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Abstract— Cooking robots have the potential to greatly en-
hance the home experience by automating food preparation
tasks. However, enabling a robot to safely and dexterously
manipulate kitchen tools like knives while handling delicate food
items poses significant challenges. This study tackles the prob-
lem of training a robot arm to perform robust and compliant
slicing motions on food items with varying material properties.
We present SliceIt!, a simulation-based framework for training
robust food-slicing skills through reinforcement learning before
deployment on the physical robot. Our approach follows a real-
to-sim-to-real pipeline: first collecting a small dataset of real
food-cutting examples, then calibrating high-fidelity simulations
of knife-food cutting interactions and robot motion control.
Reinforcement learning agents are trained in this calibrated
simulation environment to learn optimal compliance control
policies that modulate knife forces. The learned policies are
then transferred to the real robot, enabling it to perform
intricate food-slicing tasks efficiently and safely by leveraging
simulation-based policy training while minimizing real-world
training risks, effort, and food waste.

I. INTRODUCTION

Cooking robots, which can safely work alongside humans,
hold the potential to enhance home environments and ease
daily chores. Tasks such as food slicing require the robot to
skillfully and safely manipulate a knife. Our research focuses
on enabling a robot to learn food-cutting tasks.

Cutting skills, such as chopping and slicing, require ma-
nipulating the knife and carefully responding to the reaction
forces that are exerted by the material and by the cutting
board [1]. In particular, it is important for the robot to be able
to adapt to the widely varying physical properties of each
food product [2]. Learning-based methods are promising
approaches to autonomously learning complex robotic be-
haviors, such as the one required for food slicing. However,
such methods often need many interactions to learn useful
control policies, which could result in a lot of food waste
for food-slicing tasks. Furthermore, it could be dangerous to
train the robot directly in the real world when the robot is
handling hazardous tools such as a kitchen knife, as part
of its learning paradigm involves the random exploration
of actions. Thus, learning in a simulation environment is a
viable solution where exploratory actions can be conducted
safely.

Learning in simulation has its own challenges, namely
the reality gap [3]. The difference between the simulation
environment and the real world can render the learned

∗ Equal contribution.
This work was supported by KAKENHI Grant Number 21H04910.
1OMRON SINIC X Corporation, Tokyo, Japan. Corresponding author

cristian.beltran@sinicx.com

Fig. 1. Overview of proposed learning-based robot cutting framework,
comprising four key stages: 1) Data collection on the real robot. 2) Calibra-
tion of the cutting simulator, DiSECt. 3) Learning a control policy within
a dual simulation environment using Gazebo and DiSECt. 4) Deployment
to the real robot.

control policy unusable in the real world. Recently, advanced
simulators like DiSECt [4] have been introduced, offering
a highly realistic representation of soft material cutting.
These simulators can potentially bridge the reality gap.
However, to facilitate more accessible evaluation in real-
world scenarios, creating an interface between the specialized
cutting simulation and real robots is essential. The existing
simulators focus on the physical interactions between the
knife and the object but do not consider whether the robot
can feasibly realize the knife motion.

To address this challenge, we propose a dual simulation
environment combining the cutting simulator (CutSim) with
a robotics simulator (RoboSim). The CutSim provides more
realistic interaction forces to the RoboSim. Meanwhile, the
RoboSim provides the knife motion generated by the simu-
lated robot to the CutSim. Additionally, the RoboSim is more
practical to use since the motions generated can be more eas-



Fig. 2. ROS-powered proposed system for learning robotic cutting
tasks using a dual simulation environment, reinforcement learning, and
compliance control.

ily integrated into the real robot [5]. In this work, we present
SliceIt!, a framework for safely learning robot cutting, that
features a dual simulation environment. Our system follows a
real-to-simulation-to-real (real2sim2real) [6] formulation and
consists of (1) data collection from slicing real food items.
(2) Calibration of the CutSim to simulate with high fidelity
the collected slicing data. (3) Learning a control policy using
our calibrated dual simulation environment. (4) Deployment
of the policy on the real robotic system. An overview of our
proposed method is depicted in Figure 1.

II. METHODOLOGY

A. System Overview

We introduce a robot learning system designed for food-
slicing tasks, employing a real2sim2real [6] approach. In
Figure 1, we outline the core elements of our proposed
method.

First, the "real2sim" phase involves data acquisition and
calibration of our dual simulation environment. Our simu-
lation environment consists of two concurrent simulators: a
physics simulator tailored for cutting soft materials (CutSim),
and a robotic simulator (RoboSim). We gather data by having
the real-world robot slice food items. This data is then
utilized to fine-tune the simulation parameters of the cutting
simulator. Only a few data samples are required for the
calibration.

Second, the "sim2real" phase focuses on training a con-
trol policy using Reinforcement Learning (RL) within the
simulation and deploying it in the real world. The combined
cutting simulator and the robotic simulator are used for this
purpose.

The following sections describe in detail the components
of our method, the dual simulation environment, the calibra-
tion of our simulation environment, and the learning-based
compliance control policy.

B. Dual Simulation Environment

1) CutSim: In this work, the DiSECt simulator was used.
DiSECt is a differentiable physics simulator for cutting soft
materials [4]. The simulator augments the finite element
method (FEM) with a continuous contact model based on
signed distance fields (SDF), as well as a continuous damage

model that inserts springs on opposite sides of the cutting
plane and allows them to weaken until zero stiffness to
model crack formation. DiSECt was chosen because it allows
us to realistically simulate food cutting by calibrating its
simulation parameters. The differentiability of the simulator
enables the calibration of the simulation parameters using
gradient-based optimization methods [4].

Calibration: The calibration process involves simulating
the robot’s cutting actions, including motion and contact
force, and adjusting the simulation parameters until the
force profile matches the desired one. The simulator’s dif-
ferentiability allows us to fine-tune these parameters using
gradient-based optimization methods [4]. However, gradient-
based optimization can be computationally intensive, and
inappropriate initial parameters sometimes cause learning
instability. Therefore, in this study, we propose a two-
step approach. Initially, a non-gradient-based optimization
method is used to quickly and cost-effectively identify an
initial set of simulation parameters. Subsequently, a gradient-
based optimization method, specifically the Adam algorithm
[7], is employed to further refine these simulation parameters.
To optimize the initial simulation parameters, we utilize the
Tree-structured Parzen Estimator algorithm [8] as imple-
mented in Optuna [9].

2) RoboSim: We use the Gazebo simulator, which is an
open-source 3D robotics simulator [5]. Our choice of the
Gazebo simulator was motivated by its compatibility with
the Robot Operating System (ROS) [10]. ROS is an open-
source robotics middleware that facilitates the integration of
different robotic components. In this work, ROS was used
to integrate both simulators, the real robots, our proposed
RL control policy, and its low-level compliance controller as
depicted in Figure 2.

C. Learning slicing with reinforcement learning

Traditionally, fine-tuning a compliance controller for a
given task is a time-consuming process that requires human
expertise. To reduce these requirements, we use RL to learn
the motion of the cutting action as well as the control
parameters of the FDCC, inspired by previous work [11].
Compared to [11], we use FDCC because it provides better
stability in singularities and requires fewer parameters to
learn. As described in Figure 2, The actions of the RL agent
provide the reference trajectory xc and the control parameters
[Kc,Kp,Kd] to the FDCC at a low control frequency. Then
the FDCC directly controls the robot with joint commands
at the highest control frequency available. The feedback
from the robot is the knife pose, computed using forward
kinematics from the robot’s joint positions and the sensed
force and momentum. The agent’s observations consist of
the knife’s position relative to a target position, its velocity,
and jerkiness, as well as the previous action taken and the
history of n force-torque readings from the sensor.

The SAC’s actor-network architecture consists of a Tem-
poral Convolutional Network (TCN) [12], that processes
a history of n force/torque readings from the sensor, and
a fully connected network that processes the remaining



Fig. 3. Experimental setup with the real robot.

observations. Both networks output 64 features that are
concatenated and processed together on an additional fully
connected network. The choice of network architecture is
based on results from previous work [13].

III. EXPERIMENTS AND RESULTS

The following experiments were designed to answer these
questions:

• How well does our system perform in the real world
when it has only been trained in a simulated environ-
ment?

• When it comes to the robotic cutting task, does using
a more realistic simulation environment lead to better
performance compared to using a less detailed one?

For the latter, we evaluate the performance of our proposed
system against a baseline. This baseline involves calibrating
the simulation environment and training a policy exclusively
using the Gazebo Simulator [5].

A. Experimental Setup

1) Robotic Platform: Our robotic platform is based on the
dual-arm system initially introduced in [14]. It comprises two
Universal Robot UR5e robotic arms, each equipped with a
parallel gripper and a force-torque sensor positioned at the
arm’s end. In the context of this research, one of these robots
serves a supporting role, such as holding the vegetable, while
the second robot is responsible for executing the cutting task.
The experimental setup is depicted in Figure 3. Notably, the
robot engaged in the task is equipped with a Robotiq 85
parallel gripper featuring a custom finger adapter that enables
the attachment and detachment of a kitchen knife.

2) Calibration: In this study, we gathered data from three
distinct food items, each characterized by different material
properties, to ensure diversity within our training dataset.
Specifically, we selected a tomato, a cucumber, and a potato,
representing items with low, medium, and high stiffness,
respectively. The collected data consists of the knife’s motion
and the contact force applied during the cutting action. For
simplicity, we maintained a constant knife speed throughout
the experiments.

TABLE I
REAL-WORLD EXPERIMENTAL CONDITIONS

Food Item # of Slices Slice size (mm)
Cucumber 15 5

Tomato 5 5
Potato 10 3
Carrot 5 5

In the baseline case, denoted as Gazebo only, the cutting
action was simulated using a compression spring. In the sim-
ulator, the compression spring is defined as a prismatic joint
where the force constant is determined by specific simulation
parameters, namely, the Error Reduction Parameter (ERP)
and Constraint Force Mixing (CFM). These parameters were
calibrated so that the force required to compress the spring
to its maximum matches the maximum force observed in the
real-world force profile, as depicted in Figure 4.

3) Cutting Task: In this study, the robot cutting task is
defined as a single slice of the food item, which can then
be executed multiple times as necessary. The goal of the
robot is to maximize speed and minimize contact force and
motion jerkiness. In particular, the task includes minimizing
the force exerted on the cutting board with the knife. Four
food items were used for validation: a cucumber, a tomato, a
potato, and a carrot. As mentioned above, the first three were
used for calibrating the simulation environments, while the
carrot was used to evaluate the generalization capabilities of
our method.

After calibration of both our method and the baseline using
all of the food items, an RL agent was trained in each simu-
lation environment for 80K time steps. The training included
domain randomization by loading one of the calibrated food
items into the CutSim as well as injecting a small uniformly
sampled noise into the simulation parameters. A similar noise
was injected into the baseline. The learning converges at
around 60K time steps.

B. Real World Experiments

The evaluation of the learned control policies involved
slicing each food item multiple times. To minimize food
waste, only one unit of each food item was utilized in
these experiments. The specific experimental conditions are
presented in Table I.

Figure 5 and 6 illustrate the obtained results. In Figure 5,
we compare the contact force observed during the slicing
actions for each food item between our method and the
baseline. These results include the contact force exerted
not only on the food item but also on the cutting board.
Notably, our method consistently outperforms the baseline
by applying significantly lower force during the execution of
slicing actions across all tasks. Remarkably, even in the case
of the carrot, which was not part of the training dataset, our
proposed method demonstrated superior performance when
compared to the baseline.

Figure 6 centers on the experiments related to cucumber
slicing. In this visualization, the grey region corresponds
to the slicing of the vegetable, while the yellow region



Fig. 4. Force profile of the simulated cutting after the calibration process for both simulators.

Fig. 5. Evaluation on the real robot: Slicing contact force for four
vegetables, cucumber, tomato, potato, and carrot.

represents the contact force applied to the cutting board.
These findings suggest that the policy acquired through our
proposed method achieves superior performance by exhibit-
ing a more adept response to the abrupt stiffness transition
between the vegetable and the cutting board. Similar results
are observed across all tasks. These results indicate that
the policy learned with our proposed method performed
better by more skillfully reacting to the sudden change
of stiffness, between the vegetable and the cutting board.
Figure 6 centers on the experiments related to cucumber
slicing. In this visualization, the grey region corresponds
to the slicing of the vegetable, while the yellow region
represents the contact force applied to the cutting board.
The results show clearly that our proposed method performs
better than the baseline by more skillfully reacting to the
change of stiffness between the food item and the cutting
board. These results are consistent across all trials and tasks.

IV. CONCLUSION

In this study, we introduced SliceIt! a learning-based
robotic system for handling food-cutting tasks. Our system
combines two key components: a dual simulation environ-
ment, and a control policy based on Reinforcement Learning.
The aim is to enable a collaborative robot (cobot) or indus-
trial robot arms to perform these tasks safely and accurately
by adapting to varying conditions using compliance control.

Fig. 6. Evaluation on the real robot: Normal contact force at the knife
while slicing the cucumber twice. The gray region corresponds to slicing
the vegetable, while the yellow region shows the contact with the cutting
board.

One of the advantages of using our proposed method is the
reduction of food waste while learning the control policies, as
only a few real-world samples are required. The experimental
results support our hypothesis that using a highly realistic
simulation environment is beneficial to learning safer control
policies.

One limitation of our approach is the increased compu-
tation time when using a highly realistic cutting simulator
compared to a simplified one. In our experiments, training
the RL policy using our method took approximately 40 hours
in total, whereas using Gazebo alone required only about
4 hours. This discrepancy arises from the more demanding
computational requirements for each simulation time step in
DiSECt. However, the additional computation time proves
to be worthwhile, given the significant improvement in real
robot performance achieved. A promising area for future
research involves finding ways to reduce the extensive com-
putational time.
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