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Abstract
Robust and scalable profiling of cell state dynamics from large-scale 3D live cell
imaging data is an open challenge. We propose a self-supervised method for em-
bedding cell state dynamics via contrastive learning of representations (DynaCLR)
to address this need. DynaCLR integrates single-cell tracking and time-aware
contrastive sampling to learn robust, temporally regularized representations of
morphological dynamics. This pretext task leads to an embedding space in which
distances encode transitions in cell state dynamics. DynaCLR embeddings gen-
eralize to out-of-distribution imaging experiments, and can be used for multiple
downstream tasks with sparse human annotations. DynaCLR embeddings enabled
robust classification of cell infection and division, and clustering of heterogeneous
cell migration behaviors. DynaCLR is a generalist method for comparative anal-
yses of dynamic cellular responses to pharmacological, microbial, and genetic
perturbations. We provide a PyTorch-based implementation of the method and a
model library(VisCy) trained with 3D and 2D time-lapse datasets.

1 Introduction
Learning biologically interpretable representations of the cell morphology and architecture from
100 TB-scale dynamic imaging datasets is an outstanding need in basic biology and therapeutic
discovery. The dynamic responses of organelles and cells to perturbations such as infection, gene
expression modulation, or pharmacological treatment can reveal biomarkers of health and disease,
and establish causal links between the cell morphology and function. Supervised approaches for
analyzing dynamic cell morphology are suboptimal because categorical labeling of continuous
changes in cell and organelle morphology is hard. Self-supervised methods that use biologically
and experimentally relevant pretext tasks have the potential to learn robust embeddings of cell and
organelle dynamics that generalize across experimental conditions, disambiguate the relationships
between complex perturbations and cellular responses, and enable the discovery of rare cell states.
Current self-supervised embedding methods are not designed to encode multi-channel 3D time-lapse
datasets or allow for flexible definition of pretext tasks based on prior knowledge of (dis-)similarity
of cell morphologies.

We report a method to learn embeddings of cell state Dynamics via Contrastive Learning of
Representations (DynaCLR). DynaCLR combines single-cell tracking with cell and time-aware
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contrastive sampling to learn embeddings of cell and organelle dynamics from multi-channel 3D
time-lapse microscopy data. Using the evolution of cell morphology in time-lapse datasets as a form
of augmentation, DynaCLR learns temporally-regularized embeddings that robustly model cell state
dynamics. DynaCLR models generalize to out-of-distribution data acquired with diverse imaging
systems and cell types, making the learned embeddings useful for robust cell state analysis with few
human annotations. We also share a scalable PyTorch implementation for training models on GPU
clusters (VisCy).

We evaluate the accuracy of the visual representation learned by our method using metrics specific to
the downstream task and metrics agnostic to the downstream task.

2 Background and related work
Representation learning of images of cells [He et al., 2021, Kraus et al., 2023] is accelerating our
ability to learn biological relationships from images. In parallel, learning visual representations of
objects and scenes from videos [Wang and Gupta, 2015, Denton, 2017, Sermanet et al., 2018, Qian
et al., 2021, Dave et al., 2021] has been an active area of computer vision. Among the self-supervised
learning approaches, contrastive learning [Hadsell et al., 2006] offers several advantages: it allows
the introduction of prior knowledge of the relationships between the data points as a contrastive loss
term [Chen et al., 2020, He et al., 2020], it can be used with deterministic or generative models [Aneja
et al., 2021], and it enables joint embedding of diverse channels and modalities [Radford et al., 2021].

In cell biology, self-supervised models of time-lapse microscopy data have enabled diverse anal-
yses, e.g., analysis of immune response [Wu et al., 2022, Shannon et al., 2024], profiling of cell
lineages [Soelistyo et al., 2022, Ulicna et al., 2023], phenotyping of plant cells [Marin Zapata et al.,
2021], and dense representations of cell dynamics [Gallusser et al., 2023]. In parallel, contrastive
self-supervised models of static snapshots have enabled analyses of cell and organelle states, e.g.,
diversity of mitochondrial shapes [Natekar et al., 2023] in response to perturbations, detection of cell
division [Zyss et al., 2024], and learning correlation between gene expression and morphology [Wang
et al., 2024, Şenbabaoğlu et al., 2024]. Understanding the mechanisms of most dynamic cell state
transitions requires time-resolved measurements [Shakarchy et al., 2024, Ulicna et al., 2023]. Dyna-
CLR learns temporally regularized embeddings from trajectories of single cell images, and allows
embedding of both snapshots or trajectories.

3 Method
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Figure 1: Summary of DynaCLR: (a) DynaCLR maps 3D multi-channel images of cells subjected
to diverse perturbations to temporally regularized embeddings, (b) Single-cell tracks are used to
train DynaCLR models. Illustrative patches of unperturbed and perturbed cells imaged with multiple
channels are shown: phase (grayscale), viral sensor (magenta), and endoplasmic reticulum marker
SEC61 (green). (c) Contrastive loss with two different sampling strategies, classical, and time-aware,
is used to map multi-channel volumes to embedding vectors. (d) The learned embeddings enable
robust classification of multiple cell states with efficient annotations (e.g., infection and cell division).

3.1 Time and cell-aware contrastive sampling
DynaCLR method is illustrated in Figure 1a-c, along with single-cell tracking and downstream
analyses. We embed 3D multi-channel patches of single cells xi(t) ∈ RC·Z·Y ·X , where C denotes
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Figure 2: DynaCLR embeddings generalize across cell types and microscopes: (a) PHATE maps
with classical vs the time-aware sampling. Infected (red) and uninfected (blue) tracks illustrate
smoother embedding trajectories via time-aware sampling. (b) Embeddings generalize to a different
microscope (1) and higher temporal sampling resolution (2) with clear separation of the infection
states. (c) Infection progression over time shows a steady increase in the percentage of infected cells.
(d) Correlation of morphological features with embedding principal components (PCs). Representa-
tive image patches highlight morphological differences associated with infection states.

channels and Z, Y, X are spatial dimensions. The cells are subjected to different perturbations,
including the intrinsic perturbations of cell cycle (Figure 1b). DynaCLR method can be used with
diverse channels, including fluorescence channels that report molecular architecture and label-free
channels 3 that report physical architecture. The cells xi are tracked across time t1, t2, . . . , tn as
they transition through different states, e.g., division, infection, death, and innate immune response.
DynaCLR models are trained with a set {xi(t)} of tracks using different contrastive sampling
strategies, where i is the track ID and not a batch index. DynaCLR models (f ) map the tracks in
image space to temporally regularized embeddings zi(t) = f [xi(t)]. We trained DynaCLR models
using either explicit negative sampling and triplet loss [Weinberger et al., 2005] or implicit negative
sampling and NT-Xent loss [Chen et al., 2020].

We evaluate two sampling strategies ( Figure 1c, Appendix A):

• Classical sampling follows the classical contrastive sampling of natural images without
time or cell identity, treating each frame independently by forming the positive pairs from
augmented views of the same image.

• Time aware sampling uses tracked images of the same cell at t and t + τ as positive
pairs and images of other cells as negatives. This pretext task minimizes distances between
temporally adjacent embeddings and maximizes distances between embeddings of unrelated
cells, thereby regularizing trajectories in embedding space.

DynaCLR embeddings can enable multiple downstream analyses of cell states. Here, we evaluate
using task-specific metrics for infection and division classification and task-agnostic metrics of
temporal smoothness and dynamic range, which quantify the continuity and variability of trajectories
in embedding space [Wu et al., 2022].

The model architecture, training, and data augmentations are described in the Appendix A and Table 1.
The mathematical formulations of the sampling strategies and temporal regularization metrics (e.g,
smoothness and dynamic range) are defined in Section A.2 and Section A.4. The details of the
acquisition, preprocessing, and annotations are summarized in Appendix B, and the models are
summarized in Table 2 and Table 3.

3Note that label-free in the context of biological microscopy implies the absence of fluorescent labeling of
cells and not necessarily the absence of human annotations of cell states.
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4 Experiments
4.1 Temporal regularization via time-aware contrastive sampling
We evaluated the effect of time-aware sampling on embedding smoothness and structure using
the Dengue-infected cell dataset containing mock (MOI = 0) and infected (MOI = 5) conditions
( Figure 2, Video 1). Models trained with time-aware sampling produced smoother trajectories and
higher dynamic range than classical sampling (Table 4), as evident from PHATE projections of test
cells (Figure 2a, Figure S2).
The same embeddings also enabled robust detection of cell division in uninfected and infected
cells, showing smooth transitions from interphase to mitosis, whereas models without temporal
regularization produced noisier embedding trajectories (Figure S2c and f).

4.2 Generalization and robust cell state classification
The embeddings were classified with a linear classifier trained only on a few annotations for infection
state and cell division (Figure 2). Figure 2b shows the PHATE visualization of the embeddings of
the test datasets from a different microscope and time resolution, with an overlay of the predicted
class. The predicted infection percentages matched expert annotations for mock and MOI 5 condi-
tions, rising and plateauing near 12 hours post-infection (HPI) (Section B.2). A similar trend was
observed in the independent test data, where infections plateaued at 15 HPI (Figure 2c). Thus, the
infection classification model trained with DynaCLR method demonstrated robust generalization
across microscopes and multiple experiments.
We compared DynaCLR to ImageNet- and OpenPhenom-pretrained models, which are limited to a
single channel (viral sensor or phase images). While these pretrained models achieve similar F1 scores
(Figure S3) for infection state classification using the sensor channel where the phenotype is easy to
see, they don’t separate the cell states encoded in dense phase channel and produce embeddings that
are temporally irregular.
To check that DynaCLR model trained on infected cells indeed learned biologically relevant pheno-
types, we computed rank correlation between principal components (PCs) of the learned embeddings
and select engineered features(Figure 2d). PC1 reflected radial redistribution of fluorescence reporter
and increased phase roughness, while PC2 captured morphological changes (phase IQR, perimeter-
to-area ratio, negative fluorescence IQR correlation), respectively (Figure 2d). In addition, visual
inspection of cell patches along PC axes explain the variations in cell and organelle morphology in
the embedding space (Figure 2d). Detailed correlations between principal components and image
features are provided in ( Figure S4). These correlations demonstrate that the model is sensitive to
changes in image features relevant to biology, i.e., changes in the localization of viral sensor and
roughness of cell density.
Temporally regularized DynaCLR embeddings also remained robust to tracking errors (Figure S5)
and could improve downstream tracking across complex morphological changes. DynaCLR further
generalized to diverse dynamic processes beyond infection: models trained on cell division (ALFI
dataset) and microglial morphodynamics (Figure S1a–b) separated distinct morphological states
across cell types and perturbations. Compared to prior temporally regularized VQ-VAE model [Wu
et al., 2022], DynaCLR achieved clearer separation of heterogeneous dynamics (Figure S1).
Additional results on cell-cycle and migration dynamics are provided in the Supplement Figure S1

5 Limitations
The key limitations of DynaCLR method relative to the published self-supervised representation
learning methods of time-lapse data are: 1) DynaCLR requires high enough time sampling so that the
cells can be tracked over two neighboring frames, and 2) it does not include a decoder to reconstruct
images from embeddings, which may limit the ability to interpret the learned embedding space.

6 Discussion and future work
DynaCLR learns biologically meaningful embeddings of dynamic cell morphology, enabling robust
cell-state classification across modalities and cell types. Future work will extend these embeddings
to downstream tasks such as robust tracking, event synchronization, and integration with -omics
measurements (to be detailed in a forthcoming preprint).
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Appendix
A Model architecture, training, and metrics
A.1 Model architecture and training
The model architecture has three main components: a spatial projection stem, an encoder backbone,
and a multi-layer perceptron (MLP) head. The stem begins with a convolution layer with a kernel size
of (5, 4, 4) for 3D datasets and (1, 4, 4) for 2D datasets and a stride of (5, 4, 4) for 3D datasets and
(1, 4, 4) for 2D datasets, followed by a reshaping operation. This reshaping maps the down-sampled
axial dimension to channels, efficiently projecting the anisotropic 3D input into a 2D feature map
for encoding. The encoder backbone is adapted from the ConvNeXt Tiny architecture [Liu et al.,
2022]. The stem and head modules from ConvNeXt are removed, and the backbone outputs a
768-dimensional embedding vector z. The 768-dimensional vector z ∈ R768 is projected onto a
lower 32-dimensional vector p ∈ R32 through a 2-layer MLP head, which helps speed up training
[Chen et al., 2020]. To estimate the computational cost, we profiled the full DynaCLR encoder using
the ptflops package [Sovrasov, 2024]. For input patches of size 2×15×256×256, the forward pass
requires approximately 754 GFLOPs. Each training step, including the the gradient computations, is
estimated at 2.26 TFLOPs. The total training cost per model is approximately 0.5–1 PFLOPs for
100K iterations.

A.2 Sampling and augmentation of patches of single cells
A.2.1 Classical sampling
In the classical contrastive setting, temporal or cell identity information is not used. The anchor
A1[xi] and positive pair A2[xi] are created through random augmentations A of the same cell at a
given time point, while negatives are augmented views of random cells A3[xj ] sampled from any
other time point.

A.2.2 Cell- and time-aware sampling
This strategy uses tracking to define positives from the same cell at consecutive time points. Specifi-
cally, images of the same tracked cell at t and t+ τ form positive pairs {(A1[xi(t)],A2[xi(t+ τ)])},
while an image of a different cell A3[xj(t+ τ)] at time t+ τ serves as a negative.
The pretext task minimizes the embedding distance between temporally adjacent views of the same
cell and maximizes the distance to embeddings of other cells. For explicit negative sampling, the
triplet loss is computed over the batch

Btriplet = {(A1[xi(t)],A2[xi(t+ τ)],A3[xj(t+ τ)]) | i ̸= j},
while the NT-Xent loss is computed over positive pairs

BNT-Xent = {(A1[xi(t)],A2[xi(t+ τ)])}.
The time offset τ is selected according to the temporal resolution of the dataset, typically adjacent
frames. The time offset τ is a hyperparameter empirically chosen based on the time scales of the
dynamic process and the time resolution of imaging. For this paper, the positive pair is sampled from
adjacent frames.

A.2.3 Data sampling
3D imaging volumes are cropped around the centroids of the tracking nodes to form single-cell
patches. We normalize the input image to reduce variability from experimental conditions. We
rescale the viral sensor channel so that the median intensity is 0, and the 99th percentile intensity
is 1. This normalization is more robust to extreme intensities in the fluorescence image, as well as
variation in background fluorescence levels. The quantitative phase channel is normalized so that
each field-of-view (FOV) has zero mean and unit standard deviation. The phase image is already
normalized during reconstruction [Guo et al., 2020], and this extra standardization step ensures proper
input numerical range for the model. We use a larger initial crop to ensure no padding is included
in the final input patch after spatial augmentations. We apply extensive augmentations (Table 1)
at training time to simulate variations induced by the imaging system and other non-biological
conditions. The input patch size after augmentations is optimized for reducing the influence from
background and neighboring cells while focusing on the peri-nuclear region of the cell, where the
majority of infection-related changes, such as viral sensor re-localization and ER remodeling, are
captured.
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The models summarized in Table 2 were trained with a mini-batch size of 256, using the AdamW
optimizer [Loshchilov and Hutter, 2019], and a learning rate of 2× 10−5. We used the HPC cluster
on-premises using 2-4 GPUs with the distributed data parallel (DDP) strategy. A temperature of 0.3
was optimized for ALFI models to prevent overfitting with NT-Xent loss, as it is a small dataset.
Other models with NT-Xent loss were trained with a temperature of 0.5. The margin of 0.5 was used
in computational experiments that used the triplet loss. The time for model training depends on the
size of the dataset, varying from an hour for the cell cycle model with the ALFI dataset to around 48
hours for the infection and organelle remodeling models.

Table 1: Augmentations applied to image patches. Parameters are supplied to respective MONAI
[Cardoso et al., 2022] transforms, where α denotes scaling factor, θ denotes rotation (radians),
s denotes shearing, γ denotes gamma value, σ denotes the standard deviation of the Gaussian
distribution, and p denotes the probability of applying the random transform.

Augmentation Type Parameters
Random spatial scaling αx, αy ∈ [−0.3, 0.3], p = 0.8
Random rotation θz ∈ [0, π], p = 0.8
Random shearing sx, sy ∈ [0, 0.01], p = 1.0
Random contrast adjustment γ ∈ [0.8, 1.2], p = 0.5
Random intensity scaling α ∈ [−0.5, 0.5],

pPhase = 0.5, pSensor = 0.7
Gaussian smoothing σx, σy ∈ [0.25, 0.75], p = 1.0
Gaussian noise addition σPhase ∈ [0, 0.2],

σSensor ∈ [0, 0.5], p = 0.5

A.3 Model library
The paper reports multiple models (DynaCLR-*) trained with three datasets summarized in Ap-
pendix B, depending on the biological prediction task. We have organized the models based on the
training and test data (Table 2). The DynaCLR-DENV-* models were trained using time-lapse data
acquired with 30 min interval between frames and using time-lapse datasets acquired with 10 min
interval. The patch sizes and z-ranges used for different models are listed in Table 3. We use the
ImageNet [HuggingFace, 2024] and OpenPhenom-S [Kraus et al., 2023] pretrained models as natural
vision baselines (Figure S3, Table 4).

Table 2: Summary of models: DynaCLR models organized by training and test data
Model name Training data Test data Results shown in
DynaCLR-ALFI U2OS (from ALFI) HeLa + RPE1 (from ALFI) Fig. S1a,
DynaCLR-microglia Microglia (IL-17, IF-β) Microglia (glioblastoma) Fig. S1b
DynaCLR-DENV-VS+Ph Phase+Viral Sensor Phase+Viral sensor Fig. 2

Table 3: Model input specifications: The table provides a summary of input specifications for
DynaCLR models. The input channels, patch size, and z-range for models are listed.

Model name Input channels Patch size (YX) Z range
DynaCLR-ALFI DIC 128×128 [0–1]
DynaCLR-microglia Phase 96×96 [0–1]
DynaCLR-DENV-VS+Ph Phase + sensor 160×160 [15–45]
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A.4 Metrics
To characterize the temporal continuity and variability of a tracked cell i in the embedding space,
we analyze its trajectory zi(t) ∈ Rd via cosine distance. We measure the distance between the
embeddings of two cells via cosine distance:

Dij(ta, tb) = 1− zi(ta) · zj(tb)
∥zi(ta)∥ · ∥zj(tb)∥

, for t = 1, . . . , T−1. (1)

We assess the effect of the contrastive sampling method and the loss functions on the temporally
regularized embedding space using the pairwise cosine distance between random and adjacent
timepoints t with the following metrics:

Smoothness: Smoothness quantifies how much short-term variation exists relative to overall
variation in the embedding space. We compute the ratio of the mean distance between adjacent
timepoints in each trajectory to the mean distance between randomly sampled timepoints from the
same trajectory:

Smoothness =
Dadj

Drand
=

meani, t [Di(t, t+1)]

meani, (ta,tb) [Di(ta, tb)]
(2)

where Di(ta, tb) is the cosine distance between embeddings at a randomly sampled pair of embed-
dings at timepoints ta and tb, and ta ̸= tb. A lower value indicates a temporally smooth embedding
space.

Dynamic Range (DR): The dynamic range quantifies how much variation is captured in the
embedding space over time. It is defined as the difference between the peaks of the embedding
distance distributions for randomly selected frame pairs and adjacent frame pairs, computed over all
tracks in the datasets. The peaks were identified using Gaussian KDE.

Table 4: Performance of DynaCLR-DENV-VS+Ph models: F1 score of linear classification of
pairwise distance of adjacent and random frames, dynamic range, and smoothness for infection state
classification for different losses, and sampling strategies. For OpenPhenom and ImageNet, only the
viral sensor channel was used as input.

Experiments F1 score ↑ Smoothness ↓ DR ↑

Time Aware + NT-Xent 98.40 0.15 1.33
Time Aware + triplet 96.56 0.16 1.07
Cell aware + triplet 98.24 0.24 1.07
Classical + NT-Xent 98.41 0.32 1.23
Classical + triplet 98.07 0.23 1.03
ImageNet pretrained 97.82 0.47 0.74
OpenPhenome-S/16 95.2 0.32 1.18
Supervised semantic
segmentation model

83 - -

B Datasets
B.1 Data and annotations
We explore the performance and applications of DynaCLR with three distinct time-lapse datasets:
(1) a 5D dataset representing both infection and cell cycle dynamics, (2) a previously published 2D
dataset capturing cell cycle dynamics [Antonelli et al., 2023], (3) a previously published 2D dataset
of perturbed microglia [Wu et al., 2022].

B.2 Infected cells: 3D label-free and fluorescence movies of Dengue-infected A549 cells
We used 5D time-lapse datasets of A549 cells infected with live Dengue virus to evaluate DynaCLR’s
ability to disambiguate dynamic morphological states. The data were acquired using spinning disk
confocal and light-sheet microscopes at two temporal resolutions (10 min and 30 min), under both
mock (no virus, MOI 0) and infected (MOI 5) conditions. Each movie included a quantitative phase
channel and a fluorescence channel encoding infection via a genetically engineered mCherry-NLS
sensor [Pahmeier et al., 2021]. A549 cells with an ER marker, SEC61, infected with Dengue virus,
were used to develop the methods for analyzing the organelle remodeling due to the infection.
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Cells were segmented using virtual staining [Liu et al., 2025] and tracked with Ultrack [Bragantini
et al., 2025].

B.2.1 Image acquisition and processing
We acquired 5D image datasets (time series of 3D volumes with phase and fluorescence channels) of
A549 cells infected with Dengue virus at an MOI of 0 and 5, using:

• A spinning disk confocal microscope with 30 min temporal resolution and 0.25 um z-
resolution and

• A light-sheet microscope with 10-minute and 30-minute temporal resolutions and 0.7 um
z-resolution.

Mock wells served as controls. Imaging was performed for up to 24 hours in multi-well plates. Image
acquisition was automated using Micro-Manager [Edelstein et al., 2010], and the resulting OME-
TIFF files were converted to OME-Zarr using iohub for scalable I/O and downstream processing.

Phase images were reconstructed from brightfield z-stacks using Köhler illumination [Guo et al.,
2020], and normalized per field-of-view to zero mean and unit variance. Fluorescence images were
normalized per field-of-view centered around the median and scaled to range between the 50th and
99th percentile, effectively centering the background at zero while preserving signal dynamic range.

Virtual staining of cell nuclei was performed using a deep learning model [Liu et al., 2025], followed
by segmentation and tracking via Ultrack [Bragantini et al., 2025]. 3D image patches of single cells
were cropped based on track centroids. We applied extensive augmentations at training time (Table 3)
to simulate imaging variability and improve generalization.

Together, these steps encoded the intrinsic perturbations of the cell cycle, the extrinsic perturbations
of the infection cycle, and the response of organelles in a dataset of movies suitable for DynaCLR
model training.

B.2.2 Annotations of infection and cell division
The cell division and infection states were identified by point annotations placed on the nuclei of
cells. The points were matched to embeddings by assigning the points to centroids of closest nuclei.
We validated the annotations and predictions by overlaying them on the projected embeddings. We
also tested the model on independent test data to assess its generalization to new data.

Cell division is captured from cell tracking by Ultrack [Bragantini et al., 2025] and revised manually.
The cell division is indicated by a parent track splitting into two daughter tracks with the same
parent track IDs. The last time-point of the parent track is considered the division event. The human
annotator proofread and corrected the cell division events through visual inspection of the tracks in
Ultrack GUI.

B.3 ALFI: 2D label-free movies with cell cycle annotations
We used label-free Differential Interference Contrast (DIC) microscopy movies of three cell types
(HeLa, RPE1, and U2OS) from the ALFI dataset by Antonelli et al. [2023]. In this dataset, bounding
boxes of a subset of cells were tracked and annotated by human experts, with each time point labeled
according to the corresponding cell cycle stage (mitosis or interphase). We evaluate the ability of
DynaCLR models to discriminate between mitosis and interphase cell cycle stages, which generalizes
to unseen cell types. The models were trained with perturbed and unperturbed U2OS cells and tested
on unperturbed HeLa and RPE1 cells. All movies were acquired in 2D with a time resolution of 7
min.

B.4 Microglia: 2D label-free movies of pharmacologically perturbed human microglia
This dataset consists of label-free movies of human microglia cells subjected to pharmacological
modulators of immune activity (IL-17, IF-β, extract of brain tumor glioblastoma) acquired with
quantitative phase imaging (QPI) that was used to develop Dynamorph models [Wu et al., 2022]. Dy-
namorph method used temporally-regularized VQ-VAE and provided a useful baseline to evaluate the
generalization, smoothness, and dynamic range of DynaCLR embeddings. For training, we selected
movies of cells treated with IL-17, IF-β, and untreated control conditions, while the glioblastoma
supernatant-treated condition was held out for testing.

Each condition contains nine non-overlapping fields of view (FOV), each containing approximately
250 cells. The raw data were acquired with 1 µm z-steps every 9 minutes using a Leica DMI-8
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microscope with a 20× objective using QLIPP method [Guo et al., 2020]. Although the dataset
contained bright-field, quantitative phase, and retardance channels, we only used the quantitative
phase channel to perform virtual staining of nuclei with CytoLand [Liu et al., 2025] and joint
segmentation and tracking with Ultrack [Bragantini et al., 2025], and subsequent model evaluation.

C Supplementary Figures

C.1 Embedding cell division and cell migration dynamics
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Figure S1 Temporally regularized embeddings of cell division and cell migration: (a) Training
(U2OS cells) and test (HeLa + RPE1 cells) sets jointly embedded in a PHATE map to show the
clustering of cells based on cell cycle state and cell size. (b) PHATE map of microglia morphotypes
from a brain tumor environment (glioblastoma). Color-coded tracks with sampled cell images
illustrate consistent embedding of similar morphologies.
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Figure S2 Detection of rare events, e.g., cell division:(a) The morphology of the cell changes over
time during the transition between interphase and mitosis. (b) Ultrack tracks the cell over time and
captures mitosis. White tracks indicate cell divisions. (c–f) The trajectory of one parent cell (black
track) dividing into two daughter cells (blue and red tracks) overlaid on the PHATE from models
using phase channel (single channel) and a combination of phase and viral sensor channels (both
channels), and with and without temporal regularization, illustrates that temporal regularization leads
to smooth trajectories and better clustering with just the phase channel.

12



Figure S3 DynaCLR classical and time-aware models perform comparably to pre-trained
at infection state classification a) PHATE embeddings reveals clear clustering of infected and
uninfected cells based on features from the ImageNet pre-trained model, OpenPhenom-S/16 pre-
trained model, DynaCLR Classical and Time-aware models using a linear classifier trained with
sparse annotations. b) Infection percentage over time shows an exponential increase, consistent with
expected infection dynamics. OpenPhenom and ImageNet models take only the viral sensor channel
as input.

Figure S4 Principal components vs computed features for the viral sensor and phase model:
Principal components correlate with interpretable image features such as radial intensity profile, area
of fluorescence, and phase texture statistics, suggesting that the model captures biologically relevant
variation.
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Figure S5 DynaCLR cell and time-aware embeddings are smooth even when tracking is erro-
neous: (a) snapshots of a cell and its tracking labels over time. Note that the false fusion in 14.5
and 17.5 HPI frames caused subsequent false division and identity jump of the cell. (b) PHATE
components 1 (solid line) and 2 (dashed line) over time for the falsely assigned tracks. The gaps
correspond to false fusion events which shifts the centroid of the track towards the edge of the FOV,
resulting in invalid patches. The PHATE components are smoothly transitioning over time, even
though they are assigned to different tracks.
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Figure S6 Learned representation of the phase and viral sensor channels help exploration of
organelle remodeling during infection. (a) PHATE of learned features computed for mock and
Dengue infected cells in the independent test dataset where the ER of cells is labeled with a fluorescent
protein (SEC61-GFP). Track 1 from the mock well and tracks 2-4 from the Dengue infected well are
highlighted. Cells other than the example tracks are marked in gray. (b) Snapshots from example
tracks in (a), showing max-intensity projection of ER (green) and the viral sensor (magenta). In some
of the infected cells (tracks 2 and 3), ER forms transient condensation.
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D Videos

Video 1: Infection dynamics in DynaCLR embedding space: Evolving dynamics of infection in
unseen test data with time from a different microscope, colored by model prediction. Images show
representative cells from mock and MOI 5 infected conditions.

Data and code availability
The model architecture, training, and prediction code for the DynaCLR method is available at https:
//github.com/mehta-lab/viscy. The napari plugin for visualization of data, tracking results,
embedding predictions, and performing human annotation is available at https://github.com/
czbiohub-sf/napari-iohub. VisCy is built on PyTorch Lightning, MONAI libraries, and OME-
Zarr data format. We used to convert image data into OME-Zarr format and to load data for training
and inference. We used the development version of https://github.com/royerlab/ultrack for single-cell
tracking. We used reconstruction algorithms of https://github.com/mehta-lab/waveorder to
compute 3D phase from 3D brightfield volumes.
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