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Abstract

Dogs exhibit diverse behaviors that function as important signals in human—dog
communication. Automatic analysis of such behaviors is increasingly needed in
both scientific and applied contexts. However, conventional methods for behav-
ior analysis face two major challenges: (i) 3D pose estimation typically requires
multi-camera setups or prior training with complex calibration, and (ii) behavior
classification relies heavily on predefined labels, limiting the ability to detect previ-
ously unseen behaviors. To address these limitations, we combine D-Pose, a model
that estimates 3D dog poses from a single camera by learning pose representations,
with h/BehaveMAE, a self-supervised framework that learns hierarchical behavior
representations from pose sequences without predefined labels. Using a dataset of
annotated dog behaviors, we perform preliminary evaluation by applying linear
probing on the learned embeddings. Our results suggest that this approach provides
a flexible and generalizable pipeline for behavior analysis, enabling promising
representation learning from videos. While this study focuses on dog behavior, the
proposed framework may serve as a step toward uncovering the mechanisms of
animal communication in the future.

1 Introduction

Dogs and humans have coexisted for thousands of years, forming a unique interspecies relationship.
Dog-human interactions have been shown to promote human welfare and health, for example,
by reducing stress [1]] or lowering the risk of cardiovascular disease [2l]. At the same time, dogs
themselves have developed social cognitive abilities to respond to human communicative cues such as
pointing gestures and gaze [3]]. These dog behaviors function as important signals in communication
and are increasingly studied in both scientific and applied contexts, including training and veterinary
care.

Despite this demand, existing methods face two major limitations. First, 3D pose estimation typically
requires multi-camera setups and/or extensive pretraining [4], which restricts its accessibility. Second,
behavior analysis depends on predefined labels, making it difficult to detect novel or complex behav-
iors that do not fit existing ethograms. These constraints hinder the applicability and generalizability
of current approaches.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for non-human
animal communication.



To address these challenges, we explore a new pipeline that combines D-Pose [S]], which enables 3D
dog pose estimation from a single camera, with h/BehaveMAE [6]], a self-supervised framework that
learns hierarchical behavior representations directly from pose sequences [6].

This approach offers three main advantages: it reduces dependence on multi-camera systems, allowing
analysis from simple video recordings; it avoids reliance on predefined behavior labels, enabling
more flexible detection of diverse or previously unseen behaviors; and it provides hierarchical
representations that can describe complex behaviors, thereby lowering annotation costs and facilitating
future studies of animal communication.

In this paper, we report preliminary results on a dataset of annotated dog behaviors and discuss how
this approach may contribute to future research on animal communication.

2 Methodology

Our proposed pipeline consists of three main stages: dog detection, 3D pose estimation, and hierar-
chical representation learning (Fig. [I).

Dog detection From single-camera video recordings, individual dogs are localized before pose esti-
mation (see Supplementary Information[A]for details). This step provides cropped image sequences
of dogs for subsequent analysis.

3D pose estimation with D-Pose Each cropped frame is processed with D-Pose [3]], which estimates
3D dog poses from a single camera. D-Pose employs a vision-transformer backbone and predicts joint
locations across multiple projection planes. In this study, we use the DigiDogs pretrained checkpoint,
capable of detecting 26 joints, including the head, spine, pelvis, tail, and limbs. This enables reliable
single-camera 3D pose estimation without requiring multi-camera setups.

Hierarchical behavior representation with h/BehaveMAE Pose trajectories produced by D-Pose
are then input to h/BehaveMAE [6], a self-supervised autoencoder that learns hierarchical embeddings
of animal behavior. The model was trained from scratch using dog 3D pose trajectory data obtained
above, and embeddings were generated on a per-frame basis. The model divides pose trajectories
into spatiotemporal patches, applies random masking, and reconstructs the missing parts, thereby
capturing multi-level representations of behavior. The learned embeddings are subsequently evaluated
with linear probing, providing a simple yet effective way to assess whether the representations capture
meaningful behavioral distinctions.

3 Preliminary results

3.1 Experiment
Dataset

We evaluated our approach on a dataset provided by Azabu University, consisting of approximately
one hour of video per dog from 34 individuals. Each recording was annotated with thirteen behavioral
categories (tail-high, tail-low, tail-wag, neck-high, neck-low, stand, sit, down, up, focus, sniff, whine,
licking nose) with five experimental phases (rest, box, owner, control, conditionﬂ The dataset is
annotated in an event-based manner, where each behavior is labeled with its onset time, offset time,
and category. Although annotations were derived from multi-view observations, only side-view
videos were used in this study.

Preprocessing

Videos were segmented according to experimental phase and cropped to dog regions (see Supple-
mentary Information[A)). 3D poses were estimated for each frame using D-Pose, and sequences were
constructed in segments of 1800 frames. Sequences with excessive missing joints (>20% of frames)
were discarded, and shorter sequences were padded when possible. Behavioral annotations were
aligned at the frame level as binary labels.

'These labels are annotated mainly for another study on dogs’ behavior analysis.
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Figure 1: Conceptual illustration of the proposed method.

Evaluation protocol

The representation learning was performed with h/BehaveMAE, and the resulting frame-wise em-
beddings were assessed using linear probing. The dataset was split at a 4:4:2 ratio into training data
for h/BehaveMAE, training data for linear probing, and test data for linear probing, ensuring that all
dogs appeared in each split. For linear probing, we employed the RidgeClassifier implementation
from scikit-learn, treating each behavioral task as a binary classification problem. Performance was
evaluated using the F1 score from scikit-learn, following the evaluation protocol of the previous
study [6]. As a baseline, we used 2D pose estimation from DeepLabCut (DLC) [[7] 8] with 2D
h/BehaveMAE.

3.2 Quantitative results

Table [T|compares F1 scores between 2D and 3D representations across behaviors. While tail- and
neck-related behaviors performed better with 2D poses, several postural behaviors (stand, sit, down)
and low-level actions (sniff, whine) benefited substantially from 3D poses. Notably, all behaviors
with 3D input exceeded chance level, and the mean F1 score was higher for 3D than 2D inputs
(improvements in mean F1 score: 0.044 [18.62%] at level 0, 0.022 [9.47%] at level 1, and 0.014
[5.91%] at level 2). As the hierarchy progresses from levels O to 2, temporal receptive field expands,
enabling the representation of longer temporal patterns. Because most behaviors can be discriminated
primarily based on static posture information in our study, classification was possible even within the
short spatiotemporal window of level 0. In the future, we will validate our approach with a new video
dataset that includes more dynamic behaviors representing complex temporal patterns.

3.3 Qualitative results

Fig. 2| shows examples of estimated poses, ground-truth annotations, and predicted intervals at differ-
ent hierarchical levels. D-Pose produced stable estimates overall, and h/BehaveMAE embeddings
captured temporal structure. However, sit and down remained difficult to classify due to their low
frequency in the dataset, and mutually exclusive categories (e.g., neck-high vs. neck-low) were some-
times predicted simultaneously, reflecting the limitations of linear probing without using correlation
among categories.



Table 1: Comparison of F1 scores between 2D and 3D approaches with hierarchical levels.

2D 3D

Task ID Chance level
IvO Iv1 Iv2 IvO vl Iv2
tail-high 0.228 0.194 0.251 0227 0.178 0.219 0.108
tail-low 0.300 0.238 0.237 0.262 0.225 0.192 0.085
tail-wag 0.023 0.064 0.076 0.039 0.054 0.044 0.012
neck-high 0.222 0.161 0.205 0.221 0.208 0.221 0.131
neck-low  0.186 0.139 0.134 0.176 0.168 0.126 0.049
stand 0.242 0203 0.238 0.244 0.258 0.266 0.173
sit 0.185 0.191 0.202 0.345 0.331 0.407 0.029
down 0.451 0.588 0471 0.742 0.572 0.497 0.012
focus 0.532 0.568 0.575 0.557 0.549 0.564 0.376
sniff 0.226 0.240 0.258 0.268 0.274 0.256 0.073
whine 0.021 0.006 0.009 0.024 0.023 0.023 0.009
mean 0.238 0.236 0242 0.282 0.258 0.256 0.096
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Figure 2: Frame-wise visualization of D-Pose (3D) and DLC (2D) poses, ground-truth behaviors, and
predicted behaviors by the best-performing linear probe among hierarchical levels.

3.4 Summary

These results demonstrate that combining D-Pose and h/BehaveMAE enables learning of meaningful
hierarchical representations of dog behavior from single-camera videos. At the same time, they
highlight areas for improvement, including handling rare behaviors, reducing pose estimation errors,
and moving beyond simple linear probes for classification. While our results are preliminary, they
highlight that rare behaviors remain bottlenecks. We anticipate that increasing data diversity will
enhance downstream classification.

4 Discussions

In this work, we presented a framework for dog behavior analysis that combines single-camera
3D pose estimation with D-Pose and hierarchical representation learning with h/BehaveMAE. Our
findings demonstrate that meaningful behavioral representations can be learned without relying on
predefined labels, suggesting the feasibility of a label-free approach to animal behavior analysis.



Training an end-to-end 2D video model requires dense frame-level annotations and significant
computational resources. In contrast, our goal was to isolate the benefit of geometric priors via
explicit 3D pose representation obtained from the pretrained D-Pose, which would be obscured in
usual end-to-end 2D settings. The explicit 3D intermediate representation improves interpretability
and may reduce overfitting via geometric constraints. By avoiding reliance on annotated ethograms,
this approach could extend to tasks such as detecting atypical or previously unseen behaviors, with
potential applications in anomaly detection for welfare monitoring and clinical contexts. Moreover,
because hierarchical representations can capture complex behaviors, even simple linear probing
achieved reasonable classification, indicating the potential to reduce annotation costs in future
behavior studies. Overall, this study shows that integrating single-camera 3D pose estimation with
self-supervised representation learning offers a promising pipeline for analyzing animal behavior.
While our current focus is on behavior recognition, such methods may ultimately help uncover the
principles of animal communication.
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Supplementary information

A Training YOLOV11 for Dog Detection

To accurately extract dog regions from the Azabu University dataset, we trained a YOLOv11 detec-
tor [9]. The dataset was constructed from the training videos used for h/BehaveMAE. For each video,
two types of images were sampled:

* Positive samples: five frames uniformly sampled across each video where dogs were present.

* Negative samples: frames extracted at 0.1-s intervals from segments where dogs were not
detected during pre-processing with YOLO tracking.

The resulting dataset contained 1029 positive and 669 negative images, split into training, validation,
and test sets in a 70:15:15 ratio. We ensured that each split contained images from all individual dogs.

Training was performed by fine-tuning the pretrained weights yolo1 1n.pt with 50 epochs and early
stopping (patience=10). During inference, we selected the model checkpoint that achieved the best
validation performance. If multiple bounding boxes were detected in a frame, the box with the highest
confidence score was used to generate the cropped image.
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