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Abstract

Recently, systems that combine Information
Retrieval (IR) with Large Language Models
(LLMs), such as RAG, have demonstrated re-
markable capabilities in question answering by
integrating external context. However, the op-
timal strategy for question answering does not
always involve retrieving external information;
it often involves leveraging the LLM’s own
parametric memory. In this paper, we demon-
strate how LLMs can be effectively trained to
determine when additional context is necessary
and to utilize an off-the-shelf IR system accord-
ingly. We propose a tailored training approach
where LLMs, using open-domain question an-
swering datasets, learn to generate a special to-
ken, (RET), when they do not know the answer
to a question. Our evaluation of the Adaptive
Retrieval LLM (ADAPT-LLM) on the PopQA
dataset showcases improvements over the same
LLM under three configurations: (i) retrieving
information for all questions, (ii) relying solely
on the LLM’s parametric memory, and (iii) us-
ing a popularity threshold to decide when to
use a retriever.

1 Introduction

The task of question answering (QA) remains a
focal point in Natural Language Understanding re-
search. There are many different datasets serving
as benchmarks for evaluating QA models, such as
Natural Questions (NQ) (Kwiatkowski et al., 2019),
SQuAD (Rajpurkar et al., 2016) or QuAC (Choi
et al., 2018), just to mention a few. Nowadays,
Large Language Models (LLMs) consistently out-
perform traditional methods on these benchmarks,
showcasing remarkable performance.

Typically, there are two primary approaches to
utilize LL.Ms for question answering: (i) Closed
Book Question Answering: the LLM relies solely
on its parametric memory to answer questions.
However, these parametric memories have inherent
limitations as they are based entirely on the training

corpus, meaning for example that they could be out-
dated regarding events occurring after the training
process. (ii) Open Book Question Answering: the
LLM is coupled with an Information Retriever (IR)
system (Izacard and Grave, 2021; Zhu et al., 2021).
By leveraging the IR system, the LLM can retrieve
relevant context to provide more accurate answers.
However, the research conducted by Mallen et al.
(2023) sheds light on the complexity of question-
answering strategies, challenging the notion that
the optimal approach always involves the utiliza-
tion of an IR system. Through the introduction of
the PopQA dataset they demonstrated that while
LLMs relying solely on their parametric memories
excel in addressing high-popularity questions, the
efficacy diminishes for low-popularity questions,
where using IR becomes crucial. In many cases,
however, question answering datasets do not in-
clude popularity scores, so relying on such scores
is not a generalizable approach. On top of it, pop-
ularity is dynamic and a topic that was popular
at the LLM training time could be not trending
anymore at inference time. Motivated by this lim-
itation, our study aims to address whether LLMs
can autonomously determine when to employ an IR
system for improved question answering. To inves-
tigate this, we conduct an evaluation of an LLM us-
ing an open-domain question answering dataset to
identify the questions for which the LLM provides
accurate responses and those where its answers are
incorrect. For questions where the LLM’s response
is incorrect, we annotate them with a special token,
(RET), indicating the need for additional context.
Subsequently, we utilize these annotations to con-
struct a new dataset tailored for training purposes,
where we teach an LLM to answer directly if it is
confident about the answer or to require context it
believes is useful for answering the question (see
Figure 1). Our hypothesis is that through this train-
ing process, the LLM learns to use an IR system
when it needs extra context to answer a question,
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Figure 1: The inference process of ADAPT-LLM step-by-step: given a question (step 1), an LLM decides (step
2) whether to answer the question directly (step 3) or to ask for additional contextual information, generating the
special (RET) token; for the later, an off-the-shelf IR system is used to retrieve relevant context (step 4), which is
used alongside the question to prompt again the LLM for the final answer (step 5).

thus we name it ADAPT-LLM.

To validate our hypothesis, we conducted several
experiments on the PopQA dataset (Mallen et al.,
2023), as it provides a suitable platform for bench-
marking hybrid retrieval strategies. As a result of
these experiments we find that: (i) ADAPT-LLM
consistently outperforms typical fixed strategies for
question answering, such as using the IR system for
all questions and relying solely on the parametric
memory of the LLM; (ii)) ADAPT-LLM demon-
strates performance comparable to strategies that
rely on popularity scores to determine when to use
an IR system, even without utilizing any popularity
score or similar metric. Our findings underscore
the significance of adaptive retrieval strategies in
enhancing the performance of LL.Ms for question
answering tasks. By training ADAPT-LLM to dy-
namically determine when to retrieve additional
context, we demonstrate the feasibility of teach-
ing an LLM how to effectively leverage external
information sources only when necessary.

2 Related Work

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) has shown improvements on a wide
variety of NLP areas, such as question answering
(Karpukhin et al., 2020; Izacard and Grave, 2021;
Seonwoo et al., 2022; Nakano et al., 2021), truthful-
ness (Ji et al., 2023; Lin et al., 2022) and language
modelling (Guu et al., 2020; Borgeaud et al., 2022;
Ram et al., 2023) among others. The ability to
ground model generations on retrieved text chunks
has also enabled smaller models to match the per-
formance of larger ones (Catav et al., 2024). More-
over, due to the extremely high cost of training
LLMs, RAG has become the standard way to main-

tain them updated with new information, not having
to re-train the models periodically to incorporate
new facts (Gao et al., 2023). Even if augmenting
LLMs with retrieval is an essential step for the cur-
rent generation of LLMs (Jiang et al., 2024; Reid
et al., 2024) it also comes with a cost. Traditional
retrieval methods as TF-IDF or BM-25 (Robertson
et al., 2009) are only able to retrieve documents
with keyword overlap and suffer from lexical gap
(Berger et al., 2000). In order to try to solve this
issue, many pre-trained Transformer encoder based
dense models have been proposed (Gao et al., 2021;
Reimers and Gurevych, 2019; Karpukhin et al.,
2020; Gautier et al., 2022). Trained neural mod-
els have shown good performance over a variety
of retrieval benchmarks but they still struggle in
the zero-shot setup for new domains (Thakur et al.,
2021). The quality of the retrieval engine is essen-
tial for retrieval-augmented models as this will set
the upper bound of the model performance. More-
over, the usage of a retrieval engine, especially
when the target document index is huge, can sig-
nificantly increase the latency of the model and
hurt real time applications user experience (Bar-
nett et al., 2024). On the other hand, as models
keep scaling, the world knowledge encoded in their
parameters does too (Kaplan et al., 2020). Many
previous efforts have shown that language models
are able to memorize a significant amount of world
knowledge and achieve competitive performance
on tasks such as open-domain question answering
when they just use their parametric knowledge for
solving the task (Liang et al., 2023; Achiam et al.,
2023; Dubey et al., 2024; Touvron et al., 2023b).
Motivated by all this, the adaptive approach has
been proposed as a new solution (Schick et al.,
2024; Mallen et al., 2023). In this approach, if the



solution to the task is encoded in the parameters
of the model, the model will be directly used for
generating a solution. Conversely, if the answer
is not encoded in the knowledge of the model, the
answer generation will be augmented with external
knowledge.

Recently, Schick et al. (2024) proposed the Tool-
former, a model that can self teach how and when
to use external tools via simple API calls includ-
ing a calculator, search engines, a calendar and so
on. More similar to our work, Mallen et al. (2023)
propose a dataset and method for measuring when
non-parametric information needs to be retrieved.
They present the PopQA dataset that contains 14K
questions about a set of entities with varying pop-
ularity. The popularity of an entity is measured
by the page views of its Wikipedia page. In order
to solve this QA task, they use a popularity score
threshold calculated on the PopQA dataset. If the
popularity score of an individual entity is below
the threshold they perform a retrieval step. On the
contrary, if the score is greater than the threshold
they directly answer the question. This method
yields better results than vanilla retrieval but it re-
quires the calculation of a popularity score that is
not available in realistic QA scenarios.

Another relevant contribution in this field, con-
temporaneous with our research, is the work by
Erbacher et al. (2024), where they trained an LLM
to determine when to utilize external knowledge.
They particularly focused on finding the optimal
trade-off between the risk of hallucination and
the cost of information retrieval, given the poten-
tially high expense associated with IR. Our ADAPT-
LLM method adopts a similar approach, train-
ing an LLM to learn when to retrieve informa-
tion. However, we extend this by comparing our
method’s performance against some baselines, and
assess the effectiveness of retrieving information in
an adaptive manner against the strategies of never
retrieving or always retrieving.!

3 Adaptive Retrieval LLM
(ADAPT-LLM)

Adaptive retrieval refers to the model’s capabil-
ity to dynamically determine whether to retrieve
additional context information for generating an-
swers in question answering tasks. Unlike tradi-
tional models that either always incorporate con-

'All ' resources are publicly available at
https://github.com/mwozgpt/Adapt-LLM-anonymous.

text or never consider it, adaptive retrieval allows
the model to selectively retrieve context based on
the specific requirements of each question. This
adaptive approach aims to optimize performance
by leveraging context only when necessary, thereby
enhancing the model’s ability to generate accurate
answers. As depicted in Figure 1, the process of the
ADAPT-LLM unfolds in the following sequence:

1. The first prompt containing the question is
sent to the model (step 1 of Figure 1).

2. The ADAPT-LLM evaluates the prompt to de-
termine whether additional context is neces-
sary to answer the question effectively (step
2).

3. If the model determines that context is not
required, it directly produces a response to the
question by leveraging its parametric memory
(step 3).

4. If context is deemed necessary, the ADAPT-
LLM model returns a special token, repre-
sented as (RET), and an off-the-shelf IR sys-
tem is used to retrieve pertinent context based
on the question (step 4); the context is then
combined with the original question prompt
to form a comprehensive representation for
answer generation (step 5).

This decision-making process enables the model
to determine whether context is needed, balancing
between using context for better understanding and
providing direct answers when appropriate.

3.1 Training ADAPT-LLM

In this section, we outline the methodology for
training our ADAPT-LLM model. This process, de-
noted as DS aqqpt, is presented in the algorithm
at Appendix B. We start with an open-domain
question answering dataset containing questions
Q, context passages P, and answers A, initializing
DS Adapt to an empty set. For each question in @),
we leverage the base LLM without any retrieval
mechanism to perform a zero-shot inference. This
step allows us to differentiate questions for which
the model generates correct answers from those
where its responses are inaccurate. For questions
where the model’s response is accurate, we build
a training set instance incorporating the following
prompt, which we call parametric_prompt:



Prompt: Answer the question Q. If you need
help answer <RET> to get the context. Q:

(...}

Alongside this prompt, we include the correspond-
ing question from () and the golden answer from
A, collectively forming the instance, which is sub-
sequently appended to the DS 444y dataset. In con-
trast, if the LLLM fails to produce a correct response
to the question, we build two different instances.
The first employs the same parametric_prompt as
previously described, with (RET) as the answer,
indicating the necessity for additional context. The
second, called context_prompt, includes contextual
information alongside the question:

Prompt: Answer the question Q given the
context C. Q: {...}, C: {...}

For this instance, we include the prompt, the ques-
tion from @, the golden answer from A, and the
corresponding context passage from P. After pop-
ulating the dataset with both types of prompts
for questions where the LLM could not respond
accurately and only the parametric_prompt with
golden answers for all other questions, our train-
ing set D gqqy¢ 1s ready for fine-tuning. The fine-
tuning process entails training the base LLM on
our dataset, resulting in the ADAPT-LLM model.

3.2 Inference

During inference, we utilize the fine-tuned model to
generate responses to unseen questions. We employ
the same prompts used during the training phase,
as outlined in Section 3.1. Initially, the model is
prompted to either provide a direct response or
return (RET) if it is unsure of the answer. If the
model returns (RET), we proceed with information
retrieval to acquire relevant context by means of an
off-the-shelf IR system. Subsequently, we augment
the question with the retrieved context and prompt
the model again using the second type of prompt
introduced during the training phase. An example
of this process is provided in Appendix C.

4 Experiments and Results

In this section, we outline the experimental frame-
work aimed at assessing the performance of the pro-
posed adaptive retrieval approach, ADAPT-LLM.
We begin by describing the datasets utilized (Sec-
tion 4.1), followed by an overview of our base
model (Section 4.2), the different configurations of

the base model (Section 4.3), and the training de-
tails (Section 4.4). Subsequently, we introduce the
three primary experiments: evaluation of ADAPT-
LLM performance compared to 2 baseline models
(Section 4.5); analysis ADAPT-LLM’s ability to
determine when extra context is necessary to an-
swer a question (Section 4.6); comparison with the
state-of-the-art approach for PopQA (Section 4.7).

4.1 Datasets

Below are brief descriptions of the datasets we used
for training and evaluation of our models, ensuring
no overlap between train and test splits across all
datasets:

NQ The Natural Questions dataset (Kwiatkowski
et al., 2019) is a collection of real-world ques-
tions derived from Google search queries, accom-
panied by long-form text passages obtained from
Wikipedia articles and providing a diverse range of
topics and natural language variations. We utilize
this dataset for training our models in the experi-
ments.

SQuAD The Stanford Question Answering
Dataset SQuAD (Rajpurkar et al., 2016) is a widely
utilized dataset in the field of natural language pro-
cessing and comprises questions posed by crowd-
workers on a diverse range of Wikipedia articles,
along with relevant paragraph passages serving as
context. We utilize this dataset for training our
models in the experiments.

PopQA The Popular Questions and Answers
dataset (Mallen et al., 2023) consists of curated
questions sourced from various online platforms,
encompassing a wide range of domains and styles.
Given the variability in the effectiveness of context
retrieval strategies observed in this dataset, we se-
lect PopQA as our test set to evaluate the language
models’ performance in determining when context
is necessary for accurate answer provision.

4.2 Base Models

In our experiments, we employ the open-source
instruction-based LLLMs Llama-2 (7 billion param-
eters) (Touvron et al., 2023a) and Llama-3.1 (8
billion parameters) (Dubey et al., 2024). These
models are pretrained on a comprehensive corpus
derived from publicly available online data sources,
showcasing superior performance across 150 di-
verse NLP tasks (Vavekanand and Sam, 2024).
Llama-3.1, in particular, introduces an extended



Training Set Model configuration Accuracy
Llama-2 Llama-3.1

NEVER RETRIEVE 21.43% 27.86%

NQ ALWAYS RETRIEVE  35.86% 37.98%
ADAPT-LLM (ours)  36.77% 38.88 %

NEVER RETRIEVE 21.22% 27.99%

SQUAD ALWAYS RETRIEVE  36.59% 38.64%
ADAPT-LLM (ours) 38.15% 40.25%

Table 1: Performance comparison of Llama-2 and Llama-3.1 models trained on the NQ and SQuAD datasets using
different retrieval configurations (NR-LLM, AR-LLM, and ADAPT-LLM), evaluated on the PopQA test set.

context length, which effectively doubles its ability
to process and understand longer sequences of text.
These advancements contribute significantly to the
model’s enhanced performance and capabilities in
various natural language understanding tasks.

4.3 Model Configurations

We conduct the experiments using three different
model configurations, corresponding to the three
different ways in which an LLM and an IR system
can be combined:

Adaptive Retrieval (ADAPT-LLM). The ADAPT-
LLM model dynamically decides whether to re-
trieve context based on the question and its per-
ceived need for contextual information, as ex-
plained in Section 3.1. As the IR system, we use
Contriever (Gautier et al., 2022), which is an un-
supervised model pretrained on a large corpus, fol-
lowed by fine-tuning on MS MARCO (Nguyen
et al., 2016). We only retrieve the most relevant
passage according to the IR system to prompt the
base LLM for the final answer.

Never-Retrieve (NR-LLM). This model configu-
ration is trained to answer questions solely based
on the question text without considering any con-
textual information. It serves as the baseline for
evaluating the performance of question answering
models in the absence of context.

Always-Retrieve (AR-LLM). In contrast to the
NR-LLM model, this configuration always re-
trieves context passages to assist in answering ques-
tions. It is trained to utilize context consistently for
generating answers. To ensure a fair comparison
with ADAPT-LLM, we also use Contriever (Gau-
tier et al., 2022) as the IR system and only retrieve
the most relevant passage as context.

4.4 Training Details

For all three model configurations (ADAPT-LLM,
AR-LLM and NR-LLM) and both training sets
(SQuAD and NQ), we adhere to the parameter con-
figuration established in Alpaca-Lora (Taori et al.,
2023) which includes a batch size of 128, three
epochs, and a fixed learning rate of 3e-4. We incor-
porated LoRA (Low-Rank Adaptation) regulariza-
tion, with parameters configured for r=8, alpha=16,
and a dropout rate of 0.05. Training was performed
on an NVIDIA A40 GPU, for an average training
time of approximately 8 hours. We do not perform
any model selection and we use the last checkpoint
after 3 epochs of training.

4.5 Validating the Adaptive Retrieval
Approach

In order to assess the effectiveness of our adaptive
approach (ADAPT-LLM) compared to NR-LLM
and AR-LLM configurations, we fine-tuned the
Llama-2 and Llama-3.1 models on the NQ and
SQuAD datasets. Training samples for NR-LLM
and AR-LLM were created using question-answer
pairs from these datasets, with NR-LLM answering
without context and AR-LLM using both question
and context. For ADAPT-LLM, we followed the
approach in Section 3.1, generating a dataset with
responses indicating whether context was needed
or not. The trained models were then tested on
the PopQA dataset to evaluate their performance in
a real-world question answering scenario. During
inference, NR-LLM and AR-LLM models were uti-
lized as is, with corresponding instruction prompts
provided, and outputs expected to be answers to
the questions. Conversely, for the ADAPT-LLM
model, we followed the same prompt procedure as
explained in Section 3.2.

The generated answers are compared to the set



Training (RET) Usage (RET) No (RET)
Acc. w/ context Acc. w/o context Acc. w/ context Acc. w/o context
NQ 86.86% 33.89% 20.34% 65.03% 77.61%
SQuAD 83.65% 34.26% 14.32% 67.24% 78.04%

Table 2: Results of the usage of the (RET) token in the ADAPT-LLM model. The first column shows the percentage
of PopQA questions for which the model requests additional context. The second column focuses on the questions
for which ADAPT-LLM asks for context ((RET)), comparing the accuracy between answering those questions with
and without context. The last column (No (RET)) is for questions which ADAPT-LLM decides to answer directly,

comparing the accuracy with and without the context.

of possible answers for each question, as anno-
tated in the PopQA test set. The evaluation metric
used is a form of match accuracy, where an an-
swer is considered correct if it matches any of the
possible answers in a case-insensitive comparison.
Specifically, if a possible answer is found within
the generated output, it is deemed correct.

Results shown in Table 1 indicate that ADAPT-
LLM consistently outperforms both NR-LLM and
AR-LLM on the PopQA test set. As can be
observed, NR-LLM exhibits the lowest perfor-
mance among the models, with a significant 10-15
point accuracy gap compared to the other config-
urations, underscoring the limitations of relying
solely on Llama’s parametric memory. Although
the difference between AR-LLM and ADAPT-
LLM is relatively small, ADAPT-LLM consistently
demonstrates a slight but meaningful improvement,
with 1% higher accuracy when trained on the NQ
datasets and about 1.5% higher accuracy when
trained on SQuAD. Overall, these results highlight
the effectiveness of the adaptive retrieval approach,
which dynamically determines when context is nec-
essary for accurate question answering, leading to
improved performance compared to fixed strategies
of always or never retrieving context.

Given the close performance between Llama-2
and Llama-3.1, with a slight advantage for the latter,
we opted to use only Llama-3.1 for the subsequent
experiments.

4.6 Contextual Retrieval Decision Analysis

In this experiment, our objective is to once again
evaluate the effectiveness of the ADAPT-LLM
model, this time focusing on its ability to accu-
rately determine when additional context is needed.
For this purpose, we adhere to the following steps:

1. We conduct inference on the ADAPT-LLM
model using the PopQA test set, prompting it
to either return an answer directly or indicate

the need for additional context by returning
(RET).

2. In the case of receiving a (RET) response
from the ADAPT-LLM model, we proceed
with the following steps:

2.1. We conduct inference on the ADAPT-
LLM model, prompting it to return an
answer given the context obtained from
the IR system.

2.2. We also conduct inference on the NR-
LLM model with the instruction to pro-
vide an answer directly without addi-
tional context.

3. If the ADAPT-LLM model decides to answer
the question directly relying only on its para-
metric memory:

3.1. We conduct inference on the ADAPT-
LLM model, prompting it to return the
answer without providing context.

3.2. We conduct inference on the AR-LLM
model with the instruction to provide an
answer using the context retrieved by the
IR system.

Table 2 presents the results of this experiment. The
first thing to note is that the ADAPT-LLM model
generates the (RET) token for approximately 83-
87% of the questions in the PopQA dataset, align-
ing with the low performance of the NR-LLM con-
figuration demonstrated in Table 1.

However, ADAPT-LLM consistently determines
when additional context is required to answer a
question accurately. Across both the NQ and
SQuAD training datasets, ADAPT-LLM exhibits
significantly higher accuracy when retrieving con-
text compared to the NR-LLM model’s accuracy
without context (as indicated in the (RET) column
of Table 2). Specifically, for the NQ dataset, the ac-
curacy of the ADAPT-LLM model when requesting
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Figure 2: Histograms depicting the proportion of questions where ADAPT-LLM trained on NQ (left) and ADAPT-
LLM trained on SQuAD (right) ask for extra context for different popularity score intervals.

SQuAD Dev NQ Dev

Passages Acc. Acc.
Gold 89.85% 70.91 %
Contriever 23.84% 28.52%

Table 3: Performance comparison of ADAPT-LLM for
the SQUAD and NQ dev sets, when using the gold pas-
sages provided by the datasets and when using the best
passage retrieved by Contriever.

context is 33.89%, whereas the accuracy of the NR-
LLM model without context retrieval is notably
lower at 20.34%. Similarly, for the SQuAD dataset,
ADAPT-LLM achieves an accuracy of 34.26% with
context retrieval, whereas the NR-LLM model’s ac-
curacy without context is substantially lower at
14.32%. Finally, the last column of Table 2 (No
(RET)) shows the performance of ADAPT-LLM
when answering questions based solely on its para-
metric memory. As can be seen, accuracies above
77% are obtained when no context is utilized, pro-
viding further evidence that ADAPT-LLM effec-
tively discerns between retrieving context and pro-
viding direct answers to questions. Additionally,
we evaluate the performance of these questions
when context is added to the input, revealing sig-
nificant decreases in accuracy of up to 12 absolute
points. These findings provide insights into the
effectiveness of the decision-making process em-
ployed by the ADAPT-LLM model in determining
the necessity of additional context for accurate re-
sponse generation and present empirical evidence
of the necessity of performing dynamic context
retrieval in improving the accuracy of question an-
swering models. However, it is notable that the
overall performance of the model when answer-

ing questions with retrieved context, as observed
in Table 2 (approximately 34%), is relatively low.
To further explore this observation, we conduct an
additional experiment: evaluating ADAPT-LLM
on the NQ and SQuAD development splits, com-
paring performance when using the gold passages
of the dataset and the context retrieved by our IR
system, Contriever (Gautier et al., 2022). Unfortu-
nately, PopQA does not provide the gold passages,
so direct evaluation there was not possible.

Table 3 presents the results of this experiment.
A significant performance difference is observed
between using the gold passage and the top passage
retrieved by Contriever for both datasets (approxi-
mately 66 absolute points for SQuAD and 42 for
NQ). This indicates that Contriever, and current IR
systems in general, do not consistently retrieve the
most relevant passage to answer a given question.
This observation underscores the importance of re-
trieving multiple documents as context, as seen
in the most successful open-domain QA systems
(Izacard and Grave, 2021), and highlights its im-
pact on the overall performance of ADAPT-LLM in
PopQA. To further validate the behavior of ADAPT-
LLM when requesting additional context, Figure 2
illustrates the proportion of questions for which our
model generates the (RET) token, aggregated by
popularity score intervals (left image for ADAPT-
LLM trained on NQ and right image for SQuAD).
Mallen et al. (2023) suggest that high-popularity
questions can be adequately answered using the
parametric memory of the LLM, while lower popu-
larity scores necessitate extra context. In the figure,
we observe this pattern for both versions of ADAPT-
LLM, indicating that our model, despite lacking
access to popularity scores during training or infer-
ence, has learned effective criteria for requesting



additional context.

Additionally, we have observed that different
types of questions yield significantly different re-
sults in model performance (see Appendix D).

4.7 Comparison with State-of-the-Art
Methods

We conducted a comparative analysis between our
ADAPT-LLM model and the current state-of-the-
art approach for PopQA proposed by Mallen et al.
(2023). Their methodology relies on the popular-
ity score annotated in the PopQA dataset to deter-
mine whether a question requires additional con-
text. To establish the optimal threshold for deter-
mining question popularity, Mallen et al. (2023)
split the PopQA dataset into 75% as a development
set for threshold determination and 25% as a test
set. In the original paper, they apply this methodol-
ogy to various LLMs available at that moment.

To ensure a fair comparison between ADAPT-
LLM and the popularity-based method, we repli-
cated their approach using the Llama-3.1 8B model
to determine the best popularity score threshold
(found to be 710,000) using the same PopQA de-
velopment set. This allowed us to obtain results
consistent with their methodology while utilizing
our base LLM. Similar to the original results in
Mallen et al. (2023) when using smaller models, the
popularity score threshold is almost equivalent to
always retrieving contextual information for Llama-
3.1 8B. The IR usage is of 99.86% as presented
in Table 4. This clearly shows how the popularity
score method struggles with smaller size models,
being GPT-3 DAVINCI-003 the only model to get
a IR usage below 80% in the original paper when
using adaptive retrieval with the Contriever. Subse-
quently, we evaluated our ADAPT-LLM configura-
tion on the same 25% test set split and compared
the outcomes with those obtained using the method
described by Mallen et al. (2023). This system-
atic comparison enabled us to assess the efficacy
of our ADAPT-LLM model in relation to the cur-
rent state of the art. The results of this experiment
are presented in Table 4. We observe compara-
ble performance between the replicated approach
of Mallen et al. (2023) and ADAPT-LLM when
trained on NQ and SQuAD datasets and tested on
the 25% subset of PopQA. It’s worth mentioning
that ADAPT-LLM does not utilize any information
from PopQA, unlike Mallen et al. (2023), who di-
rectly use the popularity score and a 75% portion
of PopQA dataset to find an optimal value for that

Model Configuration IR usage Accuracy
POPULARITY SCORE 99.86% 37.23%
ADAPT-LLM (NQ) 82.93% 36.08%
ADAPT-LLM (SQUAD) 80.15% 37.92%

Table 4: Performance comparison of Llama-3.1 base
models trained on the SQuUAD and NQ datasets for the
ADAPT-LLM and POPULARITY SCORE configurations.

popularity score. This methodology is not gener-
alizable to other open-domain question answering
tasks since the popularity score is a unique fea-
ture of PopQA. However, ADAPT-LLM can be
applied to any similar dataset. Given these char-
acteristics, we believe that the results obtained by
ADAPT-LLM are even more significant, offering
comparable performance to an approach that uti-
lizes dataset-specific information.

5 Conclusions

In this paper, we introduce ADAPT-LLM, a LLM
which learns to discern when additional context
is necessary for answering a question, rather than
relying solely on its parametric memory. ADAPT-
LLM is the result of fine-tuning a base LLM on an
open-domain question answering dataset that has
been modified to differentiate between questions
answerable with the LLM’s parametric memory
alone and those requiring supplementary context.
To construct these training datasets, we initially
subject the base LLM to zero-shot evaluation to
determine its accuracy in answering questions.

For questions where the model’s response is in-
correct, we train the LLM to generate a special to-
ken, (RET), indicating the need for additional con-
text. Through extensive experiments conducted on
the PopQA dataset, we show that ADAPT-LLM per-
forms better than its two fixed alternatives: never
retrieving and always retrieving relevant context
information. Furthermore, our findings highlight
ADAPT-LLM’s capability to effectively discern the
necessity of additional context, which is the pri-
mary objective of this work.

For future investigations, we propose exploring
methods to enhance performance when utilizing an
IR system, such as incorporating learnable sequen-
tial retrieval techniques. Furthermore, we believe
it would be valuable to conduct a more in-depth
analysis of the interaction between training and test-
ing datasets in the development of ADAPT-LLM
systems.



6 Limitations

In this work, we introduce a method to enhance
LLMs with retrieval capabilities. The use of a
retriever reduces the hallucination rate in ADAPT-
LLM by providing relevant external information
when necessary. However, when the model opts to
generate answers without retrieval, there remains a
risk of producing factually incorrect or ungrounded
responses.

Our results show that training an LLM to learn
when to retrieve context improves performance on
general domain datasets such as NQ. While these
datasets cover a broad range of topics, they may not
fully capture the complexities of real-world scenar-
i0s, particularly in specialized domains. Evaluating
ADAPT-LLM’s generalization across diverse and
domain-specific contexts is beyond the scope of
this work, and future research should explore the
model’s adaptability to various domains to ensure
robustness in practical applications.

Additionally, our analysis focused on a limited
number of models, selected for their open-source
nature and strong performance, making them par-
ticularly valuable to the scientific community. Ex-
panding this analysis to include a broader range
of models could provide further insights into the
generalizability and limitations of our approach.

7 Ethical Considerations

ADAPT-LLM aims to reduce the number of factu-
ally incorrect answers by retrieving contextual in-
formation when the model predicts that additional
context is needed. While retrieving from trusted
sources has been shown to enhance the factual-
ity of LLMs (Li et al., 2024), our method some-
times relies on the model’s parametric knowledge,
which can potentially generate factually incorrect
answers.

This could lead to the spread of misinformation,
underscoring the importance of implementing ro-
bust safeguards, such as confidence scoring and
human oversight to mitigate these risks and ensure
the responsible deployment of the model.
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A Datasets Analysis

Table 5 provides insights into the characteristics of
the three datasets involved in our experimental pro-
cedure, including the total number of questions and
the average number of words per question and an-
swer. While NQ appears to be closer to PopQA in
terms of question and answer lengths, the key fac-
tor influencing the better results of training ADAPT-
LLM on SQuAD may be the number of questions
in the training dataset (~87K in SQuAD and ~58K
in NQ). Further analyses are required to elucidate
the factors that render a training dataset more suit-
able for a given target dataset (which is beyond the
scope of our study), but these results suggest that
scale may play once again a crucial role.
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NQ SQuAD PopQA

Questions 58,880 87,599 14,282
Words/question ~ 9.20 10.06 6.62
Words/answer 2.26 3.16 2.04

Table 5: Comparison of the three datasets we use for our
experiments, i.e. SQuAD, NQ and PopQA. For each
of them we provide the number of questions, and the
average number of words per question and answer.

B Training Data Algorithm

The following algorithm outlines the process used
to generate the training data, as detailed thoroughly
in Section 3.1.

Input: Q: questions, A: answers, P:
passages, LLM
Output: DS 44qp¢: A training dataset for
Adaptive Retrieval

1 DS gqapt = init_empty()

2 for g, gold_ans, pass in (Q, A, P) do

3 ans = LLM(q)

4 if ans = gold_ans then

5 inst =
build_instance(’parametric_prompt’,
g, gold_ans)

DS 4 dapt-add(inst)

end

else

o e 9 &

instl =
build_instance(’parametric_prompt’,
g, "<RET>")

DS gqpt-add(inst1)

inst2 =
build_instance(’context_prompt’,
g, gold_ans, pass)

DS dqpt-add(inst2)

10
11

12

13 end
14 end

15 return DS gqapt

C Example Prompts

In the following examples, we illustrate the process
used to interact with ADAPT-LLM for question
answering tasks. Initially, the model is prompted
to answer a question or return (RET) if it is uncer-
tain about the correct answer. In the first example,
the model returns (RET), indicating that it requires
additional context. Then, a second prompt is sent
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Figure 3: Analysis of the first two words of questions and their correlation with model accuracy.

to provide the necessary context, and the model |C: Aarno Raninen Aarno Raninen was a

successfully answers the question. This prompt Finnish singer, songwriter and
musician. His main instrument was

schema has been used throughout all our experi- piano but he has also mastered
ments when doing inference on ADAPT-LLM. violin, cello and accordion. Born in
Kotka, Raninen began his musical
studies at a young age. After he
moved to Helsinki in 1966 he got a
job as a studio conductor at
Musiikki-Fazer. While working there

C.1 Prompt1

Listing 1: Prompt 1

he made a lot of cooperative work

Below is an instruction that describes a with the likes of songwriter Juha
task, paired with an input that Vainio. Later on Raninen went to
provides further context. Write a work in Discophon where he wrote
response that appropriately lyrics for many Finnish musicians,
completes the request. such as Seija Simola, Carola, Tauno
### Instruction: ### Response:
answer the question Q. If you need help
answer <RET> to get the context Model Output:
### Input: S .
Q: In what city was Aarno Maliniemi born Listing 4: Model Output 2
? Helsinki. Aarno Maliniemi was born in
Helsinki.
### Response:

Model Output: D Analysis of Question Accuracy

In this appendix, we present an analysis of the first

Listing 2: Model Output 1 two words of questions and their correlation with

<RET> the model’s performance. For both correctly and in-

correctly answered questions, we identified the top
C.2 Prompt 2 10 word pairs that appear most frequently. These
absolute counts were then normalized by dividing

o them by the total occurrences of each word pair,
Listing 3: Prompt 2

resulting in the percentage of occurrences in the

Below is an instruction that describes a . .
task, paired with an input that dataset. The instances Wlth'ICSS ther'l 10 occur-
provides further context. Write a rences were filtered out. This analysis was con-
resPcl’”ie t:ﬁt app""p;iately ducted using our ADAPT-LLM model, trained on
com etes e request. .
P a the NQ train set and tested on the NQ dev set, as
### Instruction: NQ offers better variability and representativeness
answcer the question Q given the context in question types. The two figures below? illus-
trate these top 10 word pairs for accurate (Figure
### Input: 3a) and inaccurate (Figure 3b) questions, ranked
Q: In what city was Aarno Maliniemi born B
? 2The Matplotlib library has been used to create the charts.
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by their normalized values (shown as blue bars),
with the absolute counts also depicted (represented
by the yellow line). From this analysis, we can
observe distinct patterns in the types of questions
that correlate with correct versus incorrect answers.
Correctly answered questions often seek specific
information; for instance, 9 times out of 10, they
ask for the name of one particular person. In con-
trast, incorrectly answered questions tend to be
more vague; 7 times out of 10 they begin with
"when" (which could be answered with a specific
year, month, day, or a broad period of time) or
"where" (which could be answered with a specific
city or country), leading to less precise answers.
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