
Adaptive Audio-Visual Speech Recognition
via Matryoshka-Based Multimodal LLMs

Anonymous ACL submission

Abstract

Audio-Visual Speech Recognition (AVSR)001
leverages both audio and visual modalities to002
enhance speech recognition robustness, par-003
ticularly in noisy environments. Recent ad-004
vancements in Large Language Models (LLMs)005
have demonstrated their effectiveness in speech006
recognition, including AVSR. However, due to007
the significant length of speech representations,008
direct integration with LLMs imposes substan-009
tial computational costs. Prior approaches ad-010
dress this by compressing speech representa-011
tions before feeding them into LLMs. However,012
higher compression ratios often lead to perfor-013
mance degradation, necessitating a trade-off014
between computational efficiency and recogni-015
tion accuracy. To address this challenge, we016
propose Llama-MTSK, the first Matryoshka-017
based Multimodal LLM for AVSR, which en-018
ables flexible adaptation of the audio-visual019
token allocation based on specific computa-020
tional constraints while preserving high perfor-021
mance. Our approach, inspired by Matryoshka022
Representation Learning, encodes audio-visual023
representations at multiple granularities within024
a single model, eliminating the need to train025
separate models for different compression lev-026
els. Moreover, to efficiently fine-tune the LLM,027
we introduce three LoRA-based Matryoshka028
strategies using global and scale-specific LoRA029
modules. Extensive evaluations on the two030
largest AVSR datasets demonstrate that Llama-031
MTSK achieves state-of-the-art results, match-032
ing or surpassing models trained independently033
at fixed compression levels.034

1 Introduction035

Audio-Visual Speech Recognition (AVSR) aims036

to improve the robustness of speech recognition037

systems by utilizing both audio and visual signals038

to recognize human speech. The correlation be-039

tween audio and lip movements enables the model040

to focus on relevant speech content while discard-041

ing ambient or background noise. With the rising042

demand for robust speech recognition systems and 043

the widespread availability of cameras (e.g., smart- 044

phones), numerous studies have explored advance- 045

ments in AVSR technology. They have investigated 046

different neural architectures (Dupont and Luet- 047

tin, 2000; Noda et al., 2015; Afouras et al., 2018a; 048

Petridis et al., 2018; Ma et al., 2021; Hong et al., 049

2022), training methods (Ma et al., 2023a; Hong 050

et al., 2023), and methods using self-supervised 051

pretraining (Shi et al., 2022; Haliassos et al., 2023, 052

2024b; Hsu and Shi, 2022; Haliassos et al., 2024a). 053

Recently, with the growing popularity and ver- 054

satility of Large Language Models (LLMs), new 055

efforts have emerged to connect LLMs with speech 056

modeling (Lakhotia et al., 2021; Huang et al., 2024; 057

Park et al., 2024). Specifically, in Auditory Speech 058

Recognition (ASR) and Visual Speech Recognition 059

(VSR), researchers have demonstrated the possibil- 060

ity and effectiveness of LLMs in speech recogni- 061

tion (Chen et al., 2024; Hu et al., 2024b; Ma et al., 062

2024; Yu et al., 2024; Fathullah et al., 2024; Fang 063

et al., 2024a; Lu et al., 2025; Tan et al., 2024; Yeo 064

et al., 2024). By employing multi-modal speech 065

information, a recent work proposes to adapt LLMs 066

in AVSR as well (Llama-AVSR), attaining state- 067

of-the-art recognition performances (Cappellazzo 068

et al., 2025). A common focus of prior works 069

is reducing the sequence length of speech rep- 070

resentations before feeding them into the LLM. 071

Since LLMs have a large number of parameters 072

and speech sequences are much longer than text, 073

directly using speech representations imposes a sig- 074

nificant computational burden. At the same time, 075

(Cappellazzo et al., 2025) demonstrate that there 076

is a trade-off between how much we compress 077

the audio-visual speech representations and perfor- 078

mance: while higher compression ratios enhance 079

computational efficiency, they inevitably lead to a 080

degradation in performance. Therefore, a possible 081

solution is training and distributing different mod- 082

els with compression ratios tailored to individual 083
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users’ computational resources.084

However, retraining existing models for differ-085

ent compression ratios, each requiring a distinct086

coarse-to-fine granularity, is time-consuming and087

impractical. For this reason, we propose to exploit088

the concept of Matryoshka Representation Learn-089

ing (MRL) (Kusupati et al., 2022; Kudugunta et al.,090

2024; Nair et al., 2025) to encode audio-visual091

information at different granularities using a sin-092

gle model. This concept was recently explored in093

visual-linguistic understanding and reasoning tasks094

in (Cai et al., 2024; Hu et al., 2024a), demonstrat-095

ing that Matryoshka-based large vision-language096

models can support multi-granular visual process-097

ing at inference while achieving performance parity098

with independently trained models for each com-099

pression rate.100

For our audio-visual setting, with the aspira-101

tion to flexibly decide between computational effi-102

ciency and performance at inference time within103

the same model, we propose Llama-Matryoshka104

(abbreviated as Llama-MTSK in the rest of the pa-105

per), a Matryoshka-based Multimodal LLM which106

caters to different demands based on specific re-107

quirements by training simultaneously audio-visual108

representations of different granularities. Llama-109

MTSK first produces audio and video tokens using110

pre-trained encoders, then reduces their length us-111

ing average pooling or stacking compression meth-112

ods at multiple compression rates. Then, unlike113

the previous works using MRL that directly fine-114

tune all the LLM’s parameters (Cai et al., 2024;115

Hu et al., 2024a), we propose three LoRA-based116

Matryoshka approaches (LoRA ) to parameter-117

efficiently fine-tune the LLM (i.e., Llama (Dubey118

et al., 2024)), which is responsible to generate the119

transcriptions given the audio-visual tokens and120

textual prompt. These approaches either employ121

a single global LoRA to learn audio-visual fea-122

ture tokens at multiple scales (Multi-Scale LoRA123

), or define multiple LoRAs, each of them fo-124

cusing on scale-specific audio-visual information125

(Scale-Specific LoRA ), or a combination126

of both (Multi-Scale-Specific LoRA ). At127

inference, only the projector and LoRA modules128

associated with the desired compression rate are129

activated, ensuring both flexibility and efficiency.130

Our comprehensive experiments on the two largest131

AVSR datasets demonstrate that our three proposed132

methods achieve comparable or better performance133

than training separate models for each combination134

of audio-video compression rates. Overall, Llama-135

MTSK exhibits strong performance results, elastic 136

inference, and computational efficiency under a 137

single set of weights. 138

Our key contributions are as follows: 139

• We propose Llama-MTSK, the first 140

Matryoshka-based Multimodal LLM 141

designed for audio-visual speech recognition. 142

By processing audio-visual tokens with 143

multiple compression levels and granularities, 144

and introducing three Matryoshka-based 145

LoRA modules to efficiently fine-tune the 146

pre-trained LLM, Llama-MTSK is able to 147

dynamically adjust the number of tokens 148

processed during inference using a single 149

model, adapting to varying computational 150

resources or desired accuracy levels. 151

• Llama-MTSK achieves state-of-the-art results 152

on LRS2 and LRS3, the two largest AVSR 153

datasets, consistently exceeding the perfor- 154

mance of models independently trained at spe- 155

cific compression levels. This trend is ob- 156

served for the ASR, VSR, and AVSR tasks, 157

across both the evaluated compression tech- 158

niques and granularities. 159

2 Llama-MTSK 160

The objective of Llama-MTSK is to train an LLM 161

(Llama-based in our setting) that captures audio 162

and visual information at multiple scales, from 163

coarse to fine, thus providing control over the audio- 164

visual granularity during inference. Consequently, 165

a single “universal” model allows us to dynami- 166

cally adjust the performance-efficiency trade-off 167

at inference time, according to specific needs (Cai 168

et al., 2024; Hu et al., 2024a). 169

Llama-MTSK follows the structure of Llama- 170

AVSR (Cappellazzo et al., 2025), the first Mul- 171

timodal LLM (MLLM) tailored for audio-visual 172

speech recognition, with ad-hoc modifications to 173

support MRL (Kusupati et al., 2022). Llama- 174

MTSK computes audio and video tokens via 175

modality-specific pre-trained encoders, and then 176

input them as prefix tokens to the LLM (together 177

with the textual tokens). This approach, denoted as 178

decoder-only, is adopted by several architectures 179

due to its versatility and flexibility (Liu et al., 2023; 180

Lin et al., 2024; Fang et al., 2024b; Fan et al., 2024; 181

Zong et al., 2024; Zhang et al., 2025b; Lee et al., 182

2024; Fini et al., 2024; Li et al., 2024; Tong et al., 183

2024; Yao et al., 2024). 184
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Figure 1: Training and inference stages for Llama-MTSK. (Left) During training, we produce audio-visual tokens
via pre-trained encoders, followed by specific-scale compression and projection modules. Then, we feed the
concatenated audio-visual tokens at multiple scales to the pre-trained Llama-based LLM, which is adapted through
one of the three proposed LoRA approaches following the Matryoshka Representation Learning principle. (Right)
At inference, Llama-MTSK allows us to change on-the-fly the audio-visual compression rates for each input data
conditioned on our specific requirements using the same model architecture and weights, enabling high flexibility.
Furthermore, only one projector and one LoRA module are activated at inference (in this figure, those associated
with the audio and video compression rates equal to 3), guaranteeing model’s scalability in training and no extra
cost in inference. and represent whether the parameters are trained or kept frozen, respectively.

Llama-MTSK consists of three main compo-185

nents: 1) pre-trained audio and video encoders, 2)186

audio and video compression and projection mod-187

ules, and 3) an LLM which is parameter-efficiently188

fine-tuned via ad-hoc LoRA-based strategies (i.e.,189

LoRA ).190

2.1 Audio/Video Pre-Trained Encoders191

We use pre-trained audio and video encoders to192

project the input audio and video data into two193

sets of audio and video tokens. We denote with194

XA ∈ RNA×dA and XV ∈ RNV×dV the audio and195

video token sequences, respectively, where NA/NV196

is the number of audio/video tokens, and dA/dV is197

the audio/video token dimension. The pre-trained198

encoders are maintained frozen during the training199

stage ( in Figure 1).200

2.2 Audio-Visual Compression and Projection201

Since the dimensions of audio and video tokens of-202

ten differ from that of the textual tokens, MLLMs203

include a projection layer that maps audio and204

video tokens into the LLM embedding space. It205

is common to employ either linear projectors (Liu206

et al., 2023; Luo et al., 2024; Yao et al., 2024; Li207

et al., 2024; Liu et al., 2024b; Zhang et al., 2025a)208

or abstractors (e.g., Q-Former, resampler) (Zhu 209

et al., 2023; Li et al., 2023; Cha et al., 2024). In 210

our setting, following (Cappellazzo et al., 2025), 211

we use a two-layer MLP projector. 212

In addition to this, since the LLM predominantly 213

accounts for the entire computation and memory 214

consumption of the MLLM, it is customary to com- 215

press the number of multimodal tokens (in our case 216

audio-visual tokens) by a specific factor in order to 217

find the optimal balance in terms of efficiency and 218

accuracy. For example, (Cappellazzo et al., 2025; 219

Fang et al., 2024a; Ma et al., 2024; Fathullah et al., 220

2024) stack multiple consecutive tokens along the 221

token hidden dimension to reduce the number of to- 222

kens, whereas other methods rely on the Q-Former 223

architecture (Li et al., 2023) using a fixed number 224

of query tokens (Tang et al., 2023; Yu et al., 2024; 225

Zhang et al., 2025b; Cha et al., 2024). However, all 226

these methods need to decide the compression rate 227

to apply beforehand, which means they generate 228

outputs of a single, predetermined length, lacking 229

the ability to modulate the final sequence length. 230

This constraint limits the ability to balance informa- 231

tion density and computational efficiency, particu- 232

larly in resource-constrained deployment scenarios. 233

Alternatively, one could train a separate model for 234
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each desired compression rate, but this approach235

can be time-consuming and cumbersome in prac-236

tice.237

In contrast, we propose to compress the audio238

and video tokens using multiple compression rates,239

leading to token sequences at multiple scales, and240

thus different granularities. We explore two dif-241

ferent compression methods to reduce the token242

sequence length: 1) average pooling, and 2) hidden243

size stacking, where multiple consecutive frames244

are stacked along the token hidden dimension.245

Therefore, we decide beforehand a range of G audio246

compression rates {a1, a2, · · · , aG} and T video247

compression rates {v1, v2, · · · , vT}. We gradually248

increase the compression rates (i.e., ai+1 > ai,249

i = 1, · · · , G). With ai we refer both to the com-250

pression rate and the corresponding scale inter-251

changeably (e.g., if ai = 4, then the corresponding252

sequence would have ⌊NA
4 ⌋ tokens). We then com-253

press the audio and video tokens using the chosen254

rates, producing token sequences at multiple scales:255

[XA
a1 ,X

A
a2 , · · · ,X

A
aG] and [XV

v1 ,X
V
v2 , · · · ,X

V
vT].256

At this point, each of these sequences are pro-257

cessed by compression rate-specific linear projec-258

tors to align the audio-visual and text tokens (see259

Figure 1).260

2.3 LLM Adaptation via LoRA261

The LLM is responsible for generating the corre-262

sponding ASR transcription in an auto-regressive263

fashion given the audio, video, and textual to-264

kens. We define XAV
ij as the concatenation of au-265

dio and video tokens with audio and video com-266

pression rates of ai and vj , and the prompt tex-267

tual tokens XP : XAV
ij = [XA

ai ,X
V
vj ,X

P ]. To268

parameter-efficiently align the LLM with the mul-269

timodal inputs, we use LoRA modules (Hu et al.,270

2021) to adapt the query and value projection ma-271

trices of each layer. In our setting, the LLM is272

trained on multiple audio-visual tokens with differ-273

ent scales. We investigate three different strategies274

to efficiently fine-tune LLM’s pre-trained matrices275

via LoRA approximation under a MRL setting: 1)276

Multi-Scale LoRA Matryoshka (MS LoRA ),277

2) Specific-Scale LoRA Matryoshka (SS LoRA278

), and 3) Multi-Specific-Scale LoRA Ma-279

tryoshka (MSS LoRA ). These three methods are280

illustrated in detail in Figure 2.281

The MS LoRA approach uses a single “global”282

LoRA to approximate the query and value projec-283

tion matrices of each LLM’s self-attention layer,284

regardless of the chosen scale and shared by all the285

input token sequences. For a pre-trained weight 286

matrix W , the projection output is computed as 287

follows: 288

HAV
ij ← XAV

ij W + s ·XAV
ij WMS, (1) 289

where s is a tunable scalar hyperparameter, 290

WMS = W down
MS W up

MS , W down
MS ∈ Rd×r and 291

W up
MS ∈ Rr×d, and r ≪ d (r is the bottleneck 292

dimension). 293

In contraposition to MS LoRA , we propose to 294

learn “expert” LoRA modules, which specialize to 295

each scale. We call this approach Specific-Scale 296

(SS) LoRA . Therefore, we define G · T LoRA 297

modules, one for each audio-visual scale. We com- 298

pute the projection output as follows: 299

HAV
ij ← XAV

ij W + s ·XAV
ij W ij

SS, (2) 300

where W ij
SS is the LoRA decomposition matrix de- 301

fined for the i-th audio scale and j-th video scale, 302

and it is defined as WMS . As we explain in subsec- 303

tion 2.4, while all the LoRA modules are used dur- 304

ing the training stage, at inference we only activate 305

one LoRA module, corresponding to the selected 306

audio and video scales. 307

The third approach, MSS LoRA , is a hybrid ap- 308

proach between MS and SS, which aims to learn 309

both scale-specific and multi-scale audio-visual 310

representations. Consequently, we define both a 311

multi-scale global LoRA module, which is always 312

activated and shared among all the input sequences 313

both at training and at inference, and multiple scale- 314

specific LoRA modules. In this case, the output 315

takes the following form: 316

HAV
ij ← XAV

ij W +s ·XAV
ij W ij

SS+s ·XAV
ij WMS. (3) 317

Regardless of the LoRA fine-tuning approach 318

we employ, Llama-MTSK is trained by averaging 319

the auto-regressive next token prediction loss for 320

each audio-visual scale ij for each input data. The 321

LLM predicts the response Y = {yl}Ll=1 condi- 322

tioned on the multimodal input tokens, where L 323

represents the number of tokens of the ground truth 324

transcription to be generated. Accordingly, for each 325

Matryoshka audio-visual representation XAV
ij , the 326

probability of the target Y is computed by: 327

p(Y|XAV
ij ) =

L∏
l=1

pθ(yl|XAV
ij , y<l), (4) 328

where y<l is the generated output sequence up to 329

token l−1, and θ is the trainable parameters, which 330
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Figure 2: Our three proposed LoRA Matryoshka (LoRA ) approaches. Multi-Scale (MS) LoRA uses a shared
global LoRA module for all the audio-visual token scales (in this specific example there are three scales) to fine-tune
the pre-trained matrices of the LLM. The Specific-Scale (SS) variant defines a LoRA module tailored to each
scale, learning and specializing to a specific scale. The third approach, Multi-Specific-Scale (MSS), combines
MS and SS to support both global and specific-scale LoRAs. The global LoRA is responsible to capture relationships
that can be shared among different-scale tokens, while specific-scale LoRAs learn tokens based on the specific scale.

comprises the projection layers and the LoRA331

modules according to the LoRA fine-tuning ap-332

proach used.333

The final objective is the average over all the334

audio-visual token scales:335

1

G · T

G∑
i=1

T∑
j=1

− log p(Y|XAV
ij ). (5)336

2.4 Llama-MTSK: Training vs Inference337

During training, Llama-MTSK learns multiple sets338

of audio-visual tokens, each progressively incorpo-339

rating more details as the scale increases. To do340

so, the LLM processes all the multi-scale audio-341

visual tokens and concurrently optimize over them342

using Eq. 5. This means that all the projectors and343

LoRA modules are involved. Instead, at infer-344

ence time, for each input data, we choose a specific345

audio-visual scale and we activate only the pro-346

jector and LoRA module associated with it. This347

is equivalent to one single Llama-AVSR model348

trained on the specific scale. This principle is sim-349

ilar to the behaviour of Mixture of Experts-based350

models (Shazeer et al., 2017; Fedus et al., 2022;351

Zoph et al., 2022; Mustafa et al., 2022; Puigcerver352

et al., 2023; Cappellazzo et al., 2024a; Jiang et al.,353

2024; Muennighoff et al., 2024), which at inference354

time only activate a small subset of the available 355

experts (in our case the “experts” are the projec- 356

tors and LoRA modules). Figure 1 depicts a 357

schematic comparison of Llama-MTSK training 358

and inference processes. 359

3 Experiments and Results 360

3.1 Implementation Details 361

Datasets. We train and evaluate Llama-MTSK on 362

LRS2 (Son Chung et al., 2017) and LRS3 (Afouras 363

et al., 2018b), the two largest publicly available 364

datasets for audio-visual speech recognition. LRS2 365

includes 225 hours of video clips from BBC pro- 366

grams. LRS3 contains 433 hours of transcribed 367

English video clips from TED talks. 368

Pre-Processing. We follow (Ma et al., 2023b; 369

Cappellazzo et al., 2025) for the pre-processing of 370

the datasets. For the video modality, we crop the 371

mouth region of interests (ROIs) through a bound- 372

ing box of 96 × 96. Each frame is normalised by 373

subtracting the mean and dividing by the standard 374

deviation of the training set. Audio data only un- 375

dergo z-normalisation per utterance. 376

Tasks. The AVSR task is studied for the main 377

results, both for LRS2 and LRS3. We also report 378

the results for the ASR and VSR tasks on LRS3. 379
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Table 1: Comparison between Llama-AVSR and our
proposed Llama MS, SS, and MSS approaches on LRS2
and LRS3 benchmarks. †Llama-AVSR trains 4 inde-
pendent models tailored to each configuration of audio-
video compression rates.

Method Compression Rates (A,V)

(4,2) (4,5) (16,2) (16,5)

LRS3 Dataset
Llama-AVSR† 2.4 2.8 3.3 4.1
Llama MS 2.6 2.7 3.7 4.1
Llama SS 2.3 2.2 3.3 3.6
Llama MSS 2.4 2.4 3.2 3.5

LRS2 Dataset
Llama-AVSR 4.1 4.5 5.3 8.1
Llama MS 4.8 5.9 6.4 8.9
Llama SS 3.4 4.7 4.8 6.4
Llama MSS 3.6 4.8 6.1 9.0

Llama-MTSK Details. We use Whisper Small380

and Medium (Radford et al., 2023) as pre-trained381

audio encoder, whilst AV-HuBERT Large (Shi382

et al., 2022) for computing the video tokens. Their383

weights remain frozen throughout the training384

phase. The projectors consist of two linear lay-385

ers with ReLU activation in between. As for the386

LLM, based on the task and dataset, we experiment387

with 3 base pre-trained models of varying size from388

the Llama 3 family (Dubey et al., 2024): Llama389

3.1-8B, Llama 3.2-3B, and Llama 3.2-1B. Each390

LoRA module used to fine-tune the query and key391

projection matrices of each LLM’s self-attention392

layer has a bottleneck dimension r such that the393

original LLM’s hidden size is reduced of a factor394

32 for Llama 3.2-3B and 3.2-1B, and 64 for Llama395

3.1-8B (e.g., for Llama 3.2-1B, since the hidden396

size is 2048, the rank is set to 2048/32 = 64). The397

hyperparameter s is set to 1
8 .398

Audio-Visual Token Compression Rates. We399

choose the audio and video compression rates to400

train and evaluate Llama-MTSK carefully, based401

on the studied tasks. For ASR, we apply compres-402

sion rates in the range of {4, 8, 12, 16, 20}. For403

VSR, since the task is more challenging, we can404

afford smaller rates: {1, 2, 3, 4, 5} (we also include405

the case in which no compression is applied). For406

AVSR, we apply audio rates in {4, 16} and video407

rates in {2, 5}, leading to 4 audio-visual configu-408

rations. To compress the audio and video tokens,409

either we apply average pooling with kernel size410

and stride equal to the desired compression rate,411

Table 2: Comparison between Llama and multiple
SOTA methods on the LRS2 and LRS3 benchmarks.
The “Lab. Hrs.” column with values X/Y specifies how
many labeled hours have been used in training for LRS2
(X) and LRS3 (Y).

Method Rates Lab. Dataset

(A,V) Hrs. LRS2 LRS3

CM-seq2seq (1,1) 380/433 3.7 2.3
Eff. Conf. (1,1) 818/818 2.3 1.8
auto-avsr (1,1) 3448/1902 1.5 1.0
W-Flamingo (1,1) 1982/433 1.4 1.1
USR (1,1) 1982/1759 1.9 1.1
Llama-AVSR (4,2) 223/433 2.4 0.9
Llama MS (4,2) 223/433 2.1 1.0
Llama SS (4,2) 223/433 2.4 0.9
Llama MSS (4,2) 223/433 2.4 1.2

or we stack consecutive frames along the hidden 412

dimension according to the rate (we denote this as 413

“stacking”). 414

Training/Inference Details. Following (Cappel- 415

lazzo et al., 2025; Ma et al., 2023b), we augment 416

visual inputs through horizontal flipping, random 417

cropping, and adaptive time masking, while for 418

audio we only apply adaptive time masking. For 419

training, we sample babble noise from the NOI- 420

SEX dataset (Varga, 1992) using a uniform distri- 421

bution. We define the textual prompts as in (Cappel- 422

lazzo et al., 2025): “Transcribe {task_prompt} 423

to text.”, where task_prompt ∈ {“speech”, 424

“video”, “speech and video”}. We train our 425

model for 10 epochs with the AdamW optimizer 426

with cosine annealing scheduler and weight decay 427

set to 0.1 using NVIDIA A40 GPUs. The learning 428

rate is set to 1e-3 for ASR and AVSR tasks, and 429

5e-4 for VSR. For decoding, we use beam search 430

with a beam width of 15 and temperature of 0.6. 431

The evaluation metric for all the experiments is the 432

Word Error Rate (WER, %). 433

3.2 AVSR Main Results 434

We report the results achieved by Llama-MTSK 435

MS, SS, and MSS on the LRS2 and LRS3 datasets 436

in Table 1. We replace “MTSK” with in the ta- 437

bles and in the following sections to simplify the 438

notation. For both datasets, we use Whisper Small 439

as audio encoder. For the LLM, we use Llama 440

3.2-1B for LRS3 and Llama 3.2-3B for LRS2. The 441

smaller size of the LRS2 dataset necessitates the 442

larger LLM to mitigate higher WERs. We apply 443
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Figure 3: WER results for the average pooling (left) and stacking (right) compression methods for the ASR task.
We use Whisper Small as audio encoder and Llama 3.2-1B as LLM.

audio compression rates of 4 and 16 and video com-444

pression rates of 2 and 5, resulting in 4 different445

compression configurations. We compare these re-446

sults with those achieved by training Llama-AVSR447

independently on the 4 configurations, leading to 4448

models. During inference, Llama-AVSR employs449

a separate model trained for each audio-video com-450

pression rate. In contrast, our Llama uses a451

single pre-trained model, activating the projector452

and LoRA modules corresponding to the desired453

compression rate. On the LRS3 dataset, the three454

proposed Llama approaches achieve comparable455

or superior performance to Llama-AVSR, particu-456

larly for the SS and MSS configurations. These two457

methods use LoRA modules specialized for spe-458

cific compression rates, which are activated during459

inference based on specific requirements. On the460

LRS2 dataset, Llama SS outperforms all other461

approaches across all compression rates.462

Llama vs SOTA Methods. In Table 2, we463

compare Llama with state-of-the-art (SOTA)464

methods on LRS2 and LRS3 for the AVSR task.465

We equip Llama with Whisper Medium and466

Llama 3.1-8B. We report results from 5 recent467

SOTA AVSR methods: CM-seq2seq (Ma et al.,468

2021), Efficient Conformer (Burchi and Timo-469

fte, 2023), auto-avsr (Ma et al., 2023b), Whisper-470

Flamingo (Rouditchenko et al., 2024), and USR471

(Haliassos et al., 2024a). Notably, all these meth-472

ods do not reduce the token sequence length,473

whereas Llama-AVSR and Llama reduce the474

number of tokens by a factor 4 for audio and 2 for475

video. For LRS3, Llama achieves SOTA results,476

with its SS variant surpassing Llama-AVSR, which477

is trained on those specific compression rates, and478

outperforming methods like auto-avsr and USR,479

Table 3: Comparison between Llama MS and a
training-free Llama-AVSR-based approach that reduces
the number of tokens via average pooling at inference
time for the ASR task on the LRS3 dataset.

Method Compression Rate
2 4 6 8 10

Avg Pooling 4.3 13.5 46.1 89.2 160.0
Llama MS 2.5 2.3 2.3 2.7 3.0

which use significantly more training hours. For 480

LRS2, Llama SS and MSS perform comparably 481

to Llama-AVSR, while MS achieves better results. 482

Additionally, our methods perform as well as or 483

better than CM-seq2seq and Efficient Conformer 484

but slightly underperform other SOTA methods. 485

However, Llama is trained only on the 223 hours 486

of LRS2, whereas all competing methods utilize at 487

least 1982 hours. We leave for future work the inte- 488

gration of additional training data to enable a fairer 489

comparison. Finally, more AVSR experiments can 490

be found in the Appendix. 491

3.3 Additional Results 492

In this section, we extend our analysis to the tasks 493

of ASR and VSR, where only audio or video tokens 494

are fed to the LLM, respectively. We finally present 495

the computational cost analysis of Llama . 496

ASR Results. For the ASR task, we consider 5 497

compression rates in the range {4, 8, 12, 16, 20}. In 498

Figure 3, we report the results on the LRS3 dataset 499

when using average pooling compression (left) and 500

stacking compression (right). With the exception of 501

rate = 20, all the three Llama methods outperform 502

separately-trained Llama-AVSR methods. The MSS 503
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Figure 4: WER results for the average pooling (left) and stacking (right) compression methods for the VSR task.
We use AVHuBERT Large as video encoder and Llama 3.2-3B as LLM.

Table 4: Computational cost analysis of Llama MS
using different compression rates and Llama 3.1-8B.

(A,V) Rates # Tokens TFLOPs

(1,1) 757 11.40
(4,2) 257 3.87
(4,5) 182 2.74

(16,2) 163 2.46
(16,5) 88 1.33

configuration achieves the best WER performance504

across all the compression rates, even surpassing or505

equaling the performance of Llama-AVSR trained506

at the lowest compression rate of 20.507

VSR Results. Figure 4 shows WER results for508

the VSR task, similar to the ASR results in Figure509

3. The video rates are {1, 2, 3, 4, 5}, lower than the510

ASR rates due to the greater complexity of VSR.511

For both average pooling and stack compression,512

all three Llama approaches outperform Llama-513

AVSR, with increasing gains at higher rates. The MS514

and SS approaches using average pooling achieve515

WER reductions exceeding 10 at the highest rates.516

We attribute this improvement at higher compres-517

sion rates to the joint training of multi-scale to-518

kens. The performance of the three LoRA ap-519

proaches varies slightly depending on the compres-520

sion method, suggesting that no single approach is521

superior across all configurations. However, all of522

them significantly outperform Llama-AVSR.523

Llama vs Avg Pooling at Inference Time.524

Llama trains a single model that supports multi-525

ple scales at inference time by applying different526

compression rates. We compare our method with527

a training-free approach that trains a single Llama-528

AVSR model without compression and then applies 529

the desired compression rate at inference on-the-fly 530

by average pooling the tokens. In Table 3, we study 531

the ASR setting with audio compression rates in 532

the range {2, 4, 6, 8, 10}. The performance of the 533

average-pooling baseline is severely impacted by a 534

decrease in the number of tokens, while Llama 535

MS is much more robust. These results demonstrate 536

that Llama MS can be effectively used with di- 537

verse computational resources. Notably, even with 538

limited resources, a compression rate of 8 incurs 539

minimal performance loss. 540

Computation Cost Analysis. Table 4 presents 541

the computational benefits of using Llama . 542

Specifically, we evaluate MS LoRA with Llama 543

3.1-8B as LLM and detail the associated inference 544

costs. Without compression, we assume the LLM 545

processes 500 audio tokens, 250 video tokens (the 546

resolution of the audio encoder is twice that of 547

the video encoder), and 7 tokens for the textual 548

prompt, totaling 757. As shown in the table, our 549

proposed approach yields significant speedups, re- 550

ducing TFLOPs by over 8x when applying com- 551

pression rates of 16 and 5 for audio and video, re- 552

spectively, thus substantially improving efficiency. 553

4 Conclusion 554

This work introduces Llama-MTSK, a versatile 555

audio-visual MLLM capable of elastic inference 556

across multiple tasks and computational resources. 557

Llama-MTSK exploits the concept of matryoshka 558

representation learning to adapt the pre-trained 559

LLM through ad-hoc LoRA modules, achieving 560

performance comparable to or better than models 561

separately trained on each compression rate while 562

significantly reducing computational costs. 563
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5 Limitations564

During training, processing multiple sequences at565

various granularities increases the LLM’s memory566

requirements. Therefore, selecting the compression567

rates is crucial and delicate; including too many568

rates is unfeasible, especially for AVSR, where we569

theoretically have up to G · T audio-video compres-570

sion rate combinations. In addition to this, while571

our study focuses on LoRA for parameter-efficient572

LLM fine-tuning, other methods exist, such as573

adapter-tuning (Hu et al., 2023; Pfeiffer et al., 2021;574

Cappellazzo et al., 2024b) and advanced LoRA-575

based techniques (Zhang et al., 2023; Ding et al.,576

2023; Hayou et al., 2024; Liu et al., 2024a), which577

we did not explore. Extending our method to these578

approaches is an interesting direction for future579

work.580
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Figure 5: Additional WER results using stacking com-
pression for the ASR task with {2, 4, 6, 8, 10} rates. We
use the same configuration as in Figure 3.

A Appendix941

A.1 Additional Experiments for ASR942

In this section, we report additional results for the943

ASR task when using compression rates in a differ-944

ent range , specifically {2, 4, 6, 8, 10}. Compared945

to Figure 3, the increment between two consecu-946

tive rates is halved. We argue that it is more useful947

to use more diverse rates for ASR since we do948

not observe much deterioration of the WER results949

when doubling the rate (in Figure 5, the baseline950

Llama-AVSR achieves similar results when com-951

pressing the tokens of a factor 2, 4, and 6). Figure952

5 shows that Llama MS and MSS achieves com-953

parable or better performance than Llama-AVSR.954

As for the SS approach, it performs slightly worse955

than Llama-AVSR for the first compression rates,956

and we believe this is because having a specific957

LoRA module for multiple rates which do not show958

WER deterioration leads to overfitting as one global959

LoRA is sufficient. This argument also explains960

why for rates 8 and 10 the MS variant performs961

better than the other ones.962

(Audio, Video) Compression Rates

W
ER

 (%
)

1

2

3

4

(4,2) (4,5) (16,2) (16,4)

Llama-AVSR Llama-MTSK, LoRA MS Llama-MTSK, LoRA SS

Llama-MTSK, LoRA MSS

Figure 6: Additional results for Llama using stacking
compression on the LRS3 dataset.

Table 5: Comparison between Llama-AVSR and our
proposed Llama MS, SS, and MSS approaches on LRS2
and LRS3 benchmarks. We employ Whisper medium
and Llama 3.1-8B. †Llama-AVSR trains 4 independent
models tailored to each configuration of audio-video
compression rates.

Method Compression Rates (A,V)

(4,2) (4,5) (16,2) (16,5)

LRS3 Dataset
Llama-AVSR† 0.9 0.9 1.6 2.1
Llama MS 1.0 1.1 1.5 1.6
Llama SS 0.9 1.0 1.7 1.8
Llama MSS 1.2 1.0 1.5 1.6

LRS2 Dataset
Llama-AVSR 2.4 2.2 2.9 3.3
Llama MS 2.1 2.3 2.9 3.2
Llama SS 2.4 2.1 2.9 2.9
Llama MSS 2.4 2.5 3.2 3.4

A.2 AVSR Results with Stacking Compression 963

We include additional results for AVSR on LRS3 964

using the stacking compression method in Figure 965

6. The methods use Whisper Small and Llama 966

3.2-1B as LLM. Our three proposed Matryoshka 967

approaches performs better than or equally well as 968

Llama-AVSR, especially under conditions of high 969

audio compression, underscoring the effectiveness 970

of our proposed Llama . 971

A.3 Full AVSR Results with Whisper Medium 972

and LLama 3.1-8B 973

In Table 2, we only included for Llama-AVSR and 974

Llama the results with audio and video com- 975

pression rates equal to 4 and 2, respectively. In 976

Table 5, we also report additional configurations 977

of audio-video compression rates. We use Whis- 978

per medium as audio encoder and Llama 3.1-8B as 979

LLM. Once more, our proposed methods perform 980

on par or even better than independently-trained 981

Llama-AVSR models for each compression rates 982

configurations. In particular, we highlight the size- 983

able gains brought by all the three LoRA ap- 984

proaches for LRS3 when we apply the highest com- 985

pression rates configuration (16,5). 986

13


	Introduction
	Llama-MTSK
	Audio/Video Pre-Trained Encoders
	Audio-Visual Compression and Projection
	LLM Adaptation via LoRA
	Llama-MTSK: Training vs Inference

	Experiments and Results
	Implementation Details
	AVSR Main Results
	Additional Results

	Conclusion
	Limitations
	Appendix
	Additional Experiments for ASR
	AVSR Results with Stacking Compression
	Full AVSR Results with Whisper Medium and LLama 3.1-8B


