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Abstract

In the rapidly evolving field of Natural Lan-001
guage Processing, Large Language Models002
(LLMs) are tasked with increasingly com-003
plex reasoning challenges. Traditional meth-004
ods like chain-of-thought prompting have005
shown promise but often fall short in fully006
leveraging a model’s reasoning capabilities.007
This paper introduces SQuARE (Sequential008
Question Answering Reasoning Engine), a009
novel prompting technique designed to im-010
prove reasoning through a self-interrogation011
paradigm. Building upon CoT frameworks,012
SQuARE prompts models to generate and re-013
solve multiple auxiliary questions before tack-014
ling the main query, promoting a more thor-015
ough exploration of various aspects of a topic.016
Our expansive evaluations, conducted with017
Llama 3 and GPT-4o models across multi-018
ple question-answering datasets, demonstrate019
that SQuARE significantly surpasses tradi-020
tional CoT prompts and existing rephrase-and-021
respond methods. By systematically decompos-022
ing queries, SQuARE advances LLM capabil-023
ities in reasoning tasks. The code is publicly024
available at ANONYMIZED.025

1 Introduction026

Large Language Models (LLMs) have rapidly trans-027

formed Natural Language Processing (NLP), ex-028

celling in tasks like text generation, machine trans-029

lation, and dialogue systems (Brown et al., 2020;030

Kojima et al., 2022). These models owe their flex-031

ibility to the Transformer architecture (Vaswani032

et al., 2017), and benefit from large-scale pretrain-033

ing followed by fine-tuning or instruction tuning to034

align with human objectives (Ouyang et al., 2022;035

Wei et al., 2022). A key technique for enhancing036

these models is chain-of-thought (CoT) prompting,037

which has gained notable attention for its ability to038

improve reasoning by encouraging models to work039

through problems step by step (Wei et al., 2023).040

Q: What nationality were social 
anthropologists Alfred Gell and 
Edmund Leach?

A: Based on the provided context, Alfred 
Gell and Edmund Leach were both 
British social anthropologists.

Q1: What were the main areas of study for Alfred 
Gell, a British social anthropologist?
A1: Alfred Gell's main areas of study included art, 
language, symbolism, and ritual.

Q2: What was the focus of Edmund Leach's work, 
and what positions did he hold?
A2: Edmund Leach's work focused on social 
anthropology, and he held the positions of provost 
of King's College, Cambridge, and president of the 
Royal Anthropological Institute.

Figure 1: The SQuARE methods prompts the model to
generate N question-answer pairs about the topic and
then respond to the original query, having established
additional context.

This approach has shown efficacy in complex tasks 041

like multi-step arithmetic and commonsense ques- 042

tion answering, by making intermediate processes 043

transparent and facilitating more accurate outcomes 044

(Snell et al., 2024). While some CoT variants ex- 045

plore iterative reasoning, there is still limited explo- 046

ration of self-interrogation paradigms that prompt 047

models to pose and resolve their own intermediate 048

queries. 049

In this paper, we introduce SQuARE (Sequen- 050

tial Question Answering Reasoning Engine), a 051

prompting technique that instructs an LLM to 052

generate and answer multiple sub-questions be- 053

fore addressing the main query. By decompos- 054

ing queries into iterative steps, SQuARE draws 055

on chain-of-thought frameworks and prior prompt- 056

ing methodologies (Deng et al., 2024) to pro- 057

duce more comprehensive solutions. In exten- 058

sive evaluations on multiple question-answering 059

datasets using Llama 3 (Grattafiori et al., 2024) 060

(3B and 8B) and GPT-4o (OpenAI et al., 2024), 061

SQuARE outperforms chain-of-thought prompts 062

and existing rephrase-and-respond strategies. This 063
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You are a helpful question answerer who can provide an answer given a question and relevant context.
Generate {N} questions based on the given question and context, and shortly answer them.
Finally, provide an answer to the original question using what you learned from answering the
questions you created. The answer should be a short span, just a few words.

Table 1: Main prompt for the SQuARE technique.

work highlights how systematically breaking down064

queries advances LLM reasoning capabilities.065

2 SQuARE066

In this section, we introduce the SQuARE tech-067

nique in more detail. Building upon the foundation068

laid by Deng et al. (2024), our method alters the069

system instructions to prompt the model to gener-070

ate a set of N question-and-answer pairs. Figure 1071

illustrates a simple example in which the model072

receives a query, generates two sub-questions and073

their corresponding answers, and then arrives at a074

correct final solution. The system prompt used by075

our method is presented in Table 1.076

The rationale behind SQuARE is to guide the077

model into an iterative cycle of inquiry and re-078

sponse, encouraging it to explore various facets079

of a topic before forming a conclusion. In contrast080

to standard chain-of-thought prompts, which of-081

ten present a single stream of reasoning, SQuARE082

nudges the model toward self-interrogation path-083

ways. This design also makes SQuARE relatively084

straightforward to integrate with other prompting085

techniques. In practice, N can be tuned to balance086

the thoroughness of exploration with computational087

cost and response length; our experiments in Sec-088

tion 3 show that even a small set of sub-questions089

can significantly improve the final answers’ cor-090

rectness.091

3 Experiments092

In this section, we detail the experimental setup093

and the evaluations conducted to assess the effec-094

tiveness of the SQuARE technique across various095

datasets and models. Our approach is compared096

to several existing methods to ascertain its relative097

performance.098

3.1 Datasets099

We evaluate our models on TriviaQA (Joshi et al.,100

2017), HotpotQA (Yang et al., 2018), and ASQA101

(Stelmakh et al., 2022) which are knowledge in-102

tensive question-answering datasets which benefit103

from external context. Context retrieval was done104

over a Wikipedia corpus (Zhang et al., 2023). We105

randomly sampled 200 examples from each dataset. 106

Results are reported using the following metrics: 107

for TriviaQA and HotpotQA sub-string exact match 108

(subEM) is reported (Asai et al., 2023; Yen et al., 109

2024). For ASQA, recall-EM is reported (Gao 110

et al., 2023). For more details, see Section A.1. 111

3.2 Models 112

Our experiments utilize two open-source Llama 113

models (Grattafiori et al., 2024): Llama-3.2 3B and 114

Llama-3.1 8B. Both models are instruction-tuned 115

to optimize their performance on complex tasks. 116

In addition, we employed the OpenAI GPT-4o sys- 117

tem1 (OpenAI et al., 2024) to provide a benchmark 118

for comparison. We use greedy decoding with local 119

models. For more details, see Section A.2. 120

3.3 Configurations 121

Our experimental setup is composed of the follow- 122

ing configuration settings: 123

• Baseline: Standard application without any aug- 124

mentative techniques. 125

• CoT: Methodology as outlined by Wei et al. 126

(2023) that leverages intermediate reasoning 127

steps leading to a final answer; instruction de- 128

scribed in Table 11. 129

• RaR: A rephrasing strategy that prompts for a 130

rephrasing of the original request before answer- 131

ing it, as proposed by Deng et al. (2024); instruc- 132

tion described in Table 13. 133

• SQuARE: This configuration employs our 134

prompt and is run with a default N=3 question- 135

answer pairs. 136

We augment the requests with a pair of query- 137

answer examples (few-shot) to facilitate under- 138

standing and improve prediction formatting and 139

accuracy. All prompts and few-shot examples are 140

presented in Section A.3 for reproducibility. 141

1Version 2024-05-13.
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Dataset Model Baseline RAG CoT RaR SQuARE

TriviaQA
Llama-3.2 3B 59.5 82.0 87.5 86.0 88.5
Llama-3.1 8B 76.5 89.5 90.5 89.5 92.5
GPT-4o 88.7 92.7 92.7 94.7 96.7

HotpotQA
Llama-3.2 3B 17.5 26.0 26.5 25.0 31.5
Llama-3.1 8B 23.0 26.5 31.0 28.5 33.5
GPT-4o 44.0 45.3 46.7 47.3 46.7

ASQA
Llama-3.2 3B 14.2 21.5 21.9 23.5 26.6
Llama-3.1 8B 14.6 23.1 24.8 25.5 28.8
GPT-4o 26.8 30.4 31.9 30.1 31.7

Table 2: The main results of our experimentation. Each row group corresponds to the results for the given dataset,
with each row showcasing the metric results for each model. The columns include all the main approaches, with
bold highlighting the best result across all approaches.

Notably, in configurations containing reasoning142

instructions, we employ a regular expression2 to143

extract the final answer. This extraction is crucial144

as it assists in mitigating incorrect answers when145

correct phrases appear throughout reasoning chains146

but not in the final answer. For an example of147

this phenomena, see Table 5.148

4 Results149

Table 2 presents the main results of our method150

compared against several baselines on three bench-151

mark QA datasets: TriviaQA, HotpotQA, and152

ASQA. Across the smaller Llama 3.2 3B and153

Llama 3.1 8B models, our approach consistently154

outperforms or matches the strongest baselines in155

each dataset. For example, with Llama 3.2 3B156

on TriviaQA, SQuARE improves performance by157

6.5% and 2.5% over RAG and RaR, respectively,158

achieving an overall score of 88.5%. On HotpotQA,159

Llama 3.2 3B also sees a notable boost, from 26.5%160

(CoT) to 31.5% with our method. These gains be-161

come even more pronounced with Llama 3.1 8B,162

where improvements of up to 3% (TriviaQA) and163

7% (HotpotQA) are observed compared to alterna-164

tive methods. We also observe notable gains on165

ASQA. For Llama-3.2 3B, SQuARE lifts perfor-166

mance from 21.5% (RAG) and 23.5% (RaR) to167

26.6%, nearly doubling the baseline of 14.2%.168

When using GPT-4o, SQuARE remains highly169

competitive. On TriviaQA, our method reaches170

96.7%, outperforming other settings by at least171

2.0%. On HotpotQA, RaR and SQuARE are close,172

with RaR exhibiting a slight edge (47.3% versus173

46.7%). For ASQA, CoT and SQuARE yield nearly174

identical performance (31.9% versus 31.7%), indi-175

cating that GPT-4o is already adept at leveraging176

2Regex pattern: .*answer(.*). It has a 99.2% capture
rate.

Dataset N SQuARE +Summarize +Vote

TriviaQA
3 92.5 87.5 81.0
5 94.0 85.5 78.0
10 94.0 88.0 89.0

HotpotQA
3 33.5 30.0 23.5
5 31.5 31.5 22.5
10 33.5 29.0 23.5

ASQA
3 28.8 20.9 23.9
5 27.9 22.1 23.5
10 27.8 23.1 22.7

Table 3: Comparison of two aggregation methods in ad-
dition to SQuARE, and the effect of varying the number
of sub-questions (N ). Results showcase the Llama-3.1
8B model with few-shot examples adapted for each ap-
proach, as detailed in Section A.3.

additional reasoning steps or retrieved facts in these 177

tasks. Nevertheless, SQuARE demonstrates robust 178

performance across all three datasets and is espe- 179

cially beneficial for smaller-scale models, where 180

sequential questioning can substantially bolster the 181

final answer quality. 182

4.1 Ablation Study 183

To highlight the contribution of each component in 184

SQuARE, we performed an ablation study analyz- 185

ing (1) the number of generated questions (N ), (2) 186

the role of few-shot examples, and (3) an optional 187

aggregation step. 188

Number of Generated Questions: We con- 189

ducted an evaluation using N ∈ {3, 5, 10}. As 190

shown in Table 3, for TriviaQA, increasing N from 191

3 to 5 or 10 boosts performance from 92.5% to 192

94.0%. On HotpotQA, N=5 (31.5%) dips slightly 193

below N =3, but returns to 33.5% at N =10. In 194

ASQA, performance drops from 28.8% at N =3 195

to 27.8% at N = 10, suggesting that while addi- 196

tional questions can add useful context, they can 197
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Figure 2: Ablation study illustrating how few-shot
examples influence performance metrics for the CoT,
RaR, and SQuARE approaches, using the Llama-3.1 8B
model.

also introduce redundancy or noise. For more com-198

parisons, see Table 4.199

Impact of Few-Shot Examples: We inspected200

how incorporating few-shot examples substantially201

boosts accuracy, as seen in Figure 2. We observe202

that both CoT and SQuARE benefit strongly from203

these examples, indicating that better exposure to204

task-relevant scenarios helps the model generate205

answers with correct and properly formed final an-206

swers. Interestingly, zero-shot experiments exhibit207

lower regex capture rate (85.0%, see Section 3.3)208

which could play a role in the diminished perfor-209

mance. For full results, see Table 4.210

Aggregation Methods: Finally, we explored two211

aggregation strategies, before producing the final212

answer: Summarize and Vote. The Summarize213

method involves the model summarizing the infor-214

mation learned from the generated questions and215

answers, whereas the Vote method relies on major-216

ity voting to determine the final answer. According217

to Table 3, Summarize generally outperforms Vote218

on TriviaQA and HotpotQA. However, using no219

aggregation step outperforms both in nearly all in-220

stances, suggesting that further post-processing can221

sometimes hurt the quality of the answer.222

5 Related Works223

Chain-of-Thought (CoT) prompting, introduced224

by Wu et al. (2023), and explored further by Wei225

et al. (2023), has been instrumental in enhancing226

language models, by encouraging them to articulate227

their reasoning processes explicitly. This approach228

has been shown to substantially improve model229

performance across a wide range of tasks, including230

question answering.231

Deng et al. (2024) propose a novel rephrasing232

prompt, which involves requesting the model to233

rephrase the initial question before providing an an-234

swer. This method has demonstrated performance 235

improvements on various datasets, highlighting its 236

efficacy in refining model responses. Our work 237

expands upon this approach, by utilizing multiple 238

query-answer pairs, that enable the model to bet- 239

ter examine the topic at hand, and provide a better 240

answer. 241

Wang et al. (2023) and Chen et al. (2023) lever- 242

age self-consistency techniques by generating mul- 243

tiple response samples (by using sample decod- 244

ing) and incorporating an aggregation step to in- 245

crease accuracy, thereby enhancing the reliability 246

of model conclusions. While our approach does 247

generate multiple variations of the possible answer, 248

they are dedicated for answering specific automat- 249

ically generated inquiries regarding the topic at 250

hand. 251

Snell et al. (2024) demonstrate that extra test- 252

time compute boosts LLM performance on difficult 253

prompts, with smaller models sometimes surpass- 254

ing larger ones. They propose a compute-optimal 255

method that adaptively explores multiple next steps, 256

maximizing inference efficiency. Building on this 257

idea, our approach focuses on question answering, 258

where diverse perspectives substantially improve 259

response quality. As previously mentioned, while 260

our approach benefits from generating multiple re- 261

sponses for a given query, we focus on specific 262

query-answer pair generation. 263

6 Conclusions and Summary 264

This study introduced a multi-question chain-of- 265

thought prompt strategy that significantly enhances 266

the reasoning capabilities of large language mod- 267

els. By generating and answering a series of sub- 268

questions before addressing the primary query, our 269

method improves response accuracy over tradi- 270

tional baselines and established techniques such as 271

canonical chain-of-thought and RaR (Deng et al., 272

2024). Experiments with Llama 3 models and GPT- 273

4o on several Q&A datasets show that our approach 274

outperforms existing methods, highlighting its ef- 275

fectiveness. 276

These results show how carefully designed 277

prompts can improve multi-step reasoning in large 278

language models. They also point to the value of ex- 279

ploring adaptive prompt techniques across different 280

NLP tasks. As these models evolve, multi-question 281

prompting may further sharpen automated reason- 282

ing and foster more dependable AI interactions. 283
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Limitations and Future Plans284

While our multi-question chain of thought prompt285

strategy has demonstrated notable improvements286

in reasoning capabilities and response accuracy of287

large language models, several limitations should288

be acknowledged. Firstly, the method requires fine-289

tuning of the number of intermediate questions290

(3, 5, 10 or other), and this may not be optimal291

or applicable across varying query complexities292

or domains. Choosing the appropriate number of293

questions is important, as an incorrect configura-294

tion might lead to redundancy or insufficient explo-295

ration of the query context.296

Secondly, our approach was evaluated only on297

specific Q&A datasets, which may not encom-298

pass the full spectrum of topics and question types.299

Therefore, the generalizability of this technique300

to other domains, such as dialogue systems or301

more complex multi-turn interactions, remains to302

be tested. Additionally, while our experiments uti-303

lized the Llama 3 models and GPT-4o, the effec-304

tiveness of this strategy across other architectures305

or smaller-scale models could differ.306

Another limitation is the potential increase in307

computational resources required to generate and308

answer multiple intermediate questions, which309

could impact the efficiency and scalability of de-310

ploying these models in real-time applications.311

Future research should focus on addressing these312

limitations by exploring adaptive mechanisms for313

intermediate question generation, extending valida-314

tion across more diverse datasets and models, and315

optimizing computational requirements to ensure316

broader applicability and effectiveness.317

Ethics Statement318

Throughout our research, we carefully considered319

the ethical aspects of developing advanced lan-320

guage models. Our technique aims to enhance321

reasoning and accuracy, but we recognize the need322

to address potential ethical issues.323

One concern is that improved reasoning could324

result in producing more persuasive but misleading325

or harmful content. To counteract this, it is essen-326

tial to implement safeguards ensuring responses327

are accurate, unbiased, and factual. Future efforts328

should continue to monitor outputs for bias and329

misinformation, incorporating methods to mitigate330

these risks.331

Additionally, the increased computational de-332

mand for generating intermediate questions raises333

environmental concerns about energy consumption. 334

We advocate for continued research into optimiz- 335

ing the efficiency of these processes to minimize 336

ecological impact. 337

We prioritized privacy and security by using only 338

publicly available data in our experiments, free 339

of private information. Adhering to transparency 340

and reproducibility principles, we documented our 341

methodologies, to facilitate replication of our find- 342

ings by others. 343
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A Implementation Details748

A.1 Datasets749

Datasets used:750

• TriviaQA: https://huggingface.co/datasets/751

Tevatron/wikipedia-trivia752

• HotpotQA: https://huggingface.co/datasets/753

facebook/kilt_tasks/viewer/hotpotqa754

• ASQA: https://huggingface.co/datasets/755

din0s/asqa756

Random sample of size 200 was used with each757

dataset. External context is comprised of top k = 5758

passages. TriviaQA dataset contains external con-759

text. For HotpotQA and ASQA, retrieval was done760

over a Wikipedia corpus based on a December 2021761

dump, using the BAAI/llm-embedder dense embed-762

der (Zhang et al., 2023).763

A.2 Models764

Models used:765

• Llama-3.2 3B: meta-llama/Llama-3.2-3B-766

Instruct, released under the Llama 3.2 Com-767

munity License Agreement.768

• Llama-3.1 8B: meta-llama/Llama-3.1-8B-769

Instruct, released under the Llama 3.1 Com-770

munity License Agreement.771

• OpenAI GPT-4o: API access using Azure Ope-772

nAI, version 2024-05-13.773

A.3 Prompts and Examples774

• SQuARE system prompt: 1.775

• SQuARE few-shot examples: 6.776

• Summarize system prompt: 7777

• Summarize few-shot examples: 8.778

• Vote system prompt: 9.779

• Vote few-shot examples: 10.780

• CoT system prompt: 11.781

• CoT few-shot examples: 12.782

• RaR system prompt: 13.783

• RaR few-shot examples: 14.784
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Dataset Model Baseline RAG CoT RaR SQuARE-3 SQuARE-5 SQuARE-10

TriviaQA
Llama-3.2 3B 59.5 82.0 57.0 / 87.5 67.5 / 86.0 89.5 / 88.5 89.5 / 89.0 86.0 / 86.5
Llama-3.1 8B 76.5 89.5 53.5 / 90.5 84.0 / 89.5 72.5 / 92.5 89.0 / 94.0 76.5 / 94.0
GPT-4o 88.7 92.7 01.3 / 92.7 87.3 / 94.7 84.7 / 96.7 84.0 / 96.7 86.0 / 95.3

HotpotQA
Llama-3.2 3B 17.5 26.0 23.0 / 26.5 25.0 / 25.0 31.0 / 31.5 28.0 / 29.5 30.5 / 28.0
Llama-3.1 8B 23.0 26.5 21.0 / 31.0 26.0 / 28.5 30.5 / 33.5 33.5 / 31.5 29.5 / 33.5
GPT-4o 44.0 45.3 06.7 / 46.7 40.0 / 47.3 45.3 / 46.7 44.7 / 47.3 40.0 / 46.0

ASQA
Llama-3.2 3B 14.2 21.5 24.4 / 21.9 18.3 / 23.5 24.2 / 26.6 24.8 / 27.9 25.6 / 27.4
Llama-3.1 8B 14.6 23.1 21.2 / 24.8 25.1 / 25.5 23.8 / 28.8 29.1 / 27.9 30.0 / 27.8
GPT-4o 26.8 30.4 02.1 / 31.9 20.7 / 30.1 24.8 / 31.7 30.2 / 29.4 29.6 / 31.1

Table 4: Summary of results; comparing seven configurations on three datasets, using three models. When applicable,
zero-shot/few-shot results are shown.

Question: In what month is the annual documentary film festival, that is presented by the
fortnightly published British journal of literary essays, held?

The annual documentary film festival, presented by the fortnightly published British journal, is
the Open City Documentary Festival.

Let’s break down the context:

The journal is described as a fortnightly published British journal of literary essays.
The London Review of Books is mentioned as a publication associated with the London International
Documentary Festival, but it is a monthly publication, not fortnightly.
The Open City Documentary Festival is not mentioned in the context as being associated with a
specific journal, but it is a documentary film festival that takes place in London.
However, the Open City Documentary Festival is not the only festival that matches the description.
The London Review of Bookseller is a monthly publication, but the journal described in the question
is fortnightly. The London Review of Books is not the journal described in the question.
The Open City Documentary Festival is not the only festival that matches the description, but it is
the only festival that is associated with a journal that is published twice a year, which could be
interpreted as fortnightly.
However, the London Independent Film Festival is not the correct answer because it is held in April,
and the journal is not mentioned in the context.
The London International Documentary Festival is held in March and April, but the journal is not
mentioned in the context.
The Open City Documentary Festival is the only festival that matches the description of being
associated with a journal that is published twice a year, which could be interpreted as fortnightly.

Answer: Open City.

Table 5: Generated answer (verbatim) for a question from the HotpotQA dataset, produced by Llama-3.1 8B model,
using the CoT technique with two few-shot examples. Correct answer is March and April, which is found in the
reasoning chain, probably due to this fact appearing in the relevant external context provided to the model (not
shown here). The final model’s answer is wrong, necessitating the need to correctly extract answers for better
analysis and research.
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Question: What is the shared profession of Jack Kerouac and Dan Masterson?

Generated Questions and Answers:
1. Question: What literary movement was Jack Kerouac a pioneer of?
Answer: Jack Kerouac was a pioneer of the Beat Generation.

2. Question: What is Dan Masterson primarily known for?
Answer: Dan Masterson is primarily known for being a poet.

3. Question: When was the Jack Kerouac School of Disembodied Poetics founded and by whom?
Answer: The Jack Kerouac School of Disembodied Poetics was founded in 1974 by Allen Ginsberg and
Anne Waldman.

Answer: The shared profession of Jack Kerouac and Dan Masterson is that they were both poets.

Question: Which band top the UK charts with their singles "Chelsea Dagger" and "Whistle for the
Choir": The Fratellis or The Madden Brothers?

Questions and Answers Based on the Given Context:

1. Question: When was "Whistle for the Choir" released, and how did it perform on the UK Singles
Chart?
Answer: "Whistle for the Choir" was released on 27 November 2006 and reached number nine on the UK
Singles Chart.

2. Question: What inspired the name of the song "Chelsea Dagger" by The Fratellis?
Answer: The song "Chelsea Dagger" was named after Jon Fratelli’s wife Heather, who performed as a
burlesque dancer under the stage name Chelsea Dagger.

3. Question: What is the relationship between the members of The Fratellis, and what are their
stage names?
Answer: The members of The Fratellis are not related by blood. They perform under pseudonyms: Jon
Fratelli (lead vocalist and guitarist), Barry Fratelli (bassist), and Mince Fratelli (drummer).

Answer: The Fratellis are the band that topped the UK charts with their singles "Chelsea Dagger" and
"Whistle for the Choir."

Table 6: The two examples used in our few-shot configurations. Here, the SQuARE prompt is used, with N = 3.
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You are a helpful question answerer who can provide an answer given a question and relevant context.
Generate {N} questions based on the given question and context, and shortly answer them.
Shortly summarize what you have learned from the answers.
Finally, provide an answer to the original question using they summary you created.
The answer should be a short span, just a few words.

Table 7: Prompt used for the SQuARE supplement aggregation method, using answer summarization; see Sec-
tion 4.1.

Question: What is the shared profession of Jack Kerouac and Dan Masterson?

1. What notable literary movement was Jack Kerouac a pioneer of?
- The Beat Generation.

2. What type of school is the Jack Kerouac School of Disembodied Poetics?
- A creative writing and literature school.

3. What is the connection between Jack Kerouac’s novel "On the Road" and his personal life?
- The novel is based on his travels and features characters representing key figures of the Beat
movement, including himself.

Summary:
From the provided context, we learned that Jack Kerouac was an American novelist and poet,
recognized as a pioneer of the Beat Generation, and known for his spontaneous prose. Dan Masterson
was also an American poet, known for his work and his background. Both individuals are noted
primarily for their contributions to poetry.

Answer: Poet.

Question: Which band top the UK charts with their singles "Chelsea Dagger" and "Whistle for the
Choir": The Fratellis or The Madden Brothers?

1. Question: What are the names of the members of The Fratellis?
Answer: Jon Fratelli, Barry Fratelli, and Mince Fratelli.

2. Question: What is the highest chart position "Whistle for the Choir" reached in Scotland?
Answer: Number two.

3. Question: When was "Chelsea Dagger" released as a single?
Answer: 28 August 2006.

Summary: The Fratellis are a Scottish rock band consisting of Jon, Barry, and Mince Fratelli. Their
singles "Chelsea Dagger" and "Whistle for the Choir" were top ten hits in the UK charts, with
"Whistle for the Choir" reaching number nine on the UK Singles Chart and number two in Scotland.

Answer: The Fratellis.

Table 8: Two-shot examples used in an ablation study where SQuARE is supplemented by an instruction to
summarize the model’s learning before providing the final answer, see Section 4.1.
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You are a helpful question answerer who can provide an answer given a question and relevant context.
Generate {N} questions based on the given question and context, and shortly answer them.
Finally, provide an answer to the original question by choosing amongst the answers you created the
most common answer. The answer can’t be any other option.
The answer should be a short span, just a few words.

Table 9: Prompt used for the SQuARE supplement aggregation method, using majority voting; see Section 4.1.

Question: What is the shared profession of Jack Kerouac and Dan Masterson?

1. What was Jack Kerouac’s profession?
- Novelist and poet

2. What was Dan Masterson’s profession?
- Poet

3. What genre is Jack Kerouac associated with?
- Beat Generation literature

Answer: Poet

Question: Which band top the UK charts with their singles "Chelsea Dagger" and "Whistle for the
Choir": The Fratellis or The Madden Brothers?

1. Which band is known for the singles "Chelsea Dagger" and "Whistle for the Choir"?
- The Fratellis

2. Which band had a top ten hit in the UK with "Chelsea Dagger"?
- The Fratellis

3. What was the highest chart position for "Whistle for the Choir" in the UK Singles Chart?
- Number nine

Answer: The Fratellis

Table 10: Two-shot examples used in an ablation study where SQuARE is supplemented by an instruction to pick
the final answer as a majority vote amongst the sub-questions’ answers, see Section 4.1.
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You are a helpful question answerer who can provide an answer given a question and relevant context.
Let’s think through this step by step. Solve each step and explain how you arrived at your answer.
Final answer should be a short span, just a few words.

Table 11: Prompt used for the CoT (Wei et al., 2023) experiments.

Question: What is the shared profession of Jack Kerouac and Dan Masterson?

Jack Kerouac and Dan Masterson are both writers. Jack Kerouac is best known as a novelist and a
poet, a central figure of the Beat Generation. Dan Masterson is known as a poet. Therefore, their
shared profession is writing, specifically in the realm of literature.

Answer: they are poets.

Question: Which band top the UK charts with their singles "Chelsea Dagger" and "Whistle for the
Choir": The Fratellis or The Madden Brothers?

The band that topped the UK charts with their singles "Chelsea Dagger" and "Whistle for the Choir"
is The Fratellis.

To determine this, we can look at the history and discography of each band:
The Fratellis:
"Chelsea Dagger" is a well-known single by The Fratellis, released in 2006 from their debut album
"Costello Music."
"Whistle for the Choir" is another single from the same album, also released in 2006.
The Madden Brothers:
This is a different musical duo consisting of Joel and Benji Madden from the band Good Charlotte.
They do not have singles named "Chelsea Dagger" or "Whistle for the Choir."

Given this information, it is clear that The Fratellis are the band associated with these singles.

Answer: The Fratellis.

Table 12: The two-shot examples used for the CoT (Wei et al., 2023) configurations.

You are a helpful question answerer who can provide an answer given a question and relevant context.
Reframe the question with additional context and detail, then provide an answer.
Final answer should be a short span, just a few words.

Table 13: Prompt used for the RaR (Deng et al., 2024) experiments.

Question: What is the shared profession of Jack Kerouac and Dan Masterson?

What is the common profession that both Jack Kerouac, known for his influential work in the Beat
Generation, and Dan Masterson, noted for his contributions to literature, share?

Answer: Writers

Question: Which band top the UK charts with their singles "Chelsea Dagger" and "Whistle for the
Choir": The Fratellis or The Madden Brothers?

Which band achieved the number one position on the UK charts with their hit singles "Chelsea Dagger"
and "Whistle for the Choir": was it The Fratellis or The Madden Brothers?

Answer: The Fratellis

Table 14: The two-shot examples used for the RaR (Deng et al., 2024) configurations.
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