
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REAL-WORLD BENCHMARKS MAKE MEMBERSHIP IN-
FERENCE ATTACKS FAIL ON DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Membership inference attacks (MIAs) on diffusion models have emerged as poten-
tial evidence of unauthorized data usage in training pre-trained diffusion models.
These attacks aim to detect the presence of specific images in training datasets of
diffusion models. Our study delves into the evaluation of state-of-the-art MIAs on
diffusion models and reveals critical flaws and overly optimistic performance esti-
mates in existing MIA evaluation. We introduce CopyMark, a more realistic MIA
benchmark that distinguishes itself through the support for pre-trained diffusion
models, unbiased datasets, and fair evaluation pipelines. Through extensive experi-
ments, we demonstrate that the effectiveness of current MIA methods significantly
degrades under these more practical conditions. Based on our results, we alert that
MIA, in its current state, is not a reliable approach for identifying unauthorized
data usage in pre-trained diffusion models. To the best of our knowledge, we are
the first to discover the performance overestimation of MIAs on diffusion models
and present a unified benchmark for more realistic evaluation.

1 INTRODUCTION AND RELATED WORKS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020b) have revolutionized the field of image synthesis. A notable advantage of these models is
their ability to train stably on vast web-sourced datasets containing billions of images (Schuhmann
et al., 2021; 2022). This capability has paved the way for large-scale pre-trained models in image
synthesis (Rombach et al., 2022; Podell et al., 2023; Chen et al., 2023; Esser et al., 2024). However,
these pre-trained models have raised concerns regarding unauthorized data usage (Samuelson, 2023;
Sag, 2023), as their training datasets often include numerous copyrighted images without proper
authorization. In response, copyright owners have initiated a series of lawsuits against producers
of pre-trained diffusion models (Andersen, 2023; Zhang, 2024). Within this context, membership
inference attacks (MIAs) on diffusion models (Duan et al., 2023; Kong et al., 2023; Fu et al., 2023;
2024; Tang et al., 2023) have emerged. MIAs aim to separate members (data used for training) and
non-members (data not used for training). Their results help determine whether specific images were
included in the training dataset of diffusion models, thus being considered as potential evidence of
unauthorized data usage in AI copyright lawsuits related to diffusion models.

However, recent research suggests that MIAs on Large Language Models (LLMs) may perform
successfully because they are evaluated under defective setups with distribution shift (Das et al., 2024;
Maini et al., 2024). Their performance is confounded by evaluating on non-members belonging to a
different distribution from the members (Maini et al., 2024). This finding raises concern on the true
effectiveness of MIAs, including those on diffusion models.

Inspired by the above idea, we investigate the current evaluation of MIAs on diffusion models.
Unfortunately, we find that there are similar defects in the evaluation of MIAs on diffusion models.
Specifically, the evaluation is based on 1) over-trained models (Duan et al., 2023; Kong et al., 2023;
Fu et al., 2023; Pang et al., 2023) and 2) member datasets and non-member datasets with distribution
shifts (Duan et al., 2023; Kong et al., 2023). Both setups make the task of MIA easier than the
real-world scenario, with pre-trained diffusion models and unshifted members and non-members.
This defective evaluation leaves unknown the true performance of MIAs on diffusion models.

To fill the blank of real-world evaluation, we build CopyMark, the first unified benchmark for
membership inference attacks on diffusion models. CopyMark gathers 1) all pre-trained diffusion
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models (Rombach et al., 2022; Gokaslan et al., 2023; YEH et al., 2023) 2) with accessible unshifted
non-member datasets (Dubiński et al., 2024; Gokaslan et al., 2023; YEH et al., 2023). We implement
state-of-the-art MIA methods on these diffusion models and datasets. To refine the current evaluation
pipeline, we introduce extra test datasets in addition to the original validation datasets (datasets where
we find the optimal threshold to separate members and non-members) and use these test datasets
for blind test of MIAs. Through extensive experiments, we show that MIA methods on diffusion
models suffer significantly bad performances on our realistic benchmarks. Our result alerts the fact
that current MIAs on diffusion models only appear successful on unrealistic evaluation setups and
cannot perform well in real-world scenarios. Our contributions can be summarized as follows:

• We reveal two fatal defects in current evaluation of MIAs on diffusion models: over-training
and dataset shifts (Section 3).

• We design and implement CopyMark, a novel benchmark to evaluate MIAs on diffusion
models in real-world scenarios. To the best of our knowledge, this is the first unified
benchmark for MIAs on diffusion models (Section 4).

• We are the first to alert that the performance of MIAs on diffusion models has been overesti-
mated through extensive experiments (Section 5). This is significant both theoretically for
future research in this area and empirically for people involving in the AI copyright lawsuits
who expect MIAs as evidence .

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020b; Dhariwal & Nichol, 2021) achieve state-of-the-art performance in generative modeling for
image synthesis. Diffusion models are latent variable models in the form of pθ(x0:T ) with latent
variables x1:T sharing the same shape with data x0 ∼ q(x0) (Ho et al., 2020; Song et al., 2020a).
pθ(x0:T ) is denoted by reverse process since it samples xt−1 by progressively reversing timestep t
with pθ(xt−1|xt).

pθ(x0:T ) = p(xT )
∏
t≥1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (1)

with p(xT ) as the prior and set as standard Gaussian. Diffusion models are distinguished by its
posterior q(x1:T |x0) which is a Markov process that progressively adds gaussian noise to the data,
termed by the forward process (Ho et al., 2020).

q(x1:T |x0) =
∏
t≥1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

The model is trained by matching the reverse step pθ(xt−1|xt) with the forward step q(xt−1|xt,x0)
conditioned on data x0, where the model learns to sample x0 from the prior p(xT ) by progressively
sampling xt−1 from xt with pθ(xt−1|xt).

Diffusion models are scalable for pre-training over large-scale text-image data (Rombach et al., 2022;
Podell et al., 2023; Chen et al., 2023; Luo et al., 2023; Esser et al., 2024). However, pre-trained diffu-
sion models may include copyright images in the training dataset without authorization (Andersen,
2023; Zhang, 2024). This unauthorized data usage now raises critical ethics issues.

In this paper, we focus on one family of diffusion models, Latent Diffusion Models (LDMs) (Rombach
et al., 2022). LDMs are the base architecture of state-of-the-art pre-trained diffusion models (Rombach
et al., 2022; Podell et al., 2023; Chen et al., 2023; Luo et al., 2023; Esser et al., 2024). These models
are the origin of the above unauthorized data usage. To investigate whether MIAs on diffusion models
are effective tools in detecting unauthorized data usage, we evaluate them on these LDM-based
pre-trained diffusion models.
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2.2 MEMBERSHIP INFERENCE ATTACKS ON DIFFUSION MODELS

Membership Inferences Attacks (MIAs) (Shokri et al., 2017; Hayes et al., 2017; Chen et al., 2020;
Carlini et al., 2023) determine whether a datapoint is part of the training dataset of certain diffusion
models. We give the formal problem statement of MIAs as follows:

Membership Inference Attacks Given the training dataset Dmember (members) of a model θ and
a hold-out dataset Dnon (non-member), membership inference attacks aim at designing a function
f(x, θ), that f(x, θ) = 1 for x ∈ Dmember and f(x, θ) = 0 for x ∈ Dnon. Here, x is an image.

Currently, they are two types of MIA methods on diffusion models:

• Loss-based MIAs (Duan et al., 2023; Fu et al., 2023; Kong et al., 2023): Loss-based MIAs
are built on the general hypothesis that the training loss of members is smaller than that of
non-members. They therefore calculate a function R(x, θ) ∈ R for data point x based on
the training loss of diffusion models and find an optimal threshold τ to discriminate R(x, θ)
of members and non-members.

f(x, θ) := 1[R(x, θ) < τ ] (3)

• Classifier-based MIAs (Pang et al., 2023): Classifier-based MIAs believe that members
and non-members have different features gθ(x) in diffusion models. The features could be
gradients and neural representations. These features can be used to train a neural network F
to classify members and non-members.

f(x, θ) := F (gθ(x)) (4)

Membership inference attacks of diffusion models are evaluated by two metrics: true positive rate
at a low false positive rate (Carlini et al., 2023) and AUC. Here, true positive rate (TPR) means the
percentage of predicting members as members correctly, while false positive rate (FPR) means the
percentage of predicting non-members as members falsely. We are interested in this TPR at X% FPR
because we only care about whether some members could be identified without errors in practice.
Take detecting unauthorized data usage as an example. With only one copyright image is determined
as the member, we can then prove the existence of unauthorized data usage. We also include AUC as
our metric, which is a classical measurement on the discrimination of MIA methods. In practice, we
calculate TPRs and FPRs on the dataset. Then, we search for the optimal threshold and calculate
AUC on the same dataset.

Notably, the evaluation of MIAs need to follow the MI security game protocol (Carlini et al., 2023;
Hu & Pang, 2023), that the member Dmember and the non-member Dnon should come from the same
data distribution. This is because we do not know the distribution of members and non-members in
real-world scenarios of MIAs, for example, detecting unauthorized data usage in pre-trained diffusion
models. We then need to assume the worst case when the member and the non-member Dnon come
from the same data distribution so that we cannot simply distinguish them without the help of model
θ. However, we will show in the rest of this paper that this protocol is not well followed in existing
MIAs on diffusion models.

3 EVALUATION OF MIAS ON DIFFUSION MODELS ARE DEFECTIVE

In this section, we reveal the fundamental defect within current evaluation of MIAs on diffusion
models. We start from explaining two choices in the evaluation setup of MIAs:

• over-training v.s. pre-training: Over-training refers to overly training a model for large
epochs on a small training dataset, e.g. 2048 epochs on CIFAR10. What distinguishes
over-training from traditional over-fitting is that over-training improves the generation perfor-
mance of small diffusion models and is considered as a default setup for this training (Song
& Ermon, 2020). That explains why most existing diffusion MIA benchmarks have the
problem of over-training. Pre-training, in contrast, only trains diffusion models on a very
large dataset, for example, for 1 or 2 epochs.

• shifted datasets v.s. unshifted datasets: Dataset shift means that the member dataset and the
non-member dataset do no come from the same data distribution. On the contrary, unshifted
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Table 1: List of all existing benchmark setups of diffusion MIA. All these setups suffer from over-
training or dataset shifts or both. Notably, the choice of models and datasets are not the necessary and
sufficient conditions of having over-training or dataset shifts, while they are listed only as references.

Model DDPM DDPM DDPM DDPM DDPM LDM LDM LDM SD1.5
Dataset CIFAR-10 CIFAR-100 ImageNet CelebA COCO COCO Pokemon CelebA LAION

SecMI ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
PIA ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
PFAMI ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗
GSA ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Over-training ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
Shifted Datasets ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Model Member Non-member Dataset Shift Dataset Size (k) Epochs Over-training

DDPM CIFAR-10 CIFAR-10 ✗ 25/8 4096/400 ✓
DDPM ImageNet ImageNet ✗ 50/30/8 300/500/400 ✓
LDM CelebA FFHQ ✓ 50 500 ✓
SD1.5 LAION MS-COCO ✓ ∼600,000 1 ✗

member and non-member datasets refer to the condition that the member dataset and the
non-member dataset come from the same data distribution.

Over-training and shifted datasets are the unrealistic choice. Specifically,

• over-training easily gives rise to over-fitting, since the model is trained for hundreds of
steps on each data point from a limited dataset. This over-fitting markably lowers the
training loss of members and even causes memorization (Gu et al., 2023), making it easier to
distinguish members from non-members based on training losses. However, recent progress
in pre-training diffusion models shows the potential to train photorealistic diffusion models
for only 1 epoch on large-scale text-image datasets (Rombach et al., 2022; Gokaslan et al.,
2023), which does not make the training loss of members much lower than that of non-
members (Wen et al., 2024). Since these pre-trained models are the real-world interests of
MIAs on diffusion models, evaluting MIAs on over-trained diffusion models are unrealistic.

• dataset shift makes it possible to distinguish members from non-members without accessing
the model. Hence, MIA methods succeeding on shifted datasets are probably dataset
classifiers (Liu & He, 2024) that only captures the difference in image semantics, rather
than real membership inference attacks. Such dataset classifiers will fail on correctly
discriminating members and non-members that come from the same data distribution.

Table 1 examines the evaluation setup of MIAs on diffusion models from the perspective of over-
training and shifted datasets and details some commonly used setups. Unfortunately, we find that
there are either over-training or shifted datasets or both in these setups. For example, DDPM +
CIFAR-10 (member) & CIFAR-10 (non-member) (Duan et al., 2023; Fu et al., 2024; Pang et al.,
2023), DDPM + ImageNet (member) & ImageNet (non-member) (Duan et al., 2023; Fu et al., 2023;
Kong et al., 2023; Pang et al., 2023), and LDM + CelebA (member) & FFHQ (non-member) (Fu et al.,
2023) over-train diffusion models for at least 300 iterations on each of the data point. On the other
hand, although SD1.5 + LAION (member) & MS-COCO (non-member) (Duan et al., 2023; Kong
et al., 2023) exploits a pre-trained diffusion model (Rombach et al., 2022), it picks non-members
from MSCOCO, whose distribution is markably different from that of LAION. With over-training
and dataset shift, it is unknown whether the success of MIA methods depends on the over-fitting or a
non-member dataset whose distribution differs from that of the member dataset. This is a fatal defect
of current evaluation of MIAs on diffusion models.

While avoiding over-training is simple by using pre-trained diffusion models for benchmarks, quan-
tifying and preventing dataset shifts are not trivial. We will then conduct experiments to measure
dataset shifts and show whether our benchmark eliminates dataset shifts (Section 5.1). We investigate
the impact of different levels of dataset shifts on MIA performance (Section 5.3).
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Table 2: Five evaluation setups in CopyMark. (a) and (b) are defective setups from previous
evaluation. (c), (d), and (e) are novel setups with no over-training and minor or no dataset shift.

Setup Model Member Non-member Dataset Shift Dataset Size (k) Epochs Over-training

(a) LDM CelebA FFHQ ✓ 50 500 ✓
(b) SD1.5 LAION MS-COCO ✓ ∼600,000 1 ✗
(c) SD1.5 LAION LAION ✗ ∼600,000 1 ✗
(d) CommonCanvas-XL CommonCatalog MS-COCO ✓(minor) ∼2,500 1 ✗
(e) Kohaku-XL Hakubooru Hakubooru ✗ ∼5,200 1 ✗

4 COPYMARK: REAL-WORLD BENCHMARK FOR DIFFUSION MIAS

To overcome the defect in previous evaluation and investigate the real-world performance of MIAs
on diffusion models, we design and implement CopyMark, the first unified benchmark for MIAs on
diffusion models. CopyMark distinguishes itself from previous evaluation from the following three
aspects: 1) CopyMark is built on pre-trained diffusion models with no over-training and member and
non-member datasets without dataset shift, which overcome these two defects of previous evaluation
(Section 4.1); 2) CopyMark conducts blind evaluation on a test dataset other than the validation
dataset used to find the threshold or train the classifier, which examines how MIAs perform on a blind
test (Section 4.2); 3) CopyMark is implemented on diffusers, the state-of-the-art inference framework
for diffusion models, making it flexible to generalize to new diffusion models (Section 4.3)

4.1 MODELS AND DATASETS

Pre-trained diffusion models are the real-world interests of MIAs on diffusion models. Hence, we
construct CopyMark on these pre-trained diffusion models. This covers the defect of over-training.
However, it is non-trivial to select proper models for the evaluation of MIAs, because they must meet
the following two requirements: 1) The training dataset (member dataset) is accessible to the public,
and 2) There exist candidate non-member datasets whose distributions are similar or identical to that
of the training dataset. We find three pre-trained diffusion models that meet the above requirements.
We detail these models and the choice of their member and non-member datasets as follows:

• Stable Diffusion v1.5 (Rombach et al., 2022): The most widely-used pre-trained diffusion
model. Stable Diffusion v1.5 is trained for 1 epoch on LAION Aesthetic v2 5+ (Schuhmann
et al., 2021; 2022). We follow Dubiński et al. (2024) to choose LAION Multi Translated as
the source of non-members. There is no dataset shift since both member and non-member
datasets come from the same distribution of LAION-2B dataset. We denote this setup by (c).

• CommonCanvas-XL-C 1 (Gokaslan et al., 2023): A pre-trained diffusion model in the
architecture of SDXL (Podell et al., 2023). CommonCanvas-XL-C is trained for 1 epoch
on CommonCatalog (Gokaslan et al., 2023), a large dataset consisting of multi-source
Creative Commons licensed images. CommonCanvas-XL-C uses MS-COCO2017 as its
validation dataset for generation performance. This inspires us to pick its non-members
from MS-COCO2017. However, these member and non-member datasets have dataset shift
because of the distribution difference between CommonCatalog and MS-COCO2017. We
will show that this shift is minor in Section 5.1. We denote this setup by (d).

• Kohaku-XL-Epsilon 2 (YEH et al., 2023): An SDXL fine-tuned on 5.2 millions of comic
images from HakuBooru dataset (YEH et al., 2023) for 1 epoch. We follow the instruction in
the homepage to separate HakuBooru dataset into the training dataset and the rest hold-out
dataset. Then, we pick members from the training dataset and non-members from the
hold-out dataset. As members and non-members are randomly picked from the same dataset,
there is no dataset shift in Kohaku-XL-Epsilon. We denote this setup by (e).

Additionally, we also implement two previous defective setups in CopyMark: (a) LDM + CelebA
(member) & FFHQ (non-member) (Fu et al., 2023) and (b) LDM + LAION (member) & MS-
COCO2017 (non-member) (Duan et al., 2023; Kong et al., 2023). These two setups serve as a

1https://huggingface.co/common-canvas/CommonCanvas-XL-C
2https://huggingface.co/KBlueLeaf/Kohaku-XL-Epsilon
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reference to our three new setups and also validate the correct of our implementation of MIA methods.
The sanity check of datasets is discussed in Appendix A.1. All setups are summarized in Table 2.

Are there over-training and dataset shifts? Our choices of datasets and models in setup (c), (d),
and (e) are dedicated to eliminate over-training and dataset shifts. Specifically, all three pre-trained
diffusion models are trained for only 1 epoch on the dataset, which is the minimum number of training
epochs. Hence, there is no over-training. As for dataset shifts, we conduct experiments in Section 5.1
to validate that there are at most only minor dataset shifts between members and non-members.

4.2 TWO-STAGE EVALUATION WITH VALIDATION DATASETS AND TEST DATASETS

MIA methods on diffusion models use one dataset to find the optimal threshold or train the classifier
(see Section 2.2 for explanation). However, previous evaluation of MIA methods also uses the same
dataset for evaluation. This raises doubts on the generalizability of these MIA methods. We propose
to complement this drawback by introducing an extra dataset called test dataset.

Specifically, CopyMark randomly picks two groups of data with the same number of members and
non-members from the source. We denote one by the validation dataset and the other by the test
dataset. Our evaluation pipeline has two stages. The first stage is the same as previous evaluation,
that we use the validation dataset to search for the optimal threshold to calculate TPR at X% FPR
and AUC or train the classifier. The second stage is different, that we test the optimal threshold or the
trained classifier on the test dataset. Since the test dataset does not involve in searching the optimal
threshold or training the classifier, the second stage can be viewed as a blind test to the threshold or
the classifier. It is noticeable that we can only post the TPR and FPR by the optimal threshold or the
trained classifier on the test dataset. We summarize two stages in Algorithm 1 and Algorithm 2.

Algorithm 1 The first stage (previous)
Input: Evaluation dataset D = {(x, y)},FPR
upper bound X%
// y = 1: member, y = 0: non-member
Output: TPR, threshold τ⋆

// score calculation
Q = ∅
for (x, y) ∼ D do
r ← R(x, θ)
Q← Q ∩ {(r, y)}

end for
// threshold optimization and evaluation
τmin = min(r,y)∼Q r
τmax = max(r,y)∼Q r

τ⋆ := argmaxτ∈[τmin,τmax]
|{(r,y)∈Q|r≤τ∧y=1}|

|{(r,y)∈Q|y=1}|

TPR:= maxτ∈[τmin,τmax]
|{(r,y)∈Q|r≤τ∧y=1}|

|{(r,y)∈Q|y=1}|

s.t. |{(r,y)∈Q|r≤τ∧y=0}|
|{(r,y)∈Q|y=0}| ≤ X%

return TPR, τ⋆

Algorithm 2 The second stage (new)
Input: Test dataset D′ = {(x, y)}, optimal
threshold τ⋆

// y = 1: member, y = 0: non-member
Output: TPR, FPR
// score calculation
Q = ∅
for (x, y) ∼ D′ do

r ← R(x, θ)
Q← Q ∩ {(r, y)}

end for
// threshold evaluation

TPR:= |{(r,y)∈Q|r≤τ⋆∧y=1}|
|{(r,y)∈Q|y=1}|

FPR:= |{(r,y)∈Q|r≤τ⋆∧y=0}|
|{(r,y)∈Q|y=0}|

return TPR, FPR

4.3 IMPLEMENTATION

Previously, there is no unified benchmark for MIAs on diffusion models. To fill this blank, we
implement all state-of-the-art baseline methods of MIAs on diffusion models in CopyMark. We base
our implementation on diffusers (von Platen et al., 2022), the state-of-the-art inference framework for
diffusion models. We discuss the details of our implemention by points:

diffusers diffusers provides a unified API for running different diffusion models. We implement
MIA methods as pipeline objects in diffusers. This enables MIA methods to generalize swiftly to
different diffusion models. While diffusers is updated to support newly released diffusion models,
CopyMark can benefit from the update and provide straight-forward generalization of MIAs to new
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diffusion models. This is the main advantage of implementing CopyMark on diffusers. We omit other
implementation details to Appendix A.1.

Evaluation Metrics Following Duan et al. (2023), we randomlyy pick 2500 images as members and
2500 images as non-members. We repeat this picking twice to produce one validation dataset and
one test dataset. For the validation dataset, we follow Carlini et al. (2023) post TPR at 1% FPR and
0.1% together with the AUC (Algorithm 1). For the test dataset, we post the TPR and FPR for two
optimal thresholds (the threshold at 1% FPR and that at 0.1% FPR) obtained from the validation set
(Algorithm 2). The random seed of all evaluation is fixed for full reproducibility.

Baselines Duan et al. (2023); Fu et al. (2023) show that general MIA methods do not work well
in diffusion models. Hence, our baselines consist of MIA methods on diffusion models, including
SecMI (Duan et al., 2023), PIA (Kong et al., 2023), PFAMI (Fu et al., 2023), GSA1 (Pang et al., 2023),
and GSA2 (Pang et al., 2023). SecMI, PIA, and PFAMI are loss-based MIA methods, while GSA1

and GSA2 are classifier-based MIA methods. In addition to these MIA methods, we follow (Das
et al., 2024) to implement a Blind baseline. This blind baseline trains a ConvNext (Liu et al., 2022) to
classify members and non-members. We omit the details of baseline implementation to Appendix A.1.

5 EXPERIMENTS: DIFFUSION MIA FAILS ON REAL-WORLD SETUPS

In this section, we use experiments to demonstrate the failure of current diffusion MIA methods on
real-world benchmarks and validate our attribution in Section 3. We first quantify dataset shifts of all
benchmark setups in CopyMark and validate that there are no or only minor dataset shifts (Section
5.1). Then, we post the performance of MIA methods on differrent setups of CopyMark (Section 5.2),
which reproduces their success on defective benchmarks and reveals their failure on our real-world
benchmarks. To further investigate the impact of dataset shifts on the MIA performance, we apply
current MIA methods on a series of non-member datasets with different proportions of shifted and
non-shifted data, and find that dataset shifts and current MIA performance have strong correlation
(Section 5.3). This validates our claim about the hallucination of success of diffusion MIA.

5.1 QUANTIFYING DATASET SHIFTS

We first validate the existence of dataset shifts between member datasets and non-member datasets
by quantifying them. We use CLIP (Radford et al., 2021) to extract the representation of images in
members & non-members and take them as the base of our quantification. Figure 2 demonstrates
the visualization of semantic representations. Then, we exploit two strategies to quantifying dataset
shifts: 1) Explicitly, we calculate three distance metrics between the representation distribution
of members and that of non-members: normalized Wasserstein distance (by the internal variance),
Frechet distance, and Mahalanobis distance. 2) Implicitly, we train a linear classifier to classify the
representations of members & non-members.

Table 3 shows the result of 1). Distances between members and non-members are distinctly larger in
two defective setups (a) and (b), compared to our three improved setups (c), (d), and (e). Similar
observations appear in the result of 2), posted in Table 4. Linear classifiers can easily separate
representations of members and those of non-members in two defective setups, which cannot be done
in our three improved setups. Notably, both distance metrics and the classifier shows that there are
more dataset shifts in our setup (d) than setup (c) and (e), although these shifts are minor. Specifically,
three distances are consistently larger for setup (d), and the true positive rate of the linear classifier is
little higher. This validates the description in Section 3 that there are minor dataset shifts in setup (d).

Comparing Table 3 and Table 4, we have two conclusions: First, among three distance metrics,
Frechet distance (FD) can better measure the dataset shifts, for it shows the best consistency with
the performance of the linear classifier. This is also supported by the fact that Frechet Inception
Distance (FID), a Frechet distance using Inception representations, is the most widely-used metrics
for the shift between real data and data generated by generative models. Second, a golden FD for an
excellent diffusion MIA benchmark should be around than 0.05, while only our setup (e) meets the
requirement. In Section 5.2, we will see that setup (e) disables all current diffusion MIA.
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Table 3: Normalized Wasserstein distances (NWD), Frechet distances (FD), and Mahalanobis
distances (MD) between CLIP representations of members and those of non-members of five setups
in CopyMark. We use Red text to denote the defective setups (a) and (b), which have higher distances
conspicuously. In contrary, our three realistic setups (c), (d), and (e), have much smaller distances,
indicating they do not have distinguishable dataset shifts.

Metrics (a) (b) (c) (d) (e)

Val Test Val Test Val Test Val Test Val Test

NWD 5910 6376 3779 3647 1974 2022 3628 3528 3305 3598
FD 0.324 0.333 0.249 0.248 0.059 0.059 0.126 0.121 0.037 0.036
MD 15.47 16.88 7.07 7.11 1.39 1.50 5.04 5.03 1.26 1.23

Table 4: Using a linear classifier to classify CLIP representations of members and those of non-
members. High TPRs and TNRs show that members and non-members in defective Setup (a) and
Setup (b) can be easily separated, indicating there are severe dataset shifts in these two setups. In our
novel setups (c), (d), and (e), there are only minor or no dataset shifts, indicated by the TPRs and
TNRs around 0.5. Our new setups fit the real-world MIA scenario better.

Setup (a) (b) (c) (d) (e)

Val Test Val Test Val Test Val Test Val Test

TPR 0.953 0.946 0.880 0.905 0.540 0.534 0.690 0.606 0.586 0.543
FPR 0.037 0.073 0.182 0.154 0.483 0.496 0.458 0.441 0.420 0.414
TNR 0.963 0.927 0.818 0.846 0.517 0.504 0.542 0.559 0.580 0.586
FNR 0.047 0.054 0.120 0.095 0.460 0.466 0.310 0.394 0.414 0.457

5.2 MAIN RESULTS: DIFFUSION MIA FAILS ON REAL-WORLD SETUPS

We use five setups in CopyMark to evaluate state-of-the-art MIA method on diffusion models and
show the result in Table 5. Unfortunately, while they perform consistently with the result in the
original papers on the previous setups, all MIA methods fail on our new real-world setups.

MIAs perform consistently with results in the original papers We compare our results on setup
(a) and (b) to the results in the original paper of MIA methods to cross-validate the correctness of our
implementation. In the original paper of PFAMI (Fu et al., 2023), its AUC on setup (a) is 0.961, while
our result is 0.9172. Our result is slightly lower than the original result. However, both result are in
the same level. In the original paper of SecMI (Duan et al., 2023) and PIA (Kong et al., 2023), the
TPRs@1%FPR are 0.1858 and 0.198, and the AUCs are 0.701 and 0.739, respectively. Our results
are 0.3120 and 0.2888 for the TPR@1%FPR and 0.7617 and 0.6991 for the AUC, which are slightly
better. The slight difference between our results and the original results are acceptable and should
be attributed to the different in random seed and dataset sampling. The consistent performance of
baselines on setup (a) and (b) validates the correctness of our implementation.

Loss-based MIAs fail on real-world setups On setup (c), (d), and (e), however, loss-based MIA
methods (SecMI, PIA, and PFAMI) fail. Their TPRs@1%FPR and TPRs@0.1%FPR are close to the
FPR threshold, indicating their disability in distinguishing even a few members from non-members.

Classifier-based MIAs fail on real-world setups Compared to loss-based MIAs, classifier-based
MIAs (GSA1 and GSA2) perform better on three real-world setups. GSA1 and GSA2 always
succeed in separating members and non-members in the validation dataset because they exploit the
classifier trained on the same dataset. However, when transferring the classifier to the test dataset,
the performance degrades significantly. First, the TPRs drop to the range of 0.55 − 0.89. Second,
the FPRs rise dramatically to the range of 0.10 − 0.43, much higher than the original FPR of the
threshold. We use red number to note the test FPRs higher than the validation FPRs. In other word,
classifier-based MIAs tend to classify 10%− 40% of the non-members as members. Therefore, they
cannot be trustworthy evidence of diffusion model membership either.

Blind baseline beats loss-based MIAs It is noticeable that the Blind baseline, based on a ConvNext
classifier, yields competitive performance. On setups (a) and (b), it outperforms all MIA methods.
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Table 5: Benchmark results of MIA methods on CopyMark. Red means FPR on the test set is higher
than FPR upper-bound X% on the evaluation set.

(a) Latent Diffusion Model (CelebA-HQ / FFHQ)
Evaluation Set Test Set

TPR@1%FPR TPR@0.1%FPR AUC TPR1% FPR1% TPR0.1% FPR0.1%

SecMI 0.0728 0.0028 0.6131 0.0696 0.0084 0.0012 0.0004
PIA 0.0228 0.0016 0.6250 0.0252 0.0100 0.0004 0.0004
PFAMI 0.4988 0.2036 0.9172 0.5016 0.0192 0.1916 0.0012
GSA1 1.0000 1.0000 1.0000 0.9516 0.0120 0.9516 0.0120
GSA2 1.0000 1.0000 1.0000 0.9492 0.0132 0.9492 0.0132

Blind 1.0000 1.0000 1.0000 0.9932 0.0092 0.9932 0.0092

(b) Stable Diffusion v1.5 (LAION Aesthetic V2 5+ / MS-COCO2017)
Evaluation Set Test Set

TPR@1%FPR TPR@0.1%FPR AUC TPR1% FPR1% TPR0.1% FPR0.1%

SecMI 0.2888 0.1364 0.6991 0.3096 0.0084 0.1508 0
PIA 0.3120 0.1776 0.7617 0.3420 0.0112 0.1912 0
PFAMI 0.2124 0.1048 0.5870 0.2068 0.0072 0.1004 0
GSA1 1.0000 1.0000 1.0000 0.8592 0.0968 0.8592 0.0968
GSA2 1.0000 1.0000 1.0000 0.8556 0.0844 0.8556 0.0844

Blind 1.0000 1.0000 1.0000 0.9004 0.1156 0.9004 0.1156

(c) Stable Diffusion v1.5 (LAION-Members / LAION-Non-members)
Evaluation Set Test Set

TPR@1%FPR TPR@0.1%FPR AUC TPR1% FPR1% TPR0.1% FPR0.1%

SecMI 0.0128 0.0020 0.5231 0.0108 0.0088 0.0004 0.0004
PIA 0.0128 0.0020 0.5352 0.0124 0.0088 0.0004 0.0004
PFAMI 0.0156 0.0032 0.5101 0.0104 0.0108 0.0016 0.0020
GSA1 1.0000 1.0000 1.0000 0.7016 0.2704 0.5608 0.4184
GSA2 1.0000 1.0000 1.0000 0.6680 0.2736 0.5780 0.4056

Blind 0.9968 0.9520 0.6848 0.4592 0.3938 0.1432 0.1124

(d) CommonCanvas-XL-C (CommonCatalog-CC-BY / MS-COCO2017)
Evaluation Set Test Set

TPR@1%FPR TPR@0.1%FPR AUC TPR1% FPR1% TPR0.1% FPR0.1%

SecMI 0.0092 0.0004 0.5000 0.0080 0.0060 0 0
PIA 0.0124 0.0004 0.5184 0.0172 0.0084 0 0
PFAMI 0.0124 0.0004 0.5034 0.0208 0.0132 0 0
GSA1 1.0000 1.0000 1.0000 0.8912 0.3132 0.8912 0.3132
GSA2 1.0000 1.0000 1.0000 0.8880 0.1052 0.8880 0.1052

Blind 0.9984 0.9568 0.9998 0.8804 0.1564 0.7348 0.0624

(e) Kohaku-XL-Epsilon (HakuBooru-Members / HakuBooru-Non-members)
Evaluation Set Test Set

TPR@1%FPR TPR@0.1%FPR AUC TPR1% FPR1% TPR0.1% FPR0.1%

SecMI 0.0116 0.0169 0.5008 0.0116 0.0000 0.0136 0
PIA 0.0076 0 0.5051 0.0096 0.0128 0 0
PFAMI 0.0104 0.0008 0.4979 0 0 0 0
GSA1 1.0000 1.0000 1.0000 0.5668 0.4192 0.5668 0.4192
GSA2 1.0000 1.0000 1.0000 0.5536 0.4292 0.5536 0.4292

Blind 0.9736 0.9584 0.9997 0.4204 0.3064 0.3528 0.2444

This again indicates the defect of these previous evaluation setups because they can be totally covered
without accessing to the diffusion model. On our real-world setups (c), (d), and (e), the blind baseline
beats loss-based MIAs with a similar performance to that of classifier-based MIAs. This proves
that classifier-based methods have some practical value. It also shows that our setups require the
methods to depend more on the membership rather than the distribution shift between members and
non-members, which is our superiority. We believe that all future MIA methods should be compared
to this blind baseline in the evaluation.
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Figure 1: Left: Frechet distances increase with the proportion of shifted data in the non-member
dataset. Right×3: Three performance metrics also increase with the proportion of shifted data in the
non-member dataset. This shows that we could manipulate the result of diffusion MIA by changing
the component of non-member datasets, which is expected to irrelevant to the result.

Loss-based MIAs generalize better than classifier-based MIAs Throughout all five setups, we
notice that loss-based MIAs have good generalizability, that they perform consistently on test datasets
as on validation datasets. They seldom yield a test FPR higher than the FPR of validation threshold.
In contrast, classifier-based MIAs suffer from the performance gap between validation datasets and
test datasets. This difference in generalizability is straight-forward to understand: Classifier-based
MIAs depends on a neural network that tends to over-fit the features of data points to achieve the
perfect performance on the validation dataset. This over-fitting results in performance degradation on
the test dataset. To eliminate this problem, we must further refine the feature selection.

5.3 HOW DO DATASET SHIFTS IMPACT MIA PERFORMANCE?

We further investigate how different levels of dataset shifts impact the performance of diffusion MIA.
To this end, we focus on Stable Diffusion 1.5, because it has two different non-member datasets in
our benchmark, where LAION-Non-member does not have dataset shifts and COCO2017-Val does
(the reference member dataset is our LAION dataset). This provides possibilities to construct a series
of non-member datasets with different levels of dataset shifts by interpolation. We then construct
five non-member datasets by mixing data from above two non-member datasets with proportions
of 0%:100%, 25%:75%, 50%:50%, 75%:25%, and 100%:0%. We calculate their Frechet distance
and then evaluate two loss-based MIA methods, SecMI and PIA, on these non-member datasets and
the fixed LAION member dataset. Figure 1 demonstrates the result. The Frechet distance increases
with the increase of the proportion of COCO2017-Val, the non-member dataset with dataset shifts.
Consistent with our expectation, the performance of two MIA methods have monotonously positive
correlation with the the dataset shifts on different levels of dataset shifts. In other words, they perform
better when there is a more serious dataset shift.

Notably, the setup of 100%:0% is the most widely used MIA benchmark (setup b). We show that
one can manipulate the result of MIA evaluation easily by only changing non-members, which is
supposed to be irrelevant to the result. This indicates that current MIA evaluation is unreliable.

6 DISCUSSION

Due to the page limit, we omit our discussion to the appendix. Specifically, we first analyze why
current MIA methods all fail on the real-world benchmark and give a brief insight on how to overcome
the current bottlenecks of diffusion MIA (Appendix A.3.1). Then, we discuss the impact of our works
on the practice in copyright lawsuits (Appendix A.3.2).

7 CONCLUSION

In this paper, we reveal two defects in the previous evaluation of membership inference attacks
(MIAs) on diffusion models: over-training and dataset shifts, which result in overestimate of MIAs’
performance. To overcome these defects, we propose CopyMark, the first unified benchmark for
MIAs on diffusion models. Our choice of models and datasets keeps CopyMark away from over-
training and dataset shifts. We evaluate existing MIA methods with CopyMark and find that current
MIAs on diffusion models fail in real-world scenarios of MIA. We alert that MIAs on diffusion
models are not trustworthy tool to provide evidence for unauthorized data usage in diffusion models.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

diffusers diffusers abstracts inference workflows of diffusion models as pipelines. A pipeline loads
and manages Modules of diffusion models. Then, it takes inputs and returns outputs. For example,
StableDiffusionImage2ImagePipeline takes images and text prompts as inputs and uses modules
of Stable Diffusion to sample output images with SDEdit (Meng et al., 2021). Usually, state-of-
the-art diffusion models consist of three modules: U-Net (UNet2DModel), VAE (AutoencoderKL),
and text encoder (CLIPTextModel (Radford et al., 2021)). One diffusion model only have one
set of modules. However, it may have several different pipelines. For example, StableDiffusion-
Img2ImgPipeline (Meng et al., 2021), StableDiffusionInstructPix2PixPipeline (Brooks et al., 2023),
and StableDiffusionGLIGENPipeline (Li et al., 2023) are all pipelines of Stable Diffusion v1.5.

Baselines We first introduce the idea of our baselines as follows:

• SecMI (Duan et al., 2023): A loss-based method. SecMI uses a parameterized forward step
pθ(xt|xt−1, x0) to predict xt from xt−1. Then, it applies a reverse step pθ(xt|xt−1, x0) to
predict x̃t−1. The score is given by the l2 distance between xt−1 and x̃t−1, that diffusion
models should better predict xt−1 for member images. SecMI use the distance at t = 50,
while we also try a variant that uses the distance at different t, termed by SecMI++.
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• PIA (Kong et al., 2023): A loss-based method. PIA distinguishes member data by checking
how diffusion models denoise the xt with the same noise ϵ0. The score is given by the loss
computed over different timesteps t.

• PFAMI (Fu et al., 2023): A loss-based method. PFAMI exploits the loss fluctuation in
the image neighborhood. The neighborhood of image x refers to images that share similar
contents with x and is constructed by cropping x. It compares the loss of x with that of its
neighborhood. It assumes that the loss of non-member images approximates those of their
neighborhood images, while the loss of member images should be a distinct local minimum
among those of the neighborhood images.

• GSA (Pang et al., 2023): The first gradient-based method. GSA aggregates gradients
on modules in diffusion models over different timesteps t and uses the l2 norm of these
gradients as features. Then, it trains an XGBoost (Chen & Guestrin, 2016) binary classifier
to discriminate features from member data and those from non-member data. The score is
given by the classifier. GSA has two variants, termed by GSA1 and GSA2.

All baselines are implemented based on their official open-sourced implementation. For SecMI, we
use DDIM (Song et al., 2020a) as the sampling method with η = 0 and pick the score at t = 50
as advised by the official implementation 3. For PIA, we follow the official implementation 4 to
compute losses at t ∈ {0, 10, 20, ..., 480}. For PFAMI, we follow the original setup in the official
implementation 5 to set the neighbor number N as 10, the attacking number M as 1, and the
interval of perturbation strengths as [0.75, 0.9]. For the above methods, we separate the threshold
interval [τmin, τmax] in Algorithm 1 into 10,000 sub-intervals and pick the corresponding 10,000
lower-bounds for optimal threshold searching. For GSA1 and GSA2, we use the default setup 6 to
compute losses (GSA1) or gradients (GSA2) over different modules at t ∈ {0, 50, 100, ..., 1000}.
An XGBoost (Chen & Guestrin, 2016) classifier with 200 estimators is trained on the gradients to
distinguish member images, following the original implementation. The threshold of GSA1 and
GSA2 is fixed to 0.5 because the XGBoost classifier outputs binary scores of {0, 1}. For all methods,
we use the seed function from the official implementation of SecMI 7 that fixes the seed as 1 to make
the result deterministic.

Sanity Check Setup (a) and (b) are mirroring setups of previous evaluation setups (Duan et al., 2023;
Fu et al., 2023). Hence, we do not repeat their sanity checks. The sanity check of setup (c) has
been done by Dubiński et al. (2024). For Setup (d), CommonCanvas-XL-C uses MS-COCO2017
as its validation set for generation performance (Gokaslan et al., 2023). This indicates that MS-
COCO2017 is held out of the training dataset of CommonCanvas-XL-C. In Setup (e), every data
point in HakuBooru dataset has a unique ID, which the author of Kohaku-XL-Epsilon used to select
the training dataset from the whole dataset. We follow the instruction in the homepage 8 to randomly
pick images from the ID range of the training dataset as members and images out of this ID range as
non-members. Hence, there should be no overlap between members and non-members.

Computational resources All experiments are finished on 2× NVIDIA A100 80GB GPUs.

A.2 ADDITIONAL RELATED WORKS

Unauthorized data usage of diffusion models have been a crucial topic that raises increasing atten-
tion (Franceschelli & Musolesi, 2022; Sag, 2023; Samuelson, 2023). One popular approach to relieve
the concern of unauthorized data usage in diffusion models is to add adversarial (Salman et al., 2023;
Shan et al., 2023a; Liang et al., 2023; Liang & Wu, 2023; Van Le et al., 2023; Shan et al., 2023b; Xue
et al., 2023) or copyright watermarks (Cui et al., 2023; Zhu et al., 2024) to images. These watermarks
either resist diffusion models from training on the image or introduce copyright information to
diffusion models trained on the image. However, recent research questions the effectiveness of these
watermarks that they might be failed easily (Zhao et al., 2023). Another recipe is to erase or unlearn

3https://github.com/jinhaoduan/SecMI-LDM
4https://github.com/kong13661/PIA
5https://anonymous.4open.science/r/MIA-Gen-5F40/
6https://github.com/py85252876/GSA
7https://github.com/jinhaoduan/SecMI-LDM/blob/secmi-ldm/src/mia/secmi.

py
8https://huggingface.co/KBlueLeaf/Kohaku-XL-Epsilon
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Table 6: Complexity analysis and running time for MIA methods. Query (FP) and Query (BP) are the
number of forward propagations and back propagation the method conducts per image. Running time
is given based on the whole experiments of 2500 images on three models: Latent Diffusion, Stable
Diffusion v1.5, and CommonCanvas-XL-C. Experiments are conducted on an NVIDIA A100 GPU.

Query (FP) Query (BP) Time (LDM) Time (SD) Time (CC-XL-C)

SecMI 100 0 2339 8965 16280
PIA 100 0 2804 9331 20397
PFAMI 1100 0 47171 40787 47909
GSA1 20 1 5886 12787 18146
GSA2 20 20 6729 14143 26771

the copyright data in the diffusion model (Gandikota et al., 2023; Zhang et al., 2023a; Fan et al.,
2023; Wu et al., 2024; Zhang et al., 2024). Nevertheless, Zhang et al. (2023b) shows that current
machine unlearning on diffusion models can be bypassed by soft prompting and other fine-tuning
methods. As protective and post-training refining methods are faced with questioning, we highlight
the potential to directly detect copyright data in the training dataset of diffusion models, by which we
help the calling for copyright protection beyond technical methods.

We are the first to validate and alert the defect in the evaluation of MIAs on diffusion models. Some
works reported similar risks in MIAs on Large Language Models (Das et al., 2024; Maini et al.,
2024). Liu & He (2024) shows that most vision dataset pairs could be classified by a simple classifier,
which inspires our investigation to the previous evaluation of MIAs on diffusion models. Our unified
benchmark for MIAs on diffusion models covers the dataset for real-world evaluation of MIAs in
Dubiński et al. (2024). However, they do not implement any MIA methods on their dataset.

A.3 DISCUSSION

A.3.1 WHY DO CURRENT DIFFUSION MIA METHODS FAIL?

Two kinds of MIAs, loss-based MIAs (Duan et al., 2023; Kong et al., 2023; Fu et al., 2023) and
classifier-based MIAs (Pang et al., 2023), fail for different reasons:

Loss-based MIAs: These methods are built on the hypothesis that training losses of members are
lower than those of non-members. However, pre-trained diffusion models were trained on one data
point for one iteration. Hence, the difference between member training losses and non-member
training losses are smaller. Also, the training loss depends on the Gaussian noise added to the clean
data and the time step. While current loss-based MIA simply use randomly sampled noise and time
steps to calculate losses, it is difficult to accurately locate the noise and the time step where the loss is
minimized. That is the reason why the calculated loss is not a good measure for membership. To
overcome this, we should take into consideration the loss dependency on noise and time step. This
will make us better locate the exact loss being optimized and then distinguish members.

Classifier-based MIAs: Classifier-based MIA methods are built on the assumption that image
representations of members and non-members in the diffusion models are distinguishable. However,
they suffer the same problem with loss-based methods, that the image representation is also time-
step-dependent and noise-dependent. This means that classifier-based MIA methods also need to
detect the exact noise and time step used in that one training epoch for the specific data point.

Generally, both current loss-based methods and classifier-based methods neglect the fact that any
features in diffusion models have high dependency on the time step and the noise. Without modeling
this dependency, it would be always difficult to determine the membership.

A.3.2 ARE MIAS POTENTIAL EVIDENCE OF UNAUTHORIZED DATA USAGE IN AI LAWSUITS?

Recent progress in AI copyright lawsuits (Andersen, 2023; Zhang, 2024) indicates the necessity of
evidence of unauthorized data usage in pre-trained diffusion models. Specifically, the plaintiff claims
that pre-trained diffusion models copy their copyright images without authorization and expects
to get evidence of this copying by MIAs on diffusion models. According to copyright laws (U.S.
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Copyright Office, 2021; European Parliament and Council, 2001), however, the proof of copying
requires showing substantial similarity between the defendant’s work and original elements of the
plaintiff’s work. In the context of AI copyright lawsuits, this means that the plaintiff must provide
images generated by pre-trained diffusion models with content similarities to their copyright images.
Unfortunately, today’s MIAs could only give binary membership indicators as outputs. Moreover,
as shown in this paper, current MIAs on diffusion models are not reliable tools to even indicate
membership. Hence, it is non-realistic to make use of MIAs as evidence in AI copyright lawsuits.

Figure 2: Visualizing compressed CLIP embeddings of members and non-members of our 5 eval-
uation setups. (a) and (b), two defective setups, have their members and non-members markably
distinguishable. In contrast, members and non-members of other three new setups, (c), (d) and (e),
cannot be well separated in the CLIP embedding space.

A.4 CODEBASE OF COPYMARK ON DIFFUSERS

The codebase of CopyMark on diffusers mainly consists of three parts: diffusers pipeline, data and
evaluation utilities, and training scripts.

diffusers pipelines We implements every MIA method as a pipeline in diffusers. Pipelines of one dif-
fusion model (e.g. Stable Diffusion) are consistently inherited from the model’s text-to-image pipeline
(StableDiffusionPipeline for Stable Diffusion and StableDiffusionXLPipeline
for SDXL) or the unconditional generation pipeline (DiffusionPipeline for Latent Diffusion
Models). These pipelines load modules with the unified module loading API of diffusers. They
differs from the parent pipeline only by the __call__() function. We modify their __call__()
to take images as inputs and return the result as outputs. We list all pipelines implemented as follows:

SecMILatentDiffusionPipeline
SecMIStableDiffusionPipeline
SecMIStableDiffusionXLPipeline
PIALatentDiffusionPipeline
PIAStableDiffusionPipeline
PIAStableDiffusionXLPipeline
PFAMIMILatentDiffusionPipeline
PFAMIStableDiffusionPipeline
PFAMIStableDiffusionXLPipeline
GSALatentDiffusionPipeline
GSAStableDiffusionPipeline
GSAStableDiffusionXLPipeline

SecMI & SecMI++ and GSA1 & GSA2 share one pipeline respectively with different arguments.

Data and evaluation utilities Since all pipelines take images as inputs and return scores as outputs,
we use a set of unified utilities to load the images and optimize the threshold from the scores.
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Training scripts The training script of one MIA method assembles the diffusers pipeline and the
utilities. It first loads images and text prompts with the data utility. Then, it employs the diffusers
pipeline to calculate scores. Finally, it uses the evaluation utility to optimize the threshold according
to the scores and evaluate the threshold.
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