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Abstract

Early-exit models accelerate inference by attaching internal classifiers to interme-
diate layers of the network, allowing computation to halt once a prediction meets a
predefined exit criterion. Most early-exit methods rely on confidence-based exit
strategies, which has motivated prior work to calibrate intermediate classifiers in
pursuit of improved performance-efficiency trade-offs. In this paper, we argue that
calibration metrics can be misleading indicators of multi-exit model performance.
Specifically, we present empirical evidence showing that miscalibrated networks
can outperform calibrated ones. As an alternative, we propose using failure pre-
diction as a more informative proxy for early-exit model performance. Unlike
calibration, failure prediction captures changes in sample rankings and correlates
strongly with efficiency gains, offering a more reliable framework for designing
and evaluating early-exit models.

1 Introduction

The rapid growth of deep learning increases the demand for resource-efficient models. Early-exit
models address this challenge by attaching classifiers to intermediate model layers and enabling the
model to save computation by stopping the inference once a prediction satisfies an exit criterion.
Early-exits were initially introduced for vision models [7, 11, 23, 29], and have since then become
a natural fit for resource-constrained scenarios [2, 3, 8, 14, 15, 27, 28, 31]. More recently, they
also have been successfully adopted for natural language processing [9, 16, 26, 32, 38], including
reasoning models [10, 34] where inference efficiency is critical.

The most common approach to exiting uses prediction confidence and enables the network to halt
early if an intermediate classifier produces a sufficiently confident prediction. Consequently, many
works focused on improving the calibration of the classifiers [17, 19, 20, 22, 24], under the assumption
that better calibration yields better models. We challenge this assumption and argue that calibration
can be a misleading proxy for early-exit models. We demonstrate cases where miscalibrated networks
behave counterintuitively and outperform calibrated multi-exit models, as demonstrated in Figure 1.
Finally, we highlight that calibration methods can introduce unintended side effects, such as altering
the maximum confidence ranking of samples within the classifier.

Given the above-mentioned issues, we propose to use failure prediction [1] as a more suitable
proxy for early-exit network performance. We discuss its desirable properties, showing that, unlike
calibration, failure prediction measures are sensitive to changes in rankings of samples. Finally,
we adapt failure prediction measures to the multi-exit setting by defining the Early-Exit Failure
Prediction score (EEFP score). Notably, our experiments demonstrate that our proposed EEFP score
shows a strong correlation with early-exit performance in cases where calibration measures do not.
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Figure 1: Cost-accuracy curves, head calibration errors, and our proposed EEFP scores for one
calibrated model and two decalibrated models with modified temperature values. Calibration fails to
capture the quality of the early-exit model, as an overconfident network with higher ECEs performs
better than the calibrated one. We propose an alternative metric, Early-Exit Failure Prediction
score (EEFP score), which more accurately reflects the quality of the multi-exit model.

We hope that our work advances the discussion on appropriate evaluation metrics for early-exit
models and helps improve the design of future methods for adaptive computation.

2 Background

Early-exits We consider the standard early-exit framework used in prior work [7, 11], and start with
a multi-exit model architecture with J classifiers. Each classifier gj , j ∈ {1, . . . , J} maps an input x
to a probability vector over C classes: pj = gj(x). The network evaluates classifiers sequentially
until the confidence of the prediction (usually the maximum probability obtained via softmax) exceeds
the corresponding exit threshold, that is: cj(x) = maxk pj,k ≥ τj , where k = 1, . . . , C refers to
class indices [9]. If the exit condition is satisfied, the network outputs pj ; otherwise, evaluation
continues until another classifier exits or the final classifier gJ is reached. By varying the exit
thresholds, we obtain a compute–accuracy trade-off curve, where compute is measured as the average
of floating-point operations per sample [33, 35].

Calibration Confidence calibration refers to how well a model’s predicted confidence matches
its actual accuracy [4, 5]. In a well-calibrated model, predictions made with high confidence are
more likely to be correct. Calibration is a key property of probabilistic models and has been widely
studied in the context of model reliability and trustworthiness [5, 12, 25, 30]. The calibration of a
given classifier can be measured via expected calibration error (ECE) [21]. To calculate ECE, one
partitions predictions based on their confidence into M bins B1, . . . , BM and calculates the accuracy
acc(Bm) and average confidence conf(Bm) in each bin m. Then, ECE can be calculated as:

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣.

3 Calibration in early-exit models

In context of early-exiting, prior work [19, 22] linked the calibration of the intermediate classifiers
with improved performance of the model. Since calibration changes head’s confidence, it can alter
sample distribution across exit points and thus impact the overall model performance. Meronen et al.
[19] explicitly focus on improving early-exit performance via calibration, stating that "adequately
quantifying and accounting for (...) uncertainty improves the predictive performance and aids decision-
making". Similarly to Pacheco et al. [22] and Wójcik et al. [32], they measure the calibration error
of each classification head. Despite the existing body of work mentioned above, we hypothesize
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Figure 2: Performance of models decalibrated using a transformation that preserves the ranking of
samples within each classifier. Despite significantly deteriorated ECE scores, model performance
remains unchanged, with all three models showing almost identical cost–accuracy curves. EESP
score perfectly reflects this behavior, assigning identical score values to all three networks.

that calibration does not correlate with the performance of the early-exit networks, and may
even hurt it in practice. In the following sections, we provide empirical evidence supporting this
hypothesis by showing that calibration of early-exit networks can affect performance in unexpected
ways. To this end, we adopt the setting from Meronen et al. [19] with the MSDNet multi-exit
architecture [7], and find the per-IC thresholds for every considered budget after the training and
(de)calibration via the procedure proposed by Huang et al. [7]. We use cost-accuracy curves to
compare the network performance, and mark the performance of individual classifiers with dots.
Please refer to Appendix E for the experimental details, and to Appendix C for the additional
experimental results with alternative calibration methods.

3.1 Better calibration does not always lead to better performance

In our first experiment, we calibrate the intermediate classifiers of a trained MSDNet model with
temperature scaling [5]. Subsequently, we create two decalibrated variants of the same model by
multiplying the temperature used in each head by 3.0 or 0.3, which results in an underconfident or
overconfident model, respectively. We evaluate both accuracy and expected calibration error (ECE)
of the three models across varying computational budgets, and present the results in Figure 1. Our
experiments reveal that models can achieve a more favorable cost–accuracy trade-off, despite
exhibiting substantially worse calibration scores. This somewhat counterintuitive finding indicates
that calibrating intermediate classifiers might not be beneficial for multi-exit models, which is
contrary to what was suggested in previous studies [19, 20, 22, 32].

3.2 Worse calibration does not always lead to worse performance

To further analyze the relationship between head calibration and the final performance of the model,
we devise the following experiment. Instead of manipulating the temperature of each head, we propose
an even simpler decalibration method, which directly transforms the final confidence estimate of the

classifier: ĉj(x) = 1
C +

(
1− 1

C

)
·
(

cj(x)−
1
C

1− 1
C

)α
, where α is the decalibration coefficient and C

refers to the number of classes. Formally, for any classifier j let πj be a permutation of sample indices
such that: cj(xπ(1)) > cj(xπ(2)) > · · · > cj(xπ(n)) (see Appendix B for a more detailed discussion
on the design of our function). The ĉj transformation preserves the order of confidences between
the samples (sample ranking). The same is not true for temperature scaling 5, a fact that we
describe in detail in Appendix A.

We perform the alternative decalibration experiment by using ĉj to decalibrate the classifiers. We
set α to 10 and 0.1, obtaining an underconfident and overconfident model, respectively. The results

5Consider two sets of logits: l1 = [0.65, 0.34,−1.03], l2 = [−0.06,−0.11, 0.60]. If we compute confi-
dence c with the softmax function, for T1 = 1.0: c1 > c2, a while for T2 = 0.3: c1 < c2.
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are shown in Figure 2. This time, despite decalibrating the model significantly, the overall
accuracy-cost performance remains the same, even for the underconfident model. This further
illustrates that calibration metrics do not necessarily reflect actual model performance, and do not
capture the important aspect of sample rankings.

4 Early-exit failure prediction

The ranking-preserving aspect of the calibration methods proved to be essential in our previous
experiments. We observe that the separability between correctly and incorrectly classified
samples may be a more reliable indicator of early-exit model performance than calibration measures.
In the literature, this separability is directly related to failure prediction (or error and success
prediction) [1, 6]. Crucially, prior work has shown that calibrating classifiers can actually degrade
failure prediction performance [39].

To evaluate failure prediction for a single classifier, we record the classifier’s confidence score for
each sample and label it as y = 1 if the prediction is correct and y = 0 otherwise. We then compute
the area under the receiver operating characteristic curve (AUROC), which measures the probability
that a randomly chosen correct prediction (y = 1) receives a higher confidence score than a randomly
chosen incorrect one (y = 0), thus reflecting how well the classifier’s confidence separates correct
from incorrect predictions.

However, this definition of failure prediction was devised for conventional static classifiers, and is
not suitable for early-exit networks, as it does not account for the behavior of deeper classifiers. In
particular, if a sample is incorrectly classified by the current classifier and all of the deeper classifiers,
then it is beneficial to halt computation as early as possible. This crucial observation leads us to
adapt the definition of failure prediction to the multi-exit model setup. We define Early Exit Failure
Prediction score (EEFP score) as:

EEFPj({xi, yj,i}) = AUROC({cj(xi), ȳj,i}),
where:

ȳj,i =

{
1, if yj,i = 1 ∨ (yj,i = 0 ∧ ∀l>jyl,i = 0)

0, otherwise.
In this formulation, a positive yj,i means that either the current head is correct, or all deeper heads
would also be wrong, and exiting is optimal from the computational point of view.

We report the EEFP scores for each classifier head alongside the results of our previous experiments
from Sections 3.1 and 3.2 in Figures 1 and 2. In both cases, the EEFP scores correlate well with the
overall accuracy-cost performance of the model. When performing temperature decalibration, the
EESP score is the highest for the overconfident model, which actually performs better but achieves
worse ECE. In the case of rank-preserving decalibration, EESP scores remain constant and reflect the
identical performance of all three investigated models. EEFP score better reflects both prediction
accuracy and the effect of early exits on the model performance, making it more suitable for
evaluating early-exit models than standard calibration metrics.

5 Conclusion

Our work challenges the common assumption about positive effects of calibration of intermediate
classifiers in the early-exit models. Through a series of controlled experiments, we demonstrated
that calibration metrics such as ECE can be misleading: well-calibrated models may still waste
computation, while deliberately miscalibrated models can sometimes achieve better cost–accuracy
trade-offs. A key factor behind this discrepancy is that calibration metrics fail to capture the
separability of correctly and incorrectly classified samples, which directly influences the efficiency of
the early exits.

To address these limitations, we propose the Early-Exit Failure Prediction Score (EEFP Score), a
failure prediction metric specifically tailored to the multi-exit setting. Unlike calibration metrics,
EEFP Score directly measures how well a model distinguishes between samples that benefit from
further computation and those that do not. EEFP Score better reflects the real goals of efficient
inference, and we found that it strongly correlates with early-exit performance across the experimental
settings where calibration metrics fail to accurately capture model quality.
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Appendix
A Influence of temperature scaling

A.1 Probability distribution after temperature scaling

In a classification problem with C classes, suppose the model outputs logits z1, . . . , zC for a given
data sample, and let r denote the index of the most probable class. Without temperature scaling, the
softmax probabilities are

pk =
ezk∑C
l=1 e

zl
, k = 1, . . . , C.

By introducing

d := log

(
C∑
l=1

ezl

)
,

we can equivalently write

pk = ezk−d, and hence zk = log(pk) + d.

When scaling logits by a temperature parameter T > 0, the probabilities become

p
(T )
k =

ezk/T∑C
l=1 e

zl/T
=

p
1/T
k∑C

l=1 p
1/T
l

, k = 1, . . . , C.

Therefore, the confidence changes from pr to

p(T )
r =

p
1/T
r∑C

l=1 p
1/T
l

.

Since the denominator
∑C

l=1 p
1/T
l depends on the entire probability distribution (and not solely

on pr), two samples with the same original confidence pr can yield different scaled confidences p(T )
r

after temperature scaling.

A.2 Temperature scaling does not preserve the ranking of samples

Table 1: Classifier’s logits in a toy problem.
Class 1 Class 2 Class 3 Class 4

Image A -0.7985 -0.9163 -2.3026 -2.9957
Image B -1.6094 -1.6094 -0.9163 -1.6094
Image C -1.2040 -0.9676 -1.3471 -2.8134

Table 2: Classes probability distribution (after softmax) in a toy problem.
Class 1 Class 2 Class 3 Class 4

Image A 0.450 0.400 0.100 0.050
Image B 0.200 0.200 0.400 0.200
Image C 0.300 0.380 0.260 0.060

Consider a toy example with four classes. The j − th classifier’s logit outputs are shown in Table 1,
while the corresponding softmax probabilities are reported in Table 2. Confidences of the predictions
are as follows: cj(A) ≈ 0.450, cj(B) ≈ 0.400, cj(C) ≈ 0.380. Therefore the ranking of samples is
A,B,C (from the most to the least confident ones). However, when temperature changes, the ranking
does as well. For example for temperature 0.3, cj(A) ≈ 0.594, cj(B) ≈ 0.771, cj(C) ≈ 0.575,
and the ranking changes to B,A,C. On the other hand, for temperature 3.0, cj(A) ≈ 0.328,
cj(B) ≈ 0.296, cj(C) ≈ 0.299, and the ranking changes to A,C,B.
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B Monotonic decalibration function

We define rank-preserving decalibration transformation from Section 3.2 as:

fα(c) =
1

C
+
(
1− 1

C

)( c− 1
C

1− 1
C

)α
,

and use it to obtain ĉj(x) = fα(cj(x)). In fα, C is constant, and c 7→ c− 1
C

1− 1
C

increases with

increasing c. Raising a positive increasing function to the power α > 0 also preserves monotonicity.
Therefore, fα(c) is strictly increasing with increasing c.

However, due to numerical reasons, fα may increase so slowly that finite precision arithmetic makes
it appear non-monotonic. To avoid this, we introduce a slightly modified function:

f̂α(c) = ϵc + (1− ϵ) fα(c),

where ϵ = 5 · 10−2. This guarantees that, on any sufficiently long interval [c1, c2], the increase of f̂α
is large enough to remain distinguishable under finite numerical precision.

Moreover, f̂α( 1
C ) = 1

C and f̂α(1) = 1, which corresponds to the cases where all classes are equally
probable or where one class has probability one, respectively. Therefore, we ensure that the confidence
values remain within the range that would also be possible under the standard definition.
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C Temperature decalibration for models calibrated with alternative methods

To ensure our findings are not specific to a single training or calibration setup, we analyze the effect
of temperature decalibration on model accuracy in the setting proposed by [19]. They consider
two approaches that improve model calibration: last-layer Laplace approximations (LAP) [13] and
model-internal ensembles (MIE). We test these approaches using three MSDNet variants with 4, 6,
and 8 blocks (referred to as "Small," "Medium," and "Large" in our plots) trained on CIFAR100, and
analyze the impact of temperature decalibration on the models in the following subsections.

C.1 LAP

We begin with a model calibrated using LAP, where we perform a grid search over the temperature and
Laplace prior variance to obtain the best-calibrated model. We then decalibrate the model by applying
temperature modifications to its predictions, as in the main paper. We show the corresponding results
in Figure 3. Likewise, the performance of the declibrated model does not degrade and is even slightly
better than the performance of the calibrated one.

Figure 3: Results for LAP-calibrated MSDNet models.

C.2 LAP+MIE

Secondly, we combine LAP with MIE following Meronen et al. [19], and apply post-hoc temperature
decalibration as before. We show the results in Figure 4. The results are consistent with our main
findings and all other experiments: despite being decalibrated, the overconfident model does not
suffer and even slightly outperforms the calibrated model. Together with the results from the previous
section, these findings demonstrate that our conclusions hold beyond a specific training or calibration
setup and are consistent across both calibration methods and multiple model sizes.

Figure 4: Results for MIE-calibrated MSDNet models.
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D Alternative measure for early-exit failure prediction

EEFP Score measures the separability of two subsets (correctly and incorrectly predicted) for every
possible threshold. However, it is unreasonable to assume that every threshold is equally important
for early-exit models, and in practice, we care about a subset of thresholds. For example, for
high computational budgets, the first threshold τ1 tends to be close to 1.0, and separability on low
thresholds τ1 → 0 is irrelevant. Moreover, EEFP Score is threshold-agnostic and is measured for
each exit separately.

In this section we consider an alternative way to estimate failure prediction, the EEF1 score, which
uses F1 instead of AUROC. EEF1 can be used to compare two multi-exit models for any budget by
using the actual exit criterion threshold used during inference.

Let τj denote the threshold of the j-th classifier. We define an exit indicator as:

hj(x) =

{
1, if cj(x) ≥ τj ,

0, otherwise.

Let Lj be the set of indices for which the model has not exited before the j-th classifier:

i ∈ Lj ⇐⇒ ∀l∈{1,...,j−1} cl(xi) < τl.

We define the Early Exit F1 Score for the j-th classifier as:

EEF1j({xi, yj,i}i∈Lj
) = F1({hj(xi), ȳj,i}i∈Lj

).

To obtain a single score for each budget, we compute the arithmetic mean over all classifiers:

EEF1({xi, yj,i}) =
1

J

J∑
j=1

EEF1j({xi, yj,i}i∈Lj ).

Figure 5: EEF1 scores for CIFAR-100 (left) and Tiny ImageNet (right)

The resulting EEF1 scores for models decalibrated via modified temperature (see Section 3.1) are
shown in Figure 5. Like the EEFP scores, EEF1 indicates a small advantage for the overconfident
model compared to the calibrated model. However, EEFP better separates the models’ failure-
prediction performance and is more straightforward to interpret; for these reasons, we decided to
focus on EEFP score in the main paper.
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E Experimental setup details

In this section, we describe the experimental setup used in our experiments in the main paper.

E.1 Architecture

We adopt the MSDNet architecture [7] with 7 blocks. We attach early-exit heads after each block,
and additionally inside the blocks.

E.2 Training

For each experiment, we train three models with independent initializations and report the average
performance across these three seeds. We train MSDNet models with a batch size of 512, using a
learning rate of 1e-3 and AdamW optimizer [18] without weight decay. We use a cosine annealing
scheduler with warm restarts and linear warm-up. As data augmentations, we apply random resizing,
cropping, rotation, contrast adjustment, random erasing, Mixup [37], and CutMix [36]. All models
are trained until convergence.

E.3 Calibration

To calibrate the early-exit model, we proceed with a gradient-based approach. We extract 2.5% of the
samples from the training set, which were not used to optimize the model during training, and use
them for the calibration phase. We then freeze the model’s parameters, attach temperature scaling
calibrators, and proceed by minimizing NLPD. Each early-exit head is optimized individually and
has its own temperature.

E.4 Evaluation

During evaluation, we begin with the calibrated model and additionally consider two variants: an
overconfident and an underconfident model. All three models share the same trained parameters and
differ only in how the logits are transformed.

For a given data sample x, let
zj,1, . . . , zj,C

denote the logits of the classifier in the calibrated model. In the temperature scaling experiment 3.1,
the logits of the models are modified by a temperature parameter T as follows:

zj,1
T

, . . . ,
zj,C
T

.

Softmax is then applied to each set of logits, and the confidence values are obtained from the
maximum softmax probability, denoted as cj(x). In Section 3.2, instead of scaling the logits, the
confidence is derived using the function ĉj(x) in place of the standard cj(x).

For each model and each exit head, decision thresholds are determined using the validation set. To
this end, we follow the threshold selection heuristic proposed in Huang et al. [7], Meronen et al. [19],
which derives appropriate thresholds based on the distribution of confidence scores.

Given a predefined FLOPs budget, the network is expected to terminate at each exit for a certain
fraction of the input samples. This allocation of samples across exits is controlled by a parameter q.
At the j-th exit, the model is required to terminate for a fraction of samples defined as:

exit-share(j) =
qj∑J−1
l=0 ql

(1)

During inference on the test set, each model computes its own confidence values and applies its own
set of thresholds to decide when to exit and, therefore, which prediction to make.
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