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1 INTRODUCTION

Drug–drug interactions (DDIs), also known as polypharmacy, refer to the potential non-additive
effects of multiple co-administered medications and are regularly encountered in clinical contexts. A
considerable amount of effort has been made on tackling his problem and the much progress has been
achieved thanks to cutting-edge machine learning (ML) methods, which take many forms: molecular
similarity, (bio)chemical structure, knowledge graph, and even natural language processing (NLP)
(Lin et al., 2023).

Moreover, as recent empirical studies demonstrate, molecular fingerprints appear to encode sufficient
information such that simple architectures built on top of them, such as multilayer perceptron (MLP),
can achieve competitive performances compared to methods that are much more computationally
expensive. Our work hence supplements well a recent benchmark paper (Xia et al., 2023) focusing
on FP for downstream tasks as that work considered only one drug at a time.

In this study, we join this latest trend by providing a more fine-grained analysis on the performance of
a class of simple models over a very popular molecular fingerprinting system. Our main contributions
are as follows:

• Provide more detailed ablation studies on the use of Morgan FP to predict DDIs.

• Evaluate the performance of the Morgan FP method under more challenging settings.

• Connect the problem with recent empirical studies regarding the merits of deep learning vs
boosted trees vs foundation models.

2 RESULTS AND DISCUSSION

We used an augmented version of the standard benchmarking dataset, DrugBank 5.0 (Wishart et al.,
2018), first described by Long et al. (2022). All models were implemented using PyTorch and
PyTorch Geometric. For the transductive setting, we randomly partitioned the dataset using 8 : 1 : 1
train/validation/test split. For the inductive settings we used the ratio of masked drugs k = 0.2.

Hyperparameters Accuracy Weighted F1 AUROC Total Time (s)

Morgan MLP

R = 2, D = 2048 (default) 96.15 96.13 99.81 1,286
R = 3, D = 2048 95.97 95.95 99.79 1,620
R = 4, D = 2048 96.13 96.12 99.80 1,841
R = 3, D = 4096 96.05 96.04 99.80 1,008
R = 4, D = 4096 96.28 96.26 99.82 1,217

SSI-DDI 95.07 95.04 99.23 15,120

Table 1: Radius and dimension of embedding space; the default value in rdkit is R = 2, D = 2048;
depth of MLP has been set to 4
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# layers Accuracy Weighted F1 AUROC Total Time (s)

Morgan MLP

1 91.04 90.92 96.53 1,099
4 (default) 96.15 96.13 99.81 1,286

6 95.85 95.84 99.81 1,452
8 95.96 95.95 99.86 2,008

16 96.57 96.54 99.86 3,900

SSI-DDI 95.07 95.04 99.23 15,120

Table 2: Number of MLP layers; for R and D we used the default value as in Table 1

Method/Setting Accuracy Weighted F1 Total Time (s)

Morgan MLP I1 62.95 63.29 1,367
SSI-DDI I1 62.49 62.61 12,060

Morgan MLP I2 37.04 24.81 1,701
SSI-DDI I2 35.46 35.94 10,920

Table 3: Inductive settings: under I1 exactly 1 drug in an pair in the test set was unseen, under I2
both were unseen

In this work we investigated two sets of hyperparameters that could have an impact on the performance
of Morgan FP models, namely the radius and number of bits, as well as the number of MLP layers.
Table 1 showed that using larger r and number of bits made only a very small difference. Compared
to the competitive baseline, however, all Morgan FP configurations were comfortably ahead. This is
especially the case for total time elapsed until convergence (rightmost column) — the Morgan FP
models spent only a small fraction of time compared to the baseline to reach superior performances.
The last point was also illustrated by Table 2, except that when the Morgan FP model had only a
single-layer MLP the performance was much worse.

The inductive settings, as expected, turned out to be much harder. Here the advantage of Morgan
FP over SSI-DDI was less pronounced in terms of performance metrics, but the time-saving factor
was still very sizable. However, we needed to point out that the figures were much smaller than in
the relevant literature (Nyamabo et al., 2021; 2022; Zhang et al., 2025), which we believe this was
not due to overfitting since when we added dropouts to our MLP the results were comparable, but
rather the nuanced difference between multi-class and multi-label classification and the way other
researchers generated their negative samples for addressing dataset imbalance: since they treated any
unseen combinations as negative rather using real world evidence. One way to mitigate the effect
could therefore be to exclude interaction types and drugs below a certain threshold number (e.g. 30).

Future work should also focus on further dissecting the advantages and disadvantage of FP models
with respect to graph-based methods. One important area would be to repeat the same experiments
using other kinds of molecular FPs as well as combinations thereof. Interestingly, there has been
a recent work (Zhang et al., 2023) on using a combination of an ensemble of 4 different kinds of
fingerprints (excluding Morgan FP). Given that some FP methods, such as the PubChem fingerprint,
yield features that are biochemically meaningful (cf. Adamczyk and Ludynia (2024)), it could be
helpful to treat them as a tabular dataset and use tabular learning method for downstream tasks (Xu
et al., 2021; Grinsztajn et al., 2022; McElfresh et al., 2023; Holzmüller et al., 2024; Hollmann et al.,
2025).

Finally, yet another promising line of work would be to integrate FP features with knowledge graph-
based approaches where biochemical pathways are explicitly modelled (cf. Gonzalez-Cavazos et al.
(2023)), because unlike molecular graphs these graphs encode physiologically relevant information
that can help elucidate mechanisms of DDI.
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MEANINGFULNESS STATEMENT

For small molecules, it may be difficult to find a singular representation that is good for any kind
of downstream tasks. Our suggestion is that which representation to choose depends heavily on the
nature of a task: for DDIs, which are inherently biochemical in nature, expert-curated substructure
features may be better due to the fact that it is not so much molecular similarity but rather participation
in biochemical pathways that really matters.
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A METHOD

A.1 DATA

First, prescription records were extracted from electronic health records (EHRs) from a very large
health insurance claims data based in the United States. From these, the identity of drug, start date
and the end date could be specified. Then, whenever a pair of two drugs overlapped in their period
of validity (i.e. between start and end) it was deemed to be “safe” — without adverse combination
effects and treated as an negative example. This is different from all other existing methods in the
literature using oversampling methods (e.g. SMOTE-ENN used by Zhang et al. (2023)) designed to
address the problem of data imbalance (Lin et al., 2023) since they all make the assumption that all
drug–drug–relation triples are negative samples.

A.2 LEARNING TASK

We formulate the DDI problem as a multi-class classification task. The dataset is presented by{
d
(1)
i , d

(2)
i , rj

}N

i=1
, where rj ∈ C = [1,K]

⋂
N is the type of DDI. The task is then to learn a

parameterized function

Φθ : D ×D 7→ C, (1)

where D is the set of drugs. An alternative setup is multi-label classification, where the function Φθ

is given by

Φθ : D ×D × C 7→ {0, 1}. (2)

The difference between multi-class and multi-label classification is that the under the latter some
pairs of drugs may have more than one type of interaction.

A.3 TRANSDUCTIVE VS INDUCTIVE LEARNING

Transductive refers to the usual setting where all the drugs encountered at test time have already been
seen during training and validation, whereas inductive means that at test time there are drugs that
have not been observed during training and validation, hence requiring the algorithm to be able to
generalize. Formally, let D be the set of all drugs, and Dtest the set of drugs held out for testing with
|Dtest| / |D| = k. The inductive 1 (I1) setting is where the test set containing drug pairs with 1 seen
and 1 unseen drug, whereas the inductive 2 (I2) setting considers only those pairs with 2 unseen
drugs.

A.4 MORGAN FINGERPRINT

The FP we used in this study was the Morgan fingerprint as implemented by RDKit (?). The finger-
print was generated by the eponymous algorithm (?), which collects at each atom the substructure
(subgraph) induced by its r-hop neighbours, where r is the radius. In this way, it is closely related
to the Weisfeiler–Lehman algorithm, but also takes into consideration chemically relevant features
such as electric charge and membership in rings structure(s). See Figure 1 for an example. While
the aforementioned step produced the counts (i.e. a histogram) of the subgraphs, in practice they are
mapped to a 1-dimensional vector of binary bits by a hash function. Both the radius and the number
of bits were hyperparameters we investigated.

A.5 MODEL TRAINING

We chose the multi-class cross-entropy over each minibatch (size B = 256) as our objective and used
the rectified Adam (RAdam) optimizer to minimize it, with an early stopping ∆ = 5× 10−3 and a
tolerance of 4 epochs.
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Figure 1: The Morgan algorithm of molecular fingerprinting. From ?.
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