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Abstract
Leading deep learning-based methods for fixed-
backbone protein sequence design do not model
protein sidechain conformation during sequence
generation despite the large role the three-
dimensional arrangement of sidechain atoms play
in protein conformation, stability, and overall
protein function. Instead, these models implic-
itly reason about crucial sidechain interactions
based on backbone geometry and known amino
acid sequence labels. To address this, we present
FAMPNN (Full-Atom MPNN), a sequence design
method that explicitly models both sequence iden-
tity and sidechain conformation for each residue,
where the per-token distribution of a residue’s
discrete amino acid identity and its continuous
sidechain conformation are learned with a com-
bined categorical cross-entropy and diffusion loss
objective. We demonstrate that learning these dis-
tributions jointly is a highly synergistic task that
both improves sequence recovery while achieving
state-of-the-art sidechain packing. Furthermore,
benefits from full-atom modeling generalize from
sequence recovery to practical protein design ap-
plications, such as zero-shot prediction of experi-
mental binding and stability measurements.

1. Introduction
Most existing methods for designing protein sequences
for a given structure do not explicitly model or encode
sidechains. Instead, they formulate the sequence design
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task as a backbone-conditioned sequence generation task.
These models typically use a graph neural network (GNN) to
encode the backbone structure, then generate the sequence
either autoregressively or through a masked language mod-
eling objective (Dauparas et al., 2022; Hsu et al., 2022;
Ingraham et al., 2019; Ruffolo et al., 2024; Zheng et al.,
2023; Gao et al., 2022a; Akpinaroglu et al.). Because these
methods do not model sidechains during sequence design,
they must implicitly reason about sidechain interactions
through the limited perspective of backbone structure and
sequence identity alone.

We summarize our key contributions as follows:

• We introduce a method which models the per-token
distribution of a residue’s discrete sequence identity
and continuous sidechain structure with a combined
cross-entropy and diffusion loss objective.

• We implement a lightweight, iterative sampling method
for generating samples from this joint distribution.

• We demonstrate that modeling this joint distribution
allows for improved sequence design and experimental
protein fitness prediction.

2. Related work
2.1. Fixed-backbone sequence design

The task of fixed-backbone sequence design is to design a
protein sequence that will fold into a structure that matches
the given protein backbone (Dauparas et al., 2022). Tra-
ditional physics-based approaches use energy functions to
combinatorially optimize sequence identity and sidechain
conformation to find low-energy configurations (Holm &
Sander, 1992; Dahiyat & Mayo, 1997).

Recently, deep learning-based approaches have proven
highly successful at this task (Jing et al., 2020; Norn et al.,
2021; Hsu et al., 2022; Gao et al., 2022b;a; Zheng et al.,
2023; Anand et al., 2022; Akpinaroglu et al.; Ruffolo et al.,
2024; Ingraham et al., 2023). In addition to being able to
recover the sequence of natural proteins given their back-
bone, these models are surprisingly capable of also guiding
improvements in binding affinity (Shanker et al., 2024) and
improving protein expression, solubility, and stability (Sum-

1



Sidechain conditioning and modeling for full-atom protein sequence design with FAMPNN

Figure 1. (a) Full-atom sequence design overview, consisting of a dual masked language modeling scheme on sequence and sidechain
structure to co-generate sequence and sidechain atoms. (b) Given a backbone with partially masked sequence and sidechains, the full-atom
encoder uses modified MPNN and GVP layers to produce node embeddings, which are used for sequence prediction and sidechain
generation. (c) Sampling begins with a fully-masked backbone and is iteratively unmasked to generate sequence and sidechains.

ida et al., 2024). Among these, ProteinMPNN currently re-
mains the most widely used model for sequence design due
to its proven experimental performance for various practical
protein design applications (Dauparas et al., 2022; Bennett
et al., 2023; Dauparas et al., 2023).

2.2. Sidechain packing

The task of sidechain packing is, given a protein backbone
and its amino acid sequence, to predict the sidechain coor-
dinates of the ground truth structure. Traditional physics-
based approaches for sidechain packing minimize energy
by sampling rotamers from a rotamer library (Krivov et al.,
2009; Xu & Berger, 2006; Miao et al., 2011). Following
the groundbreaking success of deep learning approaches in
protein structure prediction (Abramson et al., 2024; Jumper
et al., 2021), recent specialized sidechain packing meth-
ods have achieved strong performance over physics-based
methods. DLPacker formulates the problem as an image-
to-image task and trains a 3D U-Net to predict sidechain
coordinates (Misiura et al., 2022). AttnPacker uses an in-
variant graph transformer with triangle updates followed by
an equivariant Tensor Field Network Transformer to predict
sidechain coordinates (McPartlon & Xu, 2023). PIPPack
introduces invariant point message passing layers to predict
binned χ-angle distributions (Randolph & Kuhlman, 2023).
DiffPack uses torsional diffusion to autoregressively gener-
ate the four sidechain torsional angles χ1 to χ4 (Zhang et al.,
2024). FlowPacker uses torsional flow matching with an
equivariant graph neural network to simultaneously denoise
all four sidechain torsional angles (Lee & Kim, 2024).

2.3. Sequence-sidechain co-generation methods

Closest to our work are models that perform both sequence
design and sidechain packing. AttnPacker is trained with
an auxiliary task of simultaneously predicting amino acid
sequence identity by randomly dropping out residue iden-
tities in the input sequence. However, their work primarily
focuses on use cases for sidechain packing rather than se-
quence design. The 3DCNN model from Anand et al. can
sample sequence and sidechains conditioned on neighboring
sidechains (Anand et al., 2022), but it requires a computa-
tionally expensive Markov Chain Monte Carlo (MCMC)
procedure to iteratively redesign residues. The high demand
for computational resources reduces its broad application.
LigandMPNN extends ProteinMPNN to design sequences
conditioned on ligand context, which can optionally include
sidechain atoms as ligand context, but it remains unable
to co-generate sidechains and sequence (Dauparas et al.,
2023). Instead, LigandMPNN packs sidechains by relying
on a separately trained model after the full sequence has
been designed, meaning that the sequence is designed com-
pletely independently of predicted neighboring sidechain
conformations.

2.4. Next-token modeling for continuous data

Autoregressive models for generating continuous data often
rely on discretizing the data before tokenization (Ramesh
et al., 2021; Esser et al., 2021; Chang et al., 2022). To
eliminate the need for discrete tokenizers, recent approaches
have used a diffusion loss objective with autoregressive
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modeling to model per-token distributions for continuous-
valued data (Li et al., 2024; Fan et al., 2024; Sun et al., 2024).
Our work similarly uses a diffusion loss to extend masked
generative models to generate tokens with both discrete and
continuous components.

3. Motivation
The structure and function of proteins are largely determined
by the physicochemical interactions among its atoms and its
system. Current fixed-backbone sequence design methods
implicitly capture these interactions via backbone geome-
try and amino acid identity labels alone, and the resulting
sequences often achieve remarkable solubility and stabil-
ity. However, these methods fall short on tasks involving
nuanced sidechain arrangements. There are several inter-
molecular interactions which are functions of the precise
distances (e.g. Van der Waals force and Coulombic attrac-
tion) and angles (e.g. hydrogen bonding and pi-stacking),
amongst sidechain and backbone atoms. Thus, we hypoth-
esize that by explicitly modeling full-atom structure in an
efficient manner during sequence design, we can better cap-
ture complex, yet crucial, sidechain interactions unavailable
to backbone methods, improving the quality of designed
sequences.

To carry out this hypothesis, our design process aims to
achieve two goals:

1. At each step in the sequence design process, the model
should co-generate sidechain atoms along with its pre-
diction of the sequence.

2. To predict sequence and sidechains, the model should
encode the currently known sidechain atoms in addi-
tion to the backbone and sequence.

4. Methods
4.1. Generative masked language modeling scheme

We train FAMPNN with masked language modeling on
sequence identity. Simultaneously, we provide sidechain
coordinates of unmasked sequence as context, and mask the
sidechain coordinates of masked sequence positions. As
seen in Figure 1a, this allows for prediction of masked se-
quence and sidechain conformations given partial sequence
and sidechain coordinates. To predict both sequence and
sidechains, during training, we combine categorical cross-
entropy loss for sequence prediction and per-token diffu-
sion loss for sidechain conformation prediction, such that
FAMPNN is a single model trained end-to-end on both ob-
jectives (Appendix C).

Because our method generates both sequence and sidechain
coordinates in a per-token manner, we can formulate the

full-atom sequence design procedure as a generative masked
language modeling objective. Similar to MaskGIT, (Chang
et al., 2022) we begin sampling with both sequence and
sidechains fully masked and follow an iterative procedure:
at each step, we predict all tokens in parallel, then unmask
some subset of the sequence and sidechain tokens. We
repeat this process until all tokens are unmasked, yielding a
fully designed sequence and full-atom structure (Figure 1c).
Sampling with as many steps as residues reduces to random-
order autoregression.

To additionally support sidechain packing, a crucial task in
protein design, we introduce a separate masking scheme
exclusively on sidechains. During training, among po-
sitions with unmasked sequence identity, we randomly
mask each residue’s sidechain coordinates with probabil-
ity p ∼ Uniform(0, 1). This enables the model to pre-
dict sidechain conformations given either partial or com-
plete sequence information, with varying amounts of known
sidechain information. This also allows for the model to
predict sequence identity given a mixture of sequence-only
and sequence-and-sidechain context.

4.2. Full-atom sequence design

Fulfilling the sequence design process while explicitly mod-
eling sidechain structure requires addressing two primary
considerations. (1) Determining a protein sequence given its
full-atom structure is trivial, as the composition of sidechain
atoms completely identifies the underlying amino acids, and
(2), sidechains for different amino acids have a varying num-
ber of atoms, so we require a unifying representation for all
sidechains.

4.2.1. SIDECHAIN COORDINATE REPRESENTATION

To address these considerations, we represent residues in
atom37 format, in which each residue is represented as
a fixed size matrix of size 37 × 3. Each row corresponds
to the 3D coordinates of all 37 possible atom types. 4 of
these rows correspond to the backbone atoms N, Cα, C, and
O, while the remaining 33 rows correspond to the residue’s
sidechain atoms. For sidechains where a particular atom
type is not present, the row for that atom type is a ”ghost
atom” and is set to the residue’s Cα position, accommodat-
ing consideration (2). Utilization of ghost atoms also allows
us to address consideration (1) as we can prevent sidechain
structure from revealing the amino-acid identity of a masked
sequence position by setting all sidechain atoms as ghost
atoms, essentially ”masking” the sidechain structure as well.

4.2.2. FULL-ATOM ENCODER

We represent full-atom protein structure as a graph, en-
coded with a graph neural network (GNN) using a hybrid
MPNN-GVP architecture (Dauparas et al., 2022; Jing et al.,
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2020). This architecture consists of three primary compo-
nents, which are an invariant backbone encoder, an invariant
full-atom encoder, and an equivariant full-atom encoder,
with respect to any composition of global rotations and
reflections in protein coordinates.

The first two components build off the architecture of Pro-
teinMPNN (Dauparas et al., 2022). ProteinMPNN featurizes
backbone structure as a k-NN graph, with a set of nodes V
that represent each protein residue, and edges E = {ei→j},
featurized with backbone inter-atomic distances, defined for
the 48 nearest neighbors of each residue. ProteinMPNN
includes an initial structure encoder consisting of three pre-
viously described (Ingraham et al., 2019) invariant MPNN
layers, which update both edge representations eij and node
representations vi: MPNNEncoder(vi, eij) = (v′i, e

′
ij). This

output is passed to a sequence decoder comprised of three
additional invariant MPNN layers that combines causally-
masked one-hot encodings of sequence S, updating only
node representations: MPNNDecoder(v′i, [e

′
ij , si]) = (v′′i ).

This output is then passed into a final output head for se-
quence prediction.

Our initial component, the invariant backbone encoder, is
identical to MPNNEncoder, encoding the backbone struc-
ture only. However, for our second component, we replace
MPNNDecoder with a full-atom encoder, which is identical
to the backbone encoder, MPNNEncoder, but with expanded
featurization to all atoms. Similar to MPNNDecoder, we
concatenate one-hot encodings of sequence identity, but re-
move the causal mask, as FAMPNN is trained with an MLM
objective, and sequence positions are randomly masked with
a corresponding token.

Lastly, to allow the model to reason over vector-valued in-
teratomic orientations in addition to previously encoded
scalar-valued interatomic distances, we require equivariant
layers, since atomic orientations are equivariant to global ro-
tations and reflections. Thus, the third and final component
of the model are modified Geometric Vector Perceptrons
(GVP) from Jing et al. (Jing et al., 2020). GVP layers con-
sist of an equivariant track for learning vector features and
an invariant track for learning scalar features. In FAMPNN,
in addition to the backbone-level features used in Jing et
al. (Jing et al., 2020), we use the equivariant track to encode
unit vectors from Cαi

to all other atoms in residue i. For
equivariant edge features, we include unit vectors from Cαi

to all atoms in residue j. To the invariant track, we addition-
ally incorporate distances from Cαi

to all atoms in residue
j, as done in the invariant full-atom encoder.

To tie the three modules together, we initialize the invariant
track of GVP with the final node and edge representations
from the invariant full-atom encoder. This representation
is then passed both to a final output head for sequence pre-
diction and to the sidechain diffusion module for invariant

Euclidean denoising of sidechain atoms.

4.3. Sidechain coordinate generation

We formulate sidechain coordinate generation as per-token
Euclidean diffusion with a diffusion loss (Li et al., 2024) on
coordinates predicted from the node embeddings. During
sidechain coordinate generation, we use a sidechain repre-
sentation that is invariant to global rotations and translations
of the input backbone, which we have empirically seen im-
proves training efficiency. For each residue, we transform all
sidechain coordinates (including ghost atoms) into the local
frame defined by its backbonande atoms (Appendix D.3.1).
At inference, after a full denoising trajectory has been run,
sidechain coordinates are transformed back into the global
frame by inverting this transformation.

4.3.1. PER-TOKEN EUCLIDEAN DIFFUSION

We use diffusion to model the distribution of a residue’s
sidechain coordinates given its amino acid identity, the pro-
tein backbone, and the currently unmasked sequence and
sidechains. Similar to Chu et al., our diffusion scheme fol-
lows the variance-exploding EDM scheme from Karras et
al. (Karras et al., 2022; Chu et al., 2024), where we train
a noise-conditioned denoiser Dθ to minimize the L2 error
from a Gaussian-noised version of the sidechain coordi-
nates. We parametrize Dθ using a lightweight multilayer
perceptron (MLP). We use AdaLN (Peebles & Xie, 2023) to
condition this diffusion MLP on the current noise level σ and
a one-hot encoding of the residue’s amino acid identity si.
To encode information about the backbone and unmasked
sequence and sidechains, we also use AdaLN to pass in the
node embedding vi from our full-atom encoder.

At train time, when denoising the sidechain coordinates of
residue i, we teacher-force the sequence si rather than pre-
dicting si. Similar to previous work (Abramson et al., 2024;
Li et al., 2024), because the diffusion MLP is lightweight
relative to the rest of the network, we train the MLP with
a larger batch size for better training efficiency. In prac-
tice, for each training example, we clone the conditioning
inputs to the MLP 8 times and sample 8 different noise
levels for training the denoiser. At inference time, to gen-
erate sidechain atoms for residue i, we first run the MPNN
module to generate a prediction of the sequence identity ŝi,
then pass in both ŝi and vi into the sidechain diffusion MLP.
We then initialize all sidechain atoms from a Gaussian dis-
tribution and run a diffusion trajectory to realize sidechain
coordinates (Figure 1a).

4.3.2. PREDICTED SIDECHAIN ERROR

Predicted error in protein structure prediction models is
valuable for interpretability, design filtering, and as an op-
timization objective for de novo design (Abramson et al.,
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Figure 2. (a) Median self-consistency TM-scores (left, higher is
better) and RMSDs (right, lower is better) for sequence design
methods across 100 de novo backbones at each length in {100,
200, 300, 400, 500} generated by RFdiffusion. (b) Median self-
consistency TM-scores (left) and RMSDs (right) across all 500
de novo backbones vs. number of FAMPNN iterative unmasking
steps. L steps denotes unmasking 1 residue per step, which is
equivalent to random order autoregression. Error bars represent
95% bootstrap confidence intervals around the median.

2024; Frank et al., 2024; Bryant et al., 2022). Similar to
other sidechain packing methods, we train a confidence
module to predict packing error (Zhang et al., 2024; Lee &
Kim, 2024; McPartlon & Xu, 2023). Our confidence mod-
ule estimates predicted sidechain error (pSCE) as a per-atom
error in Angstroms (Figure 1). Similar to AlphaFold3, dur-
ing confidence module training, we use a diffusion rollout
to obtain sidechain coordinates for computing error against
the ground truth (Abramson et al., 2024). The confidence
module encodes node embeddings from the full-atom en-
coder with 3 MPNNDecoder layers, then uses the predicted
sidechain coordinates and amino acid type to predict the
per-atom error in evenly spaced bins from 0Å to 4Å. At
inference time, we compute pSCE by taking the expectation
across these binned probabilities (Appendix D.4).

5. Results
5.1. Full-atom sequence design

5.1.1. SEQUENCE RECOVERY AND SELF-CONSISTENCY

To benchmark FAMPNN’s sequence recovery compared to
other methods, we report median sequence recovery on the
CATH 4.2 test set in Table 1. FAMPNN (0.0Å) achieves
a competitive 49.66% single-step sequence recovery, sur-
passing the two modules, ProteinMPNN (45.96%) and GVP
(39.47%), which make up the hybrid MPNN-GVP archi-
tecture. We omit benchmarking of protein design models

Table 1. Median sequence accuracy on CATH 4.2 test set, as re-
ported by Gao et. al (Gao et al., 2022a). Bold values indicate the
best results. †Evaluated on CATH 4.3 test set (Hsu et al., 2022).
*Reproduced by Gao et. al with CATH 4.2 (Gao et al., 2022a).
Dashes (-) indicate that perplexity was not reported by the authors.

Model Recovery % ↑ Perplexity ↓

GraphTrans 35.82 6.63
StructGNN 35.91 6.40
GCA 37.64 6.05
ESM-IF1† 38.30 6.44
GVP-large† 39.20 6.17
GVP 39.47 5.36
AlphaDesign 41.31 6.30
ProteinMPNN* 45.96 4.61
ESM-IF1 (AF2DB)† 51.60 4.01
PiFold 51.66 4.55
Frame2Seq 46.53 -
Frame2Seq (Ensemble) 49.11 -
FAMPNN 49.66 4.99

which utilize pre-trained protein language models such as
ESM2 (Lin et al., 2023), as the pre-trained modules do not
explicitly holdout the CATH 4.2 test set.

Because high sequence recovery does not always translate
to high protein design success rates, another critical metric
for evaluating protein design methods is self-consistency,
a measure of how well the designed sequence is predicted
to recapitulate the input backbone. Specifically, we com-
pute the TM-score (structural similarity) and RMSD of the
input structure and the AlphaFold2 structure prediction of
the designed sequence, reported as scTM and scRMSD
respectively (Zhang & Skolnick, 2005). Similar to the
ProteinBench inverse folding benchmark, we evaluate on
RFdiffusion-generated de novo backbones from lengths 100
to 500 (Ye et al., 2024a). For each length in {100, 200, 300,
400, 500}, we evaluate various sequence design methods
on 100 de novo backbones. Shown in Figure 2a, FAMPNN
(0.3Å) is competitive with commonly used ProteinMPNN in
scTM and scRMSD. For a comparison of all benchmarked
methods, see Appendix Table 6. In Figure 2b, we show the
effect of the number of iterative FAMPNN sampling steps
on self-consistency. Performing only 1 step of sequence
design is insufficient to capture higher-order sequence inter-
actions, resulting in worse self-consistency, but we find that
10 steps is sufficient to achieve high self-consistency. Using
a smaller number of iterative steps significantly reduces in-
ference time compared to a fully autoregressive approach of
L steps (e.g. ProteinMPNN and ESM-IF1), which requires
one step per residue.
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Table 2. Sidechain packing performance comparison across CASP
datasets. Bold values indicate the best results. Underlined values
indicate second best. Methods marked with an asterisk (*) were
trained on a dataset that does not hold out CASP proteins.

Dataset Method Atom RMSD (Å) ↓
All / Core / Surface

CASP15 3DCNN* 0.897 / 0.489 / 1.003
ChromaDesign* 0.810 / 0.434 / 0.917
LigandMPNN* 0.788 / 0.443 / 0.879

FlowPacker 0.765 / 0.452 / 0.859
FAMPNN (0.3Å) 0.785 / 0.417 / 0.888
FAMPNN (0.0Å) 0.690 / 0.350 / 0.789

5.2. Sidechain packing

Following FlowPacker (Lee & Kim, 2024), we compare
our sidechain packing performance to other methods on
CASP13, 14, and 15 targets (Table 2). Following Lee
and Kim, we used MMseqs2 easy-search to remove
all CASP13-15 homologues from our training and valida-
tion dataset with a cutoff of 40% similarity. We measure
sidechain packing performance by the average RMSD be-
tween the predicted and ground-truth sidechains. Unlike
most methods that predict sidechain coordinates via torsion
angles (Anand et al., 2022; Zhang et al., 2024; Dauparas
et al., 2023; Lee & Kim, 2024), our method uses an MSE-
based objective in Cartesian space. This avoids the lever
arm effect, where small angular errors cause large Cartesian
deviations, and achieves superior RMSDs while remaining
competitive on chi-angle accuracy (Appendix Table 8).

We also demonstrate that pSCE serves as an effective confi-
dence metric for sidechain packing. We evaluated pSCE on
crystal structures from the CASP15 test set and found strong
correlations in both per-atom errors (Spearman ρ = 0.843)
and per-residue errors (Spearman ρ = 0.780), as shown
in Figure 3a. Figure 3b displays a visualization of con-
fidence on a packed structure, where confidence can be
meaningfully interpreted on a per-atom level. For example,
we observe that sometimes, while the hydroxyl tip of a tyro-
sine sidechain is predicted with high confidence, the model
assigns lower confidence to the ring’s rotational orientation
(Figure 3c, top left).

Additionally, pSCE remains interpretable for designed se-
quences predicted to fold close to the target backbone
(scRMSD ≤ 5Å). We find that pSCE correlates well with
the RMSD between FAMPNN-packed sidechains and Al-
phaFold2 predictions, when sidechains are aligned to the
backbone reference frame, suggesting its utility as a confi-
dence metric for sequence design (Figure 4).

Figure 3. (a) Predicted sidechain error correlates with true
sidechain packing error both per-atom (left) and per-residue by
averaging over atoms (right). (b) Visualization of a repacked tar-
get from CASP15 (ID: T1145-D1). Sidechain color represents
confidence, with blue representing low predicted error and red
representing high predicted error. (c) Specific FAMPNN-packed
sidechains with per-atom confidence (colored), along with the
ground truth conformation (gray).

Figure 4. Left, among designed sequences achieving scRMSD
≤ 5Å, our predicted sidechain error correlates well with the ac-
tual RMSD between FAMPNN-packed sidechains and those pre-
dicted by AlphaFold2, when each sidechain is aligned in its back-
bone frame. Right, AlphaFold2-predictions (blue) of designed
sequences can closely match the target backbone (gray), with pre-
dicted sidechains closely matching FAMPNN-designed sidechains.

5.3. Full-atom conditioned protein fitness evaluation

Current inverse folding, or structure-conditioned sequence
design models, have a surprising capacity to score mutant
protein fitness zero-shot, without observing any fitness prop-
erties during pretraining. Markedly, protein stability and
protein-protein binding affinity are two properties where
inverse folding models significantly outperform protein lan-
guage models (Shanker et al., 2024; Notin et al., 2023;
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Figure 5. Zero-shot performance of FAMPNN against state-of-the-
art protein design methods in prediction of experimentally mea-
sured protein fitness. (a) Prediction of ∆∆G of binding of protein
variants in the SKEMPIv2 dataset, reported with Spearman cor-
relation. We additionally evaluate on a separate test subset of
SKEMPIv2 recently curated to address significant data leakage
issues in supervised models trained on previously proposed data
splits (Bushuiev et al., 2024). (b) Prediction of antibody-antigen
binding affinity evaluated on five antibody-antigen binding affinity
datasets (Shanker et al., 2024), reported with Spearman correla-
tion. Antibody is shown in bold below the plot, and corresponding
antigen target shown on x-axis. (c) Prediction of protein thermosta-
bility, ie. ∆∆G of folding, across three experimental datasets of
diverse proteins, reported with Spearman correlation.

Widatalla et al., 2023), which are trained with similar MLM
or AR objectives, but with no structural conditioning. We
hypothesize that inverse folding models, using backbone
geometry, gain a limited, but nonetheless effective, induc-
tive bias for predicting binding affinity and stability changes
upon mutation. From this, we aimed to evaluate if the ad-
dition of full-atomic context, and explicit modeling of the
crucial sidechain interactions which often determine stabil-
ity and binding affinity, can improve performance.

We evaluate FAMPNN (0.3Å) on three stability datasets,

five antibody-antigen binding affinity datasets, and two ver-
sions of a general protein-protein binding affinity dataset,
against a range of state-of-the-art unsupervised and super-
vised methods for binding and stability prediction. We score
the fitness of a mutation by masking the mutated position
and sidechain, and taking the conditional likelihood of the
mutant residue normalized by the conditional likelihood
of the wild-type residue at the mutant position. Here, the
advantage of our method is the ability to score a mutation
conditioned not only on neighboring backbone and sequence
context, but the full-atom structure of surrounding residues.

To evaluate zero-shot performance for prediction of protein-
protein binding affinity, we evaluate on SKEMPIv2, a
widely used curation of experimentally measured binding
affinities for thousands of sequence variants across hun-
dreds of protein-protein interactions totaling ∼7000 data
points. Shown in Figure 5a, FAMPNN significantly outper-
forms unsupervised models on the entire SKEMPIv2 dataset
and, notably, even supervised models on the test split from
Bushuiev et al. (Bushuiev et al., 2024). To evaluate zero-shot
prediction of protein stability, we evaluate on S669, Megas-
cale, and FireProtDB, which are datasets of experimentally
measured changes in protein stability (∆∆G) to diverse
native proteins and are widely-used benchmarks for stability
predictors. Shown in Figure 5b, FAMPNN modestly sur-
passes both ProteinMPNN and ESM-IF, consistently across
all three stability datasets. Once again, shown in Figure
5c, FAMPNN consistently outperforms state-of-the-art un-
supervised methods ProteinMPNN and ESM-IF1 on the
therapeutically relevant task of antibody-antigen binding
affinity prediction. These results demonstrate the utility of
FAMPNN for the stabilization of proteins and enhancement
of protein-protein interaction.

5.4. Sidechain context improves performance

To evaluate whether full-atomic modeling improves se-
quence design performance, we ablated the two sources of
full-atom information during model training: (1) full-atom
conditioning, and (2) sidechain packing. We report perfor-
mance of our implementation of MPNN and MPNN-GVP,
with additions of (1) and/or (2) to MPNN-GVP (FAMPNN
is the addition of both [1,2]). We report mean sequence
recovery on the CATH 4.2 test set, training with 0Å and
0.3Å noise. Shown in Figure 6a, we see incorporation of
the sidechain packing objective improves sequence accu-
racy. Second, we see full-atomic conditioning also increases
sequence accuracy, even more so when trained with 0.3Å
noise. Both FAMPNN and the baseline model improve with
additional sequence context, but interestingly, FAMPNN
shows markedly stronger scaling (6% and 15% improve-
ments at 90% context versus 2% and 8% at 0% context)
from access to sidechain structural information unavailable
to backbone-only models.
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We also benchmark FAMPNN’s ability to leverage both
partial sequence and sidechain context to improve both se-
quence design and sidechain packing performance (Figure
6b, c). In Figure 6b, we find that along protein-protein
interfaces, where modeling sidechain interactions are more
critical, providing partial sidechain context with sequence
improves accuracy over providing partial sequence context
alone. Moreover, FAMPNN can more effectively leverage
sidechain context as compared to LigandMPNN, which can
also optionally condition on sidechain atoms as context.
Furthermore, we show that FAMPNN can pack sidechains
while conditioning on varying amounts of partial sequence
or sidechain conformation context, with increasing context
leading to better packing accuracy (Figure 6c).

Lastly, we analyze the effect of full-atom conditioning on
prediction of protein fitness. Shown in Figure 7, we com-
pare the average performance on fitness categories from
Figure 5 of FAMPNN and a version of the model trained
without full-atom conditioning and sidechain packing, but
scaled to the same number of parameters. Here, we see
improvements in fitness evaluation upon incorporation of
full-atomic context in model training, specifically for the
SKEMPIv2 dataset. Surprisingly, this does not translate
to antibody-antigen binding prediction. This is likely due
to the use of inaccurate input structures in this benchmark
which potentially introduce adversarial structural context.
(see Appendix G.2.5) Together, these results demonstrate
that full-atom conditioning can serve as salient information
for improved prediction of protein fitness.

6. Discussion
FAMPNN is a full-atom protein sequence design method,
which models the per-token distribution of a residue’s dis-
crete amino acid identity and its continuous sidechain con-
formation. This distribution is learned with a combined cate-
gorical cross-entropy and diffusion loss, and we demonstrate
that learning to model 3D sidechain coordinates improves se-
quence design performance. We outline an iterative process
to jointly sample protein sequence and sidechain conforma-
tion, demonstrating its utility in designing sequences with
higher self-consistency than in a single pass. We achieve
state-of-the-art accuracy in sidechain packing RMSD, along
with an accurate estimate of its own error, pSCE. Finally, we
find that incorporation of full-atomic context improves se-
quence design performance, notably more so as the amount
of structural context increases. This result underlies the
significant improvement of FAMPNN over backbone-only
models in protein fitness prediction, where we are often
evaluating only single residue mutations, utilizing the rest
of the full-atom structure as salient context.

While FAMPNN demonstrated the utility of sidechain con-
ditioning and conformation modeling, adding the capacity

Figure 6. (a) Mean sequence accuracy on CATH 4.2 test set for
various ablations of model training, conditioning and architecture
with 0Å (left) and 0.3Å (right) of structural noise added during
training. (b) Sequence accuracy at protein-protein interfaces vs.
provided partial sequence context for FAMPNN and LigandMPNN.
Solid lines use both sequence and sidechain context; dashed lines
use sequence context only. (c) Average sidechain packing RMSD
on CASP targets vs. partial context. Black: packing sidechains
for known partial sequence context. Blue: packing remaining
sidechains given partial sidechain context.

Figure 7. Ablation of full-atomic context on fitness evaluation per-
formance. We report performance as spearman ρ correlation with
experimental measurements averaged across 10 checkpoints from
100-190k steps, for each category. We evaluate with the same
FAMPNN (0.3Å) model, but with and without sidechain the coor-
dinates of non-mutated residues

to condition on ligands (Dauparas et al., 2023) and model
their conformation (Anishchenko et al., 2024), would ex-
pand the biological applications of this work to the design
of sidechain-ligand interaction networks present in many
functional proteins and enzymes. Second, following previ-
ous work that has demonstrated success in aligning inverse
folding models to experimental data (Widatalla et al., 2024),
FAMPNN can be similarly aligned to desired properties to
further enrich design performance and fitness prediction.
Lastly, because there are biological applications where a
starting backbone structure is not available, future work will
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investigate how FAMPNN can be modified to concurrently
design protein backbone as well as sequence and sidechain
conformation.

Software
Code for FAMPNN is available at https://github.
com/richardshuai/fampnn.
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power for plastics degradation. Chemical Reviews,
123(9):5612–5701, 2023. doi: 10.1021/acs.chemrev.
2c00644. URL https://doi.org/10.1021/acs.
chemrev.2c00644. PMID: 36916764.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Wang, J., Lisanza, S., Juergens, D., Tischer, D., Watson,
J. L., Castro, K. M., Ragotte, R., Saragovi, A., Milles,
L. F., Baek, M., et al. Scaffolding protein functional sites
using deep learning. Science, 377(6604):387–394, 2022.

Widatalla, T., Rollins, Z., Chen, M.-T., Waight, A., and
Cheng, A. C. Abprop: Language and graph deep learn-
ing for antibody property prediction. The 2023 ICML
Workshop on Computational Biology, 2023.

Widatalla, T., Rafailov, R., and Hie, B. Aligning protein
generative models with experimental fitness via direct
preference optimization. bioRxiv, pp. 2024–05, 2024.

Xu, J. and Berger, B. Fast and accurate algorithms for
protein side-chain packing. Journal of the ACM (JACM),
53(4):533–557, 2006.

Ye, F., Zheng, Z., Xue, D., Shen, Y., Wang, L., Ma, Y.,
Wang, Y., Wang, X., Zhou, X., and Gu, Q. Proteinbench:
A holistic evaluation of protein foundation models, 2024a.
URL https://arxiv.org/abs/2409.06744.

Ye, F., Zheng, Z., Xue, D., Shen, Y., Wang, L., Ma, Y.,
Wang, Y., Wang, X., Zhou, X., and Gu, Q. Proteinbench:
A holistic evaluation of protein foundation models. arXiv
preprint arXiv:2409.06744, 2024b.

Zhang, Y. and Skolnick, J. Tm-align: a protein structure
alignment algorithm based on the tm-score. Nucleic acids
research, 33(7):2302–2309, 2005.

Zhang, Y., Zhang, Z., Zhong, B., Misra, S., and Tang, J.
Diffpack: A torsional diffusion model for autoregressive
protein side-chain packing. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Zheng, Z., Deng, Y., Xue, D., Zhou, Y., Ye, F., and Gu, Q.
Structure-informed language models are protein design-
ers. In International conference on machine learning, pp.
42317–42338. PMLR, 2023.

12

https://www.science.org/doi/abs/10.1126/science.adk8946
https://www.science.org/doi/abs/10.1126/science.adk8946
https://doi.org/10.1093/nar/gkaa981
https://doi.org/10.1021/acs.chemrev.2c00644
https://doi.org/10.1021/acs.chemrev.2c00644
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2409.06744


Sidechain conditioning and modeling for full-atom protein sequence design with FAMPNN

A. Benchmarks
A.1. Fitness Evaluation Benchmarks

Table 3. Prediction of protein-protein binding affinity and stability. Bold values indicate the best results. Underlined values indicate
second best.

Dataset Method Spearman Correlation

SKEMPI ProteinMPNN 0.27
ESM-IF1 0.29
FAMPNN 0.39

SKEMPI-PPI ProteinMPNN 0.41
ESM-IF1 0.18
FAMPNN 0.58
PPIFormer 0.44
GEMME 0.30
RDE Net 0.24

MSA Transformer 0.32

Megascale ProteinMPNN 0.53
ESM-IF1 0.54
FAMPNN 0.55

FireProt ProteinMPNN 0.50
ESM-IF1 0.47
FAMPNN 0.55

S669 ProteinMPNN 0.30
ESM-IF1 0.31
FAMPNN 0.41

CR9114-H3 ProteinMPNN 0.33
ESM-IF1 0.37
FAMPNN 0.42

CR9114-H1 ProteinMPNN 0.44
ESM-IF1 0.22
FAMPNN 0.53

CR6261-H9 ProteinMPNN 0.47
ESM-IF1 0.45
FAMPNN 0.55

CR6261-H1 ProteinMPNN 0.46
ESM-IF1 0.43
FAMPNN 0.56

G6 ProteinMPNN 0.13
ESM-IF1 0.28
FAMPNN 0.29
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Table 4. Comparison with supervised baselines for stability prediction.

Dataset Method Spearman Correlation Pearson Correlation

Megascale (Test Set)

Unsupervised
FAMPNN 0.53 0.50
Supervised
ThermoMPNN 0.73 0.75

FireProt

Unsupervised
FAMPNN 0.55 0.53
Supervised
ThermoMPNN 0.66 0.65
ProteinDPO 0.6 0.6

S669

Unsupervised
FAMPNN 0.41 0.39
Supervised
MSAesm – 0.54
MAESTRO – 0.50
PROSTATA – 0.49
ProteinDPO – 0.47
ACDC-NN – 0.46
ThermoMPNN – 0.43
DDGun3D – 0.43
INPS3D – 0.43
INPS-Seq – 0.43
ACDC-NN-Seq – 0.42
DDGun – 0.41
PremPS – 0.41
Dynamut – 0.41
SDM – 0.41
PoPMuSiC – 0.41
DUET – 0.41
RaSP – 0.39
ThermoNet – 0.39
I-Mutant3.0 – 0.36
Dynamut2 – 0.34

B. Model training
B.1. Structural noise

Previous work (Dauparas et al., 2022) has shown that the addition of random Gaussian noise to protein structure examples
during training improves the self-consistency of model designs. In line with this, we trained two versions of FAMPNN,
trained with 0 and 0.3Å noise, respectively. We add independent noise to each x, y, and z coordinate by sampling from a
normal distribution scaled by a factor of 0.3. Specifically, for each coordinate, the perturbation is drawn from N (0, σ2),
with standard deviation σ = 0.3.

B.2. Training details

The CATH trained FAMPNN models were trained on a single NVIDIA H100 GPU with 80GB of RAM, with a batch size of
64 and fixed example size of 256 residues. The models were trained until 100k steps which required approximately 6-8
hours. The PDB trained models were trained on 4 NVIDIA H100 GPUs with 80GB of RAM per GPU, with a batch size of
8 per GPU and fixed example size of 1024 residues. To increase the effective batch size, 4 gradient accumulation steps
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were taken for each backpropagation step, bringing the effective batch size to 128 examples. The models were trained until
300k steps which required approximately 3 days. For the PDB-trained models, we used the post-hoc EMA procedure from
Karras et al. to choose EMA lengths after training was completed (Karras et al., 2024). Based on a combination of sequence
accuracy and sidechain packing RMSD on the validation set, we chose an EMA length of 1% for the 0.3Å noise model and
25% for the 0.0Å noise model.

B.3. Datasets

B.3.1. CATH

We utilized the CATH 4.2 (Knudsen & Wiuf, 2010) S40 dataset which is a curation of domains extracted from the PDB with
redundant domains (those with >40% homology) removed, with training, validation and test splits identical to Ingraham et
al. (Ingraham et al., 2019). We set all examples to a fixed length by either cropping examples larger than the given fixed
size, or padding examples which are smaller than the given fixed size. Cropping is done during training time by randomly
sampling a single continuous span of the protein sequence. The start position of this crop is selected uniformly at random
between the start of the sequence and the fixed size subtracted from the total sequence.

B.3.2. PDB

We used publicly available (Wang et al., 2022) reproduced training splits curated from the entire Protein Data Bank (Berman
et al., 2000) used to train AlphaFold3 (Abramson et al., 2024). This dataset includes a cutoff date of 2021-09-30, such that
no structures released after this date are included. This dataset was clustered on the chain level at 40% sequence homology
for proteins. Then, interface-based clustering is performed as a join on the cluster IDs of the corresponding chains in
the interface, such that interfaces i and j are in the same interface cluster C interface only if their constituent chain pairs
{I1, I2}, {J1, J2} have the same chain cluster pairs {Cchain

1 , Cchain
2 }. Additional details regarding curation of this dataset

have been previously described (Abramson et al., 2024). To (1) prioritize training of the PDB model to learning to design
multichain proteins and (2) ensure protein structure was provided with correct context, we removed every single-chain
example which is present as a chain within a multichain example. Second, to maximize the amount of training data whilst
preventing redundant training examples, we randomly sample a single example from each training cluster at each epoch. In
line with training of AlphaFold-Multimer, we supplement our contiguous cropping strategy on the CATH dataset, with a
previously described (Evans et al., 2022) interface spatial cropping strategy to maximize interface coverage for multichain
examples. Our strategy, described in Algorithm 1, is slightly simpler, given that our multichain examples contain only two
chains. Our spatial cropping strategy is identical to Alphafold-Multimer. In line with (Evans et al., 2022) we randomly
sample with equal probability whether to apply spatial cropping or contiguous cropping to a given multichain example.

Algorithm 1 Multimer Contiguous Crop
Notation: l1, l2: chain lengths; k: desired crop size; m: binary mask; n: total length; ci: crop size for chain i; si: start
position for chain i

1: function MULTIMERCROP(l1, l2, k)
2: n← l1 + l2
3: m← [0]n ▷ Initialize mask
4: c1 ← uniform(min(l1,max(0, k − l2)), min(l1, k) + 1)
5: c2 ← k − c1
6: s1 ← uniform(0, n− k)
7: m[s1 : s1 + c1]← 1
8: if c2 > 0 then
9: s2 ← uniform(s1 + c1, n− c2)

10: m[s2 : s2 + c2]← 1
11: end if
12: return m ▷ Binary mask m for selected residues
13: end function
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C. Masked language modeling scheme
Because our method generates both sequence and sidechain coordinates in a per-token manner, we can view the full-atom
sequence design procedure through a generative masked language modeling framework. Each token is both a residue’s
sequence identity and its sidechain conformation. Similar to MaskGIT and ESM3 (Chang et al., 2022; Hayes et al., 2024),
we train with randomly selected masking rates. Here, we draw from a concave schedule:

t =
√
u, u ∼ Uniform(0, 1)

where each residue in the sequence is kept with probability t. This prioritizes mostly unmasked tokens during training,
focusing learning on filling in missing tokens given surrounding context.

C.1. Per-token modeling of sequence and sidechains

Here, we describe how we model a residue’s sequence and its sidechain conformation as a single token. Following
MaskGIT’s notation, let Y = [yi]

N
i=1 be a sequence of N tokens, with a corresponding binary mask M = [mi]

N
i=1, where

mi = 1 if yi is masked. Define the masked set M = {i | mi = 1} and its complement M of unmasked indices. The model
learns to predict masked tokens conditioned on unmasked tokens:

pθ(YM | YM ).

For categorical tokens, this corresponds to a standard masked language modeling (MLM) objective:

LMLM = EY,M

∑
i∈M

log pθ(yi | YM ).

In our problem, each token yi consists of both a sequence identity si (categorical) and a sidechain conformation xi

(continuous). We therefore decompose the token distribution as:

p(yi | YM ) = p(si, xi | YM ) = p(si | YM )p(xi | si,YM )

This factorization requires learning both:

1. Sequence prediction: p(si | YM ) → trained with the MLM loss LMLM (Devlin, 2018).

2. Sidechain prediction: p(xi | si,YM ) → trained with the diffusion loss Ldiff from Li et al. (Li et al., 2024), while
conditioning on si.

To learn both objectives simultaneously, we simply sum the losses, yielding our total loss for the main model (excluding the
confidence module):

Ltotal = LMLM + Ldiff

We did not experiment with relative weightings of the losses on each objective.

D. FAMPNN architecture

D.1. Full-atom representation

In FAMPNN we represent residues in a combination of the similar atom37 and atom14 formats.

In the atom37 format, each residue is represented as a fixed size matrix of size 37 × 3. Each row corresponds to the 3D
coordinates of all 37 possible atom types. 4 of these rows correspond to the backbone atoms N, Cα, C, and O, while the
remaining 33 rows correspond to the residue’s sidechain atoms. For sidechains where a particular atom type is not present,
the row for that atom type is a ”ghost atom” and is set to the residue’s Cα position.

The atom14 format is very similar to atom37 but is condensed to only the maximum number of atom types a single
amino-acid can possess. Thus, other than the backbone atoms N, Cα, C, and O, which are shared between all amino-acids,
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Algorithm 2 Full-atom Encoder
Notation: X: full-atom coordinates; S: sequence; M : sequence mask; R: residue indices; C: chain indices; h: hidden
dimension; k: number of neighbors, Eidx: indices of connected nodes, Linv, Leq: number of invariant and equivariant
layers respectively, Vnode: vector node features, Vedge: vector edge features, snode: scalar node features, sedge: scalar edge
features.

1: function FULLATOMENCODER(X,S,M,R,C, h, k, Linv, Leq) ▷ X ∈ Rn×14×3, S ∈ Nn, M ∈ {0, 1}n

# Backbone structure featurization
2: sedge, Eidx ← InvariantBackboneFeatures(Xbb, R, C)
3: hV ← 0n×h

4: hE ← Linear(sedge)

# Invariant backbone encoder layers
5: for l = 1 to Linv do
6: hV , hE ← MPNNEncoder(hV , hE , Eidx,M)
7: end for

# Full-atom structure and sequence featurization
8: hE ← Concat[hE ,Linear(InvariantFullAtomFeatures(X,R,C,Eidx)]
9: hS ← EmbedSeq(S)

10: hES ← ConcatNeighbors(hS , hE , Eidx)
11: hESV ← ConcatNeighbors

(
hV , [hES ; hE2], Eidx

)
# Invariant full-atom encoder layers

12: for l = 1 to Linv do
13: hV , hESV ← MPNNDecoder(hV , hESV ,M,Eidx)
14: end for

# Equivariant full-atom featurization
15: Vnode ← GetUnitVectors(X)
16: Vedge ← GetEdgeVectors(X,Eidx)

# Invariant full-atom featurization
17: snode ← GetDihedrals(X)
18: sedge ← GetDistances(X,Eidx)

# Embed GVP features
19: hinv

V , heq
V ← GVP(Vnode, snode)

20: hinv
E , heq

E ← GVP(Vedge, sedge)

# Merge invariant features
21: hinv

V ← Linear(hinv
V + hV )

22: hinv
E ← Linear(hinv

E + hESV )

# Equivariant full-atom encoder layers
23: for l = 1 to Leq do
24: hinv

V , heq
V , hinv

E , heq
E← GVP(hinv

V , heq
V , hinv

E , heq
E )

25: end for

26: hV ← Concat[heq
V ·R−1; hinv

V ]
27: L← Linear(hV )

28: return L, hV ▷ Sequence logits L ∈ Rn×20, node embeddings hV

29: end function
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the atom type of the ith position in one residue’s atom14 representation may not be the same atom type as another residue.
Specifically, a residue is represented as a fixed size matrix of size 14 × 3. Each row corresponds to the 3D coordinates of the
maximum number of possible atom types a single residue can possess. 4 of these rows correspond to the backbone atoms N,
Cα, C, and O, while the remaining 10 rows correspond to the residue’s sidechain atoms. As with atom37, for sidechains
where a particular atom type is not present, the row for that atom type is set to the residue’s Cα position.

We opt to use atom14 for full-atom conditioning in the sequence design module, and atom37 for Euclidean sidechain
diffusion.

D.2. MPNN-GVP full-atom encoder

We represent full-atom protein structure as a graph, encoded with a graph neural network (GNN) using a hybrid MPNN-GVP
architecture (Dauparas et al., 2022; Jing et al., 2020). This architecture consists of three primary components, which are
an invariant backbone encoder, an invariant full-atom encoder, and an equivariant full-atom encoder, with respect to any
arbitrary composition of global rotations and reflections in protein coordinates.

The first two components build off the architecture of ProteinMPNN (Dauparas et al., 2022). ProteinMPNN featurizes
backbone structure as a k-NN graph, with a set of nodes V that represent each protein residue, and edges E = {ei→j} which
are defined for the 48 nearest neighbors of each residue by Cα distance. All node representations V are initialized with 0s,
and edges in E = {ei→j} are initialized with an encoding of distances between the C, Cα, N, O and Cβ, atoms of residues i,
j in terms of Gaussian radial basis functions (RBF). ProteinMPNN includes an initial ”structure encoder” trunk consisting of
three previously described (Ingraham et al., 2019) invariant MPNN layers, which update both edge and node representations
MPNNEncoder(vi, eij) = (v′i, e

′
ij). This output is passed to a sequence decoder comprised of three additional invariant

MPNN layers. In addition to the output of the structure encoder, causally-masked one-hot encodings of sequence identity
are concatenated to the edge representation E ′. The sequence decoder MPNNDecoder(v′i, [e

′
ij , si]) = (v′′i ), then updates only

node representations, which are passed into a final output head for sequence prediction.

Our initial component, the invariant backbone encoder, is identical to MPNNEncoder, encoding the backbone structure only.
However, for our second component, the invariant full-atom encoder, we replace MPNNDecoder with a full-atom encoder,
which is identical to the backbone encoder, but with expanded featurization to all atoms. To do this, for all E = {ei→j}, we
concatenate an RBF encodings of the distances between the backbone atoms (C, Cα, N, O) of residue i and all neighboring
atoms in residue j. Here, we compress the composition of neighboring atoms to the atom14 representation. Similar to
MPNNDecoder, we concatenate one-hot encodings of sequence identity, but remove the causal mask, as FAMPNN is trained
with an MLM objective, and sequence positions are randomly masked with a corresponding token.

The third and final component of the model, the equivariant full-atom encoder, consists of modified Geometric Vector
Perceptrons (GVP) from Jing et al . GVP layers consist of an equivariant track for learning vector features and an invariant
track for learning scalar features. Concretely, given a tuple (s,V) of scalar features s ∈ Rn and vector features V ∈ Rν×3,
GVP computes new features (s′,V′) ∈ Rm ×Rµ×3. In FAMPNN, in addition to the forward and reverse unit vectors in the
directions of Cαi+1

− Cαi
and Cαi−1

− Cαi
used in Jing et al. as vector-valued node features, we use the equivariant track

to encode unit vectors from Cαi to all other atoms in residue i. For the equivariant edge features eij , in addition to a unit
vector in the direction Cαj

−Cαi
, we include unit vectors from Cαi

to all atoms in residue j, again, in the compressed
atom14 representation. The invariant track embeds the sine and cosine of the backbone dihedral angles of residue i as node
features, and sinusoidal encodings of the value j − i, as in Vaswani et al. (Vaswani et al., 2023), and RBFs of the distance
∥Cαj

− Cαi
∥2 as edge features, as previously described (Jing et al., 2020). We additionally incorporate distances from Cαi

to all atoms in residue j.

We initialize the invariant-track of GVP with node and edge representation output from the invariant full-atom encoder.
Given the sequence identity of a protein is invariant to global rotations and reflections, the final GVP layers return an
invariant output by multiplying all vector features with the inverse rotation matrix R ∈ R3×3 which defines the frame of the
input structure. We then concatenate these outputs with the invariant scalar hidden state. This representation is then passed
to both a final output head for sequence prediction, and the sidechain diffusion module for invariant Euclidean denoising of
sidechain atoms.
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D.3. Sidechain diffusion

D.3.1. INVARIANT SIDECHAIN REPRESENTATION

During sidechain diffusion, we transformed the sidechain of each residue into a local reference frame defined by its backbone
atoms. To construct frames, we used the OpenFold implementation of Algorithm 21 from AlphaFold2, which defines a
frame from 3 points (Ahdritz et al., 2024; Jumper et al., 2021). The pseudocode is reproduced here in Algorithm 3 for the
reader’s reference. To construct a frame for each backbone, we use N as x⃗1, Cα as x⃗2, and C as x⃗3. Transforming each
sidechain into its local backbone frame allows the sidechain diffusion process for each residue to be invariant to global
rotations and translations of the input backbone.

Algorithm 3 Rigid from 3 points using the Gram-Schmidt process
1: function RIGIDFROM3POINTS(x⃗1, x⃗2, x⃗3)
2: v⃗1 ← x⃗3 − x⃗2

3: v⃗2 ← x⃗1 − x⃗2

4: e⃗1 ← v⃗1 / ∥v⃗1∥
5: u⃗2 ← v⃗2 − e⃗1 (e⃗

⊤
1 v⃗2)

6: e⃗2 ← u⃗2 / ∥u⃗2∥
7: e⃗3 ← e⃗1 × e⃗2
8: R← concat(e⃗1, e⃗2, e⃗3)
9: t⃗← x⃗2

10: return (R, t⃗)
11: end function

D.3.2. DIFFUSION SCHEME

As discussed in Section 4.3.1, our diffusion process uses the variance-exploding EDM scheme from Karras et al. (Karras
et al., 2022). We computed σdata = 0.66 by taking the standard deviation of sidechain coordinates in their local frame
from a random batch of 1000 examples from the training dataset. An overview of the parameters we used can be found in
Table D.3.2. For sampling, we run a full trajectory using 50 steps of diffusion with a step scale η = 1.5.

Parameter Value

σmin 0.01
σmax 80
σdata 0.66
ρ 7

Pmean 1.5
Pstd 1.0

Table 5. Overview of EDM parameters used in this work.

Algorithm 5 Conditioned MLP Block
Notation: x: input tensor; c: per-token conditioning;

1: function CONDITIONEDMLPBLOCK(x, c)
# Pointwise feedforward with AdaLN conditioning

2: (β, γ, α)← Linear
(
SiLU(c)

)
▷ Split into shift β, scale γ, gate α

3: xskip ← LayerNorm(x) ▷ No learnable bias or scaling
4: xskip ← xskip × (1 + γ) + β

5: xskip ← Dropout
(

Linear
(
LayerNorm

(
Dropout

(
GELU

(
Linear(xskip)

)))))
▷ MLP block

6: x← x+ α× xskip

7: return x
8: end function
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Algorithm 4 Sidechain diffusion MLP

Notation: Xnoisy
scn : noisy local sidechain coordinates; vi: node embeddings; si: predicted one-hot encoded sequence; σ:

noise level;
1: function SIDECHAINMLP(Xnoisy

scn , vi, si, σ)
2: xi ← reshape(Xnoisy

scn ) ▷ Flatten atom and xyz dimension
# Embed inputs

3: xi ← concat(xi, si)
4: xi ← Linear(xi)

# Embed conditioning inputs
5: σembed ← NoiseEmbedder(σ)
6: vembed ← Linear(vi)
7: ci ← σembed + vembed

# Run MLP blocks
8: for ℓ = 1 to 4 do
9: xi ← ConditionedMLPBlock(xi, ci) ▷ Apply AdaLN + pointwise feedforward

10: end for
# Project back into coordinate space

11: xi ← FinalLayer(xi, c) ▷ Unflatten atom and xyz dimension
12: Xpred

scn ← reshape(xi)
13: return Xpred

scn
14: end function

Algorithm 6 Final Layer
Notation: x: input tensor; c: conditioning tensor;

1: function FINALLAYER(x, c)
# Final projection with AdaLN conditioning

2: (β, γ)← Linear
(
SiLU(c)

)
▷ Split into shift β, scale γ

3: x← LayerNorm(x) ▷ No learnable bias or scaling
4: x← x× (1 + γ) + β
5: x← Linear(x) ▷ Project to final output
6: return x
7: end function

D.3.3. SIDECHAIN DIFFUSION MLP

We parametrize the denoiser Dθ with a multilayer perceptron (MLP) that uses adaptive layer normalization (AdaLN) for
conditioning, following Li et al. (Li et al., 2024; Peebles & Xie, 2023). As conditioning input for residue i, we use node
embedding i, the current noise level, and the predicted amino acid type for residue i (Algorithm 4). To embed noise
levels, we use the implementation of the timestep embedder from Peebles et al., which uses a 256-dimensional frequency
embedding followed by a 2-layer MLP (Algorithm 4, Line 5).

Crucially, each of the conditioning inputs to the sidechain diffusion MLP is invariant to global rotations and translations of
the backbone. Furthermore, the sidechain coordinates fed into the MLP are represented in a local reference frame defined by
the backbone atoms. Therefore, any global SE(3) transformation of the backbone leaves all inputs to the MLP unchanged.
As a result, each denoising step made with Dθ is invariant to global rotations and translations of the input backbone.

D.4. Confidence module

As discussed in Section 4.3.2, at train time, we trained a confidence module to predict per-atom sidechain errors given a
packed structure. This module is trained to take in an input sequence, predicted sidechains, and node and edge embeddings
from the full-atom encoder to predict a per-atom error for all sidechains (Algorithm 7). Similar to AlphaFold3 (Abramson
et al., 2024), during training, we run a diffusion rollout to generate sidechain coordinates, and we apply a stop gradient to all
confidence module inputs so that the confidence loss does not affect the training of the main model. For computational
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efficiency, we found it sufficient to train the confidence module roughly once every 8 training steps: in practice, at each
training iteration, we sample u ∼ Uniform(0, 1) and only train the confidence module if u ≤ 1/8.

Algorithm 7 Sidechain Confidence Prediction
Notation: Xscn: predicted local sidechain coordinates; vi: node embeddings; eij : edge embeddings; si: predicted
sequence;

1: function PREDICTPSCE(Xscn, vi, eij , si)
# Embed full-atom encoder outputs

2: for ℓ = 1 to 3 do
3: vi, eij ← MPNNDecoder(vi, [eij , si])
4: end for

# Embed aatype and sidechain coordinates
5: vi ← vi + Linear(si)
6: vi ← vi + Linear(Xscn)

# Predict per-atom confidence
7: pl ← Softmax

(
Linear(SiLU(Linear(vi)))

)
▷ Predict per-atom bin probabilities

8: b← Linspace(0.0625, 4.0625, 33) ▷ Get bin centers
9: epSCE

l ← p⊤l b ▷ Compute expected confidence per atom
10: return epSCE

l

11: end function

D.4.1. PREDICTED SIDECHAIN ERROR (PSCE)

During training, we binned the true per-atom sidechain error in 33 evenly spaced bins between 0Å to 4Å. The confidence
module loss was then computed as a categorical cross entropy loss between the confidence model output and the binned
errors. At inference, we obtain a single value for the predicted sidechain error by computing an expectation across all bins
using the bin centers (Algorithm 7, Line 8 and 9).

D.5. Sampling Speed

Regarding inference costs, when evaluating our CATH trained model on the CATH 4.2 test set, we achieve a single-step and
five-step sampling speed of 0.03s and 0.11s per sample on a single H100 GPU.

E. Self-consistency evaluation
E.1. Dataset

We follow after ProteinBench (Ye et al., 2024b) and benchmark self-consistency on a set of RFdiffusion de novo backbones
from lengths 100 to 500. For each length in {100, 200, 300, 400, 500}, we generated 100 samples from RFdiffusion using
the default parameters. For structure prediction, we use single-sequence AlphaFold2 with 3 recycles as implemented in
ColabDesign (Mirdita et al., 2022).

E.2. Self-consistency benchmarking details

A full table of sequence design methods that we benchmarked on our de novo backbone dataset can be found at Appendix
Table 6. Following ProteinBench, we use a sampling temperature of 0.1 for all methods unless otherwise stated. We
compared the proposed method against several sequence design baselines, using the official recommended hyperparameters
wherever possible:

• FAMPNN (0.3Å, 0.0Å): We used the PDB-trained FAMPNN model to sample sequences using 100 iterative unmasking
steps. To minimize the risk of exposure bias during iterative sampling of sidechains, at each step, we condition the
model only on previously generated sidechains where the predicted sidechain error is less than 0.3Å.

• ChromaDesign: We used the publicly available weights from the official GitHub repository with the default sampling
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Table 6. Median self-consistency achieved by sequence design methods on 100 de novo backbones generated by RFdiffusion for each
length in {100, 200, 300, 400, 500}. Bolded values indicate the best results.

Length 100 Length 200 Length 300 Length 400 Length 500
scTM (↑) pLDDT (↑) scTM (↑) pLDDT (↑) scTM (↑) pLDDT (↑) scTM (↑) pLDDT (↑) scTM (↑) pLDDT (↑)

FAMPNN (0.3Å) 0.968 93.00 0.967 91.27 0.938 83.45 0.760 74.73 0.545 61.73
FAMPNN (0.0Å) 0.896 88.99 0.890 81.87 0.703 67.86 0.602 63.80 0.471 55.49
ProteinMPNN 0.964 92.45 0.960 89.65 0.935 85.66 0.784 76.81 0.578 62.36
ESM3 (1.4B) 0.941 90.61 0.829 77.21 0.620 63.70 0.481 58.89 0.419 52.76
ESM-IF1 0.605 85.57 0.678 68.20 0.468 60.04 0.493 58.21 0.348 52.71
LM-Design 0.662 82.48 0.487 64.55 0.407 57.08 0.419 53.72 0.356 52.62
AttnPacker 0.586 85.43 0.563 59.06 0.463 50.95 0.414 48.00 0.371 44.65

settings (t=0.5).

• ProteinMPNN: We used the 0.2Å checkpoint (vanilla model weights/v 48 020.pt), with all other sam-
pling parameters at their defaults.

• ESM3: We used the publicly available ESM3-open model with 1.4B parameters, with number of unmasking steps
equal to the length of the target backbone.

• ESM-IF1: We used the publicly available model weights and ran sample sequences.py script from the official
GitHub repository.

• LM-Design: We used the CATH-trained ESM-2 650M version of the model from the official GitHub repository
(lm_design_esm2_650m).

• AttnPacker: We used the AttnPacker+Design model variant that can also condition on sidechain rotamers from the
official GitHub repository. Following (McPartlon & Xu, 2023), we sampled sequences from the model using Gibbs
sampling with 20 transitions per design, a 15% re-sampling rate, and a linear temperature decay from 0.5 to 0.1.

E.3. Diversity

In addition to the self-consistency of designed sequences for the de novo generated backbones, we compared their diversity
by reporting the average pairwise sequence similarity of the designs.

E.4. Sampling Time

Finally, regarding inference costs, when evaluating our CATH model on the test-set, we achieve a single-step sampling
speed of 0.03s and 0.11s per sample on a single H100 GPU.

Table 7. Average pairwise similarity of PDB trained model on 100 de novo backbones generated by RFdiffusion for each length in {100,
200, 300, 400, 500}.

Length 100 Length 200 Length 300 Length 400 Length 500
Sim (↓) Sim (↓) Sim (↓) Sim (↓) Sim (↓)

FAMPNN (0.3Å) 13.4% 9.1% 8.4% 7.9% 7.8%
FAMPNN (0Å) 14.4% 10.1% 9.3% 8.8% 8.6%
ProtieinMPNN 13.9% 9.7% 9.0% 8.6% 8.4%
ChromaDesign 11.1% 9.2% 8.7% 8.4% 8.3%
ESM-IF1 16.9% 10.9% 11.0% 10.0% 9.5
ESM3 20.2% 15.4% 12.3% 12.6% 12.1%

F. Sidechain packing evaluation details
As mentioned in Section 5.2, following FlowPacker (Lee & Kim, 2024), we compared our sidechain packing performance to
other methods on CASP13, 14, and 15 targets and used MMseqs2 easy-search to remove all CASP13-15 homologues
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from our training and validation dataset with a cutoff of 40% similarity. The CASP13 and CASP14 test sets were obtained
directly from the official AttnPacker GitHub repository (McPartlon & Xu, 2023), and the CASP15 targets were downloaded
from the CASP data archive.

For computing the average sidechain packing RMSD on a given dataset, we first computed the per-residue RMSD for each
residue in a protein. Then, we averaged these per-residue RMSDs over all residues in the protein to obtain a per-protein
RMSD. Finally, we took the mean across all proteins in the dataset. For core and surface residue RMSDs (Table 2), we
followed AttnPacker’s definitions: core residues had at least 20 Cβ atoms within 10Å, while surface residues had at most 15
Cβ atoms within 10Å.

Figure 8. Sidechain packing RMSD distributions per residue type, computed from the CASP15 test set.

Figure 9. Predicted sidechain error compared with true sidechain errors, both per-atom (left) and per-residue (right), zoomed in to errors
within 1Å.
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G. Fitness evaluation
G.1. Model comparisons

G.1.1. FAMPNN

We evaluate mutational fitness with FAMPNN by supplying the entire complex full-atom structure and sequence as input.
However, we mask the sidechain and sequence identity of a given mutated residue. Because FAMPNN can additionally
perform sidechain packing, when evaluating a single-mutant within a set of simultaneous mutations, we pack the sidechains
of accompanying mutants. We then sum the log likelihood of each mutant, and subtract from the summed wild-type
likelihoods.

G.1.2. ESM-IF1

To run ESM-IF1, we followed instructions and code from the ESM-IF1 Github (Hsu et al., 2022), summing the log-likelihood
of simultaneous mutations given the entire complex backbone-structure and sequence as input. However we took the
additional step of normalizing with the summed wild-type likelihood of said mutated residues.

G.1.3. PROTEINMPNN

For running ProteinMPNN we similarly provided the the entire complex backbone-structure and sequence as input, using
the score function provided in the LigandMPNN Github to attain log-likelihoods (Dauparas et al., 2023). We then perform
the same strategy as ESM-IF1 which is summation across mutated positions, and normalization with summed wild-type
likelihood.

G.2. Evaluation datasets

Unless specifically indicated, we report performance using an all vs. all calculation of the Spearman correlation between
model predictions and dataset labels.

G.2.1. MEGASCALE

We used a curated, de-duplicated, version of the entire Megascale dataset from Diekhaus et. al (Dieckhaus et al., 2024),
combining the train, validation and test splits into a single dataset given only unsupervised methods were evaluated. This
resulted in a final dataset size of 272,712 experimental ∆∆G data points across 298 unique proteins.

G.2.2. SKEMPIV2

SKEMPIv2 is database of binding free energy changes upon single point mutations within a variety of protein complex
interfaces (Jankauskaitė et al., 2018). Due to inability of either ProteinMPNN, ESM-IF1, or all three models (FAMPNN
included) to handle some examples with non-canonical amino-acids, examples were removed for a final dataset size of 6,649
data points. We additionally evaluate on a test subset of SKEMPIv2 recently curated in Bushuiev et al to address significant
data leakage issues in supervised models trained on previously proposed data splits (Bushuiev et al., 2024). We also report
performance of supervised and MSA-based models on this dataset originally reported in Bushiev et al, with the exception of
ProteinMPNN, which we independently evaluated, as this baseline was not included.

G.2.3. FIREPROTDB

The FireProt database is a curated dataset of changes in free energy (∆∆G) for 3,438 single mutations for 100 unique
proteins (Stourac et al., 2020). Due to inability of either ProteinMPNN, ESM-IF1, or all three models (FAMPNN included)
to handle some examples with non-canonical amino-acids, 18 examples were removed for a total of 3420 examples.

G.2.4. S669

The S669 dataset contains experimentally measured ∆∆G values of 669 single mutations of 94 proteins (Pancotti et al.,
2022). Due to the presence of non-canonical amino acids, 4 variants were removed from this dataset.
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G.2.5. ANTIBODY-ANTIGEN BINDING AFFINITY

The CR9114 (H1,H3), CR6261 (H1,H9) and G6 (VEGF-A) antibody-antigen binding affinity datasets were sourced from
Shanker et al, from which details on dataset availability and the input structures used can be found (Shanker et al., 2024). The
CR9114 dataset includes all possible combinations of 16 amino-acid substitutions, whereas CR6261 includes all possible
combinations of 11 amino-acid substitutions, totaling 65,536 and 2,048 sequences respectively. Each of these libraries were
screened against two subtypes of Influenza Hemagluttinin producing 4 total datasets (Phillips et al., 2021). The third dataset,
referred to as G6, assesses all possible single–amino acid substitutions to the variable region of antibody G6.31, totaling
4,275 data points of binding with VEGF-A (Koenig et al., 2017). Due to experimental structures being unavailable for each
antibody-antigen pair, homologous protein structures were used for some predictions, following Shanker et. al (Shanker
et al., 2024). For the CR9114 dataset, the input structure used is CR9114 bound to the H5 antigen, despite being used to
predict binding to H1 and H3 antigen subtypes. Additionally, for the CR6261 dataset, the input structure for predicting
binding with both H1 and H9 subtypes, is actually a structure of CR6261 complexed with H1.
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Table 8. Sidechain packing performance comparison across CASP datasets, measured by mean absolute error (MAE) of each chi angle.
Bold values indicate the best results. Underlined values indicate second best results. Asterisks denote that the training dataset does not
explicitly hold out CASP proteins and homologues. Results for Rosetta, DiffPack (Zhang et al., 2024), AttnPacker and AttnPacker-pp
(McPartlon & Xu, 2023) are from Lee and Kim (Lee & Kim, 2024). All other models were evaluated in this work.

Dataset Method Angle MAE (°) ↓ RMSD (Å)
χ1 χ2 χ3 χ4 All

CASP13 Rosetta 24.84 30.96 45.35 58.28 0.822
DiffPack 22.14 28.80 45.20 52.28 0.789

AttnPacker 17.82 33.41 67.31 48.89 0.745
AttnPacker-pp 16.33 26.00 51.18 49.40 0.676

3DCNN* 24.74 33.03 46.96 56.73 0.787
ChromaDesign* 17.61 26.14 43.76 55.05 0.677
LigandMPNN* 16.19 23.96 38.46 49.02 0.680

FlowPacker 16.58 25.04 43.09 51.41 0.683
FAMPNN (0.3Å) 20.61 26.01 45.31 50.33 0.667
FAMPNN (0.0Å) 14.94 25.07 41.05 48.89 0.579

CASP14 Rosetta 32.32 35.47 49.19 54.27 1.001
DiffPack 31.00 34.43 51.72 57.50 0.994

AttnPacker 27.29 39.26 67.94 49.99 0.955
AttnPacker-pp 26.06 32.75 55.06 50.59 0.900

3DCNN* 31.56 36.50 51.29 60.57 0.952
ChromaDesign* 25.24 31.47 47.27 55.94 0.851
LigandMPNN* 22.06 28.98 43.52 47.36 0.825

FlowPacker 23.09 30.26 47.46 51.14 0.838
FAMPNN (0.3Å) 26.02 31.24 47.78 53.08 0.821
FAMPNN (0.0Å) 21.53 30.72 47.96 52.21 0.745

CASP15 Rosetta 32.37 35.22 45.29 58.92 0.938
DiffPack 31.86 34.46 48.06 61.01 0.921

AttnPacker 28.16 41.90 69.90 53.22 0.925
AttnPacker-pp 26.80 32.74 56.78 53.98 0.851

3DCNN* 32.12 36.53 50.43 62.37 0.897
ChromaDesign* 26.34 31.72 44.44 59.83 0.810
LigandMPNN* 23.32 28.97 41.16 51.87 0.788

FlowPacker 23.63 29.26 42.97 53.35 0.765
FAMPNN (0.3Å) 27.96 31.19 45.33 54.92 0.785
FAMPNN (0.0Å) 21.75 29.49 43.07 55.41 0.690

26


