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Abstract

We propose an algorithm for optimizing the parameters of single hidden layer neural net-
works. Specifically, we derive a blockwise difference-of-convex (DC) functions representation
of the objective function. Based on the latter, we propose a block coordinate descent (BCD)
approach that we combine with a tailored difference-of-convex functions algorithm (DCA).
We prove global convergence of the proposed algorithm. Furthermore, we mathematically
analyze the convergence rate of parameters and the convergence rate in value (i. e., the train-
ing loss). We give conditions under which our algorithm converges linearly or even faster
depending on the local shape of the loss function. We confirm our theoretical derivations
numerically and compare our algorithm against state-of-the-art gradient-based solvers in
terms of both training loss and test loss.

1 Introduction

Neural networks have emerged as powerful machine learning models for applications in operations research
and management science. A particular class of neural networks are single hidden layer feedforward neural
networks (SLFNs). This class offers large flexibility in modeling relationships between input and output
and, therefore, is used in several domains such as transportation (Celikoglu & Silgu, 2016), risk analysis
(Sirignano & Giesecke, 2019), pricing (Haugh & Kogan, 2004), and healthcare (Lee et al., 2013).

SLFNs have several properties that make them relevant for both machine learning practice and theory.
In machine learning practice, they have been found to be effective in tasks with mid-sized datasets (i. e.,
hundreds or thousands of samples). In machine learning theory, SLFNs entail favorable properties. For
instance, SLFNs have been shown to be universal approximators. As such, SLFNs are able to approximate
continuous functions arbitrarily well on compact sets given a sufficient number of hidden neurons (Hornik
et al., 1989). Only recently, the expressiveness of SLFNs in regression tasks has been investigated further,
and it was shown that there always exists a set of parameters such that the empirical mean squared error is
zero, as long as the number of hidden neurons is larger than a finite bound depending solely on the number
of training examples and the number of covariates (Zhang et al., 2021). The simple structure of SLFNs
oftentimes also allows to derive theoretical properties in downstream tasks. For instance, in option pricing,
SLFNs can be used for approximating value functions in approximate dynamic programming to derive tight
bounds for option prices (Haugh & Kogan, 2004). In financial risk analysis, SLFNs can be used to predict
conditional transition probabilities in discrete-time models, where SLFNs allow one to derive a law of large
numbers and a central limit theorem for pool-level risks (Sirignano & Giesecke, 2019).
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This work considers the parameter optimization in single hidden layer feedforward neural networks with
activation function σ(·) = max(·, 0) and N hidden units to predict target variables yj ∈ R from samples
xj ∈ Rn, j = 1, . . . ,m. The parameters are determined via the optimization problem

inf
α,W,b

1
m

m∑
j=1

(〈α, σ(W xj + b)〉 − yj)2 + γ Reg(α,W, b), (PNN)

where the objective is to find optimal parameters α ∈ RN , W ∈ RN×n, and b ∈ RN . The first term in (PNN)
represents the mean squared error, while Reg is a regularization term with regularization parameter γ > 0.
In machine learning, a common regularization technique is weight decay, i. e., Reg favors smaller weights.
The activation function allows for feature selection by activating or deactivating neurons in the hidden layer.
In particular, the rectified linear unit (ReLU), as defined by σ, results in sparse feature representations
(Glorot et al., 2011), which has shown to improve predictive performance, making it a common choice in
machine learning practice (LeCun et al., 2015). From a theoretical point of view, the above optimization
problem entails the following characteristics: (i) The objective function is highly non-convex; (ii) the objective
function is non-differentiable; and (iii) the optimization problem is high-dimensional. These characteristics
make the optimization problem difficult to solve.

Previous optimization methods for the above task have primarily been gradient-based; see Section 2 for
an overview. Foremost, stochastic gradient descent (SGD) and variants thereof (e. g., using momentum)
are applied to optimize neural networks. However, gradient-based methods do not have general convergence
guarantees, and require expert knowledge during training due to many hyperparameters (e. g., initial learning
rate, momentum). Only recently, methods that do not rely on gradient information have been proposed
(e. g., Lau et al., 2018; Zeng et al., 2019; Zhang & Brand, 2017). Here, optimization methods based on block
coordinate descent (BCD) and alternating direction method of multipliers (ADMM) have been proposed for
optimizing parameters in neural networks. However, previous approaches merely optimize over surrogate
losses instead of the original loss or lack convergence guarantees.

In this paper, we propose a globally-convergent algorithm for parameter optimization in SLFNs. Our al-
gorithm named DCON builds upon difference-of-convex (DC) functions optimization and further follows a
block coordinate descent approach, where, on each block, the objective function is decomposed as a difference
of convex functions. Optimizing over these blocks results in subproblems, which are either already convex
or can be approached with a tailored difference-of-convex functions algorithm (DCA). For an introduction
to DCA, see Le An & Tao (2005). We provide a theoretical analysis of our algorithm. First, we prove
global convergence in value and to limiting-critical points (under additional assumptions). Second, we derive
theoretical convergence rates, and, third, we give conditions under which our algorithm DCON converges
against global minima. We want to point out that global convergence does not mean convergence to
global minima. Global convergence is the convergence independent of starting points and, hence, in our
case, independent of weight initialization. See also Lanckriet & Sriperumbudur (2009) for the definition of
global convergence.

Our work contributes to machine learning theory in the following ways:

1. We show that our algorithm converges globally (i. e., independently of weight initial-
izations) in value and, under additional assumptions, to limiting-critical points.

2. We give conditions under which the training loss converges with order q ∈ N. That is,
the training loss as defined in (PNN) can achieve very fast convergence depending on
the local shape of the loss function.

3. We compare DCON against Adam (Kingma & Ba, 2014) as a state-of-the-art gradient-
based optimizer. Our evaluation on nine datasets from the UCI machine learning
repository and the MNIST dataset shows that DCON achieves a superior prediction
performance.

DCON offers a key benefit for machine learning practice. DCON works without any hyperparameters during
training. In particular, hyperparameters that are otherwise common in gradient-based solvers (e. g., learning
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rates, number of training epochs, momentum) are absent. Hence, given the number of hidden neurons and
the regularization parameter in the SLFN, one can perform the training task in a completely automated
manner. Nevertheless, future work is needed to scale DCON to larger datasets in practice. We point to
potential research directions in our discussion.

The rest of the paper is structured as follows. In Section 2, we discuss previous research on optimization
methods for neural networks. Section 3 analyzes the optimization problem in (PNN) with regard to neces-
sary optimality conditions. Section 4 introduces our novel training algorithm DCON, while, in Section 5,
we derive global convergence results and theoretical properties of DCON. In Section 6, we perform nu-
merical experiments to compare DCON against state-of-the-art optimization methods and demonstrate the
convergence behavior. Finally, Section 7 concludes.

2 Background

We contextualize our contribution within the literature on optimization methods for (PNN). Previous research
can be loosely grouped into methods for (i) direct loss optimization and (ii) surrogate loss optimization.

Direct loss optimization: Algorithms that directly optimize the loss function can be divided into gradient-
based and gradient-free methods.

Gradient-based methods make use of backpropagation (Rumelhart et al., 1986) to compute gradients of the
loss function. The underlying basis is given by stochastic gradient descent (SGD) proposed by Robbins &
Monro (1951). Several adaptive variants of vanilla SGD have been developed in recent years. Examples
are Adam (Kingma & Ba, 2014), AdaGrad (Duchi et al., 2011), RMSProp (Tijmen & Hinton, 2012), and
AMSGrad (Reddi et al., 2018). Despite the tremendous success of SGD in optimizing neural network
parameters, a general convergence theory is still lacking. A broad stream of literature provides theoretical
guarantees for SGD or variants thereof under fairly restrictive assumptions (Chen et al., 2020; Chizat et al.,
2019; Du et al., 2019a;b; Li & Liang, 2018; Liang et al., 2021; Zeyuan et al., 2019; Zou & Gu, 2019; Zou et al.,
2020). Therein, the authors foremost assume some kind of over-parametrization, i. e., the number of hidden
units N has to increase in linear (Liang et al., 2021), polynomial (Du et al., 2019a;b; Li & Liang, 2018;
Zeyuan et al., 2019; Zou & Gu, 2019; Zou et al., 2020) or poly-logarithmic (Chen et al., 2020) order of the
number of training samples m. For instance, in Du et al. (2019b), convergence is guaranteed if, among other
assumptions, N = Ω(m6).1 Other works make assumptions on the distribution of the input data or rely on
differentiability assumptions, i. e., smooth neural networks and smooth losses (Chizat et al., 2019). Of note,
the analyses in Chen et al. (2020); Li & Liang (2018); Liang et al. (2021), and Zou et al. (2020) are restricted
to classification tasks, while we are interested in a regression task. The aim of the aforementioned theoretical
works is to answer the question of why neural networks are so successful in non-convex high-dimensional
problems, rather than developing a unified convergence theory. Noteworthy, the analysis in Davis et al. (2020)
establishes the subsequence convergence of SGD on tame functions. In contrast, our algorithm establishes
the convergence of the whole sequence of parameters under certain assumptions. According to Zeng et al.
(2019), this gap between the subsequence convergence and the convergence of the whole sequence comes
from the fact that SGD can only achieve a descent property (see Assumption F in Davis et al. (2020)), while
we prove that our algorithm achieves a sufficient descent property.

Gradient-free methods refrain from using first-order information and deal differently with the undesired
characteristics of the objective function. One stream of research focuses on so-called extreme learning
machines (Huang et al., 2006). Their idea is to merely sample the weights and intercepts associated with
the input layer from a given probability distribution and then solve a linear least squares problem to derive
the weights associated with the hidden layer. Extreme learning machines are used in various applications,
yet they do not solve (PNN) but instead only act as a heuristic. Recently, Pilanci & Ergen (2020) showed
that there exists a convex problem with identical optimal values as (PNN), from which optimal solutions to
(PNN) can be derived. Consequently, this would give a global optimum. However, this work should be seen

1Note that over-parametrization would require neural networks with a very large number of neurons, e. g., thousands of
neurons for datasets with only a thousand training examples.
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as a purely theoretical contribution as the computational complexity of their algorithm scales exponentially
in the number of inputs n.

Surrogate loss optimization: Another stream of research does not solve (PNN) directly, but uses a
BCD or ADMM approach after replacing the objective with a surrogate loss. Both BCD and ADMM
rely on a so-called two-splitting (e. g., Carreira-Perpinan & Wang, 2014; Zhang & Brand, 2017) or three-
splitting formulation (e. g., Lau et al., 2018; Taylor et al., 2016). The underlying idea is to introduce
auxiliary coordinates for each datapoint and each hidden unit. These auxiliary coordinates appear as equality
constraints in the optimization problem of the neural network. However, as these equality constraints lead
to an intractable optimization problem, these approaches involve an alternative formulation of (PNN) in
which an additional penalty term is required to enforce the equality constraints. The resulting formulation
then allows one to optimize iteratively over different variable blocks, resulting in easier (and often convex)
subproblems (Askari et al., 2018; Lau et al., 2018; Zhang & Brand, 2017). As a result, it is oftentimes
possible to prove global convergence for these approaches (Zeng et al., 2019). However, such surrogate losses
for (PNN) lead to a decreased performance in comparison to gradient-based solvers (Askari et al., 2018; Lau
et al., 2018) or neural networks that cannot be evaluated at test time (Zhang & Brand, 2017).

Other works derive efficient training algorithms for upper bounds of the loss function; see, e. g., Berrada et al.
(2017). The latter also relies on a DC representation of the objective function. However, while the algorithm
converges in value, a thorough convergence analysis of parameters is missing. Only recently, Mishkin et al.
(2022) proposed a training algorithm for SLFNs with ReLU activation using convex optimization. However,
their approach uses a convex reformulation (C-ReLU) of (PNN) that is only equivalent to (PNN) under
additional assumption (e. g., among others again a sufficiently large number of hidden neurons), and then
solves a surrogate problem (C-GReLU) involving a different activation function, a so-called gated ReLU,
that is again only approximately solving (C-ReLU) and thus (PNN).

In sum, there is a large number of research papers that study the training of neural networks. However, to
the best of our knowledge, we are the first that present an algorithm that (i) directly solves (PNN), (ii) is
scalable to mid-sized datasets, and (iii) has general global convergence guarantees, i. e., does not rely on any
kind of over-parametrization.

3 Optimization Problem

In this section, we formalize the optimization problem and discuss necessary optimality conditions.

3.1 Problem Statement

Given a set of m training samples consisting of covariate vectors xj ∈ Rn and target variables yj ∈ R,
j = 1, . . . ,m, the objective is to optimize the parameters of a SLFN with N neurons in the hidden layer
and ReLU activation σ, as given in (PNN). Let wi ∈ Rn and bi ∈ R, i = 1, . . . , N , denote the weights and
intercepts associated with the input layer, and let αi ∈ R, i = 1, . . . , N , denote the weights associated with
the hidden layer. All trainable parameters are given by θ = (α,W, b) ∈ RN , where N = (n+2)N . We denote
the objective function in (PNN) by RegLossγ(θ) = Loss(θ) + γ · Reg(θ), where Loss(θ) is the mean squared
error loss from (PNN) defined as

Loss(θ) = 1
m

m∑
j=1

(
yj −

N∑
i=1

αiσ(〈wi, xj〉+ bi)
)2

, (1)

and Reg(θ) is a data-weighted `2-regularization defined by

Reg(θ) = 1
m

 m∑
j=1

N∑
i=1

(〈wi, xj〉+ bi)2

+ 1
m
‖α‖2. (2)

For convenience, we introduce a matrix M ∈ Rm×(n+1), which refers to the matrix with rows formed by the
covariate vectors with an additional one for the bias, i. e., (xj,1, . . . , xj,n, 1) for j ∈ {1, . . . ,m}. Using the
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above definition ofM , Equation (2) can be written as 1
m

N∑
i=1

∥∥∥∥M(wibi
)∥∥∥∥2

+ 1
m‖α‖

2. This form of regularization

has two main advantages in our derivations later on: (i) it allows to derive a convenient DC structure of
the objective function, and (ii) it allows for a closed-form solution of the sub-gradients needed in our DCA
routine. Nevertheless, it merely corresponds to a standard `2-regularization with an additional weight matrix
M .2

3.2 Necessary Optimality Conditions

We first prove the existence of a solution to (PNN).
Proposition 1 (Existence of a solution). Let MTM > 0. That is, the smallest singular value of M denoted
by σmin(M) is greater than zero, i. e., σmin(M) > 0. Then, there exists at least one solution to (PNN).
Proof. See Appendix A. �

Next, we present a necessary optimality condition. Note that the loss function in neural network parameter
optimization is, as in our case, usually not differentiable in the classical sense. Hence, to state necessary
optimality conditions for solutions to (PNN), we draw upon the concept of limiting subdifferentials. For a
detailed introduction, we refer to Penot (2012).
Definition 1 (Limiting subdifferential). Let f : RN → R ∪ {∞}. The Fréchet subdifferential of f at
x ∈ dom(f), denoted by ∂F f(x), is given by the set of vectors v ∈ RN which satisfy

lim inf
y 6=x
y→x

1
‖x− y‖

[f(y)− f(x)− 〈v, y − x〉] ≥ 0. (3)

If x /∈ dom(f), we set ∂F f(x) = ∅. Then, the limiting subdifferential of f at x ∈ dom(f), denoted by ∂Lf(x),
is defined as

∂Lf(x) = {v ∈ RN : ∃xk → x, f(xk)→ f(x), ∂F f(xk) 3 vk → v}. (4)

Definition 1 provides a generalized notion of a critical point. Based on it, we state the following necessary
optimality condition.
Remark 1 (Necessary optimality condition). A necessary condition for θ∗ ∈ RN to be a solution to (PNN)
is 0 ∈ ∂LRegLossγ(θ∗). For details, see Attouch et al. (2013) and the references therein.

Such a point θ∗ is called limiting-critical, or simply critical. Besides the need for a generalized notion of
critical points, the lack of differentiability is also challenging when it comes to analyzing the local behavior of
functions. To derive an algorithm that converges towards critical points, we need a notion of how our objective
function behaves near critical points. For this, we make use of the so-called Kurdyka-Łojasiewicz (KŁ)
property. The KŁ property is a valuable tool in the context of optimization, as it allows to reparameterize
the function locally. The KŁ property is defined as follows (Attouch et al., 2013).
Definition 2 (Kurdyka-Łojasiewicz property). A proper lower semicontinuous function f : Rn → R ∪ {∞}
fulfills the Kurdyka-Łojasiewicz property at a point x∗ ∈ dom(∂Lf) if there exists an η ∈ (0,∞], a neighbor-
hood Ux∗ of x∗, and a continuous concave function ϕ : [0, η]→ R+ such that

2Note that the standard `2-regularizer is given by a term ‖θ‖2
2, while our regularization term merely uses a different energy-

norm. That is, our regularizer can be seen as ‖θ‖2
B for a certain positive definite matrix B given by

B = 1
m


MTM 0 . . . 0 0

0 MTM . . . 0 0
...

...
. . . 0 0

0 0 0 MTM 0
0 0 0 0 I

 .
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1. ϕ(0) = 0,

2. ϕ is C1 on (0, η),

3. ∀s ∈ (0, η): ϕ′(s) > 0,

4. ∀x ∈ Ux∗ ∩ [f(x∗) < f < f(x∗) + η]: ϕ′(f(x)− f(x∗)) dist(0, ∂f(x)) ≥ 1 (KŁ inequality).

A proper lower semicontinuous function f : Rn → R ∪ {∞} which fulfills the Kurdyka-Łojasiewicz property
at each point x∗ ∈ dom(∂Lf) is called KŁ function.

In the next section, we derive an algorithm for which we later prove that it converges to a limiting-critical
point of RegLossγ .

4 DCON Algorithm

The idea behind our DCON algorithm is to show that the loss can be partly decomposed as a DC function.
For this, we show that, for certain subsets of the parameters θ, i. e., blocks, RegLossγ can be written as the
difference of convex functions. Specifically, we use a BCD approach in which we loop over different blocks Bl,
l = 1, 2, . . . , N . In each block, we yield a DC subproblem. The DC subproblem is then (approximately)
solved via a tailored DCA. The latter involves a series of convex problems and is thus computationally
efficient. After looping over all blocks Bl, the remaining variables in θ form an additional block Bα, which
is approached in the alpha subproblem. The alpha subproblem is already convex and can thus be solved
efficiently. For better understanding, we visualized the subproblems in Appendix B.1.

4.1 Derivation of Subproblems in BCD

In Proposition 2, we show that RegLossγ is a DC function if we consider only weights wl mapping to the l-th
hidden neuron and its intercept bl, and derive an explicit DC decomposition that later on allows for efficient
subgradient computations.
Proposition 2. For fixed (wi)i 6=l, (bi)i 6=l, and (αi)i=1,...,N , the loss can be written in the form

RegLossγ(α,W, b) = RegLossγ(wl, bl) = cl + gl(wl, bl)− hl(wl, bl), (5)

where cl ∈ R is a constant and the functions gl and hl are convex in (wl, bl). Both gl and hl are given by

gl(wl, bl) =
m∑
j=1

βglj σ(〈wl, xj〉+ bl) +
m∑
j=1

α2
l

m
σ(〈wl, xj〉+ bl)2 (6)

+
m∑
j=1

γ

m
(〈wl, xj〉+ bl)2, (7)

hl(wl, bl) =
m∑
j=1

βhlj σ(〈wl, xj〉+ bl), (8)

with non-negative weights βglj and βhlj . Furthermore, αl = 0 implies βglj = βhlj = 0 for all j ∈ {1, . . . ,m}.
Proof. See Appendix B. �

With the DC decomposition from Proposition 2, we can use DCA to address the corresponding subproblems.
When looping over all Bl = (wl, bl), the only weights that are not updated are the weights αi, i = 1, . . . , N
of the hidden layer. Hence, in a last step, we hold all weights constant except for α, which results in a
regularized linear least squares problem; see Proposition 3.
Proposition 3. For fixed (wi)i=1,...,N and (bi)i=1,...,N , the loss can be written in the form

RegLossγ(α,W, b) = RegLossγ(α) = cα + 1
m
‖y − Σα‖2 + γ

m
αT Iα, (9)
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where cα ∈ R is a constant, I ∈ RN×N is the identity matrix, y is the vector of target variables, α is the vector
of weights associated with the hidden layer, and Σ ∈ Rm×N is the matrix with entries Σji = σ(〈wi, xj〉+ bi)
for j ∈ {1, . . . ,m} and i ∈ {1, . . . , N}.
Proof. See Appendix B. �

Based on the above propositions, we can now optimize RegLossγ via a block coordinate descent approach
where the blocks are given by Bl = (wl, bl) for l ∈ {1, . . . , N} with objective function ODC

l (wl, bl) =
gl(wl, bl)− hl(wl, bl), and Bα = α with objective function Oα(α) = 1

m‖y − Σα‖2 + γ
mα

T Iα. We thus define
the following subproblems:

• DC subproblems: The l-th DC subproblem is defined as

inf
wl,bl

ODC
l (wl, bl). (DCl)

• alpha subproblem: The alpha subproblem is defined as

inf
α

Oα(α). (A)

In the following section, we show how both (DCl) and (A) are (approximately) solved within the BCD
approach.

4.2 Solution of Subproblems in BCD

We now derive efficient procedures to (approximately) solve the defined subproblems.3

4.2.1 Approximate Solution of DC Subproblems.

The DC subproblems (DCl) are approached with a tailored DCA. For an introduction to DCA, we refer to
Le An & Tao (2005). First, we note that αl = 0 implies that the corresponding DC subproblem reduces to
inf
wl,bl

m∑
j=1

γ
m (〈wl, xj〉 + bl)2, where a solution is given by (wl, bl) = 0. Hence, for the rest of the section, we

assume that αl 6= 0. Following Le An & Tao (2005), the DCA routine for the l-th DC subproblem is

y∗k ∈ ∂hl((wkl , bkl )), (10)
(wk+1

l , bk+1
l ) ∈ ∂g∗l (y∗k), (11)

until the norm of two successive iterates is sufficiently small (see Proposition 7 later on), and where (w0
l , b

0
l )

is a given initial solution. Therein, the convex conjugate is defined as f∗(y∗) = supx{〈y∗, x〉 − f(x)} (see,
e. g., Borwein & Lewis (2006)). There are two steps that remain to be shown: (i) How to find an element
in the subgradient of hl in Equation (10)? (ii) How to find an element in the subgradient of the convex
conjugate of gl in Equation (11)? Both are addressed in the following.

For (i), an element in ∂hl can be derived analytically. This is stated in Proposition 4.
Proposition 4. For any (wl, bl), we have that

m∑
j=1

βhlj

(
xj
1

)
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
∈ ∂hl(wl, bl), (12)

where H is the Heaviside function, i. e., H(x) = 1 for x ≥ 0 and zero otherwise.
Proof. See Appendix B. �

3Note that we use y∗ to denote the subgradient of hl to adhere to standard notation in the DCA literature. It should not
be confused with the target values denoted by y.
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Notably, Equation (12) gives the unique gradient of hl if 〈(wl, bl), (xj , 1)〉 6= 0 for all j ∈ {1, . . . ,m}.

For (ii), we first have to derive the convex conjugate of gl. However, computing the convex conjugate involves
an optimization problem itself, which makes it sometimes difficult to find a closed-form representation. In
our case, it is possible to write g∗l as the difference of a characteristic function and the value function of
a positive semidefinite quadratic program. For notation, let χΩ denote the characteristic function of a set
Ω, i. e., χΩ(x) = ∞ for x /∈ Ω and zero else. It will turn out that this difference is a very convenient
representation. All details are stated in Proposition 5.
Proposition 5. Let αl 6= 0. The convex conjugate g∗l of gl is given by

g∗l (y∗) = χΩ(y∗)− Ξl(y∗), (13)

where Ω = ker(M)⊥ for M as defined in Section 3.1 and Ξl : Rn+1 7→ R is the value function of the quadratic
program

inf
v
〈qy∗ , v〉+ 1

2v
TQlv s.t. Av = 0 and v ≥ 0 (QP)

for qy∗ ∈ R2m+2(n+1), a sparse block tridiagonal positive semidefinite matrix Ql with Ql ∈
R2m+2(n+1)×2m+2(n+1), depending solely on αl, and a full rank matrix A ∈ Rm×2m+2(n+1) independent
of y∗ and αl. Furthermore, we have dom(g∗l ) = Ω.
Proof. See Appendix B. �

In the finite case, the dependency of g∗l on y∗ is only present in the linear term 〈qy∗ , v〉, and −Ξl can be seen
as a supremum of convex functions over the general index set V = {v ∈ R2m+2(n+1) : Av = 0 and v ≥ 0}.
That is, a subgradient of g∗l can be obtained by standard subdifferential calculus techniques (see, e. g.,
Hiriart-Urruty & Lemaréchal, 2004). For this, we need a mild assumption.
Assumption 1. We assume that for all p ∈ {1, . . . , n+ 1}, there exists a solution ∆p to MT∆p = ep, where
ep is the p-th canonical basis vector. This is equivalent to assuming that MTM > 0 as in Proposition 1.

Assumption 1 is usually fulfilled if enough data are provided. Given that the above holds, we can now derive
a closed-form solution of an element in ∂g∗l (y∗). This is detailed in Proposition 6.
Proposition 6. Let αl 6= 0 and y∗ ∈ dom(g∗l ). Furthermore, let vy∗ be a corresponding solution to (QP)
with vy∗ = (v1

y∗ , v
2
y∗ , v

3
y∗ , v

4
y∗), then

−


−∆T

1 ∆T
1 0Tn+1 0Tn+1

−∆T
2 ∆T

2 0Tn+1 0Tn+1
...

...
...

...
−∆T

n+1 ∆T
n+1 0Tn+1 0Tn+1


v1

y∗

v2
y∗

v3
y∗

v4
y∗

 = v3
y∗ − v4

y∗ ∈ ∂g∗l (y∗), (14)

where 0n+1 is the zero vector in Rn+1.
Proof. See Appendix B. �

In sum, the first DCA step from Equation (10) can be performed efficiently by evaluating Equation (12). The
second DCA step from Equation (11) requires that one solves a positive semi-definite quadratic program,
which can be done efficiently by out-of-the-box solvers for convex programming. Later, we also present an
ADMM-based approach that leverages the special form of the matrix Ql to derive a scalable solver for (QP).

In the following, we analyze the convergence behavior of the DCA routine for the DC subproblem; see
Proposition 7.
Proposition 7. The DCA routine (see (10) and (11)) with y∗k as given in (12) and (wk+1

l , bk+1
l ) as given

in (14) converges in finitely many iterations to points (y∗, (w∗l , b∗l )) ∈ [∂gl(w∗l , b∗l )∩ ∂hl(w∗l , b∗l )]× [∂g∗l (y∗)∩
∂h∗l (y∗)]. Furthermore, there exists an upper bound on the number of iterations Kmax ∈ N depending solely
on the number of training samples m, and (w∗l , b∗l ) is a local solution of (DCl) if Ξl(y∗) ≤ Ξl(y) for all
y ∈ ∂hl(w∗l , b∗l ). The latter condition is equivalent to ∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ).
Proof. See Appendix B. �
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Note that the condition Ξl(y∗) ≤ Ξl(y) for all y ∈ ∂hl(w∗l , b∗l ) holds if ∂hl(w∗l , b∗l ) is a singleton. That is, for
instance, if 〈(w∗l , b∗l ), (xj , 1)〉 6= 0 for all j ∈ {1, . . . ,m}, we have that (w∗l , b∗l ) is a local solution of (DCl).
For the rest of this paper, we make the following assumption.
Assumption 2. We assume that our DCA routine always converges to a point (w∗l , b∗l ) with ∂hl(w∗l , b∗l ) ⊆
∂gl(w∗l , b∗l ), i. e., a local solution of (DCl).

Note that this assumption is merely made for convenience, as we can always ensure that ∂hl(w∗l , b∗l ) ⊆
∂gl(w∗l , b∗l ) holds by a simple restart procedure following Tao & An (1998). We provide such a procedure in
Appendix B.8.

4.2.2 Solution of Alpha Subproblem.

To derive a solution of (A), we introduce the matrix Hγ = ΣTΣ +γI. Then, by ignoring constant terms, (A)
is equivalent to the quadratic program inf

α
αTHγα − 2 〈ΣT y, α〉. Note that the objective is strictly convex.

Hence, the unique solution of (A) is given by the solution of the linear system Hγα = ΣT y.

4.3 Pseudocode

We now combine our derivations into the DCON algorithm for optimizing single hidden layer neural network
parameters (see Algorithm 1). In the pseudocode, let DCA(βgl , βhl , (w, b),K) refer to the DCA subroutine
for the l-th DC subproblem (DCl) with a given initial solution (w, b), weights βgl and βhl , and a maximum
number of K iterations. Further, let LS(Σ) refer to the solver of (A) with system matrix Σ.

The algorithm proceeds as follows. In line 1, the neural network parameters are initialized via the Xavier
initialization (Glorot & Bengio, 2010). The idea is then to approach all DC subproblems in a randomized
order starting from the current weights (see lines 3–10) and, afterward, solve the alpha subproblem in
each outer iteration (see lines 11–13). After each subproblem solution, the new weights are inserted into
the parameter vector θ. This results in a new parameter vector θ after each outer iteration (line 14).
Randomization is accomplished by sampling random permutations π of the set {1, . . . , N} from the set of
all permutations denoted by SN ; see line 3.

Algorithm 1: DCON
Input: Number of iterationsM, maximum number of DCA iterations K
Output: Neural network parameters θ∗

1 Initialize weights θ via Xavier initialization
2 for k = 0, . . . ,M do
3 Choose random permutation π ∈ SN
4 for j = 1, . . . , N do

/* Construct l-th DC subproblem */
5 Set l← π(j)
6 Get initial weights and intercept for subproblem l from parameter vector (wkl , b

k
l )← GetWeights(θ, l)

7 Compute βgl , βhl ← ComputeBetas(θ, l)
/* DCA for DC subproblem */

8 (wk+1
l

, bk+1
l

)← DCA(βgl , βhl , (wkl , b
k
l ),K)

9 Update parameter vector θ ← InsertWeights(wk+1
l

, bk+1
l

, θ)
10 end

/* Construct alpha subproblem */
11 Get weights and intercepts for alpha subproblem from parameter vector (wk+1

1 , . . . , wk+1
N

, bk+1
1 , . . . , bk+1

N
)← GetWeights(θ)

12 Compute system matrix Σ← BuildSigma(wk+1
1 , . . . , wk+1

N
, bk+1

1 , . . . , bk+1
N

)
/* Solve alpha subproblem */

13 αk+1 ← LS(Σ)
14 Update parameter vector θ ← InsertWeights(αk+1, θ)
15 end
16 return θ

4.4 Computational Complexity

The computational complexity of Algorithm 1 is mainly driven by the cost for solving the quadratic program
from Proposition 5. The quadratic program is solved at most K times for each of the N hidden neurons in
each outer iteration. While state-of-the-art solvers for convex programming are able to exploit the sparsity

9
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pattern in Ql, the worst case complexity is still O(m3) assuming that m � n. As a remedy, we derive an
algorithm based on an ADMM approach in Appendix C. Our ADMM approach leverages the block form
of Ql and reduces the computational complexity to O(Lm2), where L is the maximum number of ADMM
iterations. In addition, it relies only on basic linear algebra operations that can be implemented efficiently
(e. g., using BLAS/LAPACK libraries for CPUs or cuBLAS for GPUs).

5 Convergence Analysis

In the following, we provide a convergence analysis for DCON. For this, we first list a set of convergence
conditions (Section 5.1) and show that these are fulfilled (Section 5.2). Afterward, we prove that our
algorithm converges globally and give conditions under which it even yields a global solution (Section 5.3).
Finally, we analyze the convergence rate of our algorithm (Section 5.4).

5.1 Convergence Conditions

Our convergence analysis builds upon the framework in Attouch et al. (2013). Therein, the authors show
that a sequence (xk)k∈N converges to a limiting-critical point of a proper lower semicontinuous function
f : RN → R ∪ {∞} if the following four conditions are fulfilled:

(H0) The function f is a KŁ function.
(H1) Sufficient decrease condition: There exists an a > 0 such that, for all k ∈ N,

f(xk+1) + a ‖xk+1 − xk‖2 ≤ f(xk) holds true.
(H2) Relative error condition: There exists a constant b > 0 such that, for all k ∈ N, there

exists a vk+1 ∈ ∂Lf(xk+1) which satisfies ‖vk+1‖ ≤ b ‖xk+1 − xk‖.
(H3) Continuity condition: There exists a subsequence (xkj )j∈N and x̃ such that xkj → x̃

and f(xkj )→ f(x̃) for j →∞.

Condition (H0) can be relaxed. The function f only has to fulfill the Kurdyka-Łojasiewicz property at x̃
specified in (H3). We further note that, if all of the above conditions are met, the sequence (xk)k∈N has
finite length, i. e.,

∑∞
k=0‖xk+1 − xk‖ <∞. Later on, this will be used to guarantee fast convergence.

5.1.1 Preliminaries.

For our convergence analysis, we need a notion of sufficient descent for DCA. The following lemma summarizes
previous research (Le An & Tao, 1997). Therein, let ρ(f) denote the modulus of strong convexity for a convex
function f , i. e., ρ(f) = sup{ρ ≥ 0 : f(·)− ρ

2‖·‖
2 is convex}. In particular, f is strongly convex if ρ(f) > 0.

Lemma 1 (Sufficient descent of DCA). Let f = g − h with convex functions g and h. Furthermore,
let (xk)k∈N be the sequence generated by DCA. If one of the functions g or h is strongly convex, then
f(xk)− f(xk+1) ≥ (ρ(g) + ρ(h)) ‖xk+1 − xk‖2.
Proof. See Le An & Tao (1997). �

In order to prove that all of the above convergence conditions are fulfilled, we make an additional assumption.
Assumption 3. Let K be the maximum number of DC iterations in Algorithm 1. We assume that all DCA
subroutines for solving (DCl) with l ∈ {1, . . . , N} converge within no more than K iterations.

Note that Proposition 7 has already derived the finite convergence of DCA for our DC subproblems. As
such, Assumption 3 merely guarantees a uniform upper bound of DC iterations across all DC subproblems.
Note also that Assumption 3 is always fulfilled for K = Kmax. Even in the case that restarts are necessary
to ensure Assumption 2, Assumption 3 is fulfilled if we set K = (Kmax)2. These bounds are merely rough
estimates and can get very large. However, they are by no means tight and in practice setting K to 50 is
already sufficient as demonstrated in our numerical experiments later on.

10
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5.2 Proof of Convergence Conditions

In the following, we prove first that the loss function fulfills (H0). We then prove that the sequence (θk)k∈N
generated by Algorithm 1 fulfills each of the conditions (H1), (H2), and (H3).

5.2.1 (H0) KŁ Property of the Loss Function.

The next proposition shows that RegLossγ belongs to the class of KŁ functions.
Proposition 8 (KŁ property of the loss function). The loss function RegLossγ is a KŁ function with
ϕ(s) = CKLs

1−ξ for a constant CKL > 0 and ξ ∈ [0, 1).
Proof. See Appendix D. �

The KŁ property is widely used in optimization. The class of functions that satisfy the KŁ property is large.
For instance, it includes all continuous subanalytic functions with closed domain (Bolte et al., 2007).

5.2.2 (H1) Sufficient Decrease Condition.

We now prove that each subproblem solution achieves a sufficient local decrease, that is, fulfills (H1). After-
ward, we combine the results to prove the sufficient decrease condition for the sequence (θk)k∈N.

We begin with the DC subproblem. Lemma 1 gives a sufficient descent for DCA if one of the involved
functions is strongly convex. The following lemma shows that the modulus of strong convexity of gl is
uniformly bounded from below.
Lemma 2 (Strong convexity of gl). Let gl(wl, bl) be the convex function defined in Proposition 2. Then,
ρ(gl) ≥ 2γ

m σmin(M) holds true independently of l.
Proof. See Appendix D. �

Due to Assumption 1, σmin(M) is positive and, thus, gl is strongly convex. The latter now allows to derive
the sufficient decrease condition for the DC subproblems.
Lemma 3 (Sufficient decrease condition for DC subproblems). Let zj denote the j-th iterate of DCA for
the l-th DC subproblem (DCl) in the k-th outer iteration, i. e., z0 = (wkl , bkl ) is the starting point and
zK = (wk+1

l , bk+1
l ) the endpoint after K iterations. Then,

gl(z0)− hl(z0)−
(
gl(zK)− hl(zK)

)
≥ 2γσmin(M)

Km
‖zK − z0‖2 (15)

holds, which is equivalent to

ODC
l (wkl , bkl )−ODC

l (wk+1
l , bk+1

l ) ≥ 2γσmin(M)
Km

∥∥(wk+1
l , bk+1

l )− (wkl , bkl )
∥∥2
. (16)

Proof. See Appendix D. �

Next, we prove the sufficient decrease condition for the alpha subproblem.
Lemma 4 (Sufficient decrease condition for alpha subproblem). Let Σ be given as in Proposition 3 and
αk+1 be the solution of (A). Then,

Oα(αk)−Oα(αk+1) ≥ γ

2 ‖α
k − αk+1‖2. (17)

Proof. See Appendix D. �

Finally, we combine the results from above to ensure a sufficient decrease in the loss function, as stated in
Proposition 9.

11
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Proposition 9 (Sufficient decrease condition). Let (θk)k∈N be the sequence generated by Algorithm 1. Then,
(θk)k∈N satisfies the sufficient decrease condition (H1). That is, there exists an a > 0 such that

RegLossγ(θk+1) + a ‖θk+1 − θk‖2 ≤ RegLossγ(θk). (18)

Proof. See Appendix D. �

5.2.3 (H2) Relative Error Condition.

We now prove that (θk)k∈N satisfies (H2). For this, we present some additional intermediate results as
follows. First, Lemma 5 proves that (θk)k∈N stays uniformly bounded during optimization.
Lemma 5 (Boundedness of (θk)k∈N). The sequence (θk)k∈N generated by Algorithm 1 is uniformly bounded
by a constant Γ > 0.
Proof. See Appendix D. �

Second, we show that the terms βglj and βhlj are Lipschitz continuous functions in θ.
Lemma 6. The functions

βglj (θ) = 1
m

(
ξ(2yjαl) +

N∑
i=l+1

2σ(αiαl)σ(〈wi, xj〉+ bi) +
l−1∑
k=1

2σ(αlαk)σ(〈wk, xj〉+ bk)
)
, (19)

βhlj (θ) = 1
m

(
σ(2yjαl) +

N∑
i=l+1

2ξ(αiαl)σ(〈wi, xj〉+ bi) +
l−1∑
k=1

2ξ(αlαk)σ(〈wk, xj〉+ bk)
)
, (20)

where ξ(x) = max(−x, 0) are Lipschitz in BΓ(0) ⊆ RN .
Proof. See Appendix D. �

Third, Proposition 10 gives a closed-form representation of elements in the limiting subdifferential of the
loss function.
Proposition 10 (Limiting subdifferential of the loss function). Let θ be given. Furthermore, let εg =
(εg1 , . . . , εgN ) and εh = (εh1 , . . . , εhN ) with εgl , εhl ∈ [0, 1]m for all l ∈ {1, . . . , N}, and let

∀j ∈ {1, . . . ,m} : εglj , ε
hl
j ∈

{
{1}, if 〈wl, xj〉+ bl 6= 0,
[0, 1], else

(21)

and let the condition

0 ≤ βglj ε
gl
j − β

hl
j ε

hl
j ≤ β

gl
j − β

hl
j for j ∈ {1, . . . ,m} with 〈wl, xj〉+ bl = 0, (22)

hold true. Then, the vectors

v(θ, εg, εh) =
(

(vl,t(θ, εgl , εhl))l=1,...,N
t=1,...,n

, (vl(θ, εgl , εhl))l=1,...,N , (vα,l(θ))l=1,...,N

)
, (23)

12
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with entries

vl,t(θ, εgl , εhl) =
m∑
j=1

βglj H (〈wl, xj〉+ bl)xj,tεglj (24)

+
m∑
j=1

2α
2
l

m
H (〈wl, xj〉+ bl)xj,t (〈wl, xj〉+ bl) (25)

+
m∑
j=1

2 γ
m
xj,t (〈wl, xj〉+ bl)−

m∑
j=1

βhlj H (〈wl, xj〉+ bl)xj,tεhlj , (26)

vl(θ, εgl , εhl) =
m∑
j=1

βglj H (〈wl, xj〉+ bl) εglj (27)

+
m∑
j=1

2α
2
l

m
H (〈wl, xj〉+ bl) (〈wl, xj〉+ bl) (28)

+
m∑
j=1

2 γ
m

(〈wl, xj〉+ bl)−
m∑
j=1

βhlj H (〈wl, xj〉+ bl) εhlj , (29)

vα,l(θ) = 1
m

m∑
j=1

[
2
(
yj −

N∑
i=1

αiσ(〈wi, xj〉+ bi)
)

(−σ(〈wl, xj〉+ bl))
]

(30)

+2 γ
m
αl, (31)

are elements of the limiting subdifferential of the loss function, i. e.,{
v(θ, εg, εh) : εgl , εhl ∈ [0, 1]mfulfilling (21) and (22) for all l ∈ {1, . . . , N}

}
(32)

is a subset of ∂LRegLossγ(θ). Here, H(x) denotes again the Heaviside function, i. e., H(x) = 1 if x ≥ 0 and
zero else.
Proof. See Appendix D.

From the proof of Proposition 10, it follows that, for l ∈ {1, . . . , N}, the elements(
(vl,t(θ, εgl , εhl))t∈{1,...,n}, vl(θ, εgl , εhl)

)
= yg(wl, bl, εgl)− yh(wl, bl, εhl), (33)

where yg(wl, bl, εgl) ∈ ∂gl(wl, bl) and yh(wl, bl, εhl) ∈ ∂hl(wl, bl). Now, let θDC,k
l denote the parameter vector

after the l-th DC subproblem when starting with θk. From Proposition 7 and Assumption 3, we know that for
all εhl,k fulfilling (21) for θDC,k

l there exists an εgl,k fulfilling (21) for θDC,k
l such that yg(wk+1

l , bk+1
l , εgl,k) =

yh(wk+1
l , bk+1

l , εhl,k). When solving additional DC subproblems and the alpha subproblem to reach θk+1,
the terms βglj (θDC,k

l ) and βhlj (θDC,k
l ) change to βglj (θk+1) and βhlj (θk+1). To prove condition (H2), we need

to make sure that
(
(vl,t(θk+1, εgl,k, εhl,k))t∈{1,...,n}, vl(θk+1, εgl,k, εhl,k)

)
∈ ∂L(wl,bl)RegLossγ(θk+1) and, hence,

need εgl,k, εhl,k to fulfill (22) at θk+1. Thus, we make the following technical assumption.
Assumption 4 (Differentiability assumption). For each k ∈ N and l ∈ {1, . . . , N}, we assume there exists
an εhl,k such that the corresponding εgl,k with(

(vl,t(θDC,k
l , εgl,k, εhl,k))t∈{1,...,n}, vl(θDC,k

l , εgl,k, εhl,k)
)

= 0 (34)

and εhl,k fulfill (22) at θk+1.

Now, we can use the above to derive a useful technical property in Lemma 7. The lemma is later used to
establish the relative error condition for (θk)k∈N.
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Lemma 7 (Technical lemma). Let k ∈ N and Assumption 3 and Assumption 4 hold. For each l ∈ {1, . . . , N}
there exists a C > 0 independent of l ∈ {1, . . . , N} and vk+1

l ∈ ∂L(wl,bl)RegLossγ(θk+1) such that

‖vk+1
l ‖1 ≤ C‖θk+1 − θDC,k

l ‖1 + C|αk+1
l − αkl |. (35)

Proof. See Appendix D.

Finally, we combine the above results. This yields Proposition 11, which establishes (H2) for (θk)k∈N.
Proposition 11 (Relative error condition). Let (θk)k∈N be the sequence generated by Algorithm 1 and
Assumption 3 and 4 hold. Then, (θk)k∈N satisfies the relative error condition (H2), i. e., there exists a b > 0
such that, for all k ∈ N, there exists a vk+1 ∈ ∂LRegLossγ(θk+1), which satisfies

‖vk+1‖ ≤ b ‖θk+1 − θk‖. (36)

Proof. See Appendix D.

5.2.4 (H3) Continuity Condition.

Finally, we prove the continuity condition (H3). From Lemma 5, we have that ‖θk‖ is uniformly bounded
for all k ∈ N. Hence, there exists a convergent subsequence, and, therefore, (H3) follows by the continuity
of RegLossγ .

5.3 Global Convergence.

The derivations from the last section are now summarized in Theorem 1.
Theorem 1 (Global convergence of DCON). Let Assumption 1 to 4 hold. Furthermore, let (θk)k∈N be the
sequence generated by Algorithm 1. Then, DCON converges to a limiting-critical point of the loss function
independent of the initial weights, i. e., lim

k→∞
θk = θ∗ and 0 ∈ ∂LRegLossγ(θ∗). Furthermore, the sequence

(θk)k∈N has the finite length property, i. e.,
∞∑
k=0
‖θk+1 − θk‖ <∞.

Proof. Follows from (H0), (H1), (H2) and (H3).

We note that Theorem 1 yields the global convergence to a limiting-critical point, i. e., the convergence to
a limiting-critical point independent of the weight initialization. However, this does not necessarily ensure
convergence to local minima. In other words, even if the conditions (H0), (H1), (H2) and (H3) are satisfied,
the proximity of the starting point θ0 to a local minimizer θ∗ does, in general, not imply that the limit is
near θ∗. This is owed to the fact that the sequence is not generated by a local model of the objective function
(Attouch et al., 2013). However, we can show that DCON converges to a global minimum of RegLossγ when
θ0 is sufficiently near; see Proposition 12.
Proposition 12 (Convergence to global minimum). Under the assumptions of Theorem 1, the following
holds true. If θ∗ ∈ arg min

θ
RegLossγ(θ), there exists a neighborhood Uθ∗ of θ∗ such that θ0 ∈ Uθ∗ ⇒

lim
k→∞

θk = θ∗. See Appendix D.

While Assumption 1 to 3 can be well justified, Assumption 4 is quite technical. Nevertheless, DCON
converges globally in value under much weaker assumptions.
Theorem 2 (Global convergence of DCON in value). Let Assumption 1 hold. Furthermore, let (θk)k∈N be
the sequence generated by Algorithm 1. Then, DCON converges in value, i. e., (RegLossγ(θk))k∈N converges
to the infimum inf

k∈N
RegLossγ(θk).

Proof. Follows from monotone convergence.
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5.4 Convergence Rates

According to Theorem 1, the generated sequence has the finite length property. This is usually associated
with fast convergence. In the following, we derive the convergence order of DCON, depending on the KŁ
exponent ξ of the function ϕ as specified in Proposition 8.
Proposition 13 (Local convergence of the parameters). Under the assumptions of Theorem 1, let ξ be the
KŁ exponent associated with θ∗. Then, the following holds true:

• If ξ = 0, DCON converges in finitely many iterations.
• If ξ ∈ (0, 1

2 ], DCON converges R-linearly.
• If ξ ∈ ( 1

2 , 1), DCON converges R-sublinearly.

Proof. See Appendix D.

For machine learning practice, the convergence in value is also of interest. Here, one is also interested in
how fast the value of the loss decreases. For DCON, Proposition 14 gives conditions under which the loss
sequence

(
RegLossγ(θk)

)
k∈N converges with order q.

Proposition 14 (Local convergence of the loss). Under the assumptions of Theorem 1, let ξ be the KŁ
exponent associated with θ∗. Then, the following holds true:

• If ξ ∈ ( 1
2(q+1) ,

1
2q ], the loss converges with order q ∈ N.

• If ξ > 1
2 , the loss converges Q-sublinearly.

Furthermore, if ξ ∈ ( 1
2(q+1) ,

1
2q ), we even observe super-Q-convergence. Proof. See Appendix D.

Proposition 14 shows that DCON can converge very fast in value given a small KŁ exponent ξ ≤ 1/2.
For example, if ξ ∈ ( 1

6 ,
1
4 ), the loss converges Q-super-quadratically, while, for ξ = 1

4 , the loss converges
Q-quadratically. In the following, we give conditions under which the convergence rate in value can be
transferred to the parameters.
Proposition 15 (Convergence of DCON under local convexity assumption). Under the assumptions of
Theorem 1, let ξ be the KŁ exponent associated with θ∗. If RegLossγ admits a neighborhood U∗ of θ∗ in
which RegLossγ is strictly convex, the following holds true: If ξ ≤ 1

2q for q ∈ N≥2, DCON converges with a
Q-convergence order of at least q − 1

2 . Proof. See Appendix D.

Proposition 13 can be seen as a standard result in the KŁ literature, whereas Proposition 14 and Proposi-
tion 15 follow from stronger assumptions on the underlying objective function. For a discussion on how our
results are linked to the general KŁ literature, we refer to Appendix E.

In summary, the above results show that DCON can achieve fast convergence of parameters and loss values
under mild assumptions. For comparison, given optimal assumptions (i. e., continuously differentiable and
strongly convex objective function with Lipschitz continuous gradient), first-order methods converge only
linearly (van Scoy et al., 2018), while DCON achieves the same if ξ = 1/2 but without any additional
assumptions. Evidently, the KŁ exponent ξ is crucial in the above convergence analysis. Determining the
Kurdyka-Łojasiewicz exponent for general KŁ functions is still an open research problem. There are works
that try to derive calculus rules to determine KŁ exponents under various operations on KŁ functions (Li &
Pong, 2018), such as, for instance, the composition (see Theorem 3.2 in Li & Pong, 2018) or block separable
sums (see Theorem 3.3 in Li & Pong, 2018) of KŁ functions. Other works determine the KŁ exponent for
certain classes of functions, often involving some kind of polynomial representation (Li et al., 2015; Bolte
et al., 2017). However, most of these results rely on very strong assumptions on the underlying function,
e. g., differentiability or convexity. To the best of our knowledge, there are no results that can be directly
used in our – in general – non-differentiable and non-convex setting. Nevertheless, the following proposition
gives conditions under which a KŁ exponent ξ = 1/2 can be achieved.
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Proposition 16 (KŁ exponent of the loss). Under the assumptions of Theorem 1, let (θk)k∈N be the sequence
generated by DCON converging to some θ∗ = (α∗,W ∗, b∗). If (W ∗, b∗) is such that 〈w∗i , xj〉+ b∗i 6= 0 for all
i ∈ {1, . . . , N} and j ∈ {1, . . . ,m}, and ∇2RegLossγ(θ∗) is invertible, RegLossγ fulfills the KŁ property at
θ∗ with ξ = 1/2. Proof. See Appendix D.

6 Numerical Experiments

6.1 Experimental Setup

Our algorithm is evaluated based on nine datasets (named DS1 to DS9 in the following) that originated
from a systematic search. Details can be found in Appendix F.2. In short, we draw upon the UCI machine
learning repository4 and set the filter options to pure regression tasks with numerical attribute type and
multivariate data with 100–1000 instances in the training set. Each of the datasets is preprocessed using
standard techniques (e. g., scaling of covariates), while taking into account the specifics of each dataset.
Details are provided in Appendix F.3.

As a baseline, we consider a state-of-the-art variant of stochastic gradient descent, namely Adam (Kingma &
Ba, 2014). On each dataset, we train DCON and the baseline on 30 random train-test splits for three different
hidden layer sizes N ∈ {10, 20, 30}. Besides that, the neural network architecture has one hyperparameter
(regularization parameter γ), which we tune via grid search. We set the maximum number of DCA iterations
to K = 50 and stop DCON afterM = 1000 iterations. For Adam, we use early stopping with a patience of
10 epochs and a standard `2-regularization. In addition, there are further hyperparameters related to the
training algorithm for Adam (i. e., learning rate, first moment exponential decay rate, and batch size). These
are also tuned via grid search for each of the 9 ·3 ·30 = 810 training instances. Details are listed in Appendix
F.4. In contrast, comparable hyperparameters related to the training algorithm are absent for DCON.

The results of our main experiments are in Section 6.2. The section reports the prediction performance in
terms of mean squared error (MSE), which we average over all 30 runs, i. e., different train-test splits. We
further provide a numerical analysis demonstrating our theoretical findings: global convergence guarantees
and rate of convergence (Section 6.3). Finally, we show the scalability of DCON by applying it to the MNIST
benchmark dataset (LeCun et al., 2010) in Section 6.4.

6.2 Overall Numerical Performance

Table 1 reports the relative improvements of DCON in the mean squared error for both the training and
test set. On average, our approach outperforms Adam across all layer sizes.

Training loss. For the training loss, we find large improvements on almost all datasets and layer sizes.
When averaging over all 27 combinations of dataset and layer size, we observe an improvement by a factor
of 1.54. For 8 out of 9 datasets, we consistently outperform the baseline by a factor of up to 12.02 (DS6).
Only for one dataset (DS7), DCON and Adam are on par (here, Adam is slightly better for a layer size of
N = 10, whereas the performance of both is comparable for all other layer sizes). Table 1 (bottom row) also
lists the average performance improvement per layer size. Here, we see consistent and large improvements,
ranging between a factor of 1.19 and a factor of 1.90.

Test loss. For the test loss, we see an average improvement by a factor of 0.64 when averaging across all
combinations of datasets and layer sizes. On 6 out of 9 datasets, DCON is on par with or even outperforms
Adam, showing improvements by a factor of up to 11.81. One further observes a clear performance improve-
ment of DCON for smaller layer sizes, i. e., for N = 10 neurons in the hidden layer. For N = 10, we obtain
an average improvement of a factor 1.61 for the test loss. For N = 20 and N = 30 neurons in the hidden
layer, the improvements still amount to 18% and 13%, respectively.

In sum, we confirm numerically that DCON is superior in the training task. DCON yields lower mean
squared errors than Adam, often by multiple orders of magnitude. This may be attributed to the properties
of DCA, namely that DCA often converges to global solutions (Le An & Tao, 2005). Furthermore, our

4https://archive.ics.uci.edu/ml/index.php, last accessed 03/20/20.
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results show that DCON can effectively generalize to unseen data. We think that one reason is the superior
training performance, as generalization bounds for regression problems show that lower training losses lead
to tighter generalization bounds (e. g., Mohri et al., 2018). We offer a detailed discussion in Appendix F.5.

Table 1: Relative performance improvement in mean squared error of DCON over Adam.

Training Test

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

DS1 3.69 (9.27) 1.79 (1.08) 1.76 (0.52) 0.80 (3.00) 0.21 (0.54) 0.12 (0.67)
DS2 0.26 (0.06) 0.43 (0.07) 0.60 (0.08) −0.20 (0.15) −0.29 (0.17) −0.26 (0.12)
DS3 0.10 (0.04) 0.13 (0.04) 0.14 (0.04) −0.10 (0.12) −0.13 (0.09) −0.16 (0.10)
DS4 2.41 (2.86) 1.54 (0.95) 2.18 (0.86) 1.72 (2.25) 1.14 (1.01) 1.16 (0.85)
DS5 3.11 (15.04) 0.60 (2.67) 0.25 (0.71) 11.81 (50.77) 0.35 (2.00) −0.11 (0.62)
DS6 3.70 (0.91) 12.02 (3.20) 5.04 (0.93) 0.49 (0.82) 0.33 (0.61) 0.47 (0.80)
DS7 −0.01 (0.09) 0.00 (0.06) 0.00 (0.05) −0.04 (0.09) −0.01 (0.11) −0.02 (0.08)
DS8 0.06 (0.07) 0.06 (0.04) 0.09 (0.05) 0.00 (0.08) 0.00 (0.07) 0.00 (0.07)
DS9 0.36 (0.11) 0.55 (0.11) 0.64 (0.11) 0.04 (0.14) 0.02 (0.13) 0.02 (0.15)

Average 1.52 (3.16) 1.90 (0.91) 1.19 (0.37) 1.61 (6.38) 0.18 (0.53) 0.13 (0.38)
Results are based on 30 runs with different train-test splits. Reported is the mean performance improvement
(e. g., 0.1 means 10%) and the standard deviation (Std.) in parentheses.

Theoretically, an extremely large number of hidden neurons N can guarantee the convergence of SGD to
a global minimum (Du et al., 2019a;b; Zeyuan et al., 2019; Zou & Gu, 2019). To see whether DCON is
still beneficial in such an over-parameterized setting, we perform additional experiments in Appendix J.1.
Evidently, DCON also benefits from large N and remains superior over SGD. This might be due to the
fact that over-parameterization allows to avoid unfavorable local minima in the landscape of the training
objective (Zeyuan et al., 2019).

6.3 Numerical Analysis of Convergence Behavior

In this section, we perform further numerical experiments to study the convergence behavior of DCON.
That is, in the following, we assume that Assumption 1 to 4 hold. We demonstrate that DCON converges
to a limiting-critical point. Furthermore, we empirically assess the convergence rate in the training loss and
compare it to our theoretical findings from Proposition 14. To do so, we draw upon the neural network
architecture (i. e., the tuned regularization parameter) from the previous section and let DCON only termi-
nate upon convergence (i. e., if ‖θk+1 − θk‖2 < 10−6). We then repeat the experiments with this stopping
criterion and report results from a single run (i. e., train-test split). To facilitate comparability, the exact
same initial weights θ0 = (α0,W 0, b0) are used for both DCON and Adam. For the same reason, we use a
full batch size for Adam to ensure accurate computations of the gradients and mean squared errors.

Convergence to critical points. In Figure 1, we demonstrate the convergence of DCON to limiting-critical
points. The example shows the convergence for dataset DS1 with N = 30. Plots for all other datasets and
layer sizes can be found in Appendix F.6. Figure 1a shows how the optimization lets the element in the
limiting subdifferential (defined in Proposition 11) approach zero. Figure 1b reports the distance between
the parameter vectors from two successive iterations, i. e., ‖θk+1 − θk‖2. As expected, we find that the
distance between two successive iterates decreases gradually.
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Figure 1: Convergence to critical points for dataset DS1 (N = 30): Results are based on dataset DS1,
N = 30, and a single train-test split. The term epochs is used to refer to outer iterations. Results for all
other datasets and layer sizes are in Appendix F.6. Plot (a) shows the norm of v(θk+1, εg,1), where εg is
determined by solving minεgl∈C

n∑
t=1

(vl,t(θDC
l , εgl ,1))2 + (vl(θDC

l , εgl ,1))2 after each DC subproblem for each

inner iteration. Note that C decodes the constraints in (21). The rationale is to find the values for εgl that
set the corresponding entries of v to zero for εhl = 1, which exist due to Proposition 7. Note that we assume
that (22) is fulfilled for (εgl ,1), i. e., we assume that Assumption 4 holds for εhl = 1. Plot (b) shows the
distance between two successive iterates.

Rate of convergence. We now analyze the convergence speed empirically. For this, we compare the mean
squared error in the early training phase (here: the first 30 iterations) of DCON and Adam. This is shown
in Figure 2a. Evidently, DCON appears to learn faster than Adam in epochs. Here, we adopt the term
epoch to report the outer iterations of DCON, as this coincides with the point when each parameter has
been updated once. Nevertheless, there is much more optimization involved in an epoch of DCON compared
to an epoch of Adam which merely consists of a gradient step. That is, the two curves might not be directly
comparable.

We also estimate the convergence order of
(
RegLossγ(θk)

)
k∈N empirically. The results are plotted in Fig-

ure 2b. The convergence order is estimated to q ≈ 1.000, and, hence, we observe linear convergence. In
the early phase (first 30 iterations), we observe a faster decay. Similar conclusions can be drawn for most
datasets and layer sizes (see Appendix F.6).
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(a) MSE in early training phase
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Estimated convergence order (total): 1.000
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(b) Estimated convergence order

Figure 2: Rate of convergence for dataset DS1 (N = 30): Plot (a) shows the mean squared error (MSE)
in the early training phase, i. e., the first 30 iterations, of DCON and Adam. In plot (b) we estimate the
convergence order of

(
RegLossγ(θk)

)
k∈N. That is, we define ek =

∣∣RegLossγ(θk)− RegLossγ(θ∗)
∣∣ and plot

ln(ek+1) against ln(ek). Afterward, we fit a linear regression where the slope of the corresponding line gives
the estimated order of convergence. We estimate it once in the early training phase and once for all epochs.
The estimated convergence order is 1.000.
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6.4 Scalability

We now demonstrate the scalability of DCON. For this, we leverage the ADMM-based quadratic programing
solver proposed in Appendix C. While a quadratic complexity hinders DCON to scale to applications with
millions of samples (also due to memory restrictions), it still scales to medium-sized datasets, i. e., with
m < 10, 000. To demonstrate this, we apply DCON to the widely used benchmark dataset MNIST (LeCun
et al., 2010). MNIST provides a multi-label classification task, where the inputs are images of handwritten
digits (ranging from “0” to “9”) based on which the corresponding digit should be predicted. Overall, MNIST
comprises of m = 60, 000 images for training and m = 10, 000 images for testing.

As MNIST provides a multi-label classification task (while this paper considers a regression task), we train
one regression model for each digit, i. e., a one-vs.-all approach, where the correct digit is encoded with a
one and the rest with minus one. Implementation details are provided in Appendix G. We then measure the
prediction performance on the training set via the mean squared error as we did above. During testing, we
combine the predictions from the ten different digit-specific neural networks via an ensemble. The ensemble
returns the label corresponding to the neural network for which the prediction is closest to one, yielding
a discrete target label. Accordingly, we later report the mean squared error during training (where lower
values are better) and the accuracy during testing (where larger values are better).

For our experiments, we use a subset of m = 10, 000 samples from the MNIST dataset for training. DCON
terminates on average within two hours for each digit (compared to 15 minutes for Adam). The runtime
drops drastically for smaller datasets, where DCON can also outperform Adam in terms of computing time
by several orders of magnitude. To further analyze the limits using current hardware, we also run DCON
on the complete MNIST benchmark dataset. Table 2 reports the prediction performances.

In sum, our results show that DCON scales well to medium-sized datasets with m < 10.000 observations.
For comparison, Lee et al. (2013) use datasets with m ≈ 100, while datasets in Haugh & Kogan (2004)
correspond to m ≈ 4000.

Table 2: Performance of DCON and Adam for the MNIST benchmark dataset.

Training MSE Test accuracy

Digit Digit Digit Digit Digit Digit Digit Digit Digit Digit Ensemble
0 1 2 3 4 5 6 7 8 9

MNIST subset
Adam 0.05 0.04 0.07 0.09 0.09 0.10 0.07 0.07 0.11 0.13 0.93
DCON 0.02 0.03 0.03 0.06 0.05 0.04 0.04 0.04 0.08 0.06 0.94
Improv. 1.50 0.33 1.33 0.50 0.80 1.50 0.75 0.75 0.38 1.17 0.01

Complete MNIST dataset
Adam 0.05 0.05 0.08 0.09 0.15 0.09 0.06 0.07 0.12 0.10 0.94
DCON 0.03 0.03 0.05 0.08 0.06 0.09 0.05 0.05 0.10 0.09 0.94
Improv. 0.67 0.67 0.60 0.12 1.50 0.00 0.20 0.40 0.20 0.11 0.00

Prediction performance is measured via mean squared error (MSE) during training (lower is better)
and via accuracy during testing (higher is better). We also report the relative performance improve-
ment of DCON over Adam (e. g., 0.1 means a 10% improvement of DCON over Adam).

7 Conclusions and Future Work

We proposed an algorithm to optimize parameters of single hidden layer feedforward neural networks. Our
algorithm is based on a blockwise DC representation of the objective function. The resulting DC subproblems
are approached with a tailored difference-of-convex functions algorithm. We proved that DCON converges
globally in value and to limiting-critical points under additional assumptions. Furthermore, we analyzed
DCON in terms of convergence speed and convergence to global minima.

There are two directions for future work that we think are of particular value. First, Assumption 4 is
quite technical and not easy to verify. Here, it might be possible to develop a proof that establishes (H2)
without Assumption 4. For this, one might use a more involved analysis using the properties of the limiting
subdifferential in Proposition 10 to get rid of condition (22), as by now we are directly working with Fréchet
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subdifferentials. Second, research could work on a parallel version of our algorithm and make it scalable to
much larger datasets. We provide first theoretical insights in how DCON can be parallelized in Appendix
K.1. Our derivations show how the quadratic program from Proposition 5 can be decomposed into a sum
of much smaller quadratic programs. A parallel algorithm based on this decomposition can further help
counteracting the theoretical computational complexity of O(m2).
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A Optimization Problem

A.1 Proof of Proposition 1

Proof. We prove the existence of a solution to (PNN) by showing that the loss function is coercive. Coercivity
follows by

RegLossγ(θ) ≥ 1
m

m∑
j=1

(〈wl, xj〉+ bl)2 (37)

= 1
m

∥∥∥∥M(wlbl
)∥∥∥∥2

≥ σmin(M)
m

∥∥∥∥(wlbl
)∥∥∥∥2

, for all l ∈ {1, . . . , N}, and (38)

RegLossγ(θ) ≥ 1
m
‖α‖2. (39)

Using the continuity of RegLossγ(θ), the existence of a solution follows. �
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B Derivation of Algorithm

B.1 Visualization of Subproblems

For better understanding, we visualize the parameters involved in each of the subproblems on a simplified
examples with N = 5 hidden neurons. Figure 3a shows the parameter notations. Note that the bias terms b
are located on the hidden neurons. Figures 3b to 3f show the corresponding DC subproblems, while Figure 3g
visualizes the alpha subproblem.

(a) Parameter

(b) DC Subproblem 1 (c) DC Subproblem 2 (d) DC Subproblem 3

(e) DC Subproblem 4 (f) DC Subproblem 5 (g) alpha Subproblem

Figure 3: Visualization of Subproblems.
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B.2 Proof of Proposition 2

Proof. To derive the stated decomposition, we proceed as follows:

m RegLossγ(wl, bl) =
m∑
j=1

(
yj −

N∑
i=1

αiσ(〈wi, xj〉+ bi)
)2

(40)

+ γ

m∑
j=1

N∑
i=1

(〈wi, xj〉+ bi)2 + γ‖α‖2 (41)

=
m∑
j=1

(
y2
j − 2yj

N∑
i=1

αiσ(〈wi, xj〉+ bi) +
(

N∑
i=1

αiσ(〈wi, xj〉+ bi)
)2)

(42)

+ γ

m∑
j=1

N∑
i=1

(〈wi, xj〉+ bi)2 + γ‖α‖2 (43)

=
m∑
j=1

(
y2
j − 2yj

N∑
i=1

αiσ(〈wi, xj〉+ bi) +
N∑
i=1

α2
iσ(〈wi, xj〉+ bi)2 (44)

+ 2
N∑
i=1

i−1∑
p=1

αiσ(〈wi, xj〉+ bi)αpσ(〈wp, xj〉+ bp)
)

(45)

+ γ

m∑
j=1

N∑
i=1

(〈wi, xj〉+ bi)2 + γ‖α‖2 (46)

=
m∑
j=1

y2
j −

N∑
i=1
i6=l

m∑
j=1

2yjαiσ(〈wi, xj〉+ bi)−
m∑
j=1

2yjαlσ(〈wl, xj〉+ bl) (47)

+
N∑
i=1
i 6=l

m∑
j=1

α2
iσ(〈wi, xj〉+ bi)2 +

m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 (48)

+
N∑
i=1
i 6=l

i−1∑
p=1

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (49)

+
l−1∑
p=1

m∑
j=1

2αlαpσ(〈wl, xj〉+ bl)σ(〈wp, xj〉+ bp) (50)

+ γ

m∑
j=1

N∑
i=1
i6=l

(〈wi, xj〉+ bi)2 + γ

m∑
j=1

(〈wl, xj〉+ bl)2 (51)

+ γ‖α‖2. (52)

Rewriting the term

N∑
i=1
i 6=l

i−1∑
p=1

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (53)
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as
l−1∑
i=1

i−1∑
p=1

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (54)

+
N∑

i=l+1

(
i−1∑
p=1
p 6=l

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (55)

+
m∑
j=1

2αiαlσ(〈wi, xj〉+ bi)σ(〈wl, xj〉+ bl)
)

(56)

and defining the constant

c̃l =
m∑
j=1

y2
j −

N∑
i=1
i 6=l

m∑
j=1

2yjαiσ(〈wi, xj〉+ bi) (57)

+
N∑
i=1
i 6=l

m∑
j=1

α2
iσ(〈wi, xj〉+ bi)2 (58)

+
l−1∑
i=1

i−1∑
p=1

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (59)

+
N∑

i=l+1

i−1∑
p=1
p 6=l

m∑
j=1

2αiαpσ(〈wi, xj〉+ bi)σ(〈wp, xj〉+ bp) (60)

+ γ

m∑
j=1

N∑
i=1
i6=l

(〈wi, xj〉+ bi)2 + γ‖α‖2 (61)

yields the form

m RegLossγ(wl, bl) = c̃l −
m∑
j=1

2yjαlσ(〈wl, xj〉+ bl)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2

+
N∑

i=l+1

m∑
j=1

2αiαlσ(〈wi, xj〉+ bi)σ(〈wl, xj〉+ bl)

+
l−1∑
p=1

m∑
j=1

2αlαpσ(〈wl, xj〉+ bl)σ(〈wp, xj〉+ bp)

+ γ

m∑
j=1

(〈wl, xj〉+ bl)2
.

(62)

In Equation (62), we have isolated all terms with wl and bl. Note also that 〈wl, xj〉+bl is linear in (wl, bl) and,
hence, σ(〈wl, xj〉+ bl) is convex. Furthermore, the function σ(〈wl, xj〉+ bl)2 is convex since σ(〈wl, xj〉+ bl)
is non-negative and convex and the function (·)2 is monotonically increasing. To ensure that the linear
combinations of those functions are also convex, we have to split the sums into linear combinations involving
positive weights and linear combinations involving negative weights. Hence, we define the following index
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sets

I+
1,l = {j ∈ {1, . . . ,m} : 2yjαl ≥ 0}, (63)
I−1,l = {1, . . . ,m} \ I+

1,l, (64)
I+
2,l = {(i, j) ∈ {l + 1, . . . , N} × {1, . . . ,m} : 2αiαlσ(〈wi, xj〉+ bi) ≥ 0}, (65)
I−2,l = ({l + 1, . . . , N} × {1, . . . ,m}) \ I+

2,l, (66)
I+
3,l = {(p, j) ∈ {1, . . . , l − 1} × {1, . . . ,m} : 2αlαpσ(〈wp, xj〉+ bp) ≥ 0}, (67)
I−3,l = ({1, . . . , l − 1} × {1, . . . ,m}) \ I+

3,l. (68)

By splitting the sums in Equation (62) in the following manner

m RegLossγ(wl, bl) = c̃l −
∑
j∈I+

1,l

2yjαlσ(〈wl, xj〉+ bl) +
∑
j∈I−1,l

|2yjαl|σ(〈wl, xj〉+ bl) (69)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 (70)

+
∑

(i,j)∈I+
2,l

2αiαlσ(〈wi, xj〉+ bi)σ(〈wl, xj〉+ bl) (71)

−
∑

(i,j)∈I−2,l

|2αiαlσ(〈wi, xj〉+ bi)|σ(〈wl, xj〉+ bl) (72)

+
∑

(p,j)∈I+
3,l

2αlαpσ(〈wp, xj〉+ bp)σ(〈wl, xj〉+ bl) (73)

−
∑

(p,j)∈I−3,l

|2αlαpσ(〈wp, xj〉+ bp)|σ(〈wl, xj〉+ bl) (74)

+ γ

m∑
j=1

(〈wl, xj〉+ bl)2
, (75)

we yield the form

m RegLossγ(wl, bl) = ĉl + ĝl(wl, bl)− ĥl(wl, bl). (76)
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Here, the functions ĝl and ĥl are defined as

ĝl(wl, bl) =
∑
j∈I−1,l

|2yjαl|σ(〈wl, xj〉+ bl) (77)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 (78)

+
∑

(i,j)∈I+
2,l

2αiαlσ(〈wi, xj〉+ bi)σ(〈wl, xj〉+ bl) (79)

+
∑

(p,j)∈I+
3,l

2αlαpσ(〈wp, xj〉+ bp)σ(〈wl, xj〉+ bl) (80)

+ γ

m∑
j=1

(〈wl, xj〉+ bl)2
, (81)

ĥl(wl, bl) =
∑
j∈I+

1,l

2yjαlσ(〈wl, xj〉+ bl) (82)

+
∑

(i,j)∈I−2,l

|2αiαlσ(〈wi, xj〉+ bi)|σ(〈wl, xj〉+ bl) (83)

+
∑

(p,j)∈I−3,l

|2αlαpσ(〈wp, xj〉+ bp)|σ(〈wl, xj〉+ bl), (84)

or, in short,

ĝl(wl, bl) =
m∑
j=1

β̂glj σ(〈wl, xj〉+ bl) +
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 + γ

m∑
j=1

(〈wl, xj〉+ bl)2 (85)

ĥl(wl, bl) =
m∑
j=1

β̂hlj σ(〈wl, xj〉+ bl) (86)

with coefficients β̂glj ≥ 0 and β̂hlj ≥ 0 for all j ∈ {1, . . . ,m}. Dividing both sides of Equation (76) by m
finally yields the desired form with βglj = β̂glj /m, βhlj = β̂hlj /m and cl = ĉl/m. �

B.3 Proof of Proposition 3

Proof. By holding all parameters except for α constant in RegLossγ(α,W, b), one yields

RegLossγ(α) = cα + 1
m
‖y − Σα‖2 + γ

m
‖α‖2, (87)

with

cα = 1
m

 m∑
j=1

N∑
i=1

(〈wi, xj〉+ bi)2

 . (88)

The linear least squares term with system matrix Σ, as defined in Proposition 3, follows directly by the
structure of the mean squared error loss. �

B.4 Proof of Proposition 4

Proof. Recall that hl(wl, bl) is given by
m∑
j=1

βhlj σ

(〈(
wl
bl

)
,

(
xj
1

)〉)
. (89)
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The proof follows by a straightforward calculation. Let (w̃l, b̃l) be arbitrary. We have to show that

hl(w̃l, b̃l) ≥ hl(wl, bl) +
〈

m∑
j=1

βhlj

(
xj
1

)
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
,

(
w̃l
b̃l

)
−
(
wl
bl

)〉
. (90)

The right-hand side of the above inequality can be rewritten as
m∑
j=1

βhlj σ

(〈(
wl
bl

)
,

(
xj
1

)〉)
+

m∑
j=1

βhlj

〈(
w̃l
b̃l

)
,

(
xj
1

)〉
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
(91)

−
m∑
j=1

βhlj

〈(
wl
bl

)
,

(
xj
1

)〉
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
, (92)

which equals
m∑
j=1

βhlj

〈(
w̃l
b̃l

)
,

(
xj
1

)〉
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
, (93)

since

σ

(〈(
wl
bl

)
,

(
xj
1

)〉)
=
〈(

wl
bl

)
,

(
xj
1

)〉
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
. (94)

Hence, the inequality in Equation (90) is equivalent to
m∑
j=1

βhlj

〈(
w̃l
b̃l

)
,

(
xj
1

)〉(
H

(〈(
w̃l
b̃l

)
,

(
xj
1

)〉)
−H

(〈(
wl
bl

)
,

(
xj
1

)〉))
≥ 0. (95)

Since βhlj ≥ 0, this inequality holds if〈(
w̃l
b̃l

)
,

(
xj
1

)〉(
H

(〈(
w̃l
b̃l

)
,

(
xj
1

)〉)
−H

(〈(
wl
bl

)
,

(
xj
1

)〉))
≥ 0, (96)

which can be easily verified by a case distinction. �

B.5 Proof of Proposition 5

Proof. For a given y∗ = (y∗1 , y∗2), the convex conjugate of gl is defined as

g∗l (y∗1 , y∗2) = sup
wl,bl

{〈(
y∗1
y∗2

)
,

(
wl
bl

)〉
−

m∑
j=1

βglj σ(〈wl, xj〉+ bl) (97)

−
m∑
j=1

α2
l

m
σ(〈wl, xj〉+ bl)2 (98)

− γ
m∑
j=1

1
m

(〈wl, xj〉+ bl)2

}
. (99)

Let the function F be defined as

F (wl, bl) =
〈(

y∗1
y∗2

)
,

(
wl
bl

)〉
−

m∑
j=1

βglj σ(〈wl, xj〉+ bl) (100)

−
m∑
j=1

α2
l

m
σ(〈wl, xj〉+ bl)2 (101)

− γ
m∑
j=1

1
m

(〈wl, xj〉+ bl)2
. (102)
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Using the definition of M and extending the ReLu activation σ for vectors v ∈ Rn+1 to

σ(v) =

 max(v1, 0)
...

max(vn+1, 0)

 , (103)

one can rewrite F in the form

F (wl, bl) =
〈(

y∗1
y∗2

)
,

(
wl
bl

)〉
−
〈
βgl , σ

(
M

(
wl
bl

))〉
(104)

− α2
l

m

〈
σ

(
M

(
wl
bl

))
, σ

(
M

(
wl
bl

))〉
(105)

− γ 1
m

〈
M

(
wl
bl

)
,M

(
wl
bl

)〉
. (106)

For the rest of the proof, we proceed in two cases.

Case 1: ∃
(
wl
bl

)
∈ ker(M) :

〈(
y∗1
y∗2

)
,

(
wl
bl

)〉
6= 0

In this case, F is unbounded. This can be seen by defining the sequence (wkl , bkl ) = λk(wl, bl), where

λ = sgn
(〈(

y∗1
y∗2

)
,

(
wl
bl

)〉)
. (107)

Since (wl, bl) ∈ ker(M), we have that

F (wkl , bkl ) = λk

〈(
y∗1
y∗2

)
,

(
wl
bl

)〉
= k

∣∣∣∣〈(y∗1y∗2
)
,

(
wl
bl

)〉∣∣∣∣ (108)

and, hence, F (wkl , bkl )→∞ for k →∞. That is, g∗l (y∗1 , y∗2) =∞.

Case 2: ∀
(
wl
bl

)
∈ ker(M) :

〈(
y∗1
y∗2

)
,

(
wl
bl

)〉
= 0

In this case, we have that y∗ ∈ ker(M)⊥ = Im(MT ). Hence, there exists a dy∗ ∈ Rm such that MT dy∗ = y∗.
Leveraging the variable transformation

vwl,bl = M

(
wl
bl

)
, (109)

the function F can be rewritten as
F (wl, bl) = 〈dy∗ , vwl,bl〉 − 〈βgl , σ(vwl,bl)〉 (110)

− α2
l

m
〈σ(vwl,bl), σ(vwl,bl)〉 (111)

− γ 1
m
〈vwl,bl , vwl,bl〉 . (112)

By splitting vwl,bl in a positive and negative component, i. e., vwl,bl = v1 − v2 with 0 ≤ v1 ⊥ v2 ≥ 0 and
using the fact that σ(vwl,bl) = v1, Equation (110) is given in a quadratic form.5 However, simply optimiz-

5The notation 0 ≤ v1 ⊥ v2 ≥ 0 is used as a compact expression of a complementary condition on v1 and v2, i. e.,
v1

i · v
2
i = 0 ∀i,

v1 ≥ 0,
v2 ≥ 0,

30



Published in Transactions on Machine Learning Research (01/2024)

ing Equation (110) is insufficient, since Equation (109) might not be satisfied. Hence, we add additional
constraints in the form

∃ v3 ≥ 0 and v4 ≥ 0 s.t.: M
(
v3 − v4) = vwl,bl . (113)

Altogether, this yields the following quadratic program

sup
〈

dy∗ − βgl
−dy∗

0
0

 ,


v1

v2

v3

v4


〉
− 1
m


v1

v2

v3

v4


T 

(α2
l + γ)I −γI 0 0
−γI γI 0 0

0 0 0 0
0 0 0 0



v1

v2

v3

v4



s.t.
(
−I I M −M

)
v1

v2

v3

v4

 = 0,

(
v1 v2 v3 v4) ≥ 0.

(114)

The above quadratic program naturally imposes the complementary conditions of v1 and v2. This can be
seen when observing the Karush?Kuhn?Tucker (KKT) conditions. That is, a solution (v1, v2, v3, v4) of the
quadratic program in Equation (114) fulfills


α2
l+γ
m v1 − γ

mv
2

γ
mv

2 − γ
mv

1

0
0

+


βgl − dy∗
dy∗

0
0

−

µ1
µ2
µ3
µ4

+


−λ
λ

MTλ
−MTλ

 =


0
0
0
0

 , (115)

for some Lagrange multipliers µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0 and λ. Furthermore, complementary slackness
holds between vi and µi. Solving for λ in the first row and inserting it into the second row yields

µ2 = α2
l

m
v1 + βgl − µ1. (116)

Hence, whenever the i-th component of v1 is strictly greater than zero, we have

(µ2)i = α2
l

m
v1
i + βgli ≥

α2
l

m
v1
i > 0, (117)

and, therefore, v2
i = 0 by complementary slackness.

The above-mentioned quadratic program is equivalent to the one stated in Proposition 5 with

qy∗ = (βgl − dy∗ , dy∗ , 0, 0), (118)

Ql = 2
m


(α2
l + γ)I −γI 0 0
−γI γI 0 0

0 0 0 0
0 0 0 0

 , (119)

A =
(
−I I M −M

)
, (120)

v = (v1, v2, v3, v4). (121)

Hence, g∗l (y∗1 , y∗2) is given by the negative optimal objective function value of this quadratic program. The
form g∗l (y∗) = χΩ(y∗)− Ξl(y∗) directly follows from the derivations in case 1 and 2.

which says that either v1
i or v2

i can be strictly positive.
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What remains to be shown is that dom(g∗l ) = Ω. To do so, we have to show that, for y∗ ∈ Ω, the quadratic
program

inf
v
〈qy∗ , v〉+ 1

2v
TQlv s.t. Av = 0 and v ≥ 0, (122)

has a finite solution. We prove the claim via contradiction. Suppose there exist vk ≥ 0 with Avk = 0 and
〈qy∗ , vk〉+ 1

2v
T
k Qlvk → −∞ for k →∞. As 1

2v
T
k Qlvk ≥ 0 for all k ∈ N, we yield 〈qy∗ , vk〉 → −∞ for k →∞.

Now, we have that

〈qy∗ , vk〉 = 〈βgl − dy∗ , v1
k〉+ 〈dy∗ , v2

k〉 (123)
= 〈βgl , v1

k〉+ 〈dy∗ , v2
k − v1

k〉, (124)

and, hence, that 〈dy∗ , v2
k − v1

k〉 → −∞ as 〈βgl , v1
k〉 ≥ 0. Then, this yields

|〈dy∗ , v2
k − v1

k〉| ≥
1
2v

T
k Qlvk = α2

l

m
‖v1
k‖2 + γ

m
‖v1
k − v2

k‖2 ≥
γ

m
‖v1
k − v2

k‖2, (125)

for large k, which means
γ

m
‖v1
k − v2

k‖2 ≤ |〈dy∗ , v2
k − v1

k〉| ≤ ‖dy∗‖‖v1
k − v2

k‖, (126)

for large k. As 〈dy∗ , v2
k− v1

k〉 → −∞, we have that ‖v1
k− v2

k‖ → ∞, which contradicts Equation (126), as the
left-hand side grows quadratically and the right-hand side only linearly. Hence, the quadratic program has
a finite solution for all y∗ ∈ Ω. �

B.6 Proof of Proposition 6

Proof. For y∗ ∈ dom(g∗l ) = Ω, we have that ∂g∗l (y∗) = ∂(−Ξl)(y∗), where Ξl is the value function of (QP).
To prove the claim, we make use of Lemma 4.4.1 in Hiriart-Urruty & Lemaréchal (2004). Thus, following
Hiriart-Urruty & Lemaréchal (2004), we have

(−Ξl)(y∗) = sup{Ov(y∗) : v ∈ V } <∞, (127)

where Ov(y∗) = −〈qy∗ , v〉 − 1
2v
TQlv and V = {v ∈ R2m+2(n+1) : Av = 0 and v ≥ 0}. Note that Ov is

convex in y∗ as qλy∗+(1−λ)z∗ = λqy∗ + (1− λ)qz∗ for all y∗, z∗ ∈ Ω and λ ∈ [0, 1]. Hence, by Lemma 4.4.1 in
Hiriart-Urruty & Lemaréchal (2004), we have

∂(−Ξl)(y∗) ⊃ co{∪∂Ov(y∗) : v ∈ V (y∗)}, (128)

where V (y∗) = {v ∈ V : Ov(y∗) = (−Ξl)(y∗)}. Now, we use that

y∗ + λep = MT dy∗ + λep = MT (dy∗ + λ∆p︸ ︷︷ ︸:=

dy∗+λep

), (129)

where ∆p is a solution of the linear system of equations MT∆p = ep, which exists due to Assumption 1.
We then have

qy∗+λep = (βgl − dy∗+λep , dy∗+λep , 0, 0) (130)
= (βgl − dy∗ − λ∆p, dy∗ + λ∆p, 0, 0) (131)
= qy∗ + λ(−∆p,∆p, 0, 0) (132)
= qy∗ + λ∆q,p, (133)

where we define ∆q,p = (−∆p,∆p, 0, 0). Hence, ∇y∗Ov(y∗) = (−〈∆q,p, v〉)p=1,...,n+1. As vy∗ is a solution to
the quadratic program, (128) yields that ∇y∗Ovy∗ (y∗) is a valid subgradient, which proves the claim.
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Furthermore, one has

−


−∆T

1 ∆T
1 0Tn+1 0Tn+1

−∆T
2 ∆T

2 0Tn+1 0Tn+1
...

...
...

...
−∆T

n+1 ∆T
n+1 0Tn+1 0Tn+1



v1
y∗

v2
y∗

v3
y∗

v4
y∗

 =

 〈∆1, v
1
y∗ − v2

y∗〉
...

〈∆n+1, v
1
y∗ − v2

y∗〉

 (134)

=

 〈∆1,M(v3
y∗ − v4

y∗)〉
...

〈∆n+1,M(v3
y∗ − v4

y∗)〉

 =

 〈M
T∆1, v

3
y∗ − v4

y∗〉
...

〈MT∆n+1, v
3
y∗ − v4

y∗〉

 (135)

=

 〈e1, v
3
y∗ − v4

y∗〉
...

〈en+1, v
3
y∗ − v4

y∗〉

 = v3
y∗ − v4

y∗ . (136)

�

B.7 Proof of Proposition 7

Proof. The analysis is based on the theory of polyhedral DC programming (see, e. g., Le An & Tao, 1997;
2005). A DC program is called polyhedral if either g or h is polyhedral convex. In the following, we
summarize important results from polyhedral DC programming in earlier research.

(a) For polyhedral DC programs, DCA converges in finitely many iterations. See (v) in the properties
of the simplified DCA in Le An & Tao (2005) or Tao & An (1997).

(b) As we consider a polyhedral DC program, the sequences (wkl , bkl )k∈N and y∗k generated by DCA
converge to ((w∗l , b∗l ), y∗) ∈ [∂g∗l (y∗) ∩ ∂h∗l (y∗)] × [∂gl(w∗l , b∗l ) ∩ ∂hl(w∗l , b∗l )]. See (iv) in Theorem 6
in Le An & Tao (1997).

(c) If (w∗l , b∗l ) is a local minimizer of gl − hl, then (w∗l , b∗l ) ∈ Pl = {(wl, bl) ∈ Rn+1 : ∂hl(wl, bl) ⊂
∂gl(wl, bl)}. The converse statement holds true if hl is a polyhedral convex function. See (ii) in
Theorem 1 in Le An & Tao (2005).

(d) (w∗l , b∗l ) ∈ Pl if and only if there exists a y∗ ∈ S(w∗l , b∗l ) = arg min
y∈∂hl(w∗l ,b

∗
l
)
{〈(w∗l , b∗l ), y〉 − g∗l (y)} such

that (w∗l , b∗l ) ∈ ∂g∗l (y∗). See (i) in Theorem 3 in Le An & Tao (1997).

Our proof is structured in two parts. In part 1, we first prove that hl is polyhedral convex. From point (a),
it then follows that our DCA routine converges in finitely many iterations. In part 2, we then prove that
((w∗l , b∗l ), y∗) from point (b) fulfills the assumption of point (d), given that Ξl(y∗) ≤ Ξl(y) ∀y ∈ ∂hl(w∗l , b∗l ).
By point (c), it then follows that our DCA routine converges to a local solution of (DCl).

Part 1: To show that hl is polyhedral convex, we have to show that its epigraph is a polyhedral convex set,
i. e., a finite intersection of closed half-spaces (see, e. g., Rockafellar, 1997). To do so, we proceed as follows.
Let the sets A+

j , A−j for j ∈ {1, . . . ,m} and ΩJ for J ⊆ {1, . . . ,m} be defined as

A+
j =

{(
wl
bl

)
∈ Rn+1 :

〈(
xj
1

)
,

(
wl
bl

)〉
≥ 0
}
, (137)

A−j =
{(

wl
bl

)
∈ Rn+1 :

〈(
xj
1

)
,

(
wl
bl

)〉
≤ 0
}
, (138)

ΩJ =
{(

wl
bl

)
∈ Rn+1 :

(
wl
bl

)
∈ A+

j ∀j ∈ J and
(
wl
bl

)
∈ A−j ∀j ∈ J {

}
. (139)
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Furthermore, we denote with MJ the matrix M where all rows corresponding to indices not in J are set
to zero, with M̂J the matrix

M̂J =
(
MJ ~0
~0T −1

)
, (140)

and with β̂hl the vector β̂hl = (βhl , 1)T . Now, we have, for (wl, bl) ∈ ΩJ ,

hl(wl, bl) =
m∑
j=1

βhlj σ(〈wl, xj〉+ bl) =
〈
βhl , σ

(
M

(
wl
bl

))〉
=
〈
βhl ,MJ

(
wl
bl

)〉
, (141)

where we used again the vectorized version of σ as defined in Equation (103). Thus, for t ∈ R, it holds

hl(wl, bl) ≤ t ⇔
〈
βhl ,MJ

(
wl
bl

)〉
− t ≤ 0 (142)

⇔

〈
β̂hl , M̂J

wlbl
t

〉 ≤ 0 (143)

⇔

〈
M̂T
J β̂

hl ,

wlbl
t

〉 ≤ 0. (144)

By defining the vector aJ = M̂T
J β̂

hl and using that

Rn+1 =
⋃

J∈2{1,...,m}

ΩJ and ΩJ =
⋂
j∈J

⋂
i∈J {

A+
j ∩A

−
i , (145)

where 2{1,...,m} denotes the power set of {1, . . . ,m}, we now have

epi(hl) =

{(
wl
bl
t

)
∈ Rn+2 : hl(wl, bl) ≤ t

}
(146)

=
⋃

J∈2{1,...,m}

{(
wl
bl

)
∈ ΩJ , t ∈ R :

〈
aJ ,

(
wl
bl
t

)〉
≤ 0

}
(147)

=
⋃

J∈2{1,...,m}

⋂
j∈J

⋂
i∈J{

{(
wl
bl

)
∈ A+

j ∩ A
−
i , t ∈ R :

〈
aJ ,

(
wl
bl
t

)〉
≤ 0

}
(148)

=
⋃

J∈2{1,...,m}

⋂
j∈J

⋂
i∈J{

{(
wl
bl

)
∈ Rn+1

, t ∈ R :

〈
aJ ,

(
wl
bl
t

)〉
≤ 0, (149)

〈(
−xj
−1
0

)
,

(
wl
bl
t

)〉
≤ 0, (150)

〈(
xi
1
0

)
,

(
wl
bl
t

)〉
≤ 0

}
(151)

=
⋃

J∈2{1,...,m}

⋂
j∈J

⋂
i∈J{

{(
wl
bl

)
∈ Rn+1

, t ∈ R :

〈
aJ ,

(
wl
bl
t

)〉
≤ 0

}
∩ (152)

{(
wl
bl

)
∈ Rn+1

, t ∈ R :

〈(
−xj
−1
0

)
,

(
wl
bl
t

)〉
≤ 0

}
∩ (153)

{(
wl
bl

)
∈ Rn+1

, t ∈ R :

〈(
xi
1
0

)
,

(
wl
bl
t

)〉
≤ 0

}
. (154)
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Hence, epi(hl) is a union of convex polyhedra. From Lemma 1 in Bemporad et al. (2001), it follows that a
union of convex polyhedra is convex if and only if it is a convex polyhedron. Since epi(hl) is the epigraph of
a convex function and thus convex, it follows that epi(hl) is a convex polyhedron. This proves the first part.

Note that due to the above derivations one can also see that, independently of l and (wl, bl), there are only at
most 2m different elements in ∂hl(wl, bl) in the form of Equation (12). Hence, the number of DCA iterations
is bounded by Kmax = 2m. See also Theorem 5 in Tao & An (1997) and the arguments therein for fixed
respectively natural choices of subgradients.

Part 2: For the second part, we first observe that

∂hl(wl, bl) =

{
m∑
j=1

β
hl
j

(
xj
1

)
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
ε
hl
j

: ε
hl
j
∈

{
[0, 1], if

〈(
wl
bl

)
,

(
xj
1

)〉
= 0

{1}, else

}
. (155)

Now, let ((w∗l , b∗l ), y∗) ∈ [∂g∗l (y∗)∩∂h∗l (y∗)]×[∂gl(w∗l , b∗l )∩∂hl(w∗l , b∗l )] be given as in point (b). By Theorem
6 (i) in Le An & Tao (1997) and ρ(gl) + ρ(hl) > 0, we know that

y∗ =
m∑
j=1

βhlj

(
xj
1

)
H

(〈(
w∗l
b∗l

)
,

(
xj
1

)〉)
, (156)

as DCA converges in finitely many iterations and (wk+1
l , bk+1

l ) = (wkl , bkl ). For y ∈ ∂hl(w∗l , b∗l ), we thus
have

〈
y,

(
w∗l
b∗l

)〉
=

m∑
j=1

βhlj H

(〈(
w∗l
b∗l

)
,

(
xj
1

)〉)〈(
w∗l
b∗l

)
,

(
xj
1

)〉
εhlj (157)

=
m∑
j=1

βhlj H

(〈(
w∗l
b∗l

)
,

(
xj
1

)〉)〈(
w∗l
b∗l

)
,

(
xj
1

)〉
(158)

=
〈
y∗,

(
w∗l
b∗l

)〉
, (159)

where the second equality follows by the definition of εhlj in Equation (155). By assumption, we have that
Ξl(y∗) ≤ Ξl(y) ∀y ∈ ∂hl(w∗l , b∗l ), which implies that y∗ ∈ S(w∗l , b∗l ), as needed in point (d).

In summary, we have that (w∗l , b∗l ) ∈ ∂g∗l (y∗) and y∗ ∈ S(w∗l , b∗l ). By point (d), it follows that (w∗l , b∗l ) ∈ Pl
and, hence, by point (c), that (w∗l , b∗l ) is a local minimizer of (DCl).

�

B.8 Restart Procedure for our DCA Routine

The point (w∗l , b∗l ) returned by the DCA routine developed in Section 4.2 is a local solution of (DCl) if
∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ) holds true. If the latter condition is violated, we provide a procedure that allows to
further reduce the objective function value by restarting the DCA routine from a new initial point following
Tao & An (1998). In that manner, we can ensure that Assumption 2 always holds true.

The main idea is the following. Suppose that there exists a y0 ∈ hl(w∗l , b∗l ) such that y0 /∈ gl(w∗l , b∗l ). Then,
Tao & An (1998) show that restarting the DCA routine from the point ((w∗l , b∗l ), y0) yields a strict decrease in
the objective function value in the first iterations, i. e., for (w1

l , b
1
l ) ∈ ∂g∗l (y0) it holds g(w1

l , b
1
l )−h(w1

l , b
1
l ) <

g(w∗l , b∗l ) − h(w∗l , b∗l ). Thus, we merely need to provide a procedure to compute y0 for restarting the DCA
routine or ensuring that ∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ) holds true. We do so in the following.

First, note that
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∂gl(w∗l ,b
∗
l )=


m∑
j=1

β
gl
j

(
xj
1

)
H

(〈(
w∗l

b∗l

)
,

(
xj

1

)〉)
ε
gl
j

: εgl
j
∈

[0, 1], if
〈(

w∗l

b∗l

)
,

(
xj

1

)〉
= 0

{1}, else

+q, (160)

where

q =
m∑
j=1

2α
2
l

m
H (〈w∗l , xj〉+ b∗l )

(
xj
1

)
(〈w∗l , xj〉+ b∗l ) +

m∑
j=1

2 γ
m

(
xj
1

)
(〈w∗l , xj〉+ b∗l ) (161)

and

∂hl(w∗l ,b
∗
l )=


m∑
j=1

β
hl
j

(
xj

1

)
H

(〈(
w∗l

b∗l

)
,

(
xj

1

)〉)
ε
hl
j

: εhl
j
∈

[0, 1], if
〈(

w∗l

b∗l

)
,

(
xj

1

)〉
= 0

{1}, else

. (162)

Now, ∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ) always holds true if ∂hl(w∗l , b∗l ) is a singleton, i. e., if (〈w∗l , xj〉+ b∗l ) 6= 0 for all
j ∈ {1, . . . ,m}. Hence, we assume that there exists a non-empty subset J ⊆ {1, . . . ,m} with 〈w∗l , xj〉+b∗l = 0
for all j ∈ J and 〈w∗l , xj〉+ b∗l 6= 0 for all j /∈ J and yield

∂gl(w∗l , b∗l ) =

∑
j∈J

βglj

(
xj
1

)
εglj : εgl =

(
εglj
)
j∈J ∈ [0, 1]|J |

+ qg + q, (163)

with

qg =
∑
j /∈J

βglj

(
xj
1

)
H

(〈(
w∗l
b∗l

)
,

(
xj
1

)〉)
, (164)

and

∂hl(w∗l , b∗l ) =

∑
j∈J

βhlj

(
xj
1

)
εhlj : εhl =

(
εhlj

)
j∈J
∈ [0, 1]|J |

+ qh, (165)

with

qh =
∑
j /∈J

βhlj

(
xj
1

)
H

(〈(
w∗l
b∗l

)
,

(
xj
1

)〉)
. (166)

Next, we define the following matrices

Mg =
(
βglj

(
xj
1

))
j∈J
∈ R(n+1)×|J |, (167)

Mh =
(
βhlj

(
xj
1

))
j∈J
∈ R(n+1)×|J |. (168)
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Now, to find y0 ∈ hl(w∗l , b∗l ) such that y0 /∈ gl(w∗l , b∗l ), we need to find εhl ∈ [0, 1]|J | such that, for all
εgl ∈ [0, 1]|J |, we have

Mhε
hl + qh 6= Mgε

gl + qg + q. (169)

To check whether or not such an εhl exists, we consider the following max-min problem

max
εhl∈[0,1]|J |

min
εgl∈[0,1]|J |

‖Mhε
hl + qh −Mgε

gl − qg − q‖1 (170)

If (170) admits a solution (εhl , εhl) with objective function value strictly larger than zero, then y0 = Mhε
hl +

qh ∈ hl(w∗l , b∗l ) and y0 /∈ gl(w∗l , b∗l ). If the optimal objective function value of (170) is zero, we conclude that
∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ) holds true. What remains to be shown is how to solve the max-min problem in
(170).

Note that (170) is equivalent to

max
εhl

min
εgl ,w1,w2

〈w1,1〉+ 〈w2,1〉

s.t. Mhε
hl + qh −Mgε

gl − qg − q ≤ w1 − w2,

−Mhε
hl − qh +Mgε

gl + qg + q ≤ w1 − w2,

εgl ≤ 1,

εhl ≤ 1,

εgl , εhl , w1, w2 ≥ 0,

(171)

and, thus, can be solved with the branch and bound algorithm developed in Falk (1973). We further
note that |J | is usually small and setting εhl = 1 yields an initial solution with objective function value
zero. That is, if ∂hl(w∗l , b∗l ) ⊆ ∂gl(w∗l , b∗l ) holds true, we already start with an optimal solution, and if
∂hl(w∗l , b∗l ) * ∂gl(w∗l , b∗l ), we can terminate the algorithm whenever it yields a feasible solution with objective
function value larger than zero. Thus, our restarting procedure can be implemented very efficiently.
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C Efficient Implementation of QP Solver

In this section, we show how the solution of the quadratic programs in the DCON algorithm can be solved
efficiently. It turns out that a single singular value decomposition (SVD) of the matrix MT can be used in
order to solve all quadratic programs by a sequence of basic linear algebra operations. To do so, we note that
a quadratic program like (QP) can be solved via the alternating direction method of multipliers (ADMM);
see, for instance, Boley (2013). We summarize ADMM for (QP) in Algorithm 2.

Algorithm 2: ADMM for (QP)
Input: ADMM parameter ρ, maximum number of iterations L
Output: Solution v∗ to (QP)

1 Set k ← 0
2 Set zk, uk ← 0
3 while not converged and k < L do

4 Solve
(
Ql + ρI AT

A 0

)(
vk+1

Φ

)
=

(
ρ
(
zk − uk

)
− qy∗

0

)
for vk+1

5 Set zk+1 ← max{0, vk+1 + uk} elementwise
6 Set uk+1 ← uk + vk+1 − zk+1

7 Set k ← k + 1
8 end
9 return vk+1

In the following, we show how the linear system of equations in line 4 of Algorithm 2 can be solved efficiently.
By drawing upon the so-called Schur-complement Nocedal & Wright (see, e. g., 2006), we know that the above
KKT matrix can be inverted via the formula

(
G AT

A 0

)−1
=
(
C E
ET F

)
with (172)

C = G−1 −G−1AT
(
AG−1AT

)−1
AG−1, (173)

E = G−1AT
(
AG−1AT

)−1
, (174)

F = −
(
AG−1AT

)−1
, (175)

Now, let w = ρ
(
zk − uk

)
− qy∗ . As the right-hand side of our linear equality constraints in (QP) is zero,

the above can be used to simplify line 4 to

vk+1 = Cw = G−1w −G−1AT
(
AG−1AT

)−1
AG−1w. (176)

Let w be split into four components according to the dimensions of the submatrices in the definition of Ql
in the proof of Proposition 5, i. e., w = (w1, w2, w3, w4). In the following, we show how Equation (176) can
be computed efficiently.

First, note that G = Ql + ρI. The simple structure of Ql now allows to directly compute the inverse of G,
i. e.,

G−1 =


g1I g2I 0 0
g2I g3I 0 0
0 0 1

ρI 0
0 0 0 1

ρI

 , (177)

where

g1 = q3
q1q3−q2

2
q1 = 2(α2

l+γ)
m + ρ,

g2 = −q2
q1q3−q2

2
and q2 = − 2γ

m ,
g3 = q1

q1q3−q2
2

q3 = 2γ
m + ρ.
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Furthermore, a Cholesky decomposition of the inverse, i. e., G−1 = LTL, is given by defining L as

L =


ξ1I ξ2I 0 0
0 ξ3I 0 0
0 0 ξ4I 0
0 0 0 ξ4I

 , (178)

where

ξ1 = √g1, ξ3 =
√

g1g3−g2
2

g1
,

ξ2 = g2√
g1
, ξ4 =

√
1
ρ .

Now, AG−1AT = ALTLAT = (LAT )TLAT = BTB with

B = LAT =


(ξ2 − ξ1) I

ξ3I
ξ4M

T

−ξ4MT

 . (179)

Suppose we have a singular value decomposition of MT , i. e., MT = UΣV T . Then,

B =


(ξ2 − ξ1) I

ξ3I
ξ4M

T

−ξ4MT

 =


V 0 0 0
0 V 0 0
0 0 U 0
0 0 0 U


︸ ︷︷ ︸

Ũ


(ξ2 − ξ1)I

ξ3I
ξ4Σ
−ξ4Σ

V T . (180)

That is,

AG−1AT = BTB = V
(
(ξ2 − ξ1)I ξ3I ξ4ΣT −ξ4ΣT

)
ŨT Ũ


(ξ2 − ξ1)I

ξ3I
ξ4Σ
−ξ4Σ

V T (181)

= V
(
(ξ2 − ξ1)2I + ξ2

3I + 2ξ2
4ΣTΣ

)
V T (182)

= V DV T , (183)

with D = (ξ2 − ξ1)2I + ξ2
3I + 2ξ2

4ΣTΣ, and, hence,(
AG−1AT

)−1 = V D−1V T . (184)

By defining h = (h1, h2, h3, h4) = G−1w, we thus have that G−1AT
(
AG−1AT

)−1
Ah equals

(g2 − g1)V D−1V T (h2 − h1) + (g2 − g1)V D−1V TM(h3 − h4)
(g3 − g2)V D−1V T (h2 − h1) + (g3 − g2)V D−1V TM(h3 − h4)

1
ρM

TV D−1V T (h2 − h1) + 1
ρM

TV D−1V TM(h3 − h4)
− 1
ρM

TV D−1V T (h2 − h1)− 1
ρM

TV D−1V TM(h3 − h4)

 (185)

The evaluation of Equation (176) is now stated in Algorithm 3.

Note that the computations in Algorithm 3 are most of the time only scalar-vector products or vector-vector
additions, and the matrix-vector products in lines 5–8 can be implemented efficiently. Furthermore, the
only terms that change between quadratic programs are the scalars g1, g2, g3, and ξ1, ξ2, ξ3. That is, in
the implementation of DCON, we only need one singular value decomposition of MT in the beginning. All
subsequent steps involve only basic linear algebra subroutines that can be implemented efficiently. Note,
however, that the memory requirements still may limit the above algorithm, as a singular value decomposition
of MT involves a – in general – dense m×m matrix V .
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Algorithm 3: Evaluation of Equation (176)
Input: Right hand side vector w
Output: Next iterate v = (v1, v2, v3, v4)

1 h1 ← g1w
1 + g2w

2

2 h2 ← g2w
1 + g3w

2

3 h3 ← 1
ρw

3

4 h4 ← 1
ρw

4

5 e1 ← V D−1V T (h2 − h1)
6 f1 ←MT e1

7 e2 ← V D−1V TM(h3 − h4)
8 f2 ←MT e2

9 v1 ← h1 − (g2 − g1)(e1 + e2)
10 v2 ← h2 − (g3 − g2)(e1 + e2)
11 v3 ← h3 − 1

ρ (f1 + f2)
12 v4 ← h4 + 1

ρ (f1 + f2)
13 return v

D Convergence Analysis

D.1 Preliminaries

For some of the proofs, we need additional concepts and results summarized in the following.
Definition 3 (Semialgebraic set (Bochnak et al., 1998)). A set D ⊆ Rn is called semialgebraic if it can be
represented as the finite union of sets of the form

{x ∈ Rn : P1(x) = · · · = PmP (x) = 0, Q1(x) > 0, . . . , QmQ(x) > 0}, (186)

where mP ,mQ ∈ N0 and P1, . . . , PmP , Q1, . . . , QmQ are real polynomial functions.
Definition 4 (Semialgebraic function (Bochnak et al., 1998)). A function f : Rn → R is called semialgebraic
if its graph

G(f) = {(x, y) ∈ Rn+1 : y = f(x)} (187)

is semialgebraic.

Lemma 8 summarizes some results used in Zeng et al. (2019) that we also need in our convergence analysis.
Thereby, we indirectly use the concept of so-called subanalytic functions. Since we are not directly working
with subanalytic functions, we refrain from a rigorous definition of subanalyticity and refer to Bolte et al.
(2007) for further details.
Lemma 8. The following holds true:

1. The composition of semialgebraic functions is semialgebraic (see Proposition 2.2.6 in Bochnak et al.
(1998)).

2. The sum of semialgebraic functions is semialgebraic (see proof of Proposition 2.2.6 in Bochnak et al.
(1998)).

3. Semialgebraic functions are subanalytic (see Shiota (1997)).

4. If f : Rn → R∪{∞} is a subanalytic function with closed domain, which is continuous on its domain,
then f is a KŁ function (see Theorem 3.1 in Bolte et al. (2007)).

D.2 Proof of Proposition 8

Proof. The main idea of the proof is to show that RegLossγ is semialgebraic. Then, by point 3 in Lemma 8,
it follows that RegLossγ is subanalytic and, hence, by continuity and point 4 that it is a KŁ function.
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To do so, we proceed as follows. First, we rewrite RegLossγ as

RegLossγ(θ) =
m∑
j=1

Ψj

( N∑
i=1

fi,j(θ)
)

+
m∑
j=1

N∑
i=1

f̃i,j(θ) + Ψ̃(θ), (188)

where we use the following definitions

Ψj(w) = 1
m

(yj − w)2, (189)

fi,j(θ) = αiσ(〈wi, xj〉+ bi), (190)

f̃i,j(θ) = γ

m
(〈wi, xj〉+ bi)2

, and (191)

Ψ̃(θ) = γ

m
‖α‖2. (192)

If all the above functions are semialgebraic, point 1 and 2 of Lemma 8 yield that Equation (188) is semial-
gebraic. That is, we only have to check each of the above functions individually.

The functions Ψj , for j ∈ {1, . . . ,m}, are a one-dimensional polynomial functions and thus trivially semial-
gebraic. The graph of fi,j can be written as

G(fi,j) = {(θ, z) : z = fi,j(θ)} (193)
= {(θ, z) : z = 0 , − (〈wi, xj〉+ bi) > 0} (194)
∪ {(θ, z) : αi (〈wi, xj〉+ bi)− z = 0, (〈wi, xj〉+ bi) > 0} (195)
∪ {(θ, z) : z = 0, (〈wi, xj〉+ bi) = 0}. (196)

The involved functions are all multi-dimensional polynomial functions (at most quadratic) in θ, where coeffi-
cients of unused variables are set to zero. Hence, fi,j is semialgebraic. The function f̃i,j is a multi-dimensional
polynomial function and therefore semialgebraic. By writing Ψ̃ as

Ψ̃(θ) =
N∑
i=1

1
m
α2
i , (197)

the structure of Ψ̃ is again polynomial, and, hence, it is a semialgebraic function.

Applying point 1 and 2 of Lemma 8 yields that RegLossγ is semialgebraic. By point 3 of Lemma 8, it is also
subanalytic. Furthermore, the loss function is continuous and, hence, by point 4 of Lemma 8, a KŁ function.
The form of ϕ follows directly from Theorem 3.1 in Bolte et al. (2007). �

D.3 Proof of Lemma 2

Proof. First, observe that the first two summands of gl are not strictly convex. Hence, we only consider the
last summand, i. e., we have to show that

m∑
j=1

γ

m
(〈wl, xj〉+ bl)2 (198)

is strongly convex. We set v = (wl, bl) and proceed as follows:
m∑
j=1

γ

m
(〈wl, xj〉+ bl)2 − ρ

2‖v‖
2 (199)

= γ

m
‖Mv‖2 − ρ

2‖v‖
2 (200)

=
〈
v,
( γ
m
MTM − ρ

2I
)
v
〉
. (201)
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The above function is convex if the eigenvalues of the matrix in Equation (201) are positive. The spectrum
of this matrix is given by {γσ

m
− ρ

2 : σ is a singular value of M
}
. (202)

By setting the above terms to zero, the claim follows. �

D.4 Proof of Lemma 3

Proof. Rewriting the left-hand side of Equation (15) as a telescope sum yields

gl(z0)− hl(z0)−
(
gl(zK)− hl(zK)

)
(203)

=
K∑
j=1

gl(zj−1)− hl(zj−1)−
(
gl(zj)− hl(zj)

)
(204)

≥
K∑
j=1

(ρ(gl) + ρ(hl)) ‖zj − zj−1‖2, (205)

where Equation (205) follows by Lemma 1. Furthermore, we bound the sum of squared norms from below

by
K∑
j=1
‖zj − zj−1‖2 ≥ 1

K

∥∥∥∥∥ K∑
j=1

zj − zj−1

∥∥∥∥∥
2

= 1
K ‖z

K − z0‖2, which yields

gl(z0)− hl(z0)−
(
gl(zK)− hl(zK)

)
≥ ρ(gl) + ρ(hl)

K
‖zK − z0‖2 (206)

≥ ρ(gl)
K
‖zK − z0‖2 (207)

≥ 2γσmin(M)
Km

‖zK − z0‖2 (208)

≥ 2γσmin(M)
Km

‖zK − z0‖2, (209)

where the last inequality follows from Assumption 3. �

D.5 Proof of Lemma 4

Proof. First, we observe that Oα(α) is strongly convex with modulus γ. Hence, the inequality Oα(αk) −
Oα(αk+1) ≥ 〈∇Oα(αk+1), αk − αk+1〉 + γ

2 ‖α
k − αk+1‖2 holds true. Second, the solution of (A) fulfills

∇Oα(αk+1) = 0, which proves the claim. �

D.6 Proof of Proposition 9

Proof. We proceed as follows. When starting the inner iterations of Algorithm 1 with θk, we denote the
parameter vector after the l-th DC subproblem with θDC,k

l and get

RegLossγ(θk)− RegLossγ(θk+1) (210)

=RegLossγ(θk)−
N∑
l=1

RegLossγ(θDC,k
l ) (211)

+
N∑
l=1

RegLossγ(θDC,k
l )− RegLossγ(θk+1). (212)
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After reordering the summands, this yields

RegLossγ(θk)− RegLossγ(θk+1) (213)

=
N∑
l=1

ODC
l (wkl , bkl )−ODC

l (wk+1
l , bk+1

l ) + Oα(αk)−Oα(αk+1) (214)

≥
N∑
l=1

2γσmin(M)
Km

‖(wk+1
l , bk+1

l )− (wkl , bkl )‖2 + γ

2 ‖α
k − αk+1‖2 (215)

≥a

(
N∑
l=1
‖(wk+1

l , bk+1
l )− (wkl , bkl )‖2 + ‖αk − αk+1‖2

)
(216)

=a ‖θk+1 − θk‖2, (217)

where a = min{ 2γσmin(M)
Km , γ2 }. �

D.7 Proof of Lemma 5

Proof. Note that, due to (H1), Algorithm 1 yields a monotonically decreasing sequence of loss function
values, i. e., RegLossγ(θk+1) ≤ RegLossγ(θk) for all k ∈ N. This ensures the boundedness of the sequence
(θk)k∈N, since

RegLossγ(θ0) ≥ RegLossγ(θk) ≥ 1
m

m∑
j=1

(
〈wkl , xj〉+ bkl

)2 (218)

= 1
m

∥∥∥∥M(wklbkl
)∥∥∥∥2

≥ σmin(M)
m

∥∥∥∥(wklbkl
)∥∥∥∥2

, (219)

RegLossγ(θ0) ≥ RegLossγ(θk) ≥ 1
m
‖αk‖2. (220)

Hence, all trainable parameters are uniformly bounded. �

D.8 Proof of Lemma 6

Proof. First, Lemma 5 ensures that θk ∈ BΓ(0) for all k ∈ N. Second, we note that the functions

βglj (θ) = 1
m

(
ξ(2yjαl) +

N∑
i=l+1

2σ(αiαl)σ(〈wi, xj〉+ bi) +
l−1∑
k=1

2σ(αlαk)σ(〈wk, xj〉+ bk)
)
, (221)

βhlj (θ) = 1
m

(
σ(2yjαl) +

N∑
i=l+1

2ξ(αiαl)σ(〈wi, xj〉+ bi) +
l−1∑
k=1

2ξ(αlαk)σ(〈wk, xj〉+ bk)
)
, (222)

are sums and products of Lipschitz functions. The claim then follows as sums of Lipschitz functions are
Lipschitz and products of bounded Lipschitz functions are Lipschitz. �

D.9 Proof of Proposition 10

Proof. In the following, we make use of the so-called smooth variational description of Fréchet subgradients
detailed in Proposition 17.
Proposition 17 (Proposition 2.1 in Mordukhovich et al. (2006)). Let f : Rn → R ∪ {∞} be finite at x̄.
Then, x∗ ∈ ∂F f(x̄) if and only if there is a neighborhood U of x̄ and a function s : U → R which is Fréchet
differentiable at x̄ with derivative ∇s(x̄) such that

s(x̄) = f(x̄), ∇s(x̄) = x∗, and s(x) ≤ f(x) for all x ∈ U. (223)

43



Published in Transactions on Machine Learning Research (01/2024)

To prove our claim, we show that v(θ, εg, εh) is an element of the Fréchet subdifferential of the loss function.
First, we observe that, due to Proposition 2, we have that

RegLossγ(wl, bl) = cl + gl(wl, bl)− hl(wl, bl). (224)

Second, we have that for all εgl , εhl fulfilling (21)

yg(wl, bl, εgl) =
m∑
j=1

βglj

(
xj
1

)
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
εglj + q ∈ ∂gl(wl, bl), (225)

where

q =
m∑
j=1

2α
2
l

m
H (〈wl, xj〉+ bl)

(
xj
1

)
(〈wl, xj〉+ bl) +

m∑
j=1

2 γ
m

(
xj
1

)
(〈wl, xj〉+ bl) , (226)

and

yh(wl, bl, εhl) =
m∑
j=1

βhlj

(
xj
1

)
H

(〈(
wl
bl

)
,

(
xj
1

)〉)
εhlj ∈ ∂hl(wl, bl). (227)

We now show that yg(wl, bl, εgl) − yh(wl, bl, εhl) ∈ ∂FRegLossγ(wl, bl), where the differential operator
corresponds to the partial Fréchet subdifferential with respect to (wl, bl), whenever εgl and εhl fulfill (22).
Note that

yg(wl, bl, εgl)− yh(wl, bl, εhl) =
(
(vl,t(wl, bl, εgl , εhl))t∈{1,...,n}, vl(wl, bl, εgl , εhl)

)
(228)

That is, with a slight abuse of notation exactly as given in (26) and (29). Note also that RegLossγ is
differentiable with respect to α. Hence, the element vα,l in (31) is exactly the partial derivative with respect
to α.

To prove our claim, we first note that ∂FRegLossγ(w0
l , b

0
l ) = {∇RegLossγ(w0

l , b
0
l )} for all (w0

l , b
0
l ) with

〈w0
l , xj〉 + b0l 6= 0 for all j ∈ {1, . . . ,m}. Furthermore, this case yields yg(w0

l , b
0
l , ε

gl) = ∇gl(w0
l , b

0
l ) and

yh(w0
l , b

0
l , ε

hl) = ∇hl(w0
l , b

0
l ). Thus, the claim directly follows in this case.

Now, assume that we have a (w0
l , b

0
l ) such that there exists a non-empty subset J ⊆ {1, . . . ,m} with

〈w0
l , xj〉+ b0l = 0 for all j ∈ J and 〈w0

l , xj〉+ b0l 6= 0 for all j /∈ J . By continuity, there exists a neighborhood
U of (w0

l , b
0
l ) such that 〈wl, xj〉+ bl 6= 0 and sign(〈wl, xj〉+ bl) = sign(〈w0

l , xj〉+ b0l ) for all (wl, bl) ∈ U and
j /∈ J . Let εgl , εhl ∈ [0, 1]m fulfill (21) and (22), and let the function s : U → R be defined as

s(wl, bl) =cl +
∑
j /∈J

βglj σ(〈wl, xj〉+ bl) +
∑
j∈J

βglj (〈wl, xj〉+ bl)εglj (229)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 + γ

m∑
j=1

(〈wl, xj〉+ bl)2 (230)

−
∑
j /∈J

βhlj σ(〈wl, xj〉+ bl)−
∑
j∈J

βhlj (〈wl, xj〉+ bl)εhlj . (231)

Then, s is differentiable in U and ∇s(w0
l , b

0
l ) = yg(w0

l , b
0
l , ε

gl)− yh(w0
l , b

0
l , ε

hl) as
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∂

∂(wl, bl)

(∑
j /∈J

βglj σ(〈wl, xj〉+ bl) +
∑
j∈J

βglj (〈wl, xj〉+ bl)εglj
)∣∣∣

(wl,bl)=(w0
l
,b0
l
)

(232)

=
∑
j /∈J

βglj H
(
〈w0

l , xj〉+ b0l
)(xj

1

)
+
∑
j∈J

βglj

(
xj
1

)
εglj (233)

=
∑
j /∈J

βglj H
(
〈w0

l , xj〉+ b0l
)(xj

1

)
+
∑
j∈J

βglj H
(
〈w0

l , xj〉+ b0l
)(xj

1

)
εglj (234)

=
m∑
j=1

βglj H
(
〈w0

l , xj〉+ b0l
)(xj

1

)
εglj , (235)

and analogously

∂

∂(wl, bl)

(
−
∑
j /∈J

βhlj σ(〈wl, xj〉+ bl)−
∑
j∈J

βhlj (〈wl, xj〉+ bl)εhlj
)∣∣∣

(wl,bl)=(w0
l
,b0
l
)

(236)

=−
m∑
j=1

βhlj H
(
〈w0

l , xj〉+ b0l
)
εhlj

(
xj
1

)
. (237)

To prove that ∇s(w0
l , b

0
l ) ∈ ∂FRegLossγ(w0

l , b
0
l ), we make use of Proposition 17. That is, we have to show

that

(a) s(w0
l , b

0
l ) = RegLossγ(w0

l , b
0
l ) holds true, and

(b) s(wl, bl) ≤ RegLossγ(wl, bl) for all (wl, bl) ∈ U .

For point (a), we arrive at

s(w0
l , b

0
l ) =cl +

∑
j /∈J

βglj σ(〈w0
l , xj〉+ b0l ) +

∑
j∈J

βglj (〈w0
l , xj〉+ b0l )ε

gl
j (238)

+
m∑
j=1

α2
l σ(〈w0

l , xj〉+ b0l )2 + γ

m∑
j=1

(
〈w0

l , xj〉+ b0l
)2 (239)

−
∑
j /∈J

βhlj σ(〈w0
l , xj〉+ b0l )−

∑
j∈J

βhlj (〈w0
l , xj〉+ b0l )εhlj (240)

=cl +
m∑
j=1

βglj σ(〈w0
l , xj〉+ b0l ) (241)

+
m∑
j=1

α2
l σ(〈w0

l , xj〉+ b0l )2 + γ

m∑
j=1

(
〈w0

l , xj〉+ b0l
)2 (242)

−
m∑
j=1

βhlj σ(〈w0
l , xj〉+ b0l ) (243)

=cl + gl(w0
l , b

0
l )− hl(w0

l , b
0
l ) = RegLossγ(w0

l , b
0
l ). (244)
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For point (b), we proceed as follows. Let (wl, bl) ∈ U . Then,

s(wl, bl) =cl +
∑
j /∈J

βglj σ(〈wl, xj〉+ bl) +
∑
j∈J

βglj (〈wl, xj〉+ bl)εglj (245)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 + γ

m∑
j=1

(〈wl, xj〉+ bl)2 (246)

−
∑
j /∈J

βhlj σ(〈wl, xj〉+ bl)−
∑
j∈J

βhlj (〈wl, xj〉+ bl)εhlj (247)

≤cl +
∑
j /∈J

βglj σ(〈wl, xj〉+ bl) +
∑
j∈J

βglj σ(〈wl, xj〉+ bl) (248)

+
m∑
j=1

α2
l σ(〈wl, xj〉+ bl)2 + γ

m∑
j=1

(〈wl, xj〉+ bl)2 (249)

−
∑
j /∈J

βhlj σ(〈wl, xj〉+ bl)−
∑
j∈J

βhlj σ(〈wl, xj〉+ bl) (250)

=RegLossγ(wl, bl). (251)

holds true if and only if∑
j∈J

(βglj ε
gl
j − β

hl
j ε

hl
j )(〈wl, xj〉+ bl) ≤

∑
j∈J

(βglj − β
hl
j )σ(〈wl, xj〉+ bl). (252)

For (〈wl, xj〉+ bl) ≤ 0 we have that

(βglj ε
gl
j − β

hl
j ε

hl
j )(〈wl, xj〉+ bl) ≤ 0 = (βglj − β

hl
j )σ(〈wl, xj〉+ bl), (253)

as (βglj ε
gl
j − β

hl
j ε

hl
j ) ≥ 0 by (22). For (〈wl, xj〉+ bl) > 0 we have that

(βglj ε
gl
j − β

hl
j ε

hl
j )(〈wl, xj〉+ bl) ≤ (βglj − β

hl
j )σ(〈wl, xj〉+ bl)⇔ (254)

(βglj ε
gl
j − β

hl
j ε

hl
j ) ≤ (βglj − β

hl
j ), (255)

which again holds by (22). Thus, the inequality in (252) holds true and the claim follows by Proposition 17.
�

D.10 Proof of Lemma 7

Proof. Let k ∈ N and l ∈ {1, . . . , N} be arbitrary. We denote with (wk+1
l , bk+1

l ) the element (wl, bl) in θk+1.
By Assumption 4 and Proposition 10, we know that

vk+1
l =

m∑
j=1

βglj (θk+1)
(
xj
1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εgl,kj (256)

+
m∑
j=1

2(αk+1
l )2

m
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)(
xj
1

)(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
(257)

+
m∑
j=1

2 γ
m

(
xj
1

)〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉
(258)

−
m∑
j=1

βhlj (θk+1)
(
xj
1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εhl,kj ∈ ∂L(wl,bl)RegLossγ(θk+1), (259)

where εgl,k and εhl,k are given as in Assumption 4. Furthermore, Assumption 3 yields
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m∑
j=1

βglj (θDC,k
l )

(
xj
1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εgl,kj (260)

+
m∑
j=1

2(αkl )2

m
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)(
xj
1

)(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
(261)

+
m∑
j=1

2 γ
m

(
xj
1

)〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉
(262)

−
m∑
j=1

βhlj (θDC,k
l )

(
xj
1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εhl,kj = 0. (263)

Then,

vk+1
l = vk+1

l − 0 (264)

=
m∑
j=1

(
βglj (θk+1)− βglj (θDC,k

l )
)(xj

1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εgl,kj (265)

+
m∑
j=1

2(αk+1
l )2 − (αkl )2

m
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)(
xj
1

)(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
(266)

−
m∑
j=1

(
βhlj (θk+1)− βhlj (θDC,k

l )
)(xj

1

)
H

(〈(
wk+1
l

bk+1
l

)
,

(
xj
1

)〉)
εhl,k, (267)

and, by writing (αk+1
l )2 − (αkl )2 as (αk+1

l − αkl )(αk+1
l + αkl ) and using Lemma 5 and Lemma 6, we yield

C > 0 independent of l such that

‖vk+1
l ‖1 ≤ C‖θk+1 − θDC,k

l ‖1 + C|αk+1
l − αkl |. (268)

�

D.11 Proof of Proposition 11

Proof. First, we observe that vα(θk+1) = (vα,l(θk+1))l∈{1,...,N} = ∇Oα(αk+1) = 0. Then, the proof is a
direct application of Lemma 7. Let

vk+1 = (vk+1
1 , vk+1

2 , . . . , vk+1
N , 0) ∈ ∂LRegLossγ(θk+1), (269)

where vk+1
l for l ∈ {1, . . . , N} is given as in Lemma 7. Then,

‖vk+1‖1 =
N∑
l=1
‖vk+1
l ‖1 ≤ C

N∑
l=1
‖θk+1 − θDC,k

l ‖1 + C

N∑
l=1
|αk+1
l − αkl | (270)

≤ C
N∑
l=1
‖θk+1 − θk‖1 + C‖αk+1 − αk‖1 (271)

≤ (N + 1)C‖θk+1 − θk‖1. (272)

Since all norms are equivalent in finite dimensions, this proves the claim. �
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D.12 Proof of Proposition 12

Proof. The following is based on the theory in Attouch et al. (2013). First, we note that Assumption 1
implies σmin(M) > 0, and, hence, there exists at least one solution to (PNN) by Proposition 1.

Now, let θ∗ ∈ arg min
θ

RegLossγ(θ). The claim follows by Theorem 2.10 and condition (H4) in Attouch et al.

(2013). For the sake of clarity, we shortly restate the two statements in our setting.

(H4): For any δ > 0, there exist a 0 < ρ < δ and ν > 0 such that

x ∈ B(x∗, ρ), f(x) < f(x∗) + ν

y /∈ B(x∗, ρ)

}
⇒ f(x) < f(y) + a‖y − x‖2,

where a is the parameter of the sufficient decrease condition. With the above condition, it is possible to
prove the convergence to local minima.
Theorem 3 (Theorem 2.10 in Attouch et al. (2013)). Let f : Rn → R∪{∞} be a proper lower semicontinuous
function which satisfies the KŁ property at some local minimizer x∗. Assume that (H4) holds at x∗. Then,
for any r > 0, there exist u ∈ (0, r) and µ > 0 such that the inequalities

‖x0 − x∗‖< u and f(x∗) < f(x0) < f(x∗) + µ (273)

imply the following: any sequence (xk)k∈N that starts from x0 and that satisfies (H1) and (H2) has (i) the
finite length property, (ii) remains in B(x∗, r), and (iii) converges to some x̄ ∈ B(x∗, r) critical point of f
with f(x̄) = f(x∗).

From Remark 2.11 in Attouch et al. (2013), we know that (H4) is satisfied for a local minimum x∗ if the
function f satisfies

f(y) ≥ f(x∗)− a

4‖y − x
∗‖2 for all y ∈ Rn. (274)

Now, it is easy to see that, for all θ ∈ RN , we have

RegLossγ(θ) ≥ RegLossγ(θ∗) ≥ RegLossγ(θ∗)− a

4‖θ − θ
∗‖2, (275)

and, hence, the claim follows by Theorem 3. �

D.13 Proof of Proposition 13

Proof. The proof essentially follows the one in Attouch & Bolte (2009) where it is tailored to the proximal
algorithm for nonsmooth functions. Hence, we restate the proof and adapt it to our setting and notation.

As in Attouch & Bolte (2009), we assume w.l.o.g that RegLossγ(θ∗) = 0. Now, let Sk denote the tail of the
series of distances between iterates, i. e.,

Sk =
∞∑
i=k
‖θi+1 − θi‖. (276)

Then, we first observe that

‖θk − θ∗‖ ≤ ‖θk − θk+1‖+ ‖θk+1 − θ∗‖ ≤ . . . (277)

≤
K∑
i=k
‖θi+1 − θi‖+ ‖θK+1 − θ∗‖ −−−−→

K→∞
Sk. (278)

Hence, it is sufficient to bound Sk. To do so, we prove the intermediate result

Sk ≤
r

1− r‖θ
k − θk−1‖+ C1

r(1− r)RegLossγ(θk)1−ξ, (279)
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for a constant C1 > 0, r ∈ (0, 1), ξ as specified in the KŁ property, and for k sufficiently large.

Let ϕ(s) = CKLs
1−ξ be the function specified in the KŁ property. Then, we have

ϕ(RegLossγ(θi))− ϕ(RegLossγ(θi+1)) (280)
≥ϕ′(RegLossγ(θi))

(
RegLossγ(θi)− RegLossγ(θi+1)

)
(281)

≥ϕ′(RegLossγ(θi))a‖θi+1 − θi‖2, (282)

where Equation (281) follows by the concavity of ϕ and Equation (282) follows by (H1). Now, for i ≥ K0,
we can use the KŁ inequality and yield

a‖θi+1 − θi‖2 ≤
ϕ(RegLossγ(θi))− ϕ(RegLossγ(θi+1))

ϕ′(RegLossγ(θi)) (283)

≤
(
ϕ(RegLossγ(θi))− ϕ(RegLossγ(θi+1))

)
‖vi‖ (284)

≤
(
ϕ(RegLossγ(θi))− ϕ(RegLossγ(θi+1))

)
b‖θi − θi−1‖, (285)

where the last inequality follows by (H2). Hence, we have
‖θi+1 − θi‖2

‖θi − θi−1‖
≤ b

a

(
ϕ(RegLossγ(θi))− ϕ(RegLossγ(θi+1))

)
(286)

= C1

((
RegLossγ(θi)

)1−ξ − (RegLossγ(θi+1)
)1−ξ)

. (287)

Now, let r ∈ (0, 1) be arbitrary. If ‖θi+1 − θi‖ ≥ r‖θi − θi−1‖, the above inequality yields

‖θi+1 − θi‖ ≤ C1

r

((
RegLossγ(θi)

)1−ξ − (RegLossγ(θi+1)
)1−ξ)

. (288)

Hence, we have that

‖θi+1 − θi‖ ≤ r‖θi − θi−1‖+ C1

r

((
RegLossγ(θi)

)1−ξ − (RegLossγ(θi+1)
)1−ξ)

. (289)

By summing up the above inequality from K0 to some K ≥ K0, we yield
K∑

i=K0

‖θi+1 − θi‖ (290)

≤r
K∑

i=K0

‖θi − θi−1‖+ C1

r

K∑
i=K0

((
RegLossγ(θi)

)1−ξ − (RegLossγ(θi+1)
)1−ξ) (291)

=r
K−1∑

i=K0−1
‖θi+1 − θi‖+ C1

r

((
RegLossγ(θK0)

)1−ξ − (RegLossγ(θK+1)
)1−ξ) (292)

=r
K∑

i=K0

‖θi+1 − θi‖+ C1

r

((
RegLossγ(θK0)

)1−ξ − (RegLossγ(θK+1)
)1−ξ) (293)

+ r‖θK0 − θK0−1‖ − r‖θK+1 − θK‖ (294)

≤r
K∑

i=K0

‖θi+1 − θi‖+ C1

r

((
RegLossγ(θK0)

)1−ξ − (RegLossγ(θK+1)
)1−ξ) (295)

+ r‖θK0 − θK0−1‖. (296)

Hence, by rearranging terms, we arrive at
K∑

i=K0

‖θi+1 − θi‖ ≤ r

1− r‖θ
K0 − θK0−1‖ (297)

+ C1

r(1− r)

((
RegLossγ(θK0)

)1−ξ − (RegLossγ(θK+1)
)1−ξ)

. (298)
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For K →∞, this yields Equation (279).

To prove our claim, we again make use of the KŁ inequality. From Corollary 16 in Bolte et al. (2007b) and
the resulting definition of ϕ, we know that

RegLossγ(θk)ξ

‖vk‖
=
(
RegLossγ(θk)− RegLossγ(θ∗)

)ξ
‖vk‖

≤ (1− ξ)CKL (299)

for k large enough and ‖vk‖ 6= 0.

Now, we are ready to prove each of the three cases.

Case 1: ξ = 0

Let I = {k ∈ N : θk 6= θk−1} and let k ∈ I be large enough. We assume w.l.o.g. that ‖vk‖ 6= 0. Otherwise,
we would have that vk = 0 for all k ∈ I and, by (H2), for all k ∈ N \ I, and, thus, the algorithm would have
been already initialized with a critical point. Now, from Equation (299), we have ‖vk‖ ≥ C−1

KL > 0. From
(H2), we get b2‖θk − θk−1‖2 ≥ ‖vk‖2 ≥ C−2

KL, and, hence,

‖θk − θk−1‖2 ≥
C−2

KL
b2

> 0. (300)

By (H1), this yields

RegLossγ(θk) ≤ RegLossγ(θk−1)− a‖θk − θk−1‖2 ≤ RegLossγ(θk−1)− aC−2
KL
b2

, (301)

and, hence,

RegLossγ(θk)− RegLossγ(θk−1) ≤ −aC
−2
KL
b2

< 0. (302)

Since the left-hand-side of the above inequality converges to zero, this implies that I is finite and, hence,
proves the first claim.

Case 2: ξ ∈ (0, 1
2 ]

Let k ≥ K0. We assume w.l.o.g. that Sk > 0 for all k ≥ K0 and ‖vk‖ 6= 0. Now, Equation (279) yields

Sk ≤
r

1− r (Sk−1 − Sk) + C1

r(1− r)RegLossγ(θk)1−ξ. (303)

From Equation (299), we have (
RegLossγ(θk)ξ

‖vk‖

) 1−ξ
ξ

≤ ((1− ξ)CKL)
1−ξ
ξ (304)

⇔ RegLossγ(θk)1−ξ ≤ ((1− ξ)CKL)
1−ξ
ξ ‖vk‖

1−ξ
ξ (305)

≤ ((1− ξ)CKL)
1−ξ
ξ b

1−ξ
ξ ‖θk − θk−1‖

1−ξ
ξ (306)

= C2‖θk − θk−1‖
1−ξ
ξ (307)

⇔ RegLossγ(θk)1−ξ ≤ C2 (Sk−1 − Sk)
1−ξ
ξ , (308)

and, hence,

Sk ≤
r

1− r (Sk−1 − Sk) + C1C2

r(1− r) (Sk−1 − Sk)
1−ξ
ξ . (309)
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Let K1 ≥ K0 be such that Sk−1 − Sk < 1 for k ≥ K1. Since ξ ∈ (0, 1
2 ], we have that 1−ξ

ξ ≥ 1, and, thus,
Equation (309) yields Sk ≤ C3 (Sk−1 − Sk) for a constant C3 > 0. With q = C3

1+C3
, this yields

‖θk − θ∗‖ ≤ Sk ≤ qSk−1 ≤ qk−K1SK1 =: ak, (310)

for k ≥ K1. The sequence ak converges Q-linearly to zero with rate 0 < q < 1, i. e.,

lim
k→∞

ak+1

ak
= q. (311)

Thus, by definition, the sequence (θk)k∈N converges R-linearly (Nocedal & Wright, 2006).

Case 3: ξ ∈ ( 1
2 , 1)

Analogously to case 2, we yield Equation (309). Since ξ ∈ ( 1
2 , 1) and Sk → 0, we have that 1−ξ

ξ < 1 and
that there exists K2 ≥ K0 and a constant C4 > 0 such that

S
ξ

1−ξ
k ≤ C4(Sk−1 − Sk) (312)

for all k ≥ K2. By proceeding analogously to Attouch & Bolte (2009) (see derivations after Equation (13)
therein), there exists a constant C5 > 0 such that

Sk ≤ C5k
− 1−ξ

2ξ−1 (313)

for all k ≥ K2. This yields

‖θk − θ∗‖ ≤ Sk ≤ C5k
− 1−ξ

2ξ−1 =: ak. (314)

The sequence ak converges Q-sublinearly, i. e.,

lim
k→∞

ak+1

ak
= lim
k→∞

k
1−ξ

2ξ−1

(k + 1)
1−ξ

2ξ−1
= 1, (315)

and, hence, the claim follows. �

D.14 Proof of Proposition 14

Proof. Let ak = RegLossγ(θk) and a∗ = RegLossγ(θ∗). By Equation (299) from Proposition 13, we know
that (

ak − a∗
)ξ

‖vk‖
≤ (1− ξ)CKL (316)

for k large enough and ‖vk‖ 6= 0. Hence, we yield

a‖θk+1 − θk‖2 ≥ ab−2‖vk+1‖2 ≥ ab−2
(
ak+1 − a∗

)2ξ
((1− ξ)CKL)2 = C

(
ak+1 − a∗

)2ξ
, (317)

for large k, where the first inequality is due to (H2). By (H1), we then have

ak ≥ ak+1 + a‖θk+1 − θk‖2 ≥ ak+1 + C
(
ak+1 − a∗

)2ξ
, (318)

and, thus,

ak − a∗ ≥ ak+1 − a∗ + C
(
ak+1 − a∗

)2ξ (319)

for large enough k. Note that we assume ‖vk‖ 6= 0 since, otherwise, the algorithm would have converged in
a finite number of iterations.
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We start with assuming that ξ > 1
2 and yield

lim
k→∞

|ak+1 − a∗|
|ak − a∗|

= lim
k→∞

ak+1 − a∗

ak − a∗
≤ lim
k→∞

ak+1 − a∗

ak+1 − a∗ + C (ak+1 − a∗)2ξ (320)

= lim
k→∞

1
1 + C (ak+1 − a∗)2ξ−1 = 1, (321)

and, hence, sub-linear convergence. Furthermore, for ξ = 1
2 , the above limit is bounded by 1/(1 +C), which

results in linear convergence.

Now, we assume that ξ ∈ ( 1
2(q+1) ,

1
2q ] for q ∈ N and proceed as follows. First,

(
ak − a∗

)q ≥ (ak+1 − a∗ + C
(
ak+1 − a∗

)2ξ)q (322)

holds for k large enough. Second, we yield

lim
k→∞

|ak+1 − a∗|
|ak − a∗|q

= lim
k→∞

ak+1 − a∗

(ak − a∗)q
≤ lim
k→∞

ak+1 − a∗(
ak+1 − a∗ + C (ak+1 − a∗)2ξ

)q (323)

= lim
k→∞

ak+1 − a∗
q∑
l=0

(
q
l

)
(ak+1 − a∗)q−l Cl (ak+1 − a∗)2ξl

(324)

= lim
k→∞

1
q∑
l=0

(
q
l

)
Cl (ak+1 − a∗)q+(2ξ−1)l−1

(325)

≤ lim
k→∞

1
Cq (ak+1 − a∗)q+(2ξ−1)q−1 . (326)

Now, for ξ < 1
2q , it follows that q+ (2ξ− 1)q− 1 < 0 and, hence, that the above limit is zero. For ξ = 1

2q , we
have that the above limit is bounded by 1/Cq, which proves the claim. Note that the special case ξ = 1/2
has been analyzed separately above. �

D.15 Proof of Proposition 15

Proof. Let ξ ≤ 1
2q for q ∈ N≥2. Furthermore, let U∗ be a neighborhood of θ∗ in which RegLossγ is strictly

convex. Now, let r ∈ (0, 1) be such that Br(θ∗) ⊆ U∗, i. e., the closed ball with radius r around θ∗ lies inside
U∗. We define the function RegLossext

γ via

RegLossext
γ (θ) =

{
RegLossγ(θ)− RegLossγ(θ∗), if θ ∈ Br(θ∗),
∞, else.

(327)

Note that RegLossext
γ is a proper, convex, lower-semicontinuous function with min RegLossext

γ = 0 and
{θ∗} = arg min RegLossext

γ . From Theorem 5 in Bolte et al. (2017), we thus get

‖θ − θ∗‖ ≤ CKL|RegLossext
γ (θ)|1−ξ (328)

for θ ∈ Bρ(θ∗) with r ≥ ρ > 0 sufficiently small. Furthermore, from Theorem 3.1.8 in Nesterov (2003), we
know that there exists a constant L such that RegLossγ is L-Lipschitz in B r

2
(θ∗), and from Proposition 14,

we know that there exists a constant Cq > 0 such that |RegLossγ(θk+1)−RegLossγ(θ∗)| ≤ Cq|RegLossγ(θk)−
RegLossγ(θ∗)|q, for large enough k.
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Now, for k large enough, we yield

‖θk+1 − θ∗‖ ≤ CKL|RegLossγ(θk+1)− RegLossγ(θ∗)|1−ξ (329)
≤ CKLC

1−ξ
q |RegLossγ(θk)− RegLossγ(θ∗)|q(1−ξ) (330)

≤ CKLC
1−ξ
q Lq(1−ξ)‖θk − θ∗‖q(1−ξ) (331)

≤ CKLC
1−ξ
q Lq(1−ξ)‖θk − θ∗‖q− 1

2 , (332)

and, thus, ‖θk+1 − θ∗‖ ≤ C‖θk − θ∗‖q− 1
2 for C = CKLC

1−ξ
q Lq(1−ξ). �

D.16 Proof of Proposition 16

Assume that θ∗ = (α∗,W ∗, b∗) fulfills

〈w∗i , xj〉+ b∗i 6= 0 ∀i ∈ {1, . . . , N} and ∀j ∈ {1, . . . ,m}. (333)

If (333) holds true, there exists a neighborhood U∗ of θ∗ such that 〈wi, xj〉 + bi 6= 0 for all i ∈ {1, . . . , N},
j ∈ {1, . . . ,m}, and θ ∈ U∗. That is, RegLossγ is a twice continuously differentiable function in U∗.
Furthermore, by assumption, ∇2RegLossγ(θ∗) is invertible. From Proposition 1 in Huang et al. (2019), it
then follows that RegLossγ fulfills the KŁ property at θ∗ with ξ = 1/2, i. e., there exists a C > 0 and r > 0
such that

|RegLossγ(θ)− RegLossγ(θ∗)| 12 ≤ C‖∇RegLossγ(θ)‖, (334)

for all θ ∈ Br(θ∗) ⊆ U∗.
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E Discussion of our Findings in Context of the KŁ Literature

Proposition 13 can be seen as a standard result in the KŁ literature (see, e. g., Attouch & Bolte, 2009).
However, Proposition 14 and Proposition 15 follow from stronger assumptions on the underlying objective
function. The main difference is that the standard assumptions on the objective function f in the KŁ
literature (see, e. g., Attouch et al., 2013) are usually the following:

• The function f is assumed to be proper but is allowed to take infinite values, i. e., f : Rn → R∪{∞}.
This allows to incorporate convex constraints in the objective function via a characteristic function.
In our case, RegLossγ is always finite.

• The function f is assumed to be lower-semicontinuous. This allows for a much larger class of
optimization problems, but renders the analysis of the convergence in value obsolete, as xk → x∗

does not imply f(xk)→ f(x∗). In our case, RegLossγ is continuous.

As such, our results in Proposition 14 and Proposition 15 come from the fact that f is finite and continuous
in our case. In fact, we can extend the results in Attouch et al. (2013) under these additional assumptions
as follows.
Proposition 18 (Extension 1 of Theorem 2.9 in Attouch et al. (2013)). Let all assumptions of Theorem 2.9
in Attouch et al. (2013) hold. Furthermore, let f : Rn → R be (finite), continuous, and a KŁ function with
ϕ as given in Proposition 8. Let ξ be the KŁ exponent associated with x̄. Then, the following holds true:

• If ξ ∈ ( 1
2(q+1) ,

1
2q ], f(xk) converges to f(x̄) with order q ∈ N.

• If ξ > 1
2 , f(xk) converges Q-sublinearly to f(x̄).

Furthermore, if ξ ∈ ( 1
2(q+1) ,

1
2q ), we even observe super-Q-convergence.

Note that the proof of Proposition 14 merely uses the continuity of f , the KŁ property, (H2), and (H1).
Hence, the proof of the above proposition follows the exact same structure. Furthermore, the following holds
true:
Proposition 19 (Extension 2 of Theorem 2.9 in Attouch et al. (2013)). Under the assumptions of Proposi-
tion 18, let f admit a neighborhood Ū of x̄ in which f is strictly convex. Then, the following holds true: If
ξ ≤ 1

2q for q ∈ N≥2, the sequence (xk)k∈N converges with order at least q − 1
2 .

Again, Proposition 15 merely uses the continuity of f and the finiteness of f inside the ball Br(x̄), thus the
proof of the above proposition follows the one of Proposition 15.

We illustrate these results based on an example. We consider the proximal algorithm given by

xk+1 ∈ arg min
{
f(y) + 1

2λ‖y − x‖
2 : y ∈ Rn

}
, (335)

where λ is a positive parameter that can vary for each k but remains bounded, i. e., λ ∈ [λ, λ] ⊆ (0,∞).
We demonstrate that, under the above assumptions on the objective function f , the proximal algorithm
achieves a much faster convergence than the one derived in Attouch & Bolte (2009). However, at this point,
we want to emphasize that their analysis holds under much weaker assumptions, which allows to consider
more general optimization problems.

Attouch et al. (2013) derived (H1) and (H2) for the proximal algorithm (see Equations (33)–(35) therein)
given that f is a proper, lower-semicontinuous function that is bounded from below. Furthermore, if the
function f is continuous, (H3) directly follows. Now, let q ∈ N≥2 and f be defined as follows f(x) = ‖x‖

2q
2q−1 .

Then, f fulfills the KŁ property at the global minimizer x̄ = 0 with ξ = 1/2q. To show this, we define
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ϕ(s) = s1− 1
2q = s

2q−1
2q and yield ϕ′(s) = 2q−1

2q s−
1

2q . Now,

ϕ′(f(x)) = 2q − 1
2q ‖x‖−

1
2q−1 , (336)

‖∇f(x)‖ = 2q
2q − 1‖x‖

1
2q−1 (337)

for all x 6= 0. That is, ϕ′(f(x))‖∇f(x)‖ = 1 for all x 6= 0. Furthermore, f fulfills all assumptions of
Proposition 18 and Proposition 19. That is, we expect the iterates of the proximal algorithm in this setting
to converge with order of at least q− 1

2 . In the following, we will prove analytically that the iterates converge
even faster with order 2(q− 1

2 ). In addition, we demonstrate our results numerically. Note that the analysis
in Attouch & Bolte (2009) guarantees only R-linear convergence in this setting.

To compute the next iterate xk+1 given xk, we consider the function g(x) = f(x) + 1
2λ‖x − x

k‖2. As g is
convex and differentiable for x 6= 0 we have that ∇g(xk+1) = 0 or xk+1 = 0. The latter results in finite
convergence. Hence, we assume xk+1 6= 0 in our analysis. The gradient of g is given by

∇g(x) = 2q
2q − 1‖x‖

2(1−q)
2q−1 x+ 1

λ
(x− xk), (338)

and, hence, the following equality holds

xk+1 = xk − 2qλ
2q − 1‖x

k+1‖
2(1−q)
2q−1 xk+1, (339)

which gives
(

1 + 2qλ
2q−1‖x

k+1‖
2(1−q)
2q−1

)
‖xk+1‖ = ‖xk‖. Thus,

‖xk+1‖
‖xk‖2q−1 = ‖xk+1‖(

1 + 2qλ
2q−1‖xk+1‖

2(1−q)
2q−1

)2q−1
‖xk+1‖2q−1

(340)

= ‖xk+1‖(2q−1∑
l=0

(2q−1
l

) ( 2qλ
2q−1

)l
‖xk+1‖

2(1−q)l
2q−1

)
‖xk+1‖2q−1

(341)

= 1(2q−1∑
l=0

(2q−1
l

) ( 2qλ
2q−1

)l
‖xk+1‖

4q2−6q+2l(1−q)+2
2q−1

) (342)

≤ 1(
2qλ

2q−1

)2q−1
‖xk+1‖0

(343)

= 1(
2qλ

2q−1

)2q−1 . (344)

To confirm our results numerically, we set λ = 0.1 and vary q ∈ {2, 3, 4, 5, 6}. We use the above proximal
algorithm to solve minx∈R10 f(x) with 100 random starting points for each q. Furthermore, we estimate the
convergence order via

q ≈
log
(
‖xk+1−xk‖
‖xk−xk−1‖

)
log
(
‖xk−xk−1‖
‖xk−1−xk−2‖

) , (345)

for large k. The results are reported in Table 3.

Evidently, the theoretical convergence orders are also observed in the numerical experiments. Our example
shows that faster, i. e., super-linear, convergence orders can be achieved under additional assumptions on
the objective function and, thereby, links our analysis to the general KŁ literature.
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Table 3: Estimated convergence order (mean and std.) across different values for q ∈ {2, 3, 4, 5, 6}.

q = 2 q = 3 q = 4 q = 5 q = 6

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)

2.9931 (0.0325) 4.9834 (0.0702) 6.9582 (0.1486) 8.9711 (0.1479) 10.9398 (0.2334)

F Numerical Analysis

F.1 Implementation of DCON

General implementation details. For our experiments, DCON is implemented as a Python package
using C++ code to accelerate computations. It is built using cmake. For building the Python interface, we
use pybind11.6 For solving the quadratic programs, DCON requires Gurobi.7 To accelerate linear algebra
operations, our package uses the Intel Math Kernel Library.8 We use a Python class called DCON through
which we can easily access the DCON algorithm via a .fit routine. This class also implements a function
get_keras to return the trained model as a keras model. An implementation of DCON using only Python
code can be downloaded from GitHub9.

DC subproblem. In our implementation, the DC subproblem is approached as follows. DCA is stopped if
either the norm of the difference of two successive iterates is smaller than 10−12 or a maximum number of
DCA iterations is reached. The latter can be passed as a parameter.

Alpha subproblem. The solution of the alpha subproblem given in Section 4.2 is computed via a singular
value decomposition (SVD). For this, we make use of the Eigen library10, particularly the divide-and-conquer
SVD algorithm bdcsvd.

Convergence criterion. A parameter n_epochs is used to set the number of outer iterations M. If an
integer is passed to n_epochs in the .fit routine, DCON stops after the specified number of iterations. If
n_epochs is set to “auto”, DCON stops when the distance between two successive iterations is smaller than
10−6.

F.2 Datasets

We searched the UCI machine learning repository using a systematic procedure. For this, we set the filter
options as follows:

• Default Task: Regression

• Attribute Type: Numerical

• Data Type: Multivariate

• Instances: 100 to 1000

Afterward, we filtered for datasets where Regression is the unique task in the column Default Task. Alto-
gether, this led to ten datasets. In addition, we filtered datasets that have at least 100 training instances
after the train-validation-test split, yielding nine benchmark datasets listed in Table 4. We note that the
range of instances was chosen to strike a balance between computational feasibility and rigorous evaluation.
Datasets with fewer than 100 training instances might not provide enough data to meaningfully train and
test a neural network, while those with more than 1000 instances could introduce prohibitive computational
demands for 30 train-test splits as performed in this work. In summary, these criteria were chosen to provide
a fair and rigorous evaluation of the model performance.

6https://github.com/pybind/pybind11, last accessed 02/12/21.
7https://www.gurobi.com/products/gurobi-optimizer/, last accessed 02/12/21.
8https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html, last accessed 02/12/21.
9https://github.com/DanielTschernutter/DCON

10http://eigen.tuxfamily.org/, last accessed 02/12/21.

56

https://github.com/pybind/pybind11
https://www.gurobi.com/products/gurobi-optimizer/
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://github.com/DanielTschernutter/DCON
http://eigen.tuxfamily.org/


Published in Transactions on Machine Learning Research (01/2024)

Table 4: Datasets

Dataset Description Num. of covariates n

DS1 Computer Hardware Data Set1 9
DS2 Forest Fires Data Set2 13
DS3 Stock Portfolio Performance Data Set3 12
DS4 Yacht Hydrodynamics Data Set4 7
DS5 Facebook Metrics Data Set5 19
DS6 Residential Building Data Set6 105
DS7 Real Estate Valuation Data Set7 7
DS8 QSAR Fish Toxicity Data Set8 7
DS9 QSAR Aquatic Toxicity Data Set9 9
1https://archive.ics.uci.edu/ml/datasets/Computer+Hardware, last accessed 03/20/20.
2https://archive.ics.uci.edu/ml/datasets/Forest+Fires, last accessed 03/20/20.
3https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance, last accessed 03/20/20.
4https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics, last accessed 03/20/20.
5https://archive.ics.uci.edu/ml/datasets/Facebook+metrics, last accessed 03/20/20.
6https://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set, last accessed 03/20/20.
7https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set, last accessed 03/20/20.
8https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity, last accessed 03/20/20.
9https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity, last accessed 03/20/20.

F.3 Preprocessing

Each of the datasets are preprocessed using standard approaches, while taking into account dataset-
dependent restrictions and recommendations. The following describes the steps taken to preprocess the
datasets.

Dataset DS1. We drop the columns VENDOR, MODEL, and ERP. Furthermore, we use RobustScaler and
MinMaxScaler for features and target variable.11 We split the data into 80% for training, 10% for
validation, and 10% for testing. This split is repeated 30 times to obtain 30 different splits of the
data.

Dataset DS2. We encode month and day into numbers 1–12 and 1–7, respectively. As recommended, we
log-transform area. Finally, we scale the features and the target variable with the RobustScaler and
the MinMaxScaler, respectively. We split the data into 80% for training, 10% for validation, and
10% for testing. This split is repeated 30 times to obtain 30 different splits of the data.

Dataset DS3. We concatenate the sheets 1st period to 4th period and keep the columns Large B/P,
Large ROE, Large S/P, Large Return Rate in the last quarter, Large Market Value, and
Small systematic Risk as training features. The column Annual Return.1 represents our tar-
get variable. Finally, we scale the features and the target variable with the RobustScaler and the
MinMaxScaler, respectively. We split the data into 80% for training, 10% for validation, and 10%
for testing. This split is repeated 30 times to obtain 30 different splits of the data.

Dataset DS4. We drop the column prismatic_coefficient due to missing values. Finally, we scale the
features and the target variable with the RobustScaler and the MinMaxScaler, respectively. We split
the data into 80% for training, 10% for validation, and 10% for testing. This split is repeated 30
times to obtain 30 different splits of the data.

Dataset DS5. We drop the columns comment, like, and share. We use one-hot encoding for the column
Type and drop all samples with missing values. Finally, we scale the features and the target variable
with the RobustScaler and the MinMaxScaler, respectively. We split the data into 80% for training,
10% for validation, and 10% for testing. This split is repeated 30 times to obtain 30 different splits
of the data.

11We use the scalers of sklearn.preprocessing
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Dataset DS6. We drop the columns START YEAR, START QUARTER, COMPLETION YEAR, and COMPLETION
QUARTER. We use a time lag of 4 as this was found to be effective in earlier research (Rafiei & Adeli,
2018). We use CONSTRUCTION COSTS as the target variable. Finally, we scale the features and the
target variable with the RobustScaler and the MinMaxScaler, respectively. We split the data into
80% for training, 10% for validation, and 10% for testing. This split is repeated 30 times to obtain
30 different splits of the data.

Dataset DS7. We drop the column No. We scale the features and the target variable with the RobustScaler
and the MinMaxScaler, respectively. We split the data into 80% for training, 10% for validation,
and 10% for testing. This split is repeated 30 times to obtain 30 different splits of the data.

Dataset DS8. We scale the features and the target variable with the RobustScaler and the MinMaxScaler,
respectively. We split the data into 80% for training, 10% for validation, and 10% for testing. This
split is repeated 30 times to obtain 30 different splits of the data.

Dataset DS9. We scale the features and the target variable with the RobustScaler and the MinMaxScaler,
respectively. We split the data into 80% for training, 10% for validation, and 10% for testing. This
split is repeated 30 times to obtain 30 different splits of the data.

F.4 Hyperparameter

All hyperparameters and their tuning ranges are reported in Table 5. Of note, DCON has no hyperparameter
related to training, only one related to the neural network architecture. In contrast to that, Adam has
hyperparameters related to both the neural network architecture and the training process.

Table 5: Hyperparameter tuning ranges.

Hyperparameters Tuning range

Adam (Hyperparameters related to training)
Learning rate {10−3, 5·10−3, 5·10−4}
First moment exponential decay rate β1 {0.9, 0.99}
Batch size {64, 128,m}

Adam (Hyperparameters related to neural network structure)
Regularization parameter {10−2, 10−3}

DCON (Hyperparameters related to neural network structure)
Regularization parameter γ {10−2, 10−3, 10−4, 10−5}
Note: The patience for early stopping was set to 10 epochs for Adam.

F.5 Discussion of Generalization to Unseen Data

For the following analysis, we follow Mohri et al. (2018) and denote with X ⊆ Rn the input space and with
the measurable set Y ⊆ R the target space. Furthermore, let D be a distribution over X ×Y and the training
set S = ((x1, y1), (x2, y2), . . . , (xm, ym)) be i.i.d. samples drawn from D. The class of single hidden layer
neural networks is denoted by H and the elements depending on the actual parameters θ by hθ. Then, from
Theorem 11.3 in Mohri et al. (2018), it follows that, for δ > 0 and hθ ∈ H,

E(x,y)∼D
(
(hθ(x)− y)2) ≤ 1

m

m∑
j=1

(hθ(xi)− yi)2 + 4MR̂S(H) + 3M2

√
log( 2

δ )
2m (346)

holds true with probability 1−δ, whereM is such that |hθ(x)−y| ≤M for all (x, y) ∈ X ×Y and hθ ∈ H, and
R̂S(H) denotes the empirical Rademacher complexity of the class H. A broad stream of literature provides
bounds for the empirical Rademacher complexity of neural networks. For instance, Theorem 2 in Golowich
et al. (2018) gives a bound in O( 1√

m
) under suitable norm constraints on the neural network parameters

and X = {x ∈ Rn : ‖x‖ ≤ B}. That is, given δ > 0, a bounded input and target space, and defining
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Hr = {hθ ∈ H : ‖θ‖ ≤ r} for r > 0, one yields a generalization bound of the form

E(x,y)∼D
(
(hθ(x)− y)2) ≤ 1

m

m∑
j=1

(hθ(xi)− yi)2 +O( 1√
m

), (347)

which holds true with probability 1− δ for all hθ ∈ Hr.

Thus, one reason that DCON achieves a better generalization to unseen data compared to Adam in our
numerical experiments (Section 6) may be attributed to the superior training performance of DCON.

F.6 Convergence Plots

In the following, we show the convergence plots for each combination of dataset and layer size for the
experiments in Section 6.3. The plots are in Appendices F.6 to F.6. At this point, we note again that
εg is determined by solving minεgl∈C

n∑
t=1

(vl,t(θDC
l , εgl ,1))2 + (vl(θDC

l , εgl ,1))2 after each DC subproblem for

each inner iteration. Here, the set C decodes the constraints in (21). As mentioned in the main paper,
the rationale is to find the values for εgl that set the corresponding entries of v to zero for εhl = 1, which
exist due to Proposition 7. Sometimes, numerical issues lead to poor estimates of the correct values of εg.
The main problem arises in identifying the correct j ∈ {1, . . . ,m} for which εglj ∈ [0, 1] and building the
corresponding objective function. In our implementation, we decided to vary the corresponding εglj ∈ [0, 1]
if |〈wl, xj〉+ bl| < δ with δ = 10−6. Afterward, the objective function is built by setting

vl,t(θ, εgl) =
m∑
j=1

βglj H
δ (〈wl, xj〉+ bl)xj,tεglj +

m∑
j=1

2α
2
l

m
H (〈wl, xj〉+ bl)xj,t (〈wl, xj〉+ bl) (348)

+
m∑
j=1

2 γ
m
xj,t (〈wl, xj〉+ bl)−

m∑
j=1

βhlj H (〈wl, xj〉+ bl)xj,t, (349)

vl(θ, εgl) =
m∑
j=1

βglj H
δ (〈wl, xj〉+ bl) εglj +

m∑
j=1

2α
2
l

m
H (〈wl, xj〉+ bl) (〈wl, xj〉+ bl) (350)

+
m∑
j=1

2 γ
m

(〈wl, xj〉+ bl)−
m∑
j=1

βhlj H (〈wl, xj〉+ bl) , (351)

where Hδ(x) = 1 if x > −δ and zero else.
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Figure 4: Convergence plots for dataset DS1.
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Figure 5: Convergence plots for dataset DS2.
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Figure 6: Convergence plots for dataset DS3.
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Figure 7: Convergence plots for dataset DS4.
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Figure 8: Convergence plots for dataset DS5.
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Figure 9: Convergence plots for dataset DS6.
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Figure 10: Convergence plots for dataset DS7.
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Figure 11: Convergence plots for dataset DS8.

67



Published in Transactions on Machine Learning Research (01/2024)

N = 10 N = 20 N = 30

0 1000 2000 3000 4000
Epochs

10−5

10−4

10−3

10−2

10−1

100
Norm of element in limiting subdifferential ‖vk+1‖2

(a) ‖vk+1‖2

0 1000 2000 3000 4000
Epochs

10−5

10−4

10−3

10−2

10−1

100
Norm of element in limiting subdifferential ‖vk+1‖2

(b) ‖vk+1‖2

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

10−5

10−4

10−3

10−2

10−1

100
Norm of element in limiting subdifferential ‖vk+1‖2

(c) ‖vk+1‖2

0 1000 2000 3000 4000
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100 Distance between iterates ‖θk+1 − θk‖2

(d) ‖θk+1 − θk‖2

0 1000 2000 3000 4000
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100 Distance between iterates ‖θk+1 − θk‖2

(e) ‖θk+1 − θk‖2

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100 Distance between iterates ‖θk+1 − θk‖2

(f) ‖θk+1 − θk‖2

0 5 10 15 20 25 30
Epochs

10−2

10−1

100

M
S

E DCON

Adam

(g) MSE in early training phase

0 5 10 15 20 25 30
Epochs

10−2

10−1

M
S

E

DCON

Adam

(h) MSE in early training phase

0 5 10 15 20 25 30
Epochs

10−2

10−1

M
S

E DCON

Adam

(i) MSE in early training phase

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5
ln(ek+1)

−6

−5

−4

−3

−2

−1

0

1

ln
(e
k
)

Estimated convergence order (total): 1.000
Estimated convergence order (early phase): 1.390

Log-errors

Lin. reg. (total)

Lin. reg. (early phase)

(j) Estimated convergence order

−6 −5 −4 −3 −2
ln(ek+1)

−6

−5

−4

−3

−2

−1

0

ln
(e
k
)

Estimated convergence order (total): 1.000
Estimated convergence order (early phase): 1.349

Log-errors

Lin. reg. (total)

Lin. reg. (early phase)

(k) Estimated convergence order

−6 −5 −4 −3 −2
ln(ek+1)

−6

−5

−4

−3

−2

−1

0

ln
(e
k
)

Estimated convergence order (total): 1.000
Estimated convergence order (early phase): 1.331

Log-errors

Lin. reg. (total)

Lin. reg. (early phase)

(l) Estimated convergence order

Figure 12: Convergence plots for dataset DS9.

Figures (a) to (c) show how the norm of the element in the limiting subdifferential approaches zero as the
number of iterations increase for different hidden layer sizes. Figures (d) to (f) report the distance between the
parameter vectors of two successive iterations, i. e., ‖θk+1−θk‖2, and should empirically analyze convergence.
We find that the difference between two successive iterates decreases gradually in all experiments. Figures (g)
to (i) report the MSE for training with Adam and DCON, while Figures (j) to (l) estimate the convergence
rate of DCON.We observe linear convergence in all experiments except for dataset 5, where DCON terminates
after finitely many iterations for all three hidden layer sizes.
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G Experiments using the MNIST benchmark dataset

Preprocessing. First, the image data (color codes of each pixel) are scaled to lie within zero and one.
Second, the images, originally of size 28 × 28, are down-sized using interpolation to images of size 10 × 10
using sklearn. The reason is to fulfill Assumption 1 forM . Otherwise, due to the large number of pixels that
show white background, the matrixM is singular. Afterward, we scale the data again with a MinMaxScaler.
The target variables are encoded as explained in the main paper. We split the data into 70% for training
and 30% for validation. For the experiment on the MNIST subset, we only use the first 10,000 samples of
the training set. The test data are already provided in the MNIST benchmark dataset.

Implementation of scalable version. For the scalable version of DCON, we implemented the ADMM
approach described in Appendix C. That is, we refrain from using Gurobi to solve (QP), and, instead, we
use cuBLAS12 and Thrust13 to compute the basic linear algebra subroutines in Algorithms 2 and 3. In
addition, we use an acceleration approach via over-relaxation; see Boley (2013) for details. We set the
ADMM parameter ρ = 1, αrelax = 1.4 for over-relaxation, and the maximum number of ADMM iterations
L = 500. The choice was determined via trial and error for the MNIST benchmark dataset and then hard-
coded. We stop Algorithm 2 when both the primal and dual residuals are smaller than 10−3; see Boley
(2013) for details. The scalable version of DCON runs on a GPU using CUDA.

Hardware. We performed the MNIST experiment on a server with an Nvidia Tesla V100 with 32GB of
RAM. After the train-validation split, we yield m = 42000, which results in a memory requirement of ∼14
GB for the matrix V (in double-precision floating-point arithmetic). For comparison, medium-sized datasets
as defined in the main paper require merely 800 MB. Furthermore, state-of-the-art training algorithms
usually work in single-precision floating-point arithmetic, while, recently, even half precision floating-point
arithmetic is used to speedup computations.

12https://docs.nvidia.com/cuda/cublas/index.html, last accessed 02/12/21.
13https://docs.nvidia.com/cuda/thrust/index.html, last accessed 02/12/21.
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H Runtime Experiments

In the following, we compare DCON and Adam in terms of runtime. The experimental setup is as follows.
We consider between 50 and 1000 training examples of the MNIST dataset and construct 5 to 50 random
Fourier features following Rahimi & Recht (2007). Then, we use the same parameter settings as in the main
paper for DCON and fix the number of hidden neurons to N = 10 and the regularization parameter to
γ = 0.01. First, we let DCON train for 30 iterations and measure the runtime in seconds. Second, we train
again with Adam for each hyperparameter combination in Table 5 and stop the training when it reaches the
same mean squared error as DCON.
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(a) Total runtime of DCON

(b) Average runtime of Adam over all hyperparameter combinations

(c) Best runtime of Adam over all hyperparameter combinations

Figure 13: Runtime for DCON and Adam.
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Figure 13 shows the total runtime of DCON, the average runtime per hyperparameter combination of Adam,
and the best runtime over all hyperparameter combinations of Adam. Evidently, Adam has difficulties
reaching the same mean squared error as DCON in the “small number of features” and “large number
of training examples” (lower right) region. Furthermore, DCON is consistently faster than Adam in the
“small number of training examples” (left) region. At this point, we also want to emphasize that the
numbers reported in Figure 13c strongly favor Adam, as they report the runtime of the fastest run among
all hyperparameter combinations to reach the same mean squared error as DCON. These combinations are
– of course – a priori unknown, and we thus merely report the runtime for transparency reasons.

DCON requires no hyperparameter optimization and the above comparisons are made with respect to the
average or best runtime of Adam per hyperparameter combination. Thus, for a more realistic comparison,
we would need to compare the runtime of DCON to the total runtime of Adam, i. e., the total runtime
needed for all hyperparameter combinations in Table 5. Figure 14 shows the percentage improvements of
DCON over Adam with respect to total runtime. We can see large improvements by a factor of up to 5.2 in
the “small number of training examples” (left) region but still consistent improvements of around 2% in the
“large number of training examples” and “large number of features” (upper right) region.

Figure 14: Percentage runtime improvements of DCON over Adam.
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I Experiments with Additional Baselines

Here, we also compared DCON against other, non-neural baselines. In particular, we consider (i) linear
regression, (ii) lasso, (iii) ridge regression, and (iv) kernel ridge regression. The hyperparameter grids can
be found in Table 6.

Table 6: Hyperparameter tuning ranges for additional baselines.

Hyperparameters Tuning range

Lasso
Regularization parameter {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}

Ridge
Regularization parameter {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}

Kernel ridge
Regularization parameter {10−3, 10−2, 10−1, 1, 10, 102, 103}
Kernel {linear, poly, rbf}
Hyperparameters were tuned on the validation set.

Results are reported in Tables 7 to 10. Evidently, DCON achieves large performance improvements on
average against linear models. Furthermore, we observe improvements in the training loss, on average, up
to 31% for kernel ridge regression.

Table 7: Relative performance improvement in mean squared error of DCON over linear
regression.

Training Test

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

DS 1 3.11 (1.09) 2.71 (0.68) 2.95 (0.79) 0.47 (0.75) 0.51 (0.60) 0.45 (0.75)
DS 2 0.34 (0.06) 0.54 (0.08) 0.67 (0.09) −0.13 (0.22) −0.24 (0.16) −0.20 (0.15)
DS 3 0.18 (0.06) 0.23 (0.06) 0.26 (0.06) −0.07 (0.14) −0.10 (0.13) −0.13 (0.13)
DS 4 3.88 (2.84) 3.73 (1.67) 5.09 (1.53) 2.72 (2.01) 2.87 (1.85) 3.27 (1.82)
DS 5 −0.94 (0.02) −0.89 (0.03) −0.84 (0.04) −0.85 (0.11) −0.84 (0.09) −0.81 (0.10)
DS 6 1.73 (0.58) 6.53 (2.03) 3.40 (0.86) 0.02 (0.47) 0.03 (0.52) 0.14 (0.55)
DS 7 0.51 (0.14) 0.67 (0.13) 0.72 (0.13) 0.27 (0.14) 0.35 (0.15) 0.39 (0.16)
DS 8 0.26 (0.06) 0.36 (0.05) 0.42 (0.05) 0.07 (0.08) 0.09 (0.10) 0.09 (0.09)
DS 9 0.48 (0.12) 0.73 (0.11) 0.86 (0.11) 0.06 (0.13) 0.04 (0.10) 0.06 (0.18)

Average 1.06 (0.55) 1.62 (0.54) 1.50 (0.41) 0.28 (0.45) 0.30 (0.41) 0.36 (0.44)
Results are based on 30 runs with different train-test splits. Reported is the mean performance improvement
(e. g., 0.1 means 10%) and the standard deviation (Std.) in parentheses.
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Table 8: Relative performance improvement in mean squared error of DCON over Lasso.

Training Test

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

DS 1 3.73 (2.32) 3.31 (2.10) 3.66 (2.77) 0.47 (0.83) 0.54 (0.82) 0.49 (1.03)
DS 2 0.36 (0.08) 0.57 (0.08) 0.70 (0.09) −0.16 (0.20) −0.28 (0.15) −0.23 (0.14)
DS 3 0.24 (0.13) 0.29 (0.13) 0.32 (0.14) −0.05 (0.16) −0.08 (0.13) −0.11 (0.14)
DS 4 3.93 (2.83) 3.78 (1.67) 5.15 (1.49) 2.73 (2.01) 2.88 (1.84) 3.28 (1.82)
DS 5 −0.87 (0.33) −0.77 (0.60) −0.57 (1.35) −0.81 (0.27) −0.81 (0.22) −0.68 (0.81)
DS 6 2.23 (1.26) 7.55 (2.20) 4.10 (1.40) 0.09 (0.63) 0.07 (0.52) 0.21 (0.61)
DS 7 0.55 (0.17) 0.71 (0.16) 0.76 (0.16) 0.30 (0.19) 0.38 (0.20) 0.42 (0.20)
DS 8 0.28 (0.07) 0.39 (0.09) 0.45 (0.09) 0.09 (0.09) 0.11 (0.10) 0.11 (0.09)
DS 9 0.51 (0.15) 0.77 (0.14) 0.90 (0.17) 0.08 (0.13) 0.06 (0.12) 0.08 (0.20)

Average 1.22 (0.82) 1.84 (0.80) 1.72 (0.85) 0.30 (0.50) 0.32 (0.46) 0.40 (0.56)
Results are based on 30 runs with different train-test splits. Reported is the mean performance improvement
(e. g., 0.1 means 10%) and the standard deviation (Std.) in parentheses.

Table 9: Relative performance improvement in mean squared error of DCON over Ridge.

Training Test

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

DS 1 3.13 (1.10) 2.73 (0.69) 2.97 (0.80) 0.43 (0.76) 0.48 (0.62) 0.42 (0.77)
DS 2 0.34 (0.06) 0.54 (0.08) 0.67 (0.09) −0.17 (0.17) −0.27 (0.16) −0.23 (0.12)
DS 3 0.18 (0.05) 0.24 (0.06) 0.26 (0.06) −0.08 (0.14) −0.11 (0.12) −0.14 (0.13)
DS 4 3.91 (2.83) 3.76 (1.67) 5.13 (1.51) 2.72 (2.01) 2.87 (1.85) 3.26 (1.82)
DS 5 −0.93 (0.03) −0.88 (0.04) −0.82 (0.09) −0.85 (0.11) −0.84 (0.09) −0.81 (0.11)
DS 6 1.82 (0.57) 6.78 (2.00) 3.55 (0.83) 0.02 (0.47) 0.04 (0.54) 0.15 (0.58)
DS 7 0.51 (0.14) 0.67 (0.13) 0.72 (0.13) 0.27 (0.15) 0.35 (0.15) 0.39 (0.16)
DS 8 0.26 (0.06) 0.36 (0.05) 0.42 (0.05) 0.07 (0.08) 0.09 (0.10) 0.09 (0.09)
DS 9 0.48 (0.12) 0.74 (0.11) 0.87 (0.11) 0.07 (0.13) 0.05 (0.10) 0.07 (0.18)

Average 1.08 (0.55) 1.66 (0.54) 1.53 (0.41) 0.28 (0.45) 0.30 (0.41) 0.36 (0.44)
Results are based on 30 runs with different train-test splits. Reported is the mean performance improvement
(e. g., 0.1 means 10%) and the standard deviation (Std.) in parentheses.

Table 10: Relative performance improvement in mean squared error of DCON over Kernel Ridge.

Training Test

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

N = 10
Mean (Std.)

N = 20
Mean (Std.)

N = 30
Mean (Std.)

DS 1 1.22 (2.82) 1.16 (2.75) 1.21 (2.80) 15.98 (71.11) 48.60 (246.09) 26.70 (126.44)
DS 2 0.32 (0.20) 0.52 (0.25) 0.65 (0.24) −0.06 (0.41) −0.16 (0.41) −0.14 (0.35)
DS 3 0.18 (0.29) 0.23 (0.29) 0.25 (0.30) −0.03 (0.19) −0.06 (0.19) −0.08 (0.20)
DS 4 −0.89 (0.08) −0.89 (0.04) −0.86 (0.05) −0.84 (0.11) −0.84 (0.08) −0.82 (0.07)
DS 5 −0.89 (0.10) −0.83 (0.15) −0.74 (0.23) 92.91 (471.78) 149.62 (774.18) 117.87 (584.89)
DS 6 0.29 (2.67) 2.70 (8.06) 1.25 (4.91) 3.04 (7.68) 2.60 (6.80) 2.77 (7.73)
DS 7 −0.15 (0.16) −0.06 (0.17) −0.03 (0.19) −0.03 (0.25) 0.04 (0.31) 0.06 (0.29)
DS 8 −0.08 (0.29) 0.00 (0.30) 0.04 (0.32) 0.07 (0.23) 0.10 (0.26) 0.10 (0.26)
DS 9 −0.20 (0.25) −0.05 (0.33) 0.02 (0.35) 0.61 (2.03) 0.58 (1.93) 0.59 (1.84)

Average −0.02 (0.76) 0.31 (1.37) 0.20 (1.04) 12.41 (61.53) 22.28 (114.47) 16.34 (80.23)
Results are based on 30 runs with different train-test splits. Reported is the mean performance improvement (e. g.,
0.1 means 10%) and the standard deviation (Std.) in parentheses.
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J Sensitivity Analysis

J.1 Experiments for Over-Parameterized Neural Networks

In the following, we compare DCON to SGD in an over-parameterized setting as discussed in the related
work section of the main paper. That is, the number of hidden neurons N is set to a very large number
compared to the number of training samples m. Previous research proved for this setting that gradient
descent converges to a globally optimal solution (Du et al., 2019a;b; Zeyuan et al., 2019; Zou & Gu, 2019).
To do so, we choose dataset DS7 (m = 297) on which DCON performed worst in our main experiments in
Section 6.2 and vary the number of hidden units N in {29, 210, 211, 212, 213}. We choose the hyperparameters
according to the best-performing ones for N = 30. For Adam, we use early stopping with a patience of
50 monitoring the training loss to eventually observe convergence of SGD. Our experiments are shown in
Figure 15.
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Figure 15: Performance on training and test set for DS7 with varying number of hidden neurons.

As expected, Figure 15 indicates the convergence of Adam in the over-parameterized setting, yielding a
constant performance on the test set for N ∈ {29, 210, 211, 212, 213}. Furthermore, we observe that DCON
also benefits from over-parameterization, yielding similar results as Adam. However, DCON converges much
faster.

J.2 Fast Convergence in Over-Regularized Settings

Our experiments also indicate a relationship between the magnitude of the regularization parameter γ and
convergence speed. We analyze this numerically in the following. To do so, we use the datasets DS1 and
DS7 and vary the regularization parameter γ ∈ {10r : r ∈ {−5,−4, . . . , 3, 4}}. We set N = 30 and stop
DCON when ‖θk+1 − θk‖ < 10−4. Afterward, we plot the resulting number of epochs and the resulting test
performance in Figure 16.
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(b) Results for DS7

Figure 16: Number of epochs and test performance for DS1 and DS7 with varying regularization param-
eter: Results are based on datasets DS1 and DS7 with N = 30. We vary the regularization parameter
γ ∈ {10r : r ∈ {−5,−4, . . . , 3, 4}} and stop DCON when ‖θk+1 − θk‖ < 10−4. The number of epochs is
visualized in the upper plot, while the lower plot shows the corresponding test performance.

As we can see, DCON converges faster for larger values of γ. At the same time, the test performance increases
due to over-regularization. Further theoretical analyses of this behavior are beyond the scope of this paper
and left for future research. Nevertheless, a theoretical relationship between the regularization parameter γ
and convergence speed might help to determine a value of γ that balances both metrics.
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K Future Work

K.1 A Parallel Approach for Solving (QP)

As mentioned in Appendix C, our algorithm may be limited by memory requirements. The reason is that
the singular value decomposition of MT involves a – in general – dense m × m matrix V . As a remedy,
we propose a decomposition into batches in the following. This eventually allows one to solve (QP) very
efficiently in the case of larger m. To do so, we consider again (QP), which is given by

inf
〈

β − d
d
0
0

 ,


v1

v2

v3

v4


〉

+ 1
m


v1

v2

v3

v4


T 

(α2 + γ)I −γI 0 0
−γI γI 0 0

0 0 0 0
0 0 0 0



v1

v2

v3

v4



s.t.
(
−I I M −M

)
v1

v2

v3

v4

 = 0,

(
v1 v2 v3 v4) ≥ 0.

(352)

For a simpler notation, we dropped the superscript gl from β and the subscripts y∗ from d, and l from
α. Now, assume we split the dataset of size m into B batches of sizes mb > 0 for b ∈ {1, . . . , B} with
m = m1 +m2 + · · ·+mB . For the rest of this section, we use the following notation:

v1 = (v1
1 , v

1
2 , . . . , v

1
B) with v1

b ∈ Rmb for all b ∈ {1, . . . , B}, (353)
v2 = (v2

1 , v
2
2 , . . . , v

2
B) with v2

b ∈ Rmb for all b ∈ {1, . . . , B}, (354)
β = (β1, β2, . . . , βB) with βb ∈ Rmb for all b ∈ {1, . . . , B}, (355)
d = (d1, d2, . . . , dB) with db ∈ Rmb for all b ∈ {1, . . . , B}, (356)
Ib ∈ Rmb×mb the identity matrix of size mb ×mb, (357)

In+1 ∈ R(n+1)×(n+1) the identity matrix of size (n+ 1)× (n+ 1), (358)
Mb ∈ Rmb×(n+1) the matrix formed by the rows of M corresponding to batch b, (359)
Ab =

(
−Ib Ib Mb −Mb

)
. (360)

At this point, we emphasize that we use the term “batch” in this setting to denote the partition of the training
set into smaller subsets. This follows the terminology from batch processing in parallel computing where
data is processed in chunks to reduce peak memory consumption. It should not be mistaken with batches
from traditional gradient-based neural learning, which are used to compute only inexact approximations of
the gradient to speed up computations. Conversely, our approach still solves the underlying problem exactly
as demonstrated in the following.

For the above splitting, we yield

〈
β − d
d
0
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=
〈
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0
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〉
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〈
βb − db
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0

 ,
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b

v2
b

v3

v4


〉

(361)
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for the linear term and

1
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=
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for the quadratic term. By defining

qy∗,b =


βb − db
db
0
0

 , (365)

Ql,b = 2
m


(α2 + γ)Ib −γIb 0 0
−γIb γIb 0 0

0 0 0 0
0 0 0 0

 , (366)

vb = (v1
b , v

2
b , v

3
b , v

4
b ), (367)

we yield the equivalence of (QP) with

inf
B∑
b=1
〈qy∗,b, vb〉+ 1

2v
T
b Ql,bvb

s.t. Abvb = 0 for all b ∈ {1, . . . , B},
vb ≥ 0 for all b ∈ {1, . . . , B},
v3 ≥ 0,
v4 ≥ 0,
v3
b = v3 for all b ∈ {1, . . . , B},
v4
b = v4 for all b ∈ {1, . . . , B}.

(368)
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Note that the B quadratic programs from above are merely coupled by the common variables v3 and v4. As
a last step, we introduce a quadratic penalty term for the last two equality constraints. We then yield

inf
B∑
b=1
〈qy∗,b, vb〉+ 1

2v
T
b Ql,bvb + µ1

2

B∑
b=1
‖v3
b − v3‖2 + µ2

2

B∑
b=1
‖v4
b − v4‖2

s.t. Abvb = 0 for all b ∈ {1, . . . , B},
vb ≥ 0 for all b ∈ {1, . . . , B},
v3 ≥ 0,
v4 ≥ 0,

(QPP)

where µ1 > 0 and µ2 > 0 are penalty parameters. To solve (QPP), we make again use of a block coordinate
descent approach outlined in the following.

Updating v3: To update v3, we solve the following quadratic program

inf Bµ1

2 (v3)T In+1v
3 −

〈
µ1

B∑
b=1

v3
b , v

3

〉
s.t. v3 ≥ 0.

(369)

Updating v4: To update v4, we solve the quadratic program

inf Bµ4

2 (v4)T In+1v
4 −

〈
µ2

B∑
b=1

v4
b , v

4

〉
s.t. v4 ≥ 0.

(370)

Updating vb: Finally, to update vb, we solve the quadratic program

inf 〈q̃y∗,b, vb〉+ 1
2v

T
b Q̃l,bvb

s.t. Abvb = 0,
vb ≥ 0,

(371)

where

q̃y∗,b =


βb − db
db
−µ1v

3

−µ2v
4

 , (372)

Q̃l,b = 2
m


(α2 + γ)Ib −γIb 0 0
−γIb γIb 0 0

0 0 mµ1
2 In+1 0

0 0 0 mµ2
2 In+1

 . (373)

Note that the updates of v3 and v4 can be computed by solving quadratic programs with system matrices
of size (n+ 1)× (n+ 1). Afterward, all quadratic programs given in (371) are decoupled from one another
and, therefore, can be solved in parallel. Furthermore, all of the above subproblems are strictly convex. The
ADMM approach derived in the last section can still be used to solve these quadratic programs by adjusting
the coefficients in Equation (177) accordingly.
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In summary, our parallel algorithm for solving (QP) is outlined in Algorithm 4.

Algorithm 4: Parallel (QP)-Solver
Input: Batch sizes m1,. . . ,mB , Parameter w > 1 for increasing the penalty parameter
Output: Solution (v1, v2, v3, v4) of (QP)

1 Initialize v3, v4, and vb for all b ∈ {1, . . . ,m}
2 while convergence criterion not met do
3 while convergence criterion not met do
4 for b ∈ {1, . . . , B} do
5 Compute q̃y∗,b and Q̃l,b
6 Update vb by solving

inf
〈
q̃y∗,b, vb

〉
+

1
2
v
T
b Q̃l,bvb

s.t. Abvb = 0,
vb ≥ 0.

7 end
8 Update v3 by solving

inf
Bµ1

2
(v3)T In+1v

3 −

〈
µ1

B∑
b=1

v
3
b , v

3

〉
s.t. v

3 ≥ 0.

9 Update v4 by solving

inf
Bµ4

2
(v4)T In+1v

4 −

〈
µ2

B∑
b=1

v
4
b , v

4

〉
s.t. v

4 ≥ 0.

10 end
11 Update µ1 ← wµ1
12 Update µ2 ← wµ2
13 end
14 return (v1

1 , . . . , v
1
B , v

2
1 , . . . , v

2
B , v

3, v4)

We refrain from an in-depth convergence analysis at this point. Nevertheless, one can establish the conver-
gence up to a subsequence of the inner while-loop to a solution of (QPP) for fixed penalty parameters via
Proposition 2.7.1 in Bertsekas (2016). Moreover, the outer while-loop converges up to a subsequence to a
solution of (QP) due to Theorem 17.1 in Nocedal & Wright (2006).

Algorithm 4 allows one to solve (QP) very efficiently. The inner for-loop consists of B decoupled quadratic
programs, which can all be solved in parallel. With the above, algorithm DCON can thus be scaled to
much larger problem instances. For future research, more sophisticated approaches for handing the equality
constraints v3

b = v3 for all b ∈ {1, . . . , B} and v4
b = v4 for all b ∈ {1, . . . , B} in (368) could be of interest.

One example is, for instance, the augmented Lagrangian method.

K.2 An inexact DCA Approach for the DC Subproblem

To further counteract the computational complexity of DCON, it might be worth considering inexact versions
of DCA, see Zhang & Yamada (2023) and the references therein. In this way, it might be possible to use an
iterative solver (as the one presented in the last section) to solve (QP) and stop the computations prematurely
if a certain threshold of optimality is reached. Note that a more involved convergence analysis taking into
account these inexact DC steps might be necessary in this case.

K.3 Extension for Deep Neural Networks

To extent DCON to deeper neural networks a greedy layer-wise approach might be considered (compare to
Bengio et al. (2006)). That is, one first trains a shallow neural network and then uses the features decoded
in the hidden layer of that network as an input to train another shallow neural network. In that way, new
layers are stacked on top of the previous ones, while each of them is trained individually using DCON. As the
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performance should increase with each layer, one can also consider stopping the training process prematurely
after a fixed number of epochs for each layer. Even a single epoch so that every neuron is considered only
once for each layer and a “full” training for the last layer is thinkable.
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