proposition 8. Now we verify the equivalence (2)⇔(3).
First, when (2) holds, let λi = ai + bii be the eigenvalues of matrix representation of ∇G(z∗). Then (2) states
|1+ηai +ηbii| =

√
(1 + ηai)2 + η2b2

i < 1 for all i. Given η > 0, we must have ai < 0 for all i. For the converse,
when (3) holds, i.e., all ai < 0, then we can see (1 + ηai)2 + η2b2

i = 1 + 2ηai + η2(a2
i + b2

i ) = 1 + 2ηai + o(η).
Hence there always exists a sufficiently small η > 0 such that 1 + 2ηai + o(η) < 1 and (2) is satisfied.

Proof of Proposition 10. We start from the linearization of the system on Tz∗M as ∆k+1 = (id +
η∇G(z∗))[∆k] + o(∥∆k∥z∗), where we let ∆k := Logz∗(zk) ∈ Tz∗M. Then we consider the coordi-
nate transform ϕ under an orthonormal basis where we let

−→
∆k := ϕ(∆k). By the isometric property

of such coordinate transform (Lemma 3), we have the equivalent characterization of the system as
−→
∆k+1 = (I + η

−−−−−→
∇G(z∗))

−→
∆k + o(∥

−→
∆k∥2) where we notice that ∥

−→
∆k∥2 = ∥∆k∥z∗ . By the definition of

the asymptotic convergence rate (Definition 5) and following (Wang et al., 2019, Proposition 4), we have
∥
−→
∆k∥2 ≤ C(1 − κ/2)k∥

−→
∆0∥2. Finally, applying the inverse coordinate transform and using the isometric

property again, we have the desired result.
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H Proofs of Section 5.4

Proof of Proposition 11. To show LNS ⊂ TSRGDA, it suffices to write out the matrix representation of ∇Gτ (z∗).
We consider an orthonormal basis on tangent space of product manifold as B = Bx ×By where Bx = (e1, ..., edx)
and By = (w1, ..., wdy

), each orthonormal. From Lemma 2, we can write the matrix representation of

∇Gτ (z∗) as
[
−τHxx −τHxy

Hyx Hyy

]
where Hxx := [⟨ei,Hessxf(z∗)[ej ]⟩x]ij , Hxy := [⟨ei, grad2

xyf(z∗)[wj ]⟩x]ij ,

Hyx := [⟨wi, grad2
yxf(z∗)[ej ]⟩y]ij , Hyy := [⟨wi,Hessyf(z∗)[wj ]⟩y]ij . Now since z∗ ∈ LNS, Hessxf(z∗) ≻ 0 and

Hessyf(z∗) ≺ 0 and by Lemma 1, we see all (real) eigenvalues of Hessxf(z∗),Hessyf(z∗) are equal to that of
Hxx, Hyy respectively. Thus we have Hxx ≻ 0, Hyy ≺ 0 in the matrix sense. Therefore, the following proof
readily follows from that of (Jin et al., 2020, Proposition 26). For the converse, since Euclidean space is a
special case of Riemannian manifold, it suffices to consider the counter-example given in (Jin et al., 2020,
Proposition 26).

For the second claim, the counter-examples given in (Jin et al., 2020, Proposition 27) suffice for the purpose.

Proof of Proposition 12. Similar to Proposition 11, we adopt the matrix representation and the subsequent
proof follows from (Fiez & Ratliff, 2021, Theorem 1).

Proof of Theorem 1. The asymptotic convergence rate is readily obtained from Definition 5. The requirement
on η is to ensure the convergence rate is smaller than 1, i.e., |1 + ηνi| < 1, for all νi.

I Proofs of Section 6

Proof of Theorem 2. First from Proposition 9, we start by writing the covariant derivative at z∗ for RTGDA
as ∇

(
GRTGDA[gradf ]

)
(z∗) = GRTGDA(z∗)[Hessf(z∗)] where

GRTGDA(z∗)[Hessf(z∗)] =
(

−τ id τ
(
grad2

xyf ◦ Hess−1
y f

)
(z∗)

0 id

) (
Hessxf(z∗) grad2

xyf(z∗)
grad2

yxf(z∗) Hessyf(z∗)

)
=

(
−τ(Hessxf − grad2

xyf ◦ Hess−1
y f ◦ grad2

yxf)(z∗) 0
grad2

yxf(z∗) Hessyf(z∗)

)
By transforming the operator into its matrix representation and using Lemma 2 for eigenvalue equivalence in
basis, we see the eigenvalues of GRTGDA(z∗)[Hessf(z∗)] are precisely the eigenvalues of −τ(Hessxf−grad2

xyf ◦
Hess−1

y f ◦ grad2
yxf)(z∗) and Hessyf(z∗) (due to the block triangular structure). Hence if z∗ is a strictly local

minimax point, then Hessyf(z∗) ≺ 0 and (Hessxf − grad2
xyf ◦ Hess−1

y f ◦ grad2
yxf)(z∗) ≻ 0, which suggests

eigenvalues of GRTGDA(z∗)[Hessf(z∗)] are all negative. The converse is also true for the same reason.

For the RFR, the covariant derivative at z∗ is given by ∇
(
GRFR[gradf ]

)
(z∗) = GRFR(z∗)[Hessf(z∗)] where

GRFR(z∗)[Hessf(z∗)] =
(

−id 0
(Hess−1

y f ◦ grad2
yxf)(z∗) id

) (
τHessxf(z∗) τgrad2

xyf(z∗)
grad2

yxf(z∗) Hessyf(z∗)

)
which is similar to the following operator(

−id 0
(Hess−1

y f ◦ grad2
yxf)(z∗) id

)
GRFR(z∗)[Hessf(z∗)]

(
−id 0

(Hess−1
y f ◦ grad2

yxf)(z∗) id

)
=

(
−τ

(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗) τgrad2

xyf(z∗)
0 Hessyf(z∗)

)
.

By the eigenvalue property of similar operators (Proposition 14) as well as similar arguments for RTGDA, the
eigenvalues of GRFR(z∗)[Hessf(z∗)] are the eigenvalues of −τ

(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗) and

Hessyf(z∗). Thus the same equivalence between strictly local minimax point and strictly stable fixed point.
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To obtain the asymptotic convergence rate, we consider the discrete case where the dynamics are given by
zk+1 = Expzk

(
η GRFR(zk)[gradf(zk)]

)
and zk+1 = Expzk

(
η GRTGDA(zk)[gradf(zk)]

)
. First consider RTGDA

and denote λ̃ℓ as the eigenvalues of ∇(GRTGDA[gradf ])(z∗). The asymptotic convergence rate is given
by ρRTGDA = maxℓ |1 + ηλ̃ℓ| for some η > 0 such that |1 + ηλ̃ℓ| < 1 for all ℓ. Let λi and µj be the
eigenvalues of (Hessxf − grad2

xyf ◦ Hess−1
y f ◦ grad2

yxf)(z∗) and −Hessyf(z∗) respectively. Hence for strictly
local minimax point z∗ we have λi, µj > 0 and we can see λ̃ℓ ∈ {−τλi}dx

i=1 ∪ {−µj}dy

j=1. Thus the convergence
rate ρRTGDA = maxi |1 − ητλi| ∨ maxj |1 − ηµj |. The requirement on η such that ρRTGDA < 1 is again
η < 2

τλ1∨µ1
. This proves the convergence rate for RTGDA. For RFR, the proof is exactly the same.

Proof of Theorem 3. The derivative of GRNFR[gradf ] at z∗ is given by

∇(GRNFR[gradf ])(z∗) = GRNFR(z∗)Hessf(z∗)

=
(

−τ id 0
τ(Hess−1

y f ◦ grad2
yxf)(z∗) −ζHess−1

y f(z∗)

) (
Hessxf(z∗) grad2

xyf(z∗)
grad2

yxf(z∗) Hessyf(z∗)

)
which is similar to(

−id 0
(Hess−1

y f ◦ grad2
yxf)(z∗) id

)
GRNFR(z∗)Hessf(z∗)

(
−id 0

(Hess−1
y f ◦ grad2

yxf)(z∗) id

)
=

(
−τ

(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗) τgrad2

xyf(z∗)
0 −ζid

)
.

Thus, the eigenvalues of ∇(GRNFR[gradf ])(z∗) are the union of eigenvalues of −τ
(
Hessxf−grad2

xy ◦Hess−1
y f ◦

grad2
yx

)
(z∗) and −ζid. If z∗ is a strict local minimax, then we have all eigenvalues of ∇(GRNFR[gradf ])(z∗)

negative, which suggests z∗ is a strictly stable point. On the other hand, if z∗ is a strictly stable fixed point,
then −τ

(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗) ≺ 0 and hence ∇(GRNFR[gradf ])(z∗) has all eigenvalues

negative. Similar as before, the asymptotic convergence rate is given by maxi |1 − ητλi| ∨ maxj |1 − ηζ| where
λi are the eigenvalues of

(
Hessxf − grad2

xy ◦ Hess−1
y f ◦ grad2

yx

)
(z∗). Suppose we choose ζ = 1/η, then the

convergence rate simplifies to maxi |1 − ητλi| where η < 2
τλ1

to ensure the rate is less than one.

For the RNTGDA algorithm, we derive

∇(GRNTGDA[gradf ])(z∗) = GRNTGDA(z∗)Hessf(z∗)

=
(

−τ id τ(grad2
xyf ◦ Hess−1

y f)(z∗)
0 −ζHess−1

y f(z∗)

) (
Hessxf(z∗) grad2

xyf(z∗)
grad2

yxf(z∗) Hessyf(z∗)

)
=

(
−τ

(
Hessxf − grad2

xyf ◦ Hess−1
y f ◦ grad2

yxf
)
(z∗) 0

−ζHess−1
y f(z∗)grad2

yxf(z∗) −ζid

)
which has the same eigenvalues as ∇(GRNFR[gradf ])(z∗). Thus the same results follow.

Proof of Proposition 13. We compute the derivative of H at stationary points z∗ as

∇H(z∗) =
(
βid − (∇G(z∗))†)

◦ ∇G(z∗).

First, we analyze the asymptotic behavior of RHM (i.e., when β = 0). We see RHM converges to a stationary
point as long as ∇G(z∗) is invertible, and the asymptotic convergence rate is indeed linear that depends
on the spectrum of Hessf(z∗). More superficially for RHM, id + η∇H(z∗) = id − η(∇G(z∗))† ◦ ∇G(z∗) =
id−η(Hessf(z∗))2. As long as Hessf(z∗) is invertible, then we see z∗ is a strictly stable fixed point of RHM. Let
δi be the eigenvalues of Hessf(z∗). Then the asymptotic convergence rate is given by ρRHM = maxi |1 − ηδ2

i |
and η < 2

maxi δ2
i
. However, because the only condition on z∗ being a strictly stable fixed point is that

Hessf(z∗) is invertible. It may happen that z∗ is a local minimum, local maximum, local minimax or local
maximin.

For RCON with β > 0, we have id + η∇H(z∗) = id + ηβ∇G(z∗) − η(∇G(z∗))† ◦ ∇G(z∗). To analyze the
asymptotic behavior, we first consider the real part of eigenvalues of ∇H(z∗), i.e., R(λ(∇H(z∗))). From
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classic results (Garren, 1968) on real parts of eigenvalues, we have λmin({A}S) ≤ R(λ(A⃗)) ≤ λmax({A}S)
where we denote {A}S := (A+A†)/2 for any linear operator A. Then we see

{∇H(z∗)}S = −(Hessf(z∗))2 + β

(
−Hessxf(z∗) 0

0 Hessyf(z∗)

)
.

Further we have from (Merikoski & Kumar, 2004, Theorem 1)

λmax({∇H(z∗)}S) ≤ − min
i
δ2

i − β(min
j
υj ∧ min

ℓ
µℓ)

λmin({∇H(z∗)}S) ≥ − max
i
δ2

i − β(max
j
υj ∨ max

ℓ
µℓ)

where we let υj , µℓ be the eigenvalues of Hessxf(z∗) and −Hessyf(z∗) respectively. A sufficient condition
for z∗ to be strictly stable fixed point of RCON is thus mini δ

2
i + β(minj υj ∧ minℓ µℓ) > 0. Similar

to the case of RHM, there are many such points as long as δ2
i is sufficiently larger than the negative

spectrum of Hessxf(z∗),−Hessyf(z∗). On the contrary, a sufficient condition for z∗ to be unstable is where
maxi δ

2
i + β(maxj υj ∨ maxℓ µℓ) < 0.

J Proofs of Section 7

Lemma 4. The Riemannian gradient and second-order derivatives for the logdet quadratic problem

f(X,Y) = c1(log det(X))2 + c2 log det(X) log det(Y) + c3(log det(Y))2

are derived as follows, where we let Z = (X,Y) for simplicity.

gradxf(Z) = (2c1 log det(X) + c2 log det(Y))X, gradyf(Z) = (2c3 log det(Y) + c2 log det(X))Y
Hessxf(Z)[U] = 2c1tr(X−1U)X, Hessyf(Z)[V] = 2c3tr(Y−1V)Y
grad2

xyf(Z)[V] = c2tr(Y−1V)X, grad2
yxf(Z)[U] = c2tr(X−1U)Y

Proof of Lemma 4. The Riemannian gradient is given by

gradxf(Z) = X∇f(Z)X = X(2c1 log det(X)X−1 + c2 log det(Y)X−1)X
= (2c1 log det(X) + c2 log det(Y))X

and similarly for Y. For Riemannian Hessian Hessxf(Z)[U] for any U ∈ TXSd
++, we use the formula

Hessxf(Z)[U] = Dxgradxf(Z)[U] − {UX−1gradxf(Z)}S, which gives

Hessxf(Z)[U] = 2c1tr(X−1U)X + 2c1 log det(X)U + c2 log det(Y)U − {UX−1gradxf(Z)}S

= 2c1tr(X−1U)X.

The cross derivatives are given from the definition as grad2
xyf(Z)[V] = Dygradxf(Z)[V] = c2tr(Y−1V)X.

Similar arguments hold for Hessyf(Z)[V] and grad2
yxf(Z)[U].

Lemma 5. The Riemannian gradient and second-order derivatives for problem (4), i.e.,

f(X,Y) = c1(log det(X))2 + c2 log det(X) log det(Y) + c3dist2(I,Y)

are derived as follows.

gradxf(Z) = (2c1 log det(X) + c2 log det(Y))X,
gradyf(Z) = c2 log det(X)Y − 2c3LogY(I) = c2 log det(X)Y − 2c3{Ylogm(Y−1)}S

Hessxf(Z)[U] = 2c1tr(X−1U)X,
Hessyf(Z)[V] = −2c3{Vlogm(Y−1) − Dlogm(Y−1)[Y−1VY−1]}S + 2c3{VY−1{Ylogm(Y−1)}S}S

grad2
xyf(Z)[V] = c2tr(Y−1V)X, grad2

yxf(Z)[U] = c2tr(X−1U)Y.
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Proof of Lemma 5. Given we only change the quadratic term on Y, the only differences come in the compu-
tation of gradyf(Z) and Hessyf(Z). It has been shown by Alimisis et al. (2020) that the Riemannian gradient
of the squared Riemannian distance is gradAdist2(A,B) = −2LogA(B). Substituting B = I, we obtain the
expression for gradyf(Z). In terms of the Riemannian Hessian, i.e., Hessyf(Z)[V] for any V ∈ TYSd

++, we
use the same formula as in Lemma 4, which leads to the desired expression.

Lemma 6. The Riemannian gradient and Riemannian second-order derivatives of the robust Fréchet mean
(RFM) problem (5)

f(M,x) = x⊤Mx + α

n

n∑
i=1

dist2(M,Mi)

are computed as

gradMf(M,x) = Mxx⊤M + 2α
n

n∑
i=1

{logm(MM−1
i )M}S, gradxf(M,x) = 2(I − xx⊤)Mx

HessMf(M,x)[U] = {Uxx⊤M}S + 2α
n

n∑
i=1

{
Dlogm(MM−1

i )[UM−1
i ]M + logm(MM−1

i )U

− UM−1{logm(MM−1
i )M}S

}
S

Hessxf(M,x)[v] = 2(I − xx⊤)Mv − 2(x⊤Mx)v
gradM,xf(M,x)[v] = Mvx⊤M + Mxv⊤M gradx,Mf(M,x)[U] = 2(I − xx⊤)Ux

Proof of Lemma 6. First, we recall that the Riemannian gradient and Hessian on a sphere are given by
gradg(x) = (I − xx⊤)∇g(x) and for any v ∈ TxSd, Hessg(x)[v] = (I − xx⊤)∇2g(x)[v] − x⊤∇f(x)v.
Substituting the results ∇xf(M,x) = 2Mx and ∇2f(M,x)[v] = 2Mv in the Riemannian gradient and Hessian,
we obtain the desired expressions. Then for gradx,Mf(M,x)[U] = DMgradxf(M,x)[U] = 2(I − xx⊤)Ux.

The Riemannian gradient for M can be derived as

gradMf(M,x) = Mxx⊤M − 2α
n

LogM(Mi) = Mxx⊤M − 2α
n

n∑
i=1

{Mlogm(M−1Mi)}S.

We highlight that the second term in the expression of gradMf(M,x) can be costly to evaluate because M−1

needs to be computed every iteration. To simplify the computation, we can show {Mlogm(M−1Mi)}S =
−{logm(MM−1

i )M}S where M−1
i can be pre-computed.

To see why this is the case, we consider the generalized eigenvalue problem Miϕ = λMϕ. Since M,Mi ∈ Sd
++,

λ > 0 and we have M−1Miϕ = λϕ and M−1
i Mϕ = λ−1ϕ. Written compactly, let Φ be the matrix collecting

ϕ and thus we have M−1Mi = ΦΛΦ−1 and M−1
i M = ΦΛ−1Φ−1 where Λ > 0 is the diagonal matrix

collecting the generalized eigenvalues. Then

Mlogm(M−1Mi) = MΦ log(Λ)Φ−1 = −MΦ log(Λ−1)Φ−1 = −(Φ−⊤ log(Λ−1)Φ⊤M)⊤

= −(logm(MM−1
i )M)⊤.

Hence, we can see {Mlogm(M−1Mi)}S = −{logm(MM−1
i )M}S, and therefore,

gradMf(M,x) = Mxx⊤M + 2α
n

n∑
i=1

{logm(MM−1
i )M}S.
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We derive gradM,xf(M,x)[v] = DxgradMf(M,x)[v] = Mvx⊤M + Mxv⊤M. It only remains to derive
HessMf(M,x)[U], which is

HessMf(M,x)[U]
= DMgradMf(M,x)[U] − {UM−1gradMf(M,x)}S

= 2{Uxx⊤M}S − {Uxx⊤M}S + 2α
n

n∑
i=1

({
Dlogm(MM−1

i )[UM−1
i ]M + logm(MM−1

i )U
}

S

−
{

UM−1{logm(MM−1
i )M}S

}
S

)
= {Uxx⊤M}S + 2α

n

n∑
i=1

{
Dlogm(MM−1

i )[UM−1
i ]M + logm(MM−1

i )U

− UM−1{logm(MM−1
i )M}S

}
S
.

Lemma 7. The Riemannian gradient and second-order derivatives expressions for the robust maximum
likelihood estimation problem (7)

f(δ,S) := −n

2 log det(S) − 1
2

n∑
i=1

(yi − δ)⊤S−1(yi − δ)

are derived as

gradδf(δ,S) = (I − δδ⊤)S−1
( n∑

i=1
yi − nδ

)
, gradSf(δ,S) = −n

2 S + 1
2

n∑
i=1

(yi − δ)(yi − δ)⊤

grad2
δ,Sf(δ,S)[S̃] = −(I − δδ⊤)(S−1S̃S−1)

( n∑
i=1

yi − nδ
)
, grad2

S,δf(δ,S)[δ̃] = −
n∑

i=1
{δ̃(yi − δ)⊤}S,

HessSf(δ,S)[S̃] = −1
2

n∑
i=1

{S̃S−1(yi − δ)(yi − δ)⊤}S,

Hessδf(δ,S)[δ̃] = −n(I − δδ⊤)S−1δ̃ − δ⊤(
S−1

( n∑
i=1

yi − nδ
))

δ̃.

Proof of Lemma 7. From the definition of the Riemannian gradient for Sd,Sd
++, the Riemannian gradient

can be easily derived, and similarly for the cross derivatives. For the Riemannian Hessian,

HessSf(δ,S)[S̃] = DSgradSf(δ,S)[S̃] − {S̃S−1gradSf(δ,S)}S

= −n

2 S̃ − {−n

2 S̃ + 1
2

n∑
i=1

S̃S−1(yi − δ)(yi − δ)⊤}S = −1
2

n∑
i=1

{S̃S−1(yi − δ)(yi − δ)⊤}S,

Hessδf(δ,S)[δ̃] = (I − δδ⊤)∇2
δf(δ,S)[δ̃] − δ⊤∇δf(δ,S)δ̃ = −n(I − δδ⊤)S−1δ̃ − δ⊤(

S−1
( n∑

i=1
yi − nδ

))
δ̃.

The proof is complete.

Lemma 8. The Riemannian gradient and Riemannian second-order derivatives of Projection robust Wasser-
stein distance, i.e.,

f(Γ,U) :=
m∑

i=1

n∑
j=1

( 1
mn

Γij∥U⊤xi − U⊤yj∥2
2 + ϵΓi,j

(
log(Γij) − 1

))

31



Published in Transactions on Machine Learning Research (08/2023)

are computed as follows. First, the Riemannian gradient and Riemannian Hessian can be computed as long
as the Euclidean gradient and Hessian are computed, i.e.,

∇Uf(Γ,U) = 2
mn

(
X⊤diag(Γ1n)X + Y⊤diag(Γ⊤1m)Y − X⊤ΓY − Y⊤Γ⊤X

)
U,

∇Γf(Γ,U) = 1
mn

(
diag(XUU⊤X⊤)1⊤

n + 1⊤
mdiag(YUU⊤Y⊤)⊤ − 2XUU⊤Y⊤)

+ ϵ log(Γ),

∇2
Uf(Γ,U)[Ũ] = 2

mn

(
X⊤diag(Γ1n)X + Y⊤diag(Γ⊤1m)Y − X⊤ΓY − Y⊤Γ⊤X

)
Ũ

∇2
Γf(Γ,U)[Γ̃] = ϵ Γ̃ ⊘ Γ,

where we denote ⊘ as elementwise division. In addition, the cross derivatives are given by

grad2
U,Γf(Γ,U)[Γ̃] = 2

mn
(I − UU⊤)

(
X⊤diag(Γ̃1n)X + Y⊤diag(Γ̃⊤1m)Y − X⊤Γ̃Y − Y⊤Γ̃⊤X

)
U

grad2
Γ,Uf(Γ,U)[Ũ] = PΓ(Γ ⊙ DU∇Γf [Ũ]),

where PΓ(V) is the orthogonal projection of V ∈ Rm×n to the tangent space TΓΠ(µ, ν).

Proof of Lemma 8. To derive the gradient and second-order derivatives, we first rewrite the objective as
follows. Let X ∈ Rm×d,Y ∈ Rn×d be the data matrix. Then the objective is

f(Γ,U) = 1
mn

〈
Γ,diag(XUU⊤X⊤)1⊤

n + 1⊤
mdiag(YUU⊤Y⊤) − 2XUU⊤Y⊤

〉
2

+ ϵ
〈
Γ, log(Γ) − 1m1⊤

n

〉
2.

The Euclidean gradients are given by

∇Uf(Γ,U) = 2
mn

(
X⊤diag(Γ1n)X + Y⊤diag(Γ⊤1m)Y − X⊤ΓY − Y⊤Γ⊤X

)
U,

∇Γf(Γ,U) = 1
mn

(
diag(XUU⊤X⊤)1⊤

n + 1⊤
mdiag(YUU⊤Y⊤)⊤ − 2XUU⊤Y⊤)

+ ϵ log(Γ).

From the derivations of Riemannian gradients of the Stiefel manifold and doubly stochastic manifold, we
have gradUf(Γ,U) = (I − UU⊤)∇Uf(U,Γ), and gradΓf(Γ,U) = PΓ(Γ ⊙ ∇Γf(Γ,U)) = Γ ⊙

(
∇Γf(Γ,U) −

α1⊤
n − 1mβ⊤)

, where α ∈ Rm, β ∈ Rn are solutions from the following linear system, i.e.,{
α ⊙ a + Γβ = (Γ ⊙ ∇Γf(Γ,U))1m

β ⊙ b + Γ⊤α = (Γ ⊙ ∇Γf(Γ,U))⊤1n.

For the second-order derivatives, first we see that it is easy to derive the Riemannian Hessian HessUf(Γ,U)[Ũ]
and HessΓf(Γ,U)[Γ̃] for any Ũ ∈ TUSt(d, r), Γ̃ ∈ TΓΠ(µ, ν) as long as the Euclidean Hessian can be derived.
To this end, we obtain

∇2
Uf(Γ,U)[Ũ] = 2

mn

(
X⊤diag(Γ1n)X + Y⊤diag(Γ⊤1m)Y − X⊤ΓY − Y⊤Γ⊤X

)
Ũ

∇2
Γf(Γ,U)[Γ̃] = ϵ Γ̃ ⊘ Γ.

For the cross-derivatives, we first compute

grad2
U,Γf(Γ,U)[Γ̃] = 2

mn
(I − UU⊤)

(
X⊤diag(Γ̃1n)X + Y⊤diag(Γ̃⊤1m)Y − X⊤Γ̃Y − Y⊤Γ̃⊤X

)
U.

To derive grad2
Γ,Uf(Γ,U)[Ũ], we let f1 := α⊙a+Γβ−(Γ⊙∇Γf)1n = 0 and f2 := β⊙b+Γ⊤α−(Γ⊙∇Γf)⊤1m,

where we omit the evaluation of function f at (U,Γ) for clarity. Then we have

DUf1[Ũ] = DUα[Ũ] ⊙ a + ΓDUβ[Ũ] −
(
Γ ⊙ DU∇Γf [Ũ]

)
1n = 0

DUf2[Ũ] = DUβ[Ũ] ⊙ b + Γ⊤DUα[Ũ] −
(
Γ ⊙ DU∇Γf [Ũ]

)⊤1m = 0.

32



Published in Transactions on Machine Learning Research (08/2023)

Thus we can compute DUα[Ũ] and DUβ[Ũ] from the above linear system. Then we have

grad2
Γ,Uf(Γ,U)[Ũ] = Γ ⊙

(
DU∇Γf [Ũ] − DUα[Ũ]1⊤

n − 1m(DUβ[Ũ])⊤)
,

where DU∇Γf [Ũ] = 2
mn

(
diag(X{UŨ⊤}SX⊤)1⊤

n + 1⊤
mdiag(Y{UŨ⊤}SY⊤)⊤ − 2X{UŨ⊤}SY⊤)

. This is
equivalent to grad2

Γ,Uf(Γ,U)[Ũ] = PΓ(Γ ⊙ DU∇Γf [Ũ]).
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