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Abstract

Recent research on robustness has revealed
significant performance gaps between neural
image classifiers trained on datasets that are
similar to the test set, and those that are from a
naturally shifted distribution, such as sketches,
and animations of the object categories observed
during training. However, the notion of a
dataset is also undergoing a paradigm shift
in recent years. With drastic improvements
in the quality, and ease-of-use to modern
generative models, generated data is pervading
the web. In this light, we study the question:
How do these generated datasets influence the
natural robustness of image classifiers? We find
that Imagenet classifiers trained on real data
augmented with generated data achieve higher
accuracy and effective robustness than standard
training and popular augmentation strategies
in the presence of natural distribution shifts.
Additionally, we find that the standard ImageNet
classifiers suffer a performance degradation of
upto 20% on the generated data, indicating their
fragility at accurately classifying the objects
under novel variations. Lastly, we demonstrate
that the image classifiers trained on real data
augmented with generated data from the base
generative model, exhibit greater resilience
to natural distribution shifts compared to the
classifiers trained on real data augmented with
generated data from the finetuned generative
model on the real data. The code is available at
https://github.com/Hritikbansal/
generative-robustness.

1Department of Computer Science, UCLA. Correspondence to:
Hritik Bansal <hbansal@g.ucla.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
One effective strategy to improve robustness is to enlarge
the amount of training data by designing intricate augmen-
tations (Hendrycks et al., 2019; 2022; 2021) of the training
data that aid the generalization of classifier to novel domains.
Similarly, datasets can also be enlarged by scraping multi-
modal paired datasets, such as image-caption pairs on the
Internet (Radford et al., 2021; Jia et al., 2021; Pham et al.,
2021). However, the notion of a dataset is also experienc-
ing a paradigm shift in recent years. With the emergence
of modern ‘in the wild’ generative models (Ramesh et al.,
2022; Nichol et al., 2021; Rombach et al., 2022; Saharia
et al., 2022; Chang et al., 2023), generated data is pervading
the web (Wang et al., 2022; Kirstain et al., 2023). These
models are trained on large diverse datasets (Schuhmann
et al., 2022) with open vocabulary annotations, such that
post-training, they can synthesize high-fidelity images for a
wide range of concepts in a zero-shot manner. Notably, these
models are not limited to generate a fixed, finite set of hand-
engineered augmentations and can be repeatedly queried to
generate diverse data through various conditioning mecha-
nisms such as text prompts, and guidance strategies.

In this work, we study the question: How do datasets gener-
ated from modern in-the-wild generative models influence
the natural robustness of image classifiers? Specifically,
we focus on the classification accuracy (Ravuri & Vinyals,
2019), and the effective robustness (Taori et al., 2020) of
the standard classifiers trained from scratch. We present an
overview of our setup in Figure 1. For generating data, we
utilize Stable Diffusion (Rombach et al., 2022), an in-the-
wild, open-source conditional generative model and create
a synthetic dataset conditioned on objects from two source
datasets ImageNet-1K (Deng et al., 2009) and ImageNet-
100 (Tian et al., 2020). By repeatedly sampling from Stable
Diffusion by prompting it with diverse captions for the class
labels, we generate a large and diverse synthetic dataset.
Specifically, we generate 1.3M synthetic images for training
and 50K images for validation, which is the same size as
the real ImageNet-1K training and validation data. This
complements concurrent works on using synthetic data for
augmentating and improving the accuracy of contrastive
methods (He et al., 2022; Radford et al., 2021) on image
classification and other works (Trabucco et al., 2023; Az-
izi et al., 2023) that study generative augmentations post-
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finetuning of the part or whole of the generative model on
the real data distribution. Our work focusses on the more
challenging setting of transfer to image classifiers without
any finetuning of the base generative model on the real im-
ages. We provide further comparison with the change in the
data generation paradigm in App. §O.
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Figure 1. Overview of our approach. Our method creates generated
dataset using a conditional generative model. The real dataset is
then augmented with the generated dataset to train a classifier.

Our main takeaway is that training a classifier on a combi-
nation of real and generated data can achieve high absolute
performance and high effective robustness (§3.1) on natural
distribution shift datasets. Removing either real or generated
data results in a corresponding reduction in accuracy and
effective robustness respectively, thus necessitating the use
of a mixture. Previous work (Yuan et al., 2022) shows that
we can manipulate the generative models to adapt the im-
ages from a source domain to a single target domain which
results in accurate classifiers on the target domain. Here,
we create a single generated dataset from a diverse set of
templates without customizing it to a single target domain.

To further explain our results, we find that the ‘in-the-wild’
aspects of modern generative indeed plays a role and sub-
stituting these generations with hand-crafted augmentation
strategies or outputs of traditional class-conditional gener-
ative models is less effective (§3.2). We supplement this
analysis with additional results on the impact of proportion
sizes of real and generated data (App. §F.1), different mul-
timodal conditioning strategies for data generation (App.
§G.1), and a human and automatic evaluation study to as-
sess and compare the class consistency, image quality, and
diversity of the real and generated images (App. §I). Having
studied the utility of the generated datasets for training, we
study their use case for benchmarking the standard Ima-
geNet classifiers. In §3.3, we find that the classifiers such
as ResNet-101 (He et al., 2016), finetuned CLIP (Radford
et al., 2021; Wortsman et al., 2022) and ViTs (Dosovitskiy
et al., 2020; Tu et al., 2022) suffer an absolute degrada-
tion of up to 20% on the generated data created using text
prompts with the class labels, suggesting their fragility to
newly generated natural variations.

Finally, we study the impact of varying the data generation
paradigm and evaluate the quality of the image classifiers
trained on the generated data that is closer in distribution
to the real data as compared to the generated data collected
in a zero-shot way. In §3.4, we find that training the image
classifier on the real data augmented with the generated
data from the base generative model achieves high accu-
racy on the natural distribution shift datasets than training
it on the real data augmented with the generated data syn-
thesized from the finetuned generative model on the real
ImageNet data. Our base generated and finetuned gener-
ated datasets will be made publicly available allowing for
reproducible benchmarking of utility and critique of the
generated datasets.

2. Background
Here, we provide a brief background on the robustness and
data generation methods. A detailed background is present
in the Appendix §D.

Robustness: For any classifier f̂ , we can quantify the accu-
racy gap (AG) between the accuracy on a test set Dtest that
follows the same distribution as the training set, and a test
set that varies naturally from the training distribution D′.

AG(f̂ ,Dtest,D′) = A(f̂ ,D′)−A(f̂ ,Dtest) (1)

However, a classifier that closes the accuracy gap might
decrease the individual accuracies. Additionally, given a
robust classifier f̂ that offers high accuracy on the shifted
datasets, we can assess it relative to the expected accuracy
on the shifted dataset with a standard classifier that is trained
on the source training set without any specific robustness in-
tervention. This notion is formalized as effective robustness
(ER) (Recht et al., 2019; 2018).

ER(f̂ ,D′) = A(f̂ ,D′)− β(A(f̂ ,Dtest),D′,Dtest) (2)

where β(z,D′,Dtest) is the accuracy on the shifted test set
D′ for a given accuracy z on the source test set Dtest. We
calculate β by fitting a linear function on the collection of
standard classifiers. Positive ER indicates that the robust-
ness intervention improves over standard training.

Data Generation: We describe the methods that we use
to generate data from Stable Diffusion in Appendix §E.
Throughout the main text, we will focus on generating im-
ages by conditioning on the natural language prompts for
the class labels. For example, we can condition the model
with a prompt ‘a photo of a [dog]’ to generate images for
the class label dog.
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3. Experiments
3.1. Classification Accuracy and Robustness

In our experiments, we choose ImageNet-1K as the source
real dataset, and ImageNet-Sketch, ImageNet-R, ImageNet-
V2, and ObjectNet as the source of natural distribution shift
(NDS) datasets. We train a wide variety of classifiers e.g.,
ResNext-101, on the real dataset and the generated dataset.
More details of the setup are provided in the App. §F.
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Figure 2. Accuracy of ImageNet-1K classifiers on ImageNet-1K
validation set and its natural distribution shift datasets.

We train classifiers on the real ImageNet-1K dataset with
1.3M images, a generated dataset of 1.3M images created
using Stable Diffusion conditioned on proxy captions for
the class labels in ImageNet-1K, and a combination of all
images from the real and generated training datasets.

Table 1. Comparison of the effective robustness of the classifiers
trained solely on the generated dataset and on the real data aug-
mented with the generated dataset.

Im-Sketch Im-R Im-V2 ObjectNet Average
Generated Data 37.83 45.34 9.12 49.91 35.55
Real + Generated Data 14.88 16.68 0.47 2.28 8.55

The average accuracy of five classifiers over three random
seeds is shown in Figure 2. We find that models trained on
the real ImageNet-1K (Im-1K) dataset (Green bar) perform
well on its validation set but experience a significant drop
in performance under natural shifts. Interestingly, we find
that training on generated images using the same training
dataset size leads to poor absolute performance on Im-1K
as well as its NDS datasets. The low absolute performance
may be due to the large distribution gap between the source
and generated training datasets. However, we observe that
the accuracy gaps performance on the real validation dataset
and its NDS datasets are low, which might be attributed to
the benefits of training on diverse generated data. Finally,

we train the classifiers on an equal-sized combination of
real and generated datasets to understand the effectiveness
of generative augmentations.

Table 2. FID score averaged over the ImageNet classes between
the real/generated data and the NDS datasets.

FID Im-Sketch Im-R Im-V2 ObjectNet
Real Dataset 248 225 179 224
Generated Dataset 210 190 223 255

As seen in Figure 2, we find that absolute performance
across the majority of the NDS datasets is higher than train-
ing solely on the real or generated dataset. Notably, train-
ing on the combination of the real and generated dataset
does not affect performance on the ImageNet1K valida-
tion dataset compared to standard training (Orange and
Green bar). We see a similar effect for the natural distribu-
tion dataset, ImageNet-V2, which is closest in distribution
to ImageNet-1K since both the datasets are derived from
Flickr30K (Recht et al., 2019). On ObjectNet, the gain is
∼ 1%, indicating the difficulty of this dataset. Surprisingly,
we find that training with the combination of the real and
generated data leads to an absolute improvement of ∼15%
on ImageNet-Sketch and ImageNet-R over standard train-
ing. Additionally, we find that the effective robustness (ER)
of the classifier is higher (Table 1) than standard training
(= 0) but lower than classifiers trained on the generated
data (Row 1 and Row 2). We further compare the aver-
age FID scores (Table 2) between the real/generated data
and the NDS datasets, and find that ImageNet-R/Sketch are
closer to the generated data than real data, which might be
attributed to the presence of rendition and sketch images
in the generated data (App. §L), that eventually gets re-
flected as larger improvements on classification accuracy
and ER on these datasets. For broader evaluation, we also
show that training a classifier on the real data augmented
with the generated data achieves high accuracy and ER on
corruption-based datasets such as ImageNet-C (Hendrycks
& Dietterich, 2019) (App. §G).

3.2. Comparison with Standard Augmentations

We examine the average performance of three classifiers
(ResNet-18, ResNeXt-50, and ResNeXt-101) trained on the
real ImageNet-100 dataset with 130K images, augmented
with an equal number of generated images from Stable Dif-
fusion, DeepAugment, PixMix, and class-conditional LDM
on the set of overlapping classes with 4 NDS datasets in
Table 3. We observe that augmenting with the diverse in-
the-wild generated datasets yields the highest performance
on Im-R, Im-Sketch, and ObjectNet, followed by DeepAug-
ment, highlighting the utility of modern generative models
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Table 3. Comparison of the models trained on real data and an equal mix of real data and generated data (100:100 ratio) using different
augmentation strategies on ImageNet-100 validation set and its natural distribution shift (NDS) datasets. We report results over the classes
that overlap with ImageNet-100. The results are averaged over three runs of ResNet-18, ResNeXt-50/101.

Im-100 Im-Sketch-100 Im-R-100 Im-V2-100 Obj-100 Average
Real Data 85.7 28.4 49.8 74.8 42.3 56.2
+ DeepAugment (Hendrycks et al., 2021) 86.7 45.2 67.2 76.5 44.9 64.1
+ PixMix (Hendrycks et al., 2022) 85.3 32.7 56.6 73.7 43.9 58.5
+ Class Conditioned LDM (Rombach et al., 2022) 86.7 27.9 55.0 75.6 46.1 58.3
+ Stable Diffusion (Rombach et al., 2022) (Ours) 86.8 48.4 71.2 76.0 47.5 66.0

Table 4. Comparison of the classifiers on the original and filtered real and generated data. The accuracy gap between the performance is
reported inside the gray brackets. We abbreviate Stable Diffusion as SD, Labels as L, Images as I, Pretraining as PT, & Finetuning as FT.

Models Original Filtered
Real Generated Real Generated

ResNeXt-101 (Real ImageNet-1K) 79.3 55.9 (-23.4) 90.8 73.2 (-17.6)
ViT-L/14-336 (PT-Im12K-FT-Im1K) (Dosovitskiy et al., 2020) 88.5 66.2 (-22.3) 94.4 82.3 (-12.1)
Zero-shot CLIP-B/32 (Radford et al., 2021) 68.3 71.9 (+3.6) 83.1 85.6 (+2.5)
ResNeXt-101 (Real + Generated ImageNet-1K) 80.4 89.0 (+8.6) 91.0 97.0 (+6.0)

that are trained on larger multimodal datasets and allow
for more flexible conditioning. We perform experiments to
understand the effect of real and generated data size in App.
§F.1 and the choice of generation strategy in App. §G.1.

3.3. Evaluating Classifiers on Generated Datasets

In our previous experiments, we showed that training a clas-
sifier on the real ImageNet data augmented with the gen-
erated data strikes a good balance between robustness and
accuracy. Here, we evaluate the performance of a variety
of supervised, zero-shot, and fine-tuned ImageNet classi-
fiers on generated dataset, containing 50K generated images,
similar to ImageNet-1K validation dataset. In Table 4, we
find that all the classifiers, except for zero-shot CLIP, un-
derperform on generated data while performing well on the
ImageNet-1K validation dataset. The performance of the
classifier trained on the mix of real and generated data (Row
6) highlights the potential for further improvements in the
existing models on generated data. We perform detailed
analysis in App. §N.1.

3.4. Data from Finetuned Stable Diffusion

Here, we aim to study the impact of varying the data gener-
ation paradigm and evaluate the quality of the image clas-
sifiers trained on the generated data that is closer in distri-
bution to the real data as compared to the generated data
collected in a zero-shot way. We observe that the accu-
racy gains over standard training on the natural distribution
datasets are higher for the classifier trained on the real data
augmented with the base-generated data as compared to
the one trained on the real data augmented with the fine-
tuned generated data. For example, the classifier trained
on the real and base-generated data achieves an accuracy

of 40.1% and 56.2% whereas the classifier trained on the
real and finetuned-generated data achieves an accuracy of
56.2% and 41.5% on ImageNet-Sketch and ImageNet-R,
respectively. Our finding further highlights the usefulness of
training the classifiers on the diverse data, from the base gen-
erative model, over the generated data that is closer to the
real data distribution, on natural distribution shift datasets.
More details for the experiment are present in App. O.

Table 5. Comparison of the performance of a ResNext-50 classifier
on the ImageNet-1K validation dataset, and its natural distribution
shift datasets. The training data contains 1.3M examples for the
Real, Base-Generated, and Finetune-Generated data. Here, Real +
Base-Generated or Finetune-Generated indicates that the generated
data is used to augment the real data.

Data Im Im-Sketch Im-R Im-V2 ObjectNet Average
Real 78.4 25.0 42.2 68.5 40.6 51.0
Base-Generated 32.4 21.6 37.4 26.2 19.4 27.4
Finetune-Generated 38.1 9.4 18.4 28.0 16.7 22.1
Real + Base-Generated 78.4 40.1 56.2 66.5 39.4 56.1
Real + Finetune-Generated 78.0 28.2 41.5 66.0 37.5 50.2

4. Conclusion
We developed a framework to improve performance of im-
age classifiers by augmenting real datasets with a diverse
dataset generated by a modern ‘in-the-wild’ generative mod-
els. Our results show that classifiers trained with this method
exhibit high performance on test and natural distribution
shift datasets. This is due to the increased robustness ob-
tained from training on generated data compared to standard
training methods. Additionally, we used the synthetic data
as an evaluation dataset and highlighted the brittleness of
state-of-the-art models to natural variations in generated



Robust Classification via Generated Datasets

images. Finally, we showed that the generated data from
the base generative model has more practical usefulness for
training robust classifiers as compared to the generated data
from a finetuned generative model on the real data.
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A. Limitations
While the ability to train robust classifiers using generated data from modern text-to-image generative models represents a
significant advancement in generative AI for trustworthy machine learning (ML), there are other equally important aspects,
such as fairness and privacy, that have not been explored in this work. In this study, our focus is on highlighting the benefits
of generated data for objects in the ImageNet-1K dataset. However, this raises intriguing questions about the generalizability
of these results to larger datasets like ImageNet-21K (Ridnik et al., 2021).

Our approach primarily concentrates on generating data from the base generative model in a zero-shot manner for objects
that are well-represented within its distribution. Nevertheless, it is crucial to fine-tune the base model for domains that are
not adequately captured in its training distribution, such as medical images (Chambon et al., 2022). Despite these limitations,
the core contributions of this paper remain highly valuable and provide crucial insights for promoting positive impact in
trustworthy ML.

B. Ethics Statement
In our work, we utilize modern ‘in the wild’ generative models to create generated data, that is further employed for training
Image classifiers. Since these generative models are trained on large, diverse, and uncurated web-scraped datasets, there are
several privacy concerns surrounding the suitable use of public data (Scheuerman et al., 2021), and their harmful biases and
stereotypes (Birhane et al., 2021; Bender et al., 2021). Once trained, these generative models can amplify these biases during
generation (Saharia et al., 2022; Cho et al., 2022; Bansal et al., 2022). With the generative model’s ability to create and
combine different concepts in realistic ways, there are harms associated with changing the predictions based on the natural
language descriptions of the concepts as it is much easier to generate objectionable content with these. It necessitates further
research into closely curating the generated data as well as building fairer multimodal representations of the real world.

As generated data pervades the Internet, it is inevitable that they will be explicitly used or automatically scraped as training
data for building new data-driven models, such as our work. These scenarios present a difficult challenge for researchers to
better understand and track the source of harmful biases introduced in the dataset. Additionally, there are equally relevant
privacy concerns as we train on the model generations, which in recent times, have been shown to replicate styles of real
artists (Cooper, 2022). Hence, making the generated dataset publicly available is a step in the direction towards future
benchmarking and critique of the design and use of generated datasets for trustworthy ML.

C. Related Work
Training Robust Classifiers: Many works propose hand-engineered augmentations to increase the training data and
improve generalizability of the classifiers, e.g., (Hendrycks et al., 2019; 2022; Zhang et al., 2017). (Cubuk et al., 2018;
2020) learn augmentation policies directly from the data and have been shown to improve classification accuracy. DeepAug-
ment (Hendrycks et al., 2021) was one of the first augmentation strategies to perform well on natural distribution shifts.
Additionally, studies on CLIP-verse (Radford et al., 2021; Jia et al., 2021; Li et al., 2021; Goel et al., 2022; Mu et al., 2022)
have shown natural robustness. In our work, we take the best of both paradigms by leveraging the strengths of modern
generative models to augment real datasets. We find that classifiers trained with generated datasets are effectively robust and
outperform current data augmentation strategies in eliciting robustness.

Robustness via Generated Data: (Gowal et al., 2021; Sehwag et al., 2021) studied the effectiveness of synthetic data
from these models for creating adversarially robust classifiers, but did not examine the robustness in the regime of natural
distribution shifts (NDS) and modern in-the-wild generative models (Rombach et al., 2022; Ramesh et al., 2021; Xu et al.,
2022; Saharia et al., 2022; Balaji et al., 2022; Chang et al., 2023). (He et al., 2022) generates synthetic data using the
GLIDE (Nichol et al., 2021) and finds that it improves the accuracy of the CLIP model (Radford et al., 2021), indicating the
usefulness of synthetic data for pre-training image models. Our work focuses on the use-case of the generated data, created
in a zero-shot manner, for training robust image classifiers against natural distribution shifts, and benchmarking the existing
image classifiers.

Model Evaluation: Studies by (Recht et al., 2018; 2019; Hendrycks et al., 2021; Wang et al., 2019; Barbu et al., 2019)
assess the model’s ability to generalize to natural variations in images containing objects from the source dataset, showing
severe performance dips and questioning their usefulness for real-world applications. In our work, we create a generated
validation set from a modern generative model, containing new realizations of the objects in the ImageNet-1K dataset that
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may be difficult to acquire in the real-world. We find that the state-of-the-art ImageNet classifiers experience a performance
degradation on the generated validation data, highlighting at a gap that the robustness research should aim to bridge.

Augmenting with Generated Data: (Antoniou et al., 2017) used generated data to enhance the diversity of training data,
leading to improved classification results, via an image-conditional GAN (Goodfellow et al., 2020). Since then, numerous
studies have applied generated data in various domains. (West et al., 2021) generated a massive commonsense knowledge
corpus using GPT-3 (Brown et al., 2020) to train commonsense models. Brooks et al. (Brooks et al., 2022) fine-tuned a
stable diffusion model with a set of creative image-text pairs generated from a combination of GPT-3 and Stable diffusion
for image editing. Our work demonstrates a practical application of using generated data for improved robustness in model
training.

D. Detailed Background
D.1. Supervised Classification

Given a labelled dataset D = {(x1, y1), . . . , (xn, yn)} ∼ P (x, y) where xi ∈ X ⊂ Rd represents the ith input, and
yi ∈ Y ⊂ {1, 2, . . . ,K} represents its corresponding target label, we train a classifier f̂(x) on Dtrain ⊂ D such
that it models P (y|x), i.e., conditional distribution of y given the input x. The classification model is usually trained
via empirical risk minimization, L(f̂ ,Dtrain) = E

[
l(f̂(xtrain), ytrain)

]
, where l is the training objective, under the

assumption that samples in the training data are identically and independently distributed (i.i.d.). Eventually, we evaluate the
performance of the classifier on a held test set Dtest ⊂ D ∼ P with Dtest ∩ Dtrain = ϕ) using accuracy A(f̂ ,Dtest) =

E
[
I(f̂(xtest) = ytest)

]
.

If a classifier achieves high accuracy on the examples from the test set, we hope that it will perform well on the other
examples that come from P as well as semantically related data distributions. However, in practice, we encounter test sets
D′ sampled from a data distribution P ′ that contains the samples resembling the ones in D with slight variations e.g., images
in D′ may vary from the images in the D in terms of differences in camera settings, and captured views.

D.2. Robustness

For any classifier, we can quantify the accuracy gap (AG) between the accuracy on a test set that follows the same distribution
as the training set, and a test set that varies naturally from the training distribution.

AG(f̂ ,Dtest,D′) = A(f̂ ,D′)−A(f̂ ,Dtest) (3)

For a robust classifier, the accuracy gap should be low up to random sampling error. However, a classifier that closes the
accuracy gap might decrease the individual accuracies. Additionally, given a robust classifier f̂ that offers high accuracy
on the shifted datasets, we can assess it relative to the expected accuracy on the shifted dataset with a standard classifier
that is trained on the source training set without any specific robustness intervention. This notion is formalized as effective
robustness (ER) (Recht et al., 2019; 2018).

ER(f̂ ,D′) = A(f̂ ,D′)− β(A(f̂ ,Dtest),D′,Dtest) (4)

where β(z,D′,Dtest) is the accuracy on the shifted test set D′ for a given accuracy z on the source test set Dtest. We
calculate β by fitting a linear function on the collection of standard classifiers. Positive ER indicates that the robustness
intervention improves over standard training.

D.3. Generative Modeling

Generative models pθ(x) are probabilistic models that are trained to learn the data distribution pdata(x) (Tomczak, 2022).
Due to their flexible design, we can further train their class-conditional versions (Brock et al., 2018; Karras et al., 2019)
to model the class-conditional distributions p(x|yg) where is yg is the conditioning variable, that can take various forms,
which we describe in next section. Post-training, we can generate a new sample xg by sampling from the class-conditional
model distribution xg ∼ pθ(x|yg). In Figure 1, this stochastic mapping pθ(x|yg) is referred to as G. Thus, we can create a
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generated dataset Dg = {(xg, yg)} by repeatedly querying the conditional generative model.

E. Background - Data Generation using Stable Diffusion
In this work, we employ Stable Diffusion (SD) (Rombach et al., 2022), an ‘in the wild’ generative model is one that can
generate images from the natural language description of a wide range of concepts, combine unrelated concepts in a realistic
manner, and apply novel transformations to existing images. Such abilities are exhibited by Stable Diffusion through training
on a large, diverse dataset LAION (Schuhmann et al., 2022) on matched image-text pairs (X , C) scraped from the web
where x ⊂ X denotes a raw image and c ⊂ C denotes its corresponding caption in natural language.

During training, the image x is passed through a pre-trained encoder z0 = E(x) where z0 is the latent representation of
x. The objective of the denoising model R(zt, t, yg) is to predict z0 from every intermediate representation zt where zt
is sampled from t := 1, . . . , T while the conditioning variable yg guides the training process. For image generation, we
sample from z ∼ N(0, I), and use the trained model R(.) with a predefined sampling scheme (DDPM (Ho et al., 2020),
DDIM (Song et al., 2020)) to reconstruct z0 iteratively. Finally, the latent representation z0 is decoded using the pretrained
decoder xg = D(z0) to generate the synthetic image xg .

Given a single data point (x, y) from the source dataset, we have various ways to generate a new data point xg with a trained
Stable Diffusion, as summarized in Appendix Figure 3.

Generation via Class Labels: In practice, Stable Diffusion uses CLIP’s (Radford et al., 2021) text encoder yg = htext(c)
for conditioning during the training process. Here, we synthesize images by denoising zT ∼ N(0, I) conditioned on the
natural language templates M for the class labels y. An example template M ⊂ M includes ‘A photo of a dog’ where
dog is the class label y. This generation strategy involves using a pretrained CLIP text encoder yg = htext(M(y)). Since
generating data conditioned on the natural text descriptions is the default setting for data generation using Stable Diffusion,
our primary focus is on the natural robustness elicited by this data generation strategy.

In addition to the traditional zero-shot data generation approach, we study the following other ways to generate images
without any training or finetuning of the generative model on the images from the source dataset. We specifically study the
effect of these data generation procedures in §G.1.

Generation via Real (Source) Images: Here, we use CLIP’s vision encoder yg = himage(x) for conditioning. In this
case, we generate variations of the images from the source dataset by denoising the latent variable zT conditioned on their
representations.

Generation via Real (Source) Images and Class Labels: We can create realistic variations of the source image x by
first encoding it using the pretrained encoder E(x) followed by forward diffusion for T steps to approximate a normal
distribution ẑT (x). Consequently, we generate a new image by denoising ẑT (x) conditioned on the natural description of
the class label yg = htext(M(y)).

F. Setup
Real Dataset: The ImageNet-1K dataset is widely used as a benchmark for building robust classifiers for image recognition.
It contains 1.3 million labeled training images and 50,000 validation images across 1000 categories. To evaluate the
effectiveness of generated data in this task, we use ImageNet-1K as our benchmark. However, due to the limitations of
compute and storage, we also utilize ImageNet-100, a subset of 100 classes randomly sampled from ImageNet-1K, for many
of our analysis and ablation studies. In line with previous studies (Saha et al., 2022; Tian et al., 2020), we find that the trends
observed in ImageNet-100 are similar to those in ImageNet-1K.

Natural Distribution Shift Datasets: Similar to the previous studies (Miller et al., 2021; Radford et al., 2021; Nguyen et al.,
2022), we consider ImageNet as the reference dataset where ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks
et al., 2021), ImageNet-V2 (Taori et al., 2020), and ObjectNet (Barbu et al., 2019) are natural distribution shift datasets.

Classifiers: We consider models with varying architectures and model capacities as classifiers. This includes ResNet-18 (He
et al., 2016), ResNeXt-50, ResNeXt-101 (Xie et al., 2017), EfficientNet-B0 (Tan & Le, 2019) and MobileNet-V2 (Howard
et al., 2017).

Data Generation: We utilize Stable Diffusion (Rombach et al., 2022) to generate synthetic data conditioned on the natural
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descriptions of the objects in the dataset, and/or the training images. Specifically, we use the Stable Diffusion-V1-5
implementation and inference settings detailed in the diffusers (von Platen et al., 2022) library. For ImageNet-1K, we
construct a 1.3M generated training dataset and 50K validation dataset from Stable Diffusion by conditioning on the proxy
captions for the class labels. The proxy captions are a set of 80 diverse templates given by Radford et al. (2021) to evaluate
their CLIP model.

M(y): A photo of a langur 

CLIP Text Encoder CLIP Vision Encoder

x

xg

Stable Diffusion

(a) Data Generation using either the proxy captions for class
labels or the source image from the dataset.

Stable Diffusion

CLIP Text Encoder

M(y): A rendition of a borzoi

xg

(b) Data Generation using both the proxy captions and the source
image from the dataset.

Figure 3. Overview of our generation strategies. We use Stable Diffusion (SD) to create the generated dataset. (a) We can create images by
conditioning on either the proxy caption for the class label (Generation via Class Labels), or conditioning on the images from the source
dataset (Generation via Real Images). (b) We can also generate data by first encoding the source images to get the latent representation,
which is then denoised conditioned on the text prompt for the class label (Generation via Real Images and Class Labels).

F.1. Effect of Real and Generated Dataset Size
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Figure 4. Variation in the accuracy and the effective robustness as we vary the proportion of the real ImageNet-100 data and the generated
data created using its class labels in the training set. Here 100% refers to 130K training size. While calculating effective robustness,
standard training is performed on 100% real data.

Here, we investigate how different combinations of the real dataset and the generated one can help the classifiers take
advantage of the complementary strengths of the two data sources. To do this, we assessed the average performance of
classifiers (ResNet-18, ResNext-50, and ResNext-101) trained with six different input mixing combinations created by using
25%, 50%, 100% of the real data for ImageNet-100 and 50%, 100%, 200% of the generated dataset using the class labels
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from ImageNet-100.

As shown in Figure 4a, we observed an increase in accuracy on shifted datasets as the size of the real data increases while
keeping the amount of generated data fixed. Similarly, when the proportion of the generated data increases while keeping
the proportion of the real data fixed, we observed similar results. Overall, we found that increasing the amount of training
data from either distribution leads to an improvement in performance on the shifted test beds.

In Figure 4b, we present the average effective robustness of the classifiers across NDS datasets. Interestingly, we observe
that as the proportion of real data increases while keeping the amount of generated data fixed, the effective robustness of the
classifier decreases. Conversely, as the proportion of generated data increases while keeping the amount of real data fixed,
the effective robustness of the classifier increases.

Table 6. Comparison of the models trained on real data and an equal mix of real data and generated data (100:100 ratio) using different
generation strategies on ImageNet-100 validation set and its natural distribution shift (NDS) datasets. We report results over the classes
that overlap with ImageNet-100. The results are averaged over three runs. We abbreviate ImageNet as Im, and Class Label as CL.

Im-100 Im-Sketch-100 Im-R-100 Im-V2-100 Obj-100 Average
Real data 85.7 28.6 49.8 74.8 42.3 56.2
+ Generated data via Class labels (‘a photo of a [CL]’ template) 87.4 35.7 59.5 75.6 44.9 60.6
+ Generated data via Class labels (‘a rendition of a [CL]’ template) 87.4 46.3 67.8 76.0 46.5 64.8
+ Generated data via Class labels (80 diverse templates) 86.8 48.4 71.2 76.0 47.5 66.0
+ Generated data via Real images 85.9 32.2 50.0 74.9 45.1 59.5
+ Generated data via Real images and Class labels 87.4 46.7 71.4 76.5 47.9 66.0

G. ImageNet-C
The evaluation datasets such as ImageNet-C intend to perturb the real images and distort their quality, such that the
representations of the perturbed images are pushed outside the decision boundary of their true class ids. This differs from
natural distribution shift datasets such as ImageNet-V2, ObjectNet, ImageNet-R, and ImageNet-Sketch, since these datasets
are acquired under different environments in the real-world rather than formed by perturbing the original datasets themselves.
To understand the usefulness of the generated data for ImageNet-C, we provide the results for the absolute accuracy and
effective robustness of the models on ImageNet-C (Severity-5). We report the average accuracy over all the sub-datasets in
the ImageNet-C, in Table 7.

Table 7. Comparison of training ImageNet-1K classifiers on the real data, generated data, and the equal mix of real and generated data, on
ImageNet-C (Severity = 5) validation datasets.

Method Accuracy (%) Effective Robustness (%)
Real Data 20.5 -
Generated Data 3.3 25.5
Real Data + Generated Data 21.75 1.3

We find that the classifiers trained with solely the generated data as well as the mix of real and generated achieve high
effectiveness robustness over standard training on the real data (Column 2). The absolute accuracy increases by 1.25% on
the validation set of the ImageNet-1K using our augmentation.

G.1. Effectiveness of Generation Strategies

In the previous sections, we focused on generated data using 80 diverse templates with class label information from the
ImageNet datasets. Here, we compare the performance of the classifiers that are trained on the real data augmented with the
generated data created through mechanisms i.e., (a) diverse templates for class labels, (b) single template for class labels
such as ‘a photo of a class label’, (c) real (source) images used for conditioning the generative model, and (d) real (source)
images are first encoded and then denoised conditioned on the class labels.

We report the results for ImageNet-100 in Table 6. We find that the performance on training with synthetic dataset generated
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using diverse templates for class labels, or the one generated using both class labels and source images, are closely tied
at ∼66%. We observe that there is no additional benefit of using source domain information over just using the class
labels information for zero-shot data generation from the modern generative models. This is different from previous works
(Trabucco et al., 2023) which learns an optimized conditioning embedding from the source data to reduce the domain gap.

Further, we observe that training on the generated datasets created solely with single templates while utilizing class
information results in lower robustness than training on images created via diverse templates. Interestingly, we find that the
classifiers trained with images generated via a single template ‘a photo of a [class label]’, which does not prompt the model
to generate either sketches or renditions explicitly, significantly outperform the classifiers trained solely on the real data
(Row 1 and Row 2). This indicates that in some cases the classifiers augmented with the generated data can be robust to
specific domains without any customization during data generation. Though we lack the resources for this type of study,
future work should perform large-scale human evaluations for the generated datasets along these dimensions.

H. Generated Data Analysis

Table 8. Comparison of consistency (0-1) and quality (1-5) between the real images and the synthetic images created using various
generation images. The numbers are averaged over the individual scores of the 20 human annotators.

Real Generated (Class Labels) Generated (Real Images) Generated (Real and Class Labels)
Consistency (Humans) 0.96 0.86 0.54 0.85
Quality (Humans) 4.52 4.2 2.96 3.8
Diversity (CLIP) 0.30 0.26 0.32 0.23

Since the generative model is prompted in a zero-shot manner, it is important to compare the consistency, quality, and
diversity of the generated data with the real data. To do so, we perform a human evaluation study to assess whether there
is a lack of useful information in the generated datasets that might be relevant to classify an object (Consistency), and
whether the generated images are of poor quality i.e., they lack sharpness or contain perceptible noise (Quality). We collect
1600 annotations from 20 human surveyors for 40 images that are sampled from different real/generated datasets from 10
ImageNet classes. Further details on the data collection process are presented in Appendix §I. In addition, we compare the
diversity in the real and generated dataset by subtracting the average of 1 - mean cosine pair-wise similarities between the
CLIP representations of the images within each class of ImageNet-100, as done in (Udandarao et al., 2022).

We find that images belonging to the real ImageNet dataset are more consistent, of higher quality and more diverse than
generated data created by conditioning a modern generative model on the natural descriptions of the class labels. This
is expected since the real ImageNet went through extensive data curation and cleaning process during its creation. Since
the scores for the generated data via class labels are not that far off, it provides further evidence for its effectiveness and
potential training robust classifiers. In addition, we observe that the consistency and quality scores of images generated via
class labels and the ones generated via source images and class labels are close. In terms of the diversity, we observe that
data generation using only source image information led to the most diverse creations within each class. However, we also
find that synthetic data generated using just the source images had low consistency and quality scores, suggesting at the poor
object representations and image quality, which do not aid in robustness to natural distribution shifts.

I. Setup for Human Evaluation
We randomly selected images from 10 classes of the ImageNet1K dataset and used them to synthesize generated images
using three different strategies: generated data via class labels, via real (source) images, and a combination of both, as
described in §G.1. This resulted in a total of 40 images for our study, including the real images. We then recruited a pool of
20 human annotators to independently complete a survey in which they were shown each image without any information
about its source. 1 They were asked two questions for each image: 1) whether the image contained the intended class label,
and 2) to rate the image’s quality on a scale of 1-5. The screenshot of the survey for one image is provided for reference in
Figure 5.

1More details will be made public in the camera ready version.
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Figure 5. Survey screenshot

J. Setup for Training Image Classifiers
As suggested in previous studies (Kusupati et al., 2022), we train all the models using the efficient dataloaders of FFCV
(Leclerc et al., 2022). We train the models for 40 epochs with the batch size of 512 on ImageNet-1K, and for 88 epochs with
the batch size of 512 on ImageNet-100. All the models are trained with a learning rate of 0.5 with a cyclic learning rate
schedule (Smith, 2017). All the models are trained with SGD optimizer with a weight decay of 5e-5.

K. More Details on Natural Distribution Shift Datasets
ImageNet-Sketch contains the sketches of ImageNet-1K objects. ImageNet-R contains the renditions (paintings, sculptures)
for 200 ImageNet-1K classes, 19 of which overlap with ImageNet-100. ImageNet-V2 is a reproduction of ImageNet-1K
validation dataset, and we consider its matched frequency variant that closely follows the ImageNet-1K data distribution.
Finally, ObjectNet contains a objects in novel backgrounds and rotations with 113 overlapping classes with ImageNet-1K,
and 13 classes overlapping with ImageNet-100.

L. Templates used for Data Generation
We present the list of 80 diverse templates that were used to generate the new images in Table 9.

M. Visualization of Image Generations
We present a sample visualizations of the images generated via different generated strategies in Figure 6.

N. Effect of changing the training size
We present the effect of variation in the training size along the dimensions of the training data and the generated data in
Figure 7, 8, 9, 10.
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’a bad photo of a {class label}.’, ’a photo of many {class label}.’, ’a sculpture of a {class label}.’, ’a photo of the
hard to see {class label}.’, ’a low resolution photo of the {class label}.’, ’a rendering of a {class label}.’, ’graffiti of
a {class label}.’, ’a bad photo of the {class label}.’, ’a cropped photo of the {class label}.’, ’a tattoo of a {class
label}.’, ’the embroidered {class label}.’, ’a photo of a hard to see {class label}.’, ’a bright photo of a {class label}.’,
’a photo of a clean {class label}.’, ’a photo of a dirty {class label}.’, ’a dark photo of the {class label}.’, ’a drawing
of a {class label}.’, ’a photo of my {class label}.’, ’the plastic {class label}.’, ’a photo of the cool {class label}.’, ’a
close-up photo of a {class label}.’, ’a black and white photo of the {class label}.’, ’a painting of the {class label}.’,
’a painting of a {class label}.’, ’a pixelated photo of the {class label}.’, ’a sculpture of the {class label}.’, ’a bright
photo of the {class label}.’, ’a cropped photo of a {class label}.’, ’a plastic {class label}.’, ’a photo of the dirty
{class label}.’, ’a jpeg corrupted photo of a {class label}.’, ’a blurry photo of the {class label}.’, ’a photo of the
{class label}.’, ’a good photo of the {class label}.’, ’a rendering of the {class label}.’, ’a {class label} in a video
game.’, ’a photo of one {class label}.’, ’a doodle of a {class label}.’, ’a close-up photo of the {class label}.’, ’a
photo of a {class label}.’, ’the origami {class label}.’, ’the {class label} in a video game.’, ’a sketch of a {class
label}.’, ’a doodle of the {class label}.’, ’a origami {class label}.’, ’a low resolution photo of a {class label}.’, ’the
toy {class label}.’, ’a rendition of the {class label}.’, ’a photo of the clean {class label}.’, ’a photo of a large {class
label}.’, ’a rendition of a {class label}.’, ’a photo of a nice {class label}.’, ’a photo of a weird {class label}.’, ’a
blurry photo of a {class label}.’, ’a cartoon {class label}.’, ’art of a {class label}.’, ’a sketch of the {class label}.’, ’a
embroidered {class label}.’, ’a pixelated photo of a {class label}.’, ’itap of the {class label}.’, ’a jpeg corrupted
photo of the {class label}.’, ’a good photo of a {class label}.’, ’a plushie {class label}.’, ’a photo of the nice {class
label}.’, ’a photo of the small {class label}.’, ’a photo of the weird {class label}.’, ’the cartoon {class label}.’, ’art
of the {class label}.’, ’a drawing of the {class label}.’, ’a photo of the large {class label}.’, ’a black and white photo
of a {class label}.’, ’the plushie {class label}.’, ’a dark photo of a {class label}.’, ’itap of a {class label}.’, ’graffiti
of the {class label}.’, ’a toy {class label}.’, ’itap of my {class label}.’, ’a photo of a cool {class label}.’, ’a photo of
a small {class label}.’, ’a tattoo of the {class label}.’

Table 9. List of diverse templates used for generating data.

N.1. Evaluating Classifiers on Generated Datasets

In the past sections, we established a case for using the generated data for training robust classifiers. However, the generated
data can also be utilized for guiding the creation of robust image classifiers. To that end, we compare the performance of a
diverse set of classifiers, (a) ResNeXt-101 trained solely on the real ImageNet-1K (ImageNet-1K), (b) ViTs pretrained on
a larger set of ImageNet categories (ImageNet-21K/12K) and finetuned on ImageNet-1K, (c) Zero-shot CLIP, (d) CLIP
finetuned on the real ImageNet-1K dataset, in Table 10. We report the results of the classifiers on the original real/generated
datasets, and their filtered versions that are constructed by removing all the images whose cosine similarity score with their
class label’s proxy caption (‘a photo of a {class label}’) is less than 0.3, as done in (Schuhmann et al., 2022).

Table 10. Comparison of different classifiers on the original and filtered real and generated data. The accuracy gap between the performance
is reported inside the gray brackets. We abbreviate Stable Diffusion as SD, Labels as L, Images as I, Pretraining as PT, & Finetuning as
FT.

Models Original Filtered
Real Generated Real Generated

ResNeXt-101 (Real ImageNet-1K) 79.3 55.9 (-23.4) 90.8 73.2 (-17.6)
ViT-L/14-336 (PT-Im12K-FT-Im1K) (Dosovitskiy et al., 2020) 88.5 66.2 (-22.3) 94.4 82.3 (-12.1)
MaxViT-XL-512 (PT-Im21K-FT-Im1K) (Tu et al., 2022) 88.3 68.6 (-19.7) 94.5 79.9 (-14.6)
Finetuned CLIP-B/32 (Real ImageNet-1K) (Wortsman et al., 2022) 81.3 64.1 (-17.2) 90.7 78.4 (-12.3)
Zero-shot CLIP-B/32 (Radford et al., 2021) 68.3 71.9 (+3.6) 83.1 85.6 (+2.5)
ResNeXt-101 (Real + Generated ImageNet-1K) 80.4 89.0 (+8.6) 91.0 97.0 (+6.0)

Despite performing the best on ImageNet-1K validation datasets, ViTs underperform on the generated data. We further find
that the CLIP finetuned on ImageNet-1K experiences a performance degradation of upto 17%, 12% absolute accuracy on
the original and filtered datasets respectively. However, we find that zero-shot CLIP does not undergo a distribution shift on
the generated data. Since the zero-shot CLIP encoders are used as module in our data generator Stable Diffusion, the good
performance of CLIP on the generated dataset underscores a “cyclic consistent” nature where the conditional generations of
an encoder-decoder generative model (Stable Diffusion) agree with the standalone encoders in CLIP. To better quantify the



Robust Classification via Generated Datasets

Figure 6. Visualization of samples from the real dataset and various generation strategies using Stable Diffusion (SD).
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Figure 7. Variation in the accuracy and the effective robustness on ImageNet-Sketch as we vary the proportion of the real ImageNet-100
data and the generated data created using its class labels in the training set. Here 100% refers to 130K training size. While calculating
effective robustness, standard training is performed on 100% real data.

performance gap on the generated data, we evaluate the performance of a classifier trained on the combination of the real and
generated data. We observe that the classifier achieves upto 89%, 97% on the real and generated data, respectively, which
highlights the potential for further improvements of the existing models on the novel realizations of the ImageNet objects.

O. Generated Data from Finetuned Stable Diffusion
In our work, we showed that the classifiers trained on the real data augmented with the generated data, acquired in a zero-shot
manner from the base generative model, are robust to natural distribution shifts. Here, we aim to study the impact of varying
the data generation paradigm and evaluate the quality of the image classifiers trained on the generated data that is closer in
distribution to the real data as compared to the generated data collected in a zero-shot way.

To this end, we finetune the base Stable Diffusion v1.5 for 1 epoch on the complete 1.3M (real) ImageNet-1K data and their
corresponding class labels, at the default resolution of 512 x 512. Post-finetuning, we repeatedly query the generative model
conditioned on the class labels to synthesize a newly generated data of the same size as ImageNet-1K training and validation
datasets. Finally, we train ResNext-50 classifier (a) solely on the newly generated data, and (b) an equal mix of real data and
newly generated data, from the finetuned Stable Diffusion. In Table 11, we compare the performance of the same classifier
trained with the (a) real data, (b) generated data from the base generative model conditioned on the class labels, and (c) an
equal mix of the real and base generated data, on the real ImageNet-1K test set and its natural distribution shift datasets.
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Figure 8. Variation in the accuracy and the effective robustness on ImageNet-R as we vary the proportion of the real ImageNet-100 data
and the generated data created using its class labels in the training set. Here 100% refers to 130K training size. While calculating effective
robustness, standard training is performed on 100% real data.

Table 11. Comparison of the performance of a ResNext-50 classifier on the ImageNet-1K validation dataset, and its natural distribution
shift datasets. The training data contains 1.3M examples for the Real, Base-Generated, and Finetune-Generated data. Here, Real +
Base-Generated or Finetune-Generated indicates that the generated data is used to augment the real data.

Data ImageNet ImageNet-Sketch ImageNet-R ImageNet-V2 ObjectNet Average
Real 78.4 25.0 42.2 68.5 40.6 51.0
Base-Generated 32.4 21.6 37.4 26.2 19.4 27.4
Finetune-Generated 38.1 9.4 18.4 28.0 16.7 22.1
Real + Base-Generated 78.4 40.1 56.2 66.5 39.4 56.1
Real + Finetune-Generated 78.0 28.2 41.5 66.0 37.5 50.2

We find that the image classifiers trained with solely the finetuned-generated data (Row 3) outperform the one trained with
the base-generated data (Row 2) on the ImageNet-1K validation dataset. This is due to the reduction in the distribution gap
between the real data and the generated data from the finetuned Stable Diffusion model. We note that the accuracy achieved
by the classifiers trained on the finetuned Stable Diffusion i.e., 38.1% lags behind the accuracy achieved in (Azizi et al.,
2023) by training on the generated data from the finetuned ImaGen model i.e., 67%. We attribute this difference in the
accuracies to the differences in the quality of the base generative models themselves.

Despite the reduction in the domain gap between the real data and generated data via finetuning, we find that the ImageNet-
1K validation accuracy for the classifier trained on the real data augmented with the finetuned generated data 78% (Row 5) is
close to the one trained on the real data augmented with the generated data from the base model 78.4% (Row 4). Although
our observation may surprising, we find that similar observations were made in Table 4 in (Azizi et al., 2023) and Figure 5 in
(Ravuri & Vinyals, 2019) at high resolutions. The exact reason behind this empirical finding is still unclear, and a potential
future work.

Lastly, we observe that the accuracy gains over standard training on the natural distribution datasets are higher for the
classifier trained on the real data augmented with the base-generated data as compared to the one trained on the real data
augmented with the finetuned generated data. For example, the classifier trained on the real and base-generated data achieves
an accuracy of 40.1% and 56.2% whereas the classifier trained on the real and finetuned-generated data achieves an accuracy
of 56.2% and 41.5% on ImageNet-Sketch and ImageNet-R, respectively. Our finding further highlights the usefulness of
training the classifiers on the diverse data, from the base generative model, over the generated data that is closer to the real
data distribution, on natural distribution shift datasets.
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Figure 9. Variation in the accuracy and the effective robustness on ImageNet-V2 as we vary the proportion of the real ImageNet-100 data
and the generated data created using its class labels in the training set. Here 100% refers to 130K training size. While calculating effective
robustness, standard training is performed on 100% real data.
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Figure 10. Variation in the accuracy and the effective robustness on ObjectNet as we vary the proportion of the real ImageNet-100 data
and the generated data created using its class labels in the training set. Here 100% refers to 130K training size. While calculating effective
robustness, standard training is performed on 100% real data.


