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Abstract001

Recently, systems that combine Information002
Retrieval (IR) with Large Language Models003
(LLMs), such as RAG, have demonstrated re-004
markable capabilities in question answering by005
integrating external context. However, the op-006
timal strategy for question answering does not007
always involve retrieving external information;008
it often involves leveraging the LLM’s own009
parametric memory. In this paper, we demon-010
strate how LLMs can be effectively trained to011
determine when additional context is necessary012
and to utilize an off-the-shelf IR system accord-013
ingly. We propose a tailored training approach014
where LLMs, using open-domain question an-015
swering datasets, learn to generate a special to-016
ken, ⟨RET⟩, when they do not know the answer017
to a question. Our evaluation of the Adaptive018
Retrieval LLM (ADAPT-LLM) on the PopQA019
dataset showcases improvements over the same020
LLM under three configurations: (i) retrieving021
information for all questions, (ii) relying solely022
on the LLM’s parametric memory, and (iii) us-023
ing a popularity threshold to decide when to024
use a retriever.025

1 Introduction026

The task of question answering (QA) remains a027

focal point in Natural Language Understanding re-028

search. There are many different datasets serving029

as benchmarks for evaluating QA models, such as030

Natural Questions (NQ) (Kwiatkowski et al., 2019),031

SQuAD (Rajpurkar et al., 2016) or QuAC (Choi032

et al., 2018), just to mention a few. Nowadays,033

Large Language Models (LLMs) consistently out-034

perform traditional methods on these benchmarks,035

showcasing remarkable performance.036

Typically, there are two primary approaches to037

utilize LLMs for question answering: (i) Closed038

Book Question Answering: the LLM relies solely039

on its parametric memory to answer questions.040

However, these parametric memories have inherent041

limitations as they are based entirely on the training042

corpus, meaning for example that they could be out- 043

dated regarding events occurring after the training 044

process. (ii) Open Book Question Answering: the 045

LLM is coupled with an Information Retriever (IR) 046

system (Izacard and Grave, 2021; Zhu et al., 2021). 047

By leveraging the IR system, the LLM can retrieve 048

relevant context to provide more accurate answers. 049

However, the research conducted by Mallen et al. 050

(2023) sheds light on the complexity of question- 051

answering strategies, challenging the notion that 052

the optimal approach always involves the utiliza- 053

tion of an IR system. Through the introduction of 054

the PopQA dataset they demonstrated that while 055

LLMs relying solely on their parametric memories 056

excel in addressing high-popularity questions, the 057

efficacy diminishes for low-popularity questions, 058

where using IR becomes crucial. In many cases, 059

however, question answering datasets do not in- 060

clude popularity scores, so relying on such scores 061

is not a generalizable approach. On top of it, pop- 062

ularity is dynamic and a topic that was popular 063

at the LLM training time could be not trending 064

anymore at inference time. Motivated by this lim- 065

itation, our study aims to address whether LLMs 066

can autonomously determine when to employ an IR 067

system for improved question answering. To inves- 068

tigate this, we conduct an evaluation of an LLM us- 069

ing an open-domain question answering dataset to 070

identify the questions for which the LLM provides 071

accurate responses and those where its answers are 072

incorrect. For questions where the LLM’s response 073

is incorrect, we annotate them with a special token, 074

⟨RET⟩, indicating the need for additional context. 075

Subsequently, we utilize these annotations to con- 076

struct a new dataset tailored for training purposes, 077

where we teach an LLM to answer directly if it is 078

confident about the answer or to require context it 079

believes is useful for answering the question (see 080

Figure 1). Our hypothesis is that through this train- 081

ing process, the LLM learns to use an IR system 082

when it needs extra context to answer a question, 083
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Figure 1: The inference process of ADAPT-LLM step-by-step: given a question (step 1), an LLM decides (step
2) whether to answer the question directly (step 3) or to ask for additional contextual information, generating the
special ⟨RET⟩ token; for the later, an off-the-shelf IR system is used to retrieve relevant context (step 4), which is
used alongside the question to prompt again the LLM for the final answer (step 5).

thus we name it ADAPT-LLM.084

To validate our hypothesis, we conducted several085

experiments on the PopQA dataset (Mallen et al.,086

2023), as it provides a suitable platform for bench-087

marking hybrid retrieval strategies. As a result of088

these experiments we find that: (i) ADAPT-LLM089

consistently outperforms typical fixed strategies for090

question answering, such as using the IR system for091

all questions and relying solely on the parametric092

memory of the LLM; (ii) ADAPT-LLM demon-093

strates performance comparable to strategies that094

rely on popularity scores to determine when to use095

an IR system, even without utilizing any popularity096

score or similar metric. Our findings underscore097

the significance of adaptive retrieval strategies in098

enhancing the performance of LLMs for question099

answering tasks. By training ADAPT-LLM to dy-100

namically determine when to retrieve additional101

context, we demonstrate the feasibility of teach-102

ing an LLM how to effectively leverage external103

information sources only when necessary.104

2 Related Work105

Retrieval-Augmented Generation (RAG) (Lewis106

et al., 2020) has shown improvements on a wide107

variety of NLP areas, such as question answering108

(Karpukhin et al., 2020; Izacard and Grave, 2021;109

Seonwoo et al., 2022; Nakano et al., 2021), truthful-110

ness (Ji et al., 2023; Lin et al., 2022) and language111

modelling (Guu et al., 2020; Borgeaud et al., 2022;112

Ram et al., 2023) among others. The ability to113

ground model generations on retrieved text chunks114

has also enabled smaller models to match the per-115

formance of larger ones (Catav et al., 2024). More-116

over, due to the extremely high cost of training117

LLMs, RAG has become the standard way to main-118

tain them updated with new information, not having 119

to re-train the models periodically to incorporate 120

new facts (Gao et al., 2023). Even if augmenting 121

LLMs with retrieval is an essential step for the cur- 122

rent generation of LLMs (Jiang et al., 2024; Reid 123

et al., 2024) it also comes with a cost. Traditional 124

retrieval methods as TF-IDF or BM-25 (Robertson 125

et al., 2009) are only able to retrieve documents 126

with keyword overlap and suffer from lexical gap 127

(Berger et al., 2000). In order to try to solve this 128

issue, many pre-trained Transformer encoder based 129

dense models have been proposed (Gao et al., 2021; 130

Reimers and Gurevych, 2019; Karpukhin et al., 131

2020; Gautier et al., 2022). Trained neural mod- 132

els have shown good performance over a variety 133

of retrieval benchmarks but they still struggle in 134

the zero-shot setup for new domains (Thakur et al., 135

2021). The quality of the retrieval engine is essen- 136

tial for retrieval-augmented models as this will set 137

the upper bound of the model performance. More- 138

over, the usage of a retrieval engine, especially 139

when the target document index is huge, can sig- 140

nificantly increase the latency of the model and 141

hurt real time applications user experience (Bar- 142

nett et al., 2024). On the other hand, as models 143

keep scaling, the world knowledge encoded in their 144

parameters does too (Kaplan et al., 2020). Many 145

previous efforts have shown that language models 146

are able to memorize a significant amount of world 147

knowledge and achieve competitive performance 148

on tasks such as open-domain question answering 149

when they just use their parametric knowledge for 150

solving the task (Liang et al., 2023; Achiam et al., 151

2023; Dubey et al., 2024; Touvron et al., 2023b). 152

Motivated by all this, the adaptive approach has 153

been proposed as a new solution (Schick et al., 154

2024; Mallen et al., 2023). In this approach, if the 155
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solution to the task is encoded in the parameters156

of the model, the model will be directly used for157

generating a solution. Conversely, if the answer158

is not encoded in the knowledge of the model, the159

answer generation will be augmented with external160

knowledge.161

Recently, Schick et al. (2024) proposed the Tool-162

former, a model that can self teach how and when163

to use external tools via simple API calls includ-164

ing a calculator, search engines, a calendar and so165

on. More similar to our work, Mallen et al. (2023)166

propose a dataset and method for measuring when167

non-parametric information needs to be retrieved.168

They present the PopQA dataset that contains 14K169

questions about a set of entities with varying pop-170

ularity. The popularity of an entity is measured171

by the page views of its Wikipedia page. In order172

to solve this QA task, they use a popularity score173

threshold calculated on the PopQA dataset. If the174

popularity score of an individual entity is below175

the threshold they perform a retrieval step. On the176

contrary, if the score is greater than the threshold177

they directly answer the question. This method178

yields better results than vanilla retrieval but it re-179

quires the calculation of a popularity score that is180

not available in realistic QA scenarios.181

Another relevant contribution in this field, con-182

temporaneous with our research, is the work by183

Erbacher et al. (2024), where they trained an LLM184

to determine when to utilize external knowledge.185

They particularly focused on finding the optimal186

trade-off between the risk of hallucination and187

the cost of information retrieval, given the poten-188

tially high expense associated with IR. Our ADAPT-189

LLM method adopts a similar approach, train-190

ing an LLM to learn when to retrieve informa-191

tion. However, we extend this by comparing our192

method’s performance against some baselines, and193

assess the effectiveness of retrieving information in194

an adaptive manner against the strategies of never195

retrieving or always retrieving.1196

3 Adaptive Retrieval LLM197

(ADAPT-LLM)198

Adaptive retrieval refers to the model’s capabil-199

ity to dynamically determine whether to retrieve200

additional context information for generating an-201

swers in question answering tasks. Unlike tradi-202

tional models that either always incorporate con-203

1All resources are publicly available at
https://github.com/mwozgpt/Adapt-LLM-anonymous.

text or never consider it, adaptive retrieval allows 204

the model to selectively retrieve context based on 205

the specific requirements of each question. This 206

adaptive approach aims to optimize performance 207

by leveraging context only when necessary, thereby 208

enhancing the model’s ability to generate accurate 209

answers. As depicted in Figure 1, the process of the 210

ADAPT-LLM unfolds in the following sequence: 211

1. The first prompt containing the question is 212

sent to the model (step 1 of Figure 1). 213

2. The ADAPT-LLM evaluates the prompt to de- 214

termine whether additional context is neces- 215

sary to answer the question effectively (step 216

2). 217

3. If the model determines that context is not 218

required, it directly produces a response to the 219

question by leveraging its parametric memory 220

(step 3). 221

4. If context is deemed necessary, the ADAPT- 222

LLM model returns a special token, repre- 223

sented as ⟨RET⟩, and an off-the-shelf IR sys- 224

tem is used to retrieve pertinent context based 225

on the question (step 4); the context is then 226

combined with the original question prompt 227

to form a comprehensive representation for 228

answer generation (step 5). 229

This decision-making process enables the model 230

to determine whether context is needed, balancing 231

between using context for better understanding and 232

providing direct answers when appropriate. 233

3.1 Training ADAPT-LLM 234

In this section, we outline the methodology for 235

training our ADAPT-LLM model. This process, de- 236

noted as DSAdapt, is presented in the algorithm 237

at Appendix B. We start with an open-domain 238

question answering dataset containing questions 239

Q, context passages P , and answers A, initializing 240

DSAdapt to an empty set. For each question in Q, 241

we leverage the base LLM without any retrieval 242

mechanism to perform a zero-shot inference. This 243

step allows us to differentiate questions for which 244

the model generates correct answers from those 245

where its responses are inaccurate. For questions 246

where the model’s response is accurate, we build 247

a training set instance incorporating the following 248

prompt, which we call parametric_prompt: 249
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Prompt: Answer the question Q. If you need250

help answer <RET> to get the context. Q:251

{...}252

Alongside this prompt, we include the correspond-253

ing question from Q and the golden answer from254

A, collectively forming the instance, which is sub-255

sequently appended to the DSAdapt dataset. In con-256

trast, if the LLM fails to produce a correct response257

to the question, we build two different instances.258

The first employs the same parametric_prompt as259

previously described, with ⟨RET⟩ as the answer,260

indicating the necessity for additional context. The261

second, called context_prompt, includes contextual262

information alongside the question:263

Prompt: Answer the question Q given the264

context C. Q: {...}, C: {...}265

For this instance, we include the prompt, the ques-266

tion from Q, the golden answer from A, and the267

corresponding context passage from P . After pop-268

ulating the dataset with both types of prompts269

for questions where the LLM could not respond270

accurately and only the parametric_prompt with271

golden answers for all other questions, our train-272

ing set DAdapt is ready for fine-tuning. The fine-273

tuning process entails training the base LLM on274

our dataset, resulting in the ADAPT-LLM model.275

3.2 Inference276

During inference, we utilize the fine-tuned model to277

generate responses to unseen questions. We employ278

the same prompts used during the training phase,279

as outlined in Section 3.1. Initially, the model is280

prompted to either provide a direct response or281

return ⟨RET⟩ if it is unsure of the answer. If the282

model returns ⟨RET⟩, we proceed with information283

retrieval to acquire relevant context by means of an284

off-the-shelf IR system. Subsequently, we augment285

the question with the retrieved context and prompt286

the model again using the second type of prompt287

introduced during the training phase. An example288

of this process is provided in Appendix C.289

4 Experiments and Results290

In this section, we outline the experimental frame-291

work aimed at assessing the performance of the pro-292

posed adaptive retrieval approach, ADAPT-LLM.293

We begin by describing the datasets utilized (Sec-294

tion 4.1), followed by an overview of our base295

model (Section 4.2), the different configurations of296

the base model (Section 4.3), and the training de- 297

tails (Section 4.4). Subsequently, we introduce the 298

three primary experiments: evaluation of ADAPT- 299

LLM performance compared to 2 baseline models 300

(Section 4.5); analysis ADAPT-LLM’s ability to 301

determine when extra context is necessary to an- 302

swer a question (Section 4.6); comparison with the 303

state-of-the-art approach for PopQA (Section 4.7). 304

4.1 Datasets 305

Below are brief descriptions of the datasets we used 306

for training and evaluation of our models, ensuring 307

no overlap between train and test splits across all 308

datasets: 309

NQ The Natural Questions dataset (Kwiatkowski 310

et al., 2019) is a collection of real-world ques- 311

tions derived from Google search queries, accom- 312

panied by long-form text passages obtained from 313

Wikipedia articles and providing a diverse range of 314

topics and natural language variations. We utilize 315

this dataset for training our models in the experi- 316

ments. 317

SQuAD The Stanford Question Answering 318

Dataset SQuAD (Rajpurkar et al., 2016) is a widely 319

utilized dataset in the field of natural language pro- 320

cessing and comprises questions posed by crowd- 321

workers on a diverse range of Wikipedia articles, 322

along with relevant paragraph passages serving as 323

context. We utilize this dataset for training our 324

models in the experiments. 325

PopQA The Popular Questions and Answers 326

dataset (Mallen et al., 2023) consists of curated 327

questions sourced from various online platforms, 328

encompassing a wide range of domains and styles. 329

Given the variability in the effectiveness of context 330

retrieval strategies observed in this dataset, we se- 331

lect PopQA as our test set to evaluate the language 332

models’ performance in determining when context 333

is necessary for accurate answer provision. 334

4.2 Base Models 335

In our experiments, we employ the open-source 336

instruction-based LLMs Llama-2 (7 billion param- 337

eters) (Touvron et al., 2023a) and Llama-3.1 (8 338

billion parameters) (Dubey et al., 2024). These 339

models are pretrained on a comprehensive corpus 340

derived from publicly available online data sources, 341

showcasing superior performance across 150 di- 342

verse NLP tasks (Vavekanand and Sam, 2024). 343

Llama-3.1, in particular, introduces an extended 344
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Training Set Model configuration Accuracy
Llama-2 Llama-3.1

NQ
NEVER RETRIEVE 21.43% 27.86%

ALWAYS RETRIEVE 35.86% 37.98%
ADAPT-LLM (ours) 36.77% 38.88%

SQUAD
NEVER RETRIEVE 21.22% 27.99%

ALWAYS RETRIEVE 36.59% 38.64%
ADAPT-LLM (ours) 38.15% 40.25%

Table 1: Performance comparison of Llama-2 and Llama-3.1 models trained on the NQ and SQuAD datasets using
different retrieval configurations (NR-LLM, AR-LLM, and ADAPT-LLM), evaluated on the PopQA test set.

context length, which effectively doubles its ability345

to process and understand longer sequences of text.346

These advancements contribute significantly to the347

model’s enhanced performance and capabilities in348

various natural language understanding tasks.349

4.3 Model Configurations350

We conduct the experiments using three different351

model configurations, corresponding to the three352

different ways in which an LLM and an IR system353

can be combined:354

Adaptive Retrieval (ADAPT-LLM). The ADAPT-355

LLM model dynamically decides whether to re-356

trieve context based on the question and its per-357

ceived need for contextual information, as ex-358

plained in Section 3.1. As the IR system, we use359

Contriever (Gautier et al., 2022), which is an un-360

supervised model pretrained on a large corpus, fol-361

lowed by fine-tuning on MS MARCO (Nguyen362

et al., 2016). We only retrieve the most relevant363

passage according to the IR system to prompt the364

base LLM for the final answer.365

Never-Retrieve (NR-LLM). This model configu-366

ration is trained to answer questions solely based367

on the question text without considering any con-368

textual information. It serves as the baseline for369

evaluating the performance of question answering370

models in the absence of context.371

Always-Retrieve (AR-LLM). In contrast to the372

NR-LLM model, this configuration always re-373

trieves context passages to assist in answering ques-374

tions. It is trained to utilize context consistently for375

generating answers. To ensure a fair comparison376

with ADAPT-LLM, we also use Contriever (Gau-377

tier et al., 2022) as the IR system and only retrieve378

the most relevant passage as context.379

4.4 Training Details 380

For all three model configurations (ADAPT-LLM, 381

AR-LLM and NR-LLM) and both training sets 382

(SQuAD and NQ), we adhere to the parameter con- 383

figuration established in Alpaca-Lora (Taori et al., 384

2023) which includes a batch size of 128, three 385

epochs, and a fixed learning rate of 3e-4. We incor- 386

porated LoRA (Low-Rank Adaptation) regulariza- 387

tion, with parameters configured for r=8, alpha=16, 388

and a dropout rate of 0.05. Training was performed 389

on an NVIDIA A40 GPU, for an average training 390

time of approximately 8 hours. We do not perform 391

any model selection and we use the last checkpoint 392

after 3 epochs of training. 393

4.5 Validating the Adaptive Retrieval 394

Approach 395

In order to assess the effectiveness of our adaptive 396

approach (ADAPT-LLM) compared to NR-LLM 397

and AR-LLM configurations, we fine-tuned the 398

Llama-2 and Llama-3.1 models on the NQ and 399

SQuAD datasets. Training samples for NR-LLM 400

and AR-LLM were created using question-answer 401

pairs from these datasets, with NR-LLM answering 402

without context and AR-LLM using both question 403

and context. For ADAPT-LLM, we followed the 404

approach in Section 3.1, generating a dataset with 405

responses indicating whether context was needed 406

or not. The trained models were then tested on 407

the PopQA dataset to evaluate their performance in 408

a real-world question answering scenario. During 409

inference, NR-LLM and AR-LLM models were uti- 410

lized as is, with corresponding instruction prompts 411

provided, and outputs expected to be answers to 412

the questions. Conversely, for the ADAPT-LLM 413

model, we followed the same prompt procedure as 414

explained in Section 3.2. 415

The generated answers are compared to the set 416
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Training ⟨RET⟩ Usage ⟨RET⟩ No ⟨RET⟩
Acc. w/ context Acc. w/o context Acc. w/ context Acc. w/o context

NQ 86.86% 33.89% 20.34% 65.03% 77.61%
SQuAD 83.65% 34.26% 14.32% 67.24% 78.04%

Table 2: Results of the usage of the ⟨RET⟩ token in the ADAPT-LLM model. The first column shows the percentage
of PopQA questions for which the model requests additional context. The second column focuses on the questions
for which ADAPT-LLM asks for context (⟨RET⟩), comparing the accuracy between answering those questions with
and without context. The last column (No ⟨RET⟩) is for questions which ADAPT-LLM decides to answer directly,
comparing the accuracy with and without the context.

of possible answers for each question, as anno-417

tated in the PopQA test set. The evaluation metric418

used is a form of match accuracy, where an an-419

swer is considered correct if it matches any of the420

possible answers in a case-insensitive comparison.421

Specifically, if a possible answer is found within422

the generated output, it is deemed correct.423

Results shown in Table 1 indicate that ADAPT-424

LLM consistently outperforms both NR-LLM and425

AR-LLM on the PopQA test set. As can be426

observed, NR-LLM exhibits the lowest perfor-427

mance among the models, with a significant 10-15428

point accuracy gap compared to the other config-429

urations, underscoring the limitations of relying430

solely on Llama’s parametric memory. Although431

the difference between AR-LLM and ADAPT-432

LLM is relatively small, ADAPT-LLM consistently433

demonstrates a slight but meaningful improvement,434

with 1% higher accuracy when trained on the NQ435

datasets and about 1.5% higher accuracy when436

trained on SQuAD. Overall, these results highlight437

the effectiveness of the adaptive retrieval approach,438

which dynamically determines when context is nec-439

essary for accurate question answering, leading to440

improved performance compared to fixed strategies441

of always or never retrieving context.442

Given the close performance between Llama-2443

and Llama-3.1, with a slight advantage for the latter,444

we opted to use only Llama-3.1 for the subsequent445

experiments.446

4.6 Contextual Retrieval Decision Analysis447

In this experiment, our objective is to once again448

evaluate the effectiveness of the ADAPT-LLM449

model, this time focusing on its ability to accu-450

rately determine when additional context is needed.451

For this purpose, we adhere to the following steps:452

1. We conduct inference on the ADAPT-LLM453

model using the PopQA test set, prompting it454

to either return an answer directly or indicate455

the need for additional context by returning 456

⟨RET⟩. 457

2. In the case of receiving a ⟨RET⟩ response 458

from the ADAPT-LLM model, we proceed 459

with the following steps: 460

2.1. We conduct inference on the ADAPT- 461

LLM model, prompting it to return an 462

answer given the context obtained from 463

the IR system. 464

2.2. We also conduct inference on the NR- 465

LLM model with the instruction to pro- 466

vide an answer directly without addi- 467

tional context. 468

3. If the ADAPT-LLM model decides to answer 469

the question directly relying only on its para- 470

metric memory: 471

3.1. We conduct inference on the ADAPT- 472

LLM model, prompting it to return the 473

answer without providing context. 474

3.2. We conduct inference on the AR-LLM 475

model with the instruction to provide an 476

answer using the context retrieved by the 477

IR system. 478

Table 2 presents the results of this experiment. The 479

first thing to note is that the ADAPT-LLM model 480

generates the ⟨RET⟩ token for approximately 83- 481

87% of the questions in the PopQA dataset, align- 482

ing with the low performance of the NR-LLM con- 483

figuration demonstrated in Table 1. 484

However, ADAPT-LLM consistently determines 485

when additional context is required to answer a 486

question accurately. Across both the NQ and 487

SQuAD training datasets, ADAPT-LLM exhibits 488

significantly higher accuracy when retrieving con- 489

text compared to the NR-LLM model’s accuracy 490

without context (as indicated in the ⟨RET⟩ column 491

of Table 2). Specifically, for the NQ dataset, the ac- 492

curacy of the ADAPT-LLM model when requesting 493
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Figure 2: Histograms depicting the proportion of questions where ADAPT-LLM trained on NQ (left) and ADAPT-
LLM trained on SQuAD (right) ask for extra context for different popularity score intervals.

Passages SQuAD Dev NQ Dev
Acc. Acc.

Gold 89.85% 70.91%
Contriever 23.84% 28.52%

Table 3: Performance comparison of ADAPT-LLM for
the SQuAD and NQ dev sets, when using the gold pas-
sages provided by the datasets and when using the best
passage retrieved by Contriever.

context is 33.89%, whereas the accuracy of the NR-494

LLM model without context retrieval is notably495

lower at 20.34%. Similarly, for the SQuAD dataset,496

ADAPT-LLM achieves an accuracy of 34.26% with497

context retrieval, whereas the NR-LLM model’s ac-498

curacy without context is substantially lower at499

14.32%. Finally, the last column of Table 2 (No500

⟨RET⟩) shows the performance of ADAPT-LLM501

when answering questions based solely on its para-502

metric memory. As can be seen, accuracies above503

77% are obtained when no context is utilized, pro-504

viding further evidence that ADAPT-LLM effec-505

tively discerns between retrieving context and pro-506

viding direct answers to questions. Additionally,507

we evaluate the performance of these questions508

when context is added to the input, revealing sig-509

nificant decreases in accuracy of up to 12 absolute510

points. These findings provide insights into the511

effectiveness of the decision-making process em-512

ployed by the ADAPT-LLM model in determining513

the necessity of additional context for accurate re-514

sponse generation and present empirical evidence515

of the necessity of performing dynamic context516

retrieval in improving the accuracy of question an-517

swering models. However, it is notable that the518

overall performance of the model when answer-519

ing questions with retrieved context, as observed 520

in Table 2 (approximately 34%), is relatively low. 521

To further explore this observation, we conduct an 522

additional experiment: evaluating ADAPT-LLM 523

on the NQ and SQuAD development splits, com- 524

paring performance when using the gold passages 525

of the dataset and the context retrieved by our IR 526

system, Contriever (Gautier et al., 2022). Unfortu- 527

nately, PopQA does not provide the gold passages, 528

so direct evaluation there was not possible. 529

Table 3 presents the results of this experiment. 530

A significant performance difference is observed 531

between using the gold passage and the top passage 532

retrieved by Contriever for both datasets (approxi- 533

mately 66 absolute points for SQuAD and 42 for 534

NQ). This indicates that Contriever, and current IR 535

systems in general, do not consistently retrieve the 536

most relevant passage to answer a given question. 537

This observation underscores the importance of re- 538

trieving multiple documents as context, as seen 539

in the most successful open-domain QA systems 540

(Izacard and Grave, 2021), and highlights its im- 541

pact on the overall performance of ADAPT-LLM in 542

PopQA. To further validate the behavior of ADAPT- 543

LLM when requesting additional context, Figure 2 544

illustrates the proportion of questions for which our 545

model generates the ⟨RET⟩ token, aggregated by 546

popularity score intervals (left image for ADAPT- 547

LLM trained on NQ and right image for SQuAD). 548

Mallen et al. (2023) suggest that high-popularity 549

questions can be adequately answered using the 550

parametric memory of the LLM, while lower popu- 551

larity scores necessitate extra context. In the figure, 552

we observe this pattern for both versions of ADAPT- 553

LLM, indicating that our model, despite lacking 554

access to popularity scores during training or infer- 555

ence, has learned effective criteria for requesting 556
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additional context.557

Additionally, we have observed that different558

types of questions yield significantly different re-559

sults in model performance (see Appendix D).560

4.7 Comparison with State-of-the-Art561

Methods562

We conducted a comparative analysis between our563

ADAPT-LLM model and the current state-of-the-564

art approach for PopQA proposed by Mallen et al.565

(2023). Their methodology relies on the popular-566

ity score annotated in the PopQA dataset to deter-567

mine whether a question requires additional con-568

text. To establish the optimal threshold for deter-569

mining question popularity, Mallen et al. (2023)570

split the PopQA dataset into 75% as a development571

set for threshold determination and 25% as a test572

set. In the original paper, they apply this methodol-573

ogy to various LLMs available at that moment.574

To ensure a fair comparison between ADAPT-575

LLM and the popularity-based method, we repli-576

cated their approach using the Llama-3.1 8B model577

to determine the best popularity score threshold578

(found to be 710,000) using the same PopQA de-579

velopment set. This allowed us to obtain results580

consistent with their methodology while utilizing581

our base LLM. Similar to the original results in582

Mallen et al. (2023) when using smaller models, the583

popularity score threshold is almost equivalent to584

always retrieving contextual information for Llama-585

3.1 8B. The IR usage is of 99.86% as presented586

in Table 4. This clearly shows how the popularity587

score method struggles with smaller size models,588

being GPT-3 DAVINCI-003 the only model to get589

a IR usage below 80% in the original paper when590

using adaptive retrieval with the Contriever. Subse-591

quently, we evaluated our ADAPT-LLM configura-592

tion on the same 25% test set split and compared593

the outcomes with those obtained using the method594

described by Mallen et al. (2023). This system-595

atic comparison enabled us to assess the efficacy596

of our ADAPT-LLM model in relation to the cur-597

rent state of the art. The results of this experiment598

are presented in Table 4. We observe compara-599

ble performance between the replicated approach600

of Mallen et al. (2023) and ADAPT-LLM when601

trained on NQ and SQuAD datasets and tested on602

the 25% subset of PopQA. It’s worth mentioning603

that ADAPT-LLM does not utilize any information604

from PopQA, unlike Mallen et al. (2023), who di-605

rectly use the popularity score and a 75% portion606

of PopQA dataset to find an optimal value for that607

Model Configuration IR usage Accuracy

POPULARITY SCORE 99.86% 37.23%
ADAPT-LLM (NQ) 82.93% 36.08%

ADAPT-LLM (SQUAD) 80.15% 37.92%

Table 4: Performance comparison of Llama-3.1 base
models trained on the SQuAD and NQ datasets for the
ADAPT-LLM and POPULARITY SCORE configurations.

popularity score. This methodology is not gener- 608

alizable to other open-domain question answering 609

tasks since the popularity score is a unique fea- 610

ture of PopQA. However, ADAPT-LLM can be 611

applied to any similar dataset. Given these char- 612

acteristics, we believe that the results obtained by 613

ADAPT-LLM are even more significant, offering 614

comparable performance to an approach that uti- 615

lizes dataset-specific information. 616

5 Conclusions 617

In this paper, we introduce ADAPT-LLM, a LLM 618

which learns to discern when additional context 619

is necessary for answering a question, rather than 620

relying solely on its parametric memory. ADAPT- 621

LLM is the result of fine-tuning a base LLM on an 622

open-domain question answering dataset that has 623

been modified to differentiate between questions 624

answerable with the LLM’s parametric memory 625

alone and those requiring supplementary context. 626

To construct these training datasets, we initially 627

subject the base LLM to zero-shot evaluation to 628

determine its accuracy in answering questions. 629

For questions where the model’s response is in- 630

correct, we train the LLM to generate a special to- 631

ken, ⟨RET⟩, indicating the need for additional con- 632

text. Through extensive experiments conducted on 633

the PopQA dataset, we show that ADAPT-LLM per- 634

forms better than its two fixed alternatives: never 635

retrieving and always retrieving relevant context 636

information. Furthermore, our findings highlight 637

ADAPT-LLM’s capability to effectively discern the 638

necessity of additional context, which is the pri- 639

mary objective of this work. 640

For future investigations, we propose exploring 641

methods to enhance performance when utilizing an 642

IR system, such as incorporating learnable sequen- 643

tial retrieval techniques. Furthermore, we believe 644

it would be valuable to conduct a more in-depth 645

analysis of the interaction between training and test- 646

ing datasets in the development of ADAPT-LLM 647

systems. 648
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6 Limitations649

In this work, we introduce a method to enhance650

LLMs with retrieval capabilities. The use of a651

retriever reduces the hallucination rate in ADAPT-652

LLM by providing relevant external information653

when necessary. However, when the model opts to654

generate answers without retrieval, there remains a655

risk of producing factually incorrect or ungrounded656

responses.657

Our results show that training an LLM to learn658

when to retrieve context improves performance on659

general domain datasets such as NQ. While these660

datasets cover a broad range of topics, they may not661

fully capture the complexities of real-world scenar-662

ios, particularly in specialized domains. Evaluating663

ADAPT-LLM’s generalization across diverse and664

domain-specific contexts is beyond the scope of665

this work, and future research should explore the666

model’s adaptability to various domains to ensure667

robustness in practical applications.668

Additionally, our analysis focused on a limited669

number of models, selected for their open-source670

nature and strong performance, making them par-671

ticularly valuable to the scientific community. Ex-672

panding this analysis to include a broader range673

of models could provide further insights into the674

generalizability and limitations of our approach.675

7 Ethical Considerations676

ADAPT-LLM aims to reduce the number of factu-677

ally incorrect answers by retrieving contextual in-678

formation when the model predicts that additional679

context is needed. While retrieving from trusted680

sources has been shown to enhance the factual-681

ity of LLMs (Li et al., 2024), our method some-682

times relies on the model’s parametric knowledge,683

which can potentially generate factually incorrect684

answers.685

This could lead to the spread of misinformation,686

underscoring the importance of implementing ro-687

bust safeguards, such as confidence scoring and688

human oversight to mitigate these risks and ensure689

the responsible deployment of the model.690
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A Datasets Analysis896

Table 5 provides insights into the characteristics of897

the three datasets involved in our experimental pro-898

cedure, including the total number of questions and899

the average number of words per question and an-900

swer. While NQ appears to be closer to PopQA in901

terms of question and answer lengths, the key fac-902

tor influencing the better results of training ADAPT-903

LLM on SQuAD may be the number of questions904

in the training dataset (∼87K in SQuAD and ∼58K905

in NQ). Further analyses are required to elucidate906

the factors that render a training dataset more suit-907

able for a given target dataset (which is beyond the908

scope of our study), but these results suggest that909

scale may play once again a crucial role.910

NQ SQuAD PopQA

Questions 58,880 87,599 14,282
Words/question 9.20 10.06 6.62
Words/answer 2.26 3.16 2.04

Table 5: Comparison of the three datasets we use for our
experiments, i.e. SQuAD, NQ and PopQA. For each
of them we provide the number of questions, and the
average number of words per question and answer.

B Training Data Algorithm 911

The following algorithm outlines the process used 912

to generate the training data, as detailed thoroughly 913

in Section 3.1. 914

915

Input: Q: questions, A: answers, P:
passages, LLM

Output: DSAdapt: A training dataset for
Adaptive Retrieval

1 DSAdapt = init_empty()
2 for q, gold_ans, pass in (Q, A, P) do
3 ans = LLM(q)
4 if ans = gold_ans then
5 inst =

build_instance(’parametric_prompt’,
q, gold_ans)

6 DSAdapt.add(inst)
7 end
8 else
9 inst1 =

build_instance(’parametric_prompt’,
q, "<RET>")

10 DSAdapt.add(inst1)
11 inst2 =

build_instance(’context_prompt’,
q, gold_ans, pass)

12 DSAdapt.add(inst2)
13 end
14 end
15 return DSAdapt

916

C Example Prompts 917

In the following examples, we illustrate the process 918

used to interact with ADAPT-LLM for question 919

answering tasks. Initially, the model is prompted 920

to answer a question or return ⟨RET⟩ if it is uncer- 921

tain about the correct answer. In the first example, 922

the model returns ⟨RET⟩, indicating that it requires 923

additional context. Then, a second prompt is sent 924
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(a) Most Accurate Questions (b) Most Inaccurate Questions

Figure 3: Analysis of the first two words of questions and their correlation with model accuracy.

to provide the necessary context, and the model925

successfully answers the question. This prompt926

schema has been used throughout all our experi-927

ments when doing inference on ADAPT-LLM.928

C.1 Prompt 1929

Listing 1: Prompt 1
930

Below is an instruction that describes a931
task , paired with an input that932

provides further context. Write a933
response that appropriately934
completes the request.935

936
### Instruction:937
answer the question Q. If you need help938

answer <RET > to get the context939
940

### Input:941
Q: In what city was Aarno Maliniemi born942

?943
944

### Response:945946

Model Output:947

Listing 2: Model Output 1
948

<RET >949950

C.2 Prompt 2951

Listing 3: Prompt 2
952

Below is an instruction that describes a953
task , paired with an input that954

provides further context. Write a955
response that appropriately956
completes the request.957

958
### Instruction:959
answer the question Q given the context960

C961
962

### Input:963
Q: In what city was Aarno Maliniemi born964

?965

C: Aarno Raninen Aarno Raninen was a 966
Finnish singer , songwriter and 967
musician. His main instrument was 968
piano but he has also mastered 969
violin , cello and accordion. Born in 970
Kotka , Raninen began his musical 971

studies at a young age. After he 972
moved to Helsinki in 1966 he got a 973
job as a studio conductor at 974
Musiikki -Fazer. While working there 975
he made a lot of cooperative work 976
with the likes of songwriter Juha 977
Vainio. Later on Raninen went to 978
work in Discophon where he wrote 979
lyrics for many Finnish musicians , 980
such as Seija Simola , Carola , Tauno 981

982
### Response: 983984

Model Output: 985

Listing 4: Model Output 2
986

Helsinki. Aarno Maliniemi was born in 987
Helsinki. 988989

D Analysis of Question Accuracy 990

In this appendix, we present an analysis of the first 991

two words of questions and their correlation with 992

the model’s performance. For both correctly and in- 993

correctly answered questions, we identified the top 994

10 word pairs that appear most frequently. These 995

absolute counts were then normalized by dividing 996

them by the total occurrences of each word pair, 997

resulting in the percentage of occurrences in the 998

dataset. The instances with less then 10 occur- 999

rences were filtered out. This analysis was con- 1000

ducted using our ADAPT-LLM model, trained on 1001

the NQ train set and tested on the NQ dev set, as 1002

NQ offers better variability and representativeness 1003

in question types. The two figures below2 illus- 1004

trate these top 10 word pairs for accurate (Figure 1005

3a) and inaccurate (Figure 3b) questions, ranked 1006

2The Matplotlib library has been used to create the charts.
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by their normalized values (shown as blue bars),1007

with the absolute counts also depicted (represented1008

by the yellow line). From this analysis, we can1009

observe distinct patterns in the types of questions1010

that correlate with correct versus incorrect answers.1011

Correctly answered questions often seek specific1012

information; for instance, 9 times out of 10, they1013

ask for the name of one particular person. In con-1014

trast, incorrectly answered questions tend to be1015

more vague; 7 times out of 10 they begin with1016

"when" (which could be answered with a specific1017

year, month, day, or a broad period of time) or1018

"where" (which could be answered with a specific1019

city or country), leading to less precise answers.1020
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