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Abstract

Few-shot Learning (FSL) has been the center of attention in the deep learning
community as it can potentially address the problem of data inaccessibility. Several
approaches have been proposed to learn from a few samples efficiently, neverthe-
less, the majority of them use a large dataset to generalize the feature representation
obtained from a single or pre-defined set of backbones before adapting to novel
classes. In this paper, different from prior works that use a single best-performing
backbone, we present a model-agnostic framework that does not require to "deci-
pher" which backbone is more suitable for the specific FSL task. We propose the
Deep Embedded Clustering in Few-shot Representations (DECiFR) algorithm that
leverages Deep Embedded Clustering (DEC) to abstract discriminative information
from the best combination of features from different backbones, by simultaneously
mapping and clustering feature representations using deep neural networks. Subse-
quently, we propose a contrastive variant of KNN to enhance the cluster separation
by propagating through the samples that minimize the inter-class distance and
maximize the intra-class distance. Empirical results show that our approach not
only enhances the feature embeddings but also boosts the classification accuracy,
approaching or surpassing state-of-the-art performance on numerous datasets.

1 Introduction

The impressive performance of Deep Neural Network (DNN) models in a variety of tasks such as
image classification, speech recognition, etc. has been explored by many researchers. However, these
DNN models need thousands of training samples and will perform poorly when labeled training data
is limited (20), expensive (50) or hard to be adapted to (32). To address this limitation, inspired by
humans who learn from a small number of instances, various FSL algorithms have been proposed.
Generally, FSL algorithms are divided into two broad classes, i.e., meta-learning (61) and non-meta-
learning (56). In meta-learning approaches, a meta-model is trained to provide priors (e.g. feature
extractors) and gets fine-tuned based on the few learning samples (aka support set). However, in non-
meta-learning approaches, a pre-trained model is loaded and fine-tuned using the support set (9; 22).
Researchers have been proposing different algorithms that exploit the feature space to come up with
the best FSL accuracy (68; 56; 34). However, the results from the majority of these studies are heavily
reliant on the pre-trained backbone, and there exists a gap in studying the importance of the feature
extraction step in FSL tasks. Aside from some studies (59; 41) this area remains unexplored.

In this paper, the Deep Embedded Clustering in Few-shot Representations (DECiFR) algorithm is
proposed which is a model-agnostic framework for FSL. In other words, unlike many other FSL
approaches that use a single best-performing backbone (EsViT, ResNet18, etc), our framework does
not require prior knowledge of backbone performance to "decipher" which backbone is more suitable
for a specific FSL task. Additionally, DECiFR outperforms many of the previous works (Fig. 1) in
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Figure 1: 5-way 5-shot accuracy using DECiFR compared with SOTA on CUB200 dataset. Our
method, DECiFR, is shown in orange.

various 1, 2, and 5-shot few-shot classification tasks. Our proposed pipeline consists of three major
components: I) feature learning (module 1 in Fig. 2), II) label propagation (module 2 in Fig. 2),
and III) classification (module 3 in Fig. 2). For the feature learning component, we are leveraging a
feature preprocessing stage with the DUNN index along with Deep Embedded Clustering (DEC) (65)
approach to achieve a better clustering representation based on a pre-selected ensemble of pre-trained
model architectures. More specifically, the use of DEC is tailored to FSL tasks compared to other
generative models as the confidence level of the feature space data points is taken into account with
more emphasis on the data point with higher confidence. Additionally, the large-sized clusters which
can distort the role of smaller hidden clusters in other generative models (e.g. autoencoders) are
accounted for in DEC. Also, the designed target and input distributions are uniquely designed and
shown to strengthen predictions (65).

To further improve our proposed algorithm, we refined the label propagation component of the
pipeline which has been extensively used in FSL (17; 69). One of the common practices for label
propagation is by using the k-nearest-neighbors (KNN) algorithm (31; 14). As authors in (14) showed,
the accuracy of the down-stream few shot learning task is not improving by adding more pseudo-
labels derived by KNN. This observation led us to fine-tune the KNN algorithm. Inspired by (8) we
proposed a contrastive-KNN (denoted by cKNN) approach in which pseudo-labels are inferred by
generating a graph of labeled points and selecting the label that minimizes the inter-class distance
while maximizing the intra-class distance, propagating the labels in a contrastive KNN setting. Lastly,
we adopt the KPCA method which was utilized in FSL by authors in (14). In KPCA, the principal
components of the inputs in the feature space are learned and their distances are compared with
unlabeled samples added by an error term. The unlabeled samples are then assigned to the class for
with the least error compared to others.

To evaluate our proposed algorithm, we used a variety of few-shot image classification datasets
(e.g. RESISC45, CUB200, Eurosat, etc.) and analyzed the performance of each of the components
of the algorithm. We compared the cluster qualities corresponding to various backbones with 2-D
TSNE plots and DUNN index metrics. Finally, we compared the few-shot classification accuracy of
DECiFR with other state-of-the-art algorithms.

Our contributions can be listed as follows:

• We propose a novel algorithm (DECiFR) to improve the feature representation learning
component of FSL. We evaluated our algorithm on a variety of FSL image classification
datasets. Our results show that DECiFR improves the cluster quality of the features, resulting
in superior performance compared to a variety of state-of-the-art FSL methods.
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• We propose adding a contrastive flavor to KNN, by not only minimizing the inter-cluster
distance but also maximizing the intra-cluster distance (cKNN).
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Figure 2: DECiFR architecture consists of three components: 1) Feature Learning, 2) Label Propa-
gation, and 3) Classification. Given a mixture of backbones, 1a) Useful backbones are pre-selected
based on their corresponding DUNN indexes. 1b) The flat versions of selected backbones are used to
learn a more discriminative representation by simultaneously mapping and clustering features using
DEC. 2) The optimized features are used in the cKNN module and more labeled samples are added
in the feature space. 3) KPCA is applied to obtain the final classifications.

2 Framework

Generally, there are three components involved in most FSL algorithms. I) Mapping the inputs to
the feature space II) Label Propagation III) Few-shot Classification. In this section, we are going to
elaborate on each of the components and present our DECiFR algorithm.

Feature Extraction Component: In both meta-learning and non-meta-learning approaches to FSL,
feature extraction is a key part to prevent noisy inputs from intruding into the clustering algorithms.
Without any prior knowledge about the dataset, it is very challenging to know which pre-trained
backbone provides the few-shot classifier with more useful clusters. Fig. 3 shows the significance
of feature extraction in FSL. Fig. 3b shows that the data within similar clusters are more densely
connected to each other, and the data corresponding to different clusters are located farther apart
(better cluster quality) when ResNet18 architecture is used compared to Fig. 3a in which EsViT
backbone is used. It is also useful to compare the corresponding 5-way 5-shot few-shot classification
accuracy when the same classification method (e.g. DECiFR) is applied. The noteworthy accuracy
reduction of 37.92% further motivates the need for devising an algorithm to improve the quality of
the input feature embeddings as much as possible.

In a nutshell, our main idea is to train an unsupervised classifier to provide the users with model-
agnostic backbones. To this goal, we utilize a mixture of backbones along with the unsupervised
DEC framework which learns feature representations and cluster assignments using deep neural
networks resulting in a more discriminative feature space. As a preprocessing module (module 1a
in Fig. 2), we utilize the DUNN index (DI)- which is calculated as a ratio of the smallest distance
within a cluster to the largest distance between two separate clusters- to select a few backbones with
higher DI from a pool of backbones. A high DI translates to better clustering since samples in each
cluster are densely connected, while separated clusters are further away from each other. Then, given
a selected number of backbones, the DEC module (module 1b in Fig. 2) is implemented to learn more
representative feature representations and cluster assignments through the training of an autoencoder
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(a) few-shot accuracy =
52.94%

(b) few-shot accuracy
=90.86%

(c) few-shot accuracy =
91.29%

(d) few-shot accuracy =
96.76%

Figure 3: TSNE plots of feature spaces corresponding to CUB dataset for 5-way 5 shot few-shot
classification using a) EsViT backbone, b) ResNet18 backbone, c) DEC autoencoder latent space
using 4 sampled backbones (ResNet18, WideResNet101, EsViT, SimCLR), and d) DEC autoencoder
latent space using 4 selected backbones by DUNN-index (ResNet18, ResNet20, WideResNet101,
RegNet128).

that learns from a mixture of backbones as an input. DEC (65) learns a mapping from the data space
to a lower-dimensional feature space by iterative optimizations of the cluster assignment and the
underlying feature representation.

Basically, DEC learns the optimized representation in two steps: First, an autoencoder is pre-trained
to minimize a reconstruction loss, measured by Mean Squared Error (MSE) as,

Lrec = ∥xi − fwd
((fwe

(xi))∥2 (1)

where the mapping fwe maps the input xi to the embedded space Z using learnable parameters ω. In
other words, zi = fwe

(xi) ∈ Z. Subsequently, the decoder attempts to recreate the original input
from the lower-dimensional embedded space, to obtain the reconstruction of xi, i.e, yi = fwd

(zi),
we and wd represent the encoder and decoder parameters respectively.

Second, after the autoencoder is trained, the decoder is removed and the encoder is fine-tuned by
optimizing a KL divergence objective function between the soft cluster assignments qi and the
auxiliary distribution pi, as,

L = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

. (2)

It should be noted that pij denotes the probability of sample i belonging to cluster j with distribution
P . Also, qij quantifies the similarity between zi (sample i) and the cluster center µj (probability
of point i be assigned to the cluster j but with a distribution Q). using a Student’s t-distribution
following (60), qij is defined as:

qij =
(1 + ∥zi − µj∥2)−1∑
j(1 + ∥zi − µj∥2)−1

, (3)

For DEC the selection of the auxiliary distribution P is critical and was one of the contributions of
the original paper (65), similarly, we compute pij as:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

, (4)

Label Propagation Component: Based on the observations in previous research, adding more
labeled samples using vanilla approaches like KNN, will not result in better FSL performance (14).
To tackle this problem, inspired by (8), we propose a contrastive variant of KNN (denoted by cKNN)
in which not only smaller distances from the labeled samples are favored, but also the propagated
labels need to have maximal distances from other labeled samples (module 2 in Fig. 2).

In cKNN, to propagate a label of class cn we first compute the K closest neighbors to data points
xi ∈ cn (xi are the labeled points belonging to class cn) from all the unlabeled points xj , by running
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K iterations of arg minjmini||xi − xj ||. Subsequently, we compute the distance of the selected K
closest neighbors (xk) to the remaining labeled data points xl (xl are the remaining labeled points
belonging to other classes xl /∈ cn), and select the data point that is farther to the closest xl (intra-class
distances), i.e, argmaxkminl||xk − xl||. The selected xk is then included in the set of labeled points
assigned to class cn. It should be noted that at each propagation step, we label one additional data
point. We iteratively repeated this process to add a pre-defined number of additional labels for each
class.

Few-shot Classification Component: As the last component in our pipeline (module 3 in Fig. 2),
we use the labeled samples along with the pseudo labels from cKNN as inputs to the Kernel Principle
Component Analysis (KPCA).

KPCA is a kernelized version of PCA, that extends the linear PCA to non-linear data mapping. First,
with all the available labels (after cKNN label propagation) we compute a kernel matrix K for
each class. For a kernel function, a Gaussian kernel is used, i.e, K = k(xi, xj) = exp(−||xi −
xj ||2/(2σ2)), in which, xi, xj are the data point i, j respectively (data points in class c) and σ2 is
a hyperparameter that represents the width of the Gaussian kernel. Then, when a new test image
is presented, the embedded space z of the query image is used to compute the reconstruction error
Lc
RE(z) for each class c (14), defined as:

Lc
RE(z) = k(z, z)− 2

n

∑n
i=1 k(z, xi)

+ 1
n2

∑n
i,j=1 k(xi, xj)−

∑q
l=1 fl(z)

2 (5)

in which n is the number of data points in class c, fl are the projections of z onto the principal
components (defined in (14)) and q the number of principal components. Finally, the test image is
classified based on the smallest Lc

RE(z). Algorithm 1 presents our DECiFR method.

3 Experimental Results

Experimental Setup: We evaluated our proposed framework on six few-shot classification bench-
mark datasets, i.e, CUB (62), EuroSat (26), Plantvillage (30), RESISC45 (12), Mars surface and MSL
curiosity images (1). We retrieved pre-trained models (on ImageNet-1k) ranging from transformer-
based models (EsViT (36)) to ResNet models (ResNet18,ResNet50,WideResNet101, etc. (21)), and
self-supervised contrastive models (SimCLR (8)). Using the pre-trained backbones, we transformed
the unlabeled data into the corresponding feature spaces. Using the DUNN index metric as a pre-
processing stage we select the models for which the DUNN index is within 1-standard deviation
range of the highest DUNN index value, selecting 2− 5 backbones from a pool of 14 backbones. We
then used the embeddings corresponding to the selected backbones as inputs to the DEC autoencoder.
We train the DEC autoencoder for 1000 epochs using ADAM optimizer with lr = 1e − 3 and
wd = 1e− 8.

We then perform 1000 trials, in each picking either 5 classes at random. In each trial, we passed the
optimized features provided by the DEC autoencoder corresponding to selected classes to the label
propagation module, which finds the closest unlabeled samples (using Euclidean distance) to the
labeled samples which at the same time are farthest away from other classes. In our experiments, we
do the label propagation such that the number of labeled samples for each class is 5 (for 1-shot and
2-shot we add 4 and 3 samples respectively). For 5 shot experiments we add 2 more samples to each
class.

Finally, the labeled samples for each class will be passed to KPCA as the classification component.
KPCA learns the kernels, for each of the classes, transforms them, and uses them along with the
eigenvectors corresponding to the n largest eigenvalues (set to 4 here) to construct the loss function
as discussed in Eq. 5.

Evaluation Metrics: We looked at TSNE Plots along with the DUNN-index to evaluate the cluster
qualities for each of the stages of our method. By comparing Fig. 3c, and Fig. 3a for which the
DUNN-Indexes are 0.35 and 0.16 respectively, we can observe that a higher DUNN index accounts
for better cluster quality and as a result, a higher few-shot accuracy. More importantly, a comparison
between Fig. 3b , Fig. 3c, and Fig. 3d shows that DEC autoencoder is enhancing the cluster quality
when a combination of features are passed through it, which eventually enhances the few-shot
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Dataset Name Best Single Backbone Worst Single Backbone DECiFR

Mars Surface Image 39.39% (SimCLR) 22.50% (RegNet128) 39.54% a

RESISC45 91.51% (EsViT) 27.96% (RegNet128) 89.18% b

MSL Curiosity Image 72.77% (SimCLR) 29.77% (RegNet128) 73.33%c

PlantVillage 92.81% (EsViT) 28.91% (RegNet128) 93.34% d

CUB 90.93% (WResNet50) 36.52% (EfficientNet) 96.76% e

EuroSat 90.07% (EsViT) 23.81% (RegNet128) 89.81% f

Fewshot-CIFAR100 61.92% (WResNet50) 39.64% (SimCLR) 60.68% g

miniImageNet 84.33% (WResNet50) 64.21% (SimCLR) 84.07% h

a (ResNet50 – ResNet101 – ResNext50 – ResNext101- WResNet101), b (EsViT – ResNet50 – ResNext50)
c (SimCLR - ResNet101 – ResNext50 – ResNext101- WResNet101), d (ResNext101 - RegNet128)

e (ResNet20- ResNet18- WResNet101- RegNet128), f (EsViT- ResNet20- ResNext101- WResNet50-
WResNet101)

g (WResNet50- ResNet50), h (WResNet50- ResNet18)

Table 1: 5-way 5-shot few-shot accuracy using DECiFR with selected backbone architectures by
DUNN-index pre-processing compared to using best and worst performing single backbones.

accuracy. This performance is further enhanced if the top backbones selected at the pre-processing
stage are fed into the DEC module (see Fig. 3d) both in terms of cluster quality and subsequently,
few-shot accuracy. More extensive TSNE plots are presented in Section 5.3.

Figure 4: Accuracy gain by using DECiFR along with cKNN compared to KNN.

Next, we evaluated the effectiveness of our label propagation module by comparing the few-shot
accuracy with and without cKNN. Fig. 4 shows that for most of the datasets, using cKNN, i.e, finding
the unlabeled samples corresponding to the nearest positive classes and furthest negative classes, the
few-shot accuracy improves. More comprehensive results on the effect of cKNN on the final few-shot
accuracy is provided in Section 5.4.

To evaluate the accuracy of our method, we compared the accuracy of DECiFR compared to the
best few-shot accuracy corresponding to using a single backbone. To make sure that our comparison
also captures the feature abstraction effect alone, we also compared the performance of DECiFR
using a single backbone along with our proposed cKNN label propagation module. Table 1 shows
that DECiFR achieves comparable performance to using the best single backbones on most of the
datasets, and shows superior performance on some of the datasets such as CUB, where the few-shot
accuracy is about 6% more compared to using a single backbone. Based on our motivation, this
is a great achievement to be as perfomant as or even better than a single best backbone without a
prior knowledge about what the best backbone is. Also, Table. 1 shows that by using a single poor
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model, the accuracy decreases substantially. As a result, by selecting a poor model, even the SOTA
methods suffer substantially. However, DECiFR maintains its superior performance even if those
poor models get selected in the pre-processing stage (refer to PlantVillage dataset where RegNet128
alone is performing unfavorably when used alone rather than the scenario where it is being used by
DECiFR). It has also been observed that by passing features extracted from a single poor model to
the DECiFR pipeline (even without combining it with other backbones) the few-shot accuracy is
enhanced substantially (refer to Section 5.5). These observations along with Fig. 3, lead us to the
conclusion that the DEC module alone is capable of abstracting useful features from a given feature
embedding, and the combination of feature extraction backbones enhances the abstraction quality.
The highest accuracies are highlighted in bold for each dataset.

4 Conclusion

In this paper, the DECiFR algorithm is proposed to improve the few-shot classification performance,
by learning more discriminative representations from a mixture of backbones. We use a Deep
Embedded Clustering (DEC) autoencoder to achieve better clustering quality corresponding to the
feature extraction stage of the FSL pipeline given a mixture of pre-trained backbones. Experimental
results show that using the DEC module alone enhances the feature abstraction quality even on
single backbones, and can be further refined by using a combination of backbones selected at the
pre-processing stage. We further improve our results by revising the label propagation module and
showing its efficacy. We also compare the performance of DECiFR with state-of-the-art algorithms
and show similar or in many cases superior performance without the need for prior knowledge about
the quality of the backbone.
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5 Supplementary Material

5.1 Related Work

Few-shot Learning: Very broadly, research works addressing FSL can be divided into two cate-
gories: meta-learning (61; 56) and non-meta-learning (63; 59; 16). Meta-learning refers to algorithms
that focus on learning priors from past experiences which can be effectively exploited in new learning
tasks (46). The main approaches in meta-learning are metric-based (45; 33; 58; 66; 37; 61; 56; 55),
optimization-based (22; 48; 57; 51), and model-based (42) approaches. While metric-based methods
focus on developing algorithms that learn a distance function over data samples in prior tasks to
generate discriminative embeddings, optimization-based methods try to learn the optimization model
parameters for different tasks and communicate with the few-shot learner in an episodic manner.

On the other hand, model-based approaches involve developing model architectures that are specially
designed for fast learning which can be memory-based (4; 53), rapid-adaptation-based (43; 44), etc.
Additionally, some hybrid approaches to meta-learning include: Semi-supervised FSL(49), where
they focus on using the few training samples in learning the meta-learner and improve the few-shot
classifier; generative FSL algorithms (64) which try to generate more labeled samples from the
limited support set; and transductive FSL (39; 27) proposes focusing on algorithms in which the
relationship between members of the support set is analyzed. Rather than training a meta-learner,
non-meta-learning algorithms focus on the use of pre-trained networks as feature extractors to learn
distance metrics (63; 11; 14), train new classifiers (59), and perform transductive inference (16).
Researchers are also interested in transfer learning methods to achieve more generalizable feature
extractors(67).

Feature Importance: The performance of the classification task is demonstrated to be enhanced
by a proper embedding that reduces the dimensionality of the data while maintaining the "relevant"
information. Authors in (59) show that using a well-learned embedding might be more efficient than
using complex meta-learning techniques. Similar works indicate that meaningful representations
are more effective than other solutions for few-shot classification tasks (16; 47). Other methods that
take advantage of the significance of features rely solely on feature extractors that have already been
trained (52) or use multi-domain image representation to automatically choose the most relevant
representation from a feature bank (19). In (47) it is shown that the reuse of features is the principal
element behind the success of Model Agnostic Meta-Learning (MAML) (23).

Recent few-shot literature has also used distillation to take advantage of the availability of existing
backbones (41; 59), by transferring previous knowledge from the teacher to the student model.
Similarly, ensemble approaches, serve as an alternative to distillation, by using concatenated features
obtained from various backbones (18; 38). However, as the use of multiple backbones increases
the computational complexity, authors in (29) suggest the use of snapshots to improve efficiency. A
different approach is to use generative models to learn a new embedding space for clustering. In
that direction, DEC (65; 15; 24) proposed learning more meaningful features by jointly optimizing
a reconstruction and a clustering loss. In (25) a convolutional version of DEC is presented that
incorporates convolutional layers to preserve the local structure in the data. In this research, we focus
on learning better features given existing backbones rather than learning a better backbone. We take
inspiration from the DEC approaches, but differently, we used it for FSL classification to learn a
more meaningful representation from pre-selected backbones that facilitate the classification tasks.

Label Propagation: For unlabeled data and self-supervised learning, label propagation has been
widely utilized to infer pseudo-labels (69; 17; 5; 6). In that direction, label propagation through
diffusion was introduced in a semi-supervised learning environment by (69). The authors in (7)
introduce the transductive label propagation strategy and Liu et al.. (40) proposes a Transductive
Propagation Network (TPN) that learns the label propagation parameters. Other methods investigated
label propagation in feature space by building a k-nearest-neighbor network (31) or mapping the
feature space onto a created 2-dimensional plane before propagating (2). Comer et al. (14) noted that
closest neighbors are highly likely to belong to the same class and suggest utilizing label propagation
to the closest unlabeled data before employing a kernel PCA reconstruction error as a decision
boundary in the feature space. In contrast to previous work, we propose a contrastive version of KNN
to generate a graph of labeled points by minimizing the inter-class distance while maximizing the
intra-class distance. Our cKNN label propagation method is compatible with other FSL approaches.
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5.2 DECiFR Algorithm

Algorithm 1 presents our DECiFR method. It received a set of images I, nb pre-trained backbones
from a set of backbones B (bn ⊂ B,n ≤ nb), the DEC autoencoder architecture, the number
of epochs to train the deep autoencoder (epochsae), and the number of epochs to optimize for
the clustering (epochsc), the label propagation algorithm(cKNN) and the FSL solver(e.g.KPCA).
During backbone selection (1a) the DUNN Index for each backbone bn ⊂ B is computed and
the top backbones Bs ∈ B that are within 1σ of max(dunnn) are selected. DEC (1b) consists
of two steps, i.e., training the autoencoder (step 1) and fine-tuning the clusters (step 2). First, an
Autoencoder is trained to learn a non-linear mapping (fwe

) from the concatenated features of selected
backbones (x = concat(Bs(I))) to a lower-dimensional embedding space zi by minimizing the
reconstruction loss Lrec as in Eq. 1. After the autoencoder is trained, the decoder is discarded and
only the encoder is used to compute the embedded space (zi) where the clustering objective is then
optimized. Subsequently, the embedded space is computed (zi = fwe(xi) ) for all the data, and then
K-means clustering is carried out in the feature space zi to obtain k initial centroids µj . Second,
given the trained autoencoder and initial centroids, the clustering objective is optimized. The soft
assignment qij between µj and zi as in Eq. 3 are computed, and the mapping fwe

is updated by
minimizing the KL divergence loss between the soft assignments qij and the target distribution pij .
Finally, DEC learns a mapping to a lower-dimensional embedding space in which it optimizes the
underlying feature representation and the cluster assignment le = DEC(xi). As the last components
of the algorithm, Label propagation and Classification are performed as discussed thoroughly in
corresponding sections.

Algorithm 1 Deep Embedded Clustering in Few-shot Representations (DECiFR).
Input: I , B, nb, DEC, cKNN , FSL solver(KPCA)

1: for n ≤ nb do
2: en = bn(I) {calculate the feature embedding en}
3: dunnn = DUNN(en)
4: end for
5: Sort bn based on dunnn

6: Add top backbones within 1σ of max(dunnn) to Bs

7: x = concat(Bs(I)) concatenate selected backbones
8: Parameter initialization fwe : train the autoencoder
9: Compute the learned embedded space zi = fwe(xi)

10: Initialize cluster centroids µj using K-means
11: for e ≤ epochsc do
12: Compute qij and pij using Eq. 3, and Eq. 4
13: le = DEC(xi) {refine the clusters}
14: end for
15: Label Propagation pseudo = cKNN(le)
16: Classification: Pass the labeled samples to KPCA

5.3 Cluster Quality Experimental Analysis

Table 8 presents the DUNN index values for all the 14 pre-trained backbones. The backbones for
which the DUNN Index is within 1-standard deviation range of the highest DUNN index value are
shown in bold, which were eventually selected to go into the DEC autoencoder at the pre-processing
stage. The results are presented for 6 of the different few-shot image classification datasets we used,
i.e., Mars Surface Images, RESISC45, MSL Curiosity, CUB200, PlantVillage, and Eurosat datasets.
Additionally, Figures 5 to 10 present the 2-D TSNE plots for all the datasets, using a) Worst Single
Backbone, b) Best Single Backbone, and c) DECiFR with selected backbones (shown in bold in
Table 8). We can observe how the performance is enhanced if the top backbones selected at the
pre-processing stage are fed into the DEC module, showing that the selected backbones with higher
DUNN index account for better cluster quality and as a result, a higher few-shot accuracy. It is worth
emphasizing that the goal here is to achieve the cluster quality comparable to the performance of
the best backbone since the main goal here is to design a method that is capable of reasonable FSL
learning performance without any prior requirement on the input backbone architecture.
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Backbone DECiFR Without DECiFR

SimClr 72.63% 72.91%
ResNet101 70.01% 67.90%
ResNext50 71.10% 69.62%

ResNext101 69.42% 70.78%
WResNet101 72.17% 71.29%
Combination 73.33% 72.50%

Table 2: 5-way 5-shot accuracy of DECiFR vs KPCA alone using single backbone on MSL Curiosity
Image dataset.

Backbone DECiFR KPCA alone

ResNext101 91.94% 92.69%
RegNet128 29.10% 28.91%

Combination 93.34% 86.47%
Table 3: 5-way 5-shot accuracy of DECiFR vs KPCA alone using single backbone on PlantVillage
dataset.

Backbone DECiFR KPCA alone

ResNet20 86.48% 67.68%
ResNet18 86.96% 89.40%

WResNet101 89.18% 90.04%
RegNet128 56.45% 50.12%

Combination 96.76% 89.13%
Table 4: 5-way 5-shot accuracy of DECiFR vs KPCA alone using single backbone on CUB dataset.

Backbone DECiFR KPCA alone

ResNet50 38.99% 40.51%
ResNet101 38.88% 33.73%
ResNext50 34.19% 35.49%

ResNext101 38.66% 38.79%
WResNet101 37.96% 37.01%
Combination 39.54% 38.11%

Table 5: 5-way 5-shot accuracy of DECiFR vs KPCA alone using single backbone on Mars Surface
Image dataset.

Backbone DECiFR KPCA alone

EsViT 91.76% 91.27%
ResNet50 86.27% 87.59%
ResNext50 85.01% 86.40%

Combination 89.18% 87.24%
Table 6: 5-way 5-shot accuracy of DECiFR vs KPCA alone using single backbone on RESISC45
dataset.

5.4 Contrastive K-Nearest-Neighbors

To further analyze the effect of cKNN module, we perform additional experiments in which we
compare the few-shot accuracy with and without cKNN for different backbones. Table 9 shows the
5-way 5-shot accuracy of KPCA (the few-shot classification module only without DEC) using single
backbones with vanilla KNN vs cKNN for label propagation. Results show that for the majority of
the datasets, the few-shot accuracy improves by adding cKNN.
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Backbone DECiFR KPCA alone

EsViT 90.13% 90.92%
ResNet20 80.53% 81.64%

ResNext101 82.90% 85.14%
WResNet50 82.30% 86.28%
WResNet101 82.65% 81.99%
Combination 89.81% 86.55%

Table 7: 5-way 5-shot accuracy with and KPCA alone with single backbone on EuroSat dataset.

Mars Surface RESISC MSL Curiousity Plant Village CUB EuroSat
EsViT 0.136 0.290 0.055 0.158 0.172 0.215

ResNet20 0.107 0.168 0.087 0.226 0.308 0.225
SimClr 0.103 0.205 0.127 0.222 0.233 0.199

ResNet50 0.163 0.304 0.107 0.206 0.201 0.193
ResNet18 0.108 0.168 0.087 0.198 0.309 0.115

ResNet101 0.148 0.230 0.138 0.203 0.120 0.178
ResNext50 0.172 0.269 0.154 0.227 0.182 0.163

ResNext101 0.164 0.256 0.127 0.261 0.202 0.214
WResNet50 0.140 0.235 0.111 0.222 0.194 0.247

WResNet101 0.171 0.248 0.128 0.249 0.273 0.211
RegNet128 0.145 0.205 0.088 0.295 0.285 0.131
RegNet8 0.124 0.207 0.110 0.216 0.146 0.107

EfficientNet 0.100 0.069 0.018 0.100 0.074 0.037
ConvNext 0.124 0.199 0.089 0.159 0.171 0.150

Table 8: DUNN indexes 14 various backbones. The backbones for which the DUNN Index is within
1-standard deviation range of the highest DUNN index value are shown in bold (selected 2 − 5
backbones)

Figure 5: TSNE plots of feature spaces corresponding to Mars Surface Image dataset for 5-way 5
shot few-shot classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR
with selected backbones

5.5 Experimental Results with DECiFR

We extend our few-shot classification results by comparing the few-shot classification accuracy of
single backbones with and without DECiFR. In other words, to understand the effect of DEC module
alone, we feed each single backbone to the DEC module and run KPCA afterward, and compare
with the performance of single backbones which are directly fed into KPCA. Tables 2 to 7 present
the 5-way 5-shot accuracy with and without DECiFR using a single backbone on different datasets.
Results show that DECiFR maintains its superior performance across different datasets especially
when the combinations of backbones are fed into it. This shows that the DEC module alone can
boost the clustering performance of single models slightly which can be improved much further if
a combination of backbones is fed into it. We should emphasize here that in the aforementioned
experiments, we select single backbones and feed them into either DEC first or KPCA directly just to
show the effect of DEC alone. However, the main contribution here is to design a method that can
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Figure 6: TSNE plots of feature spaces corresponding to EuroSat dataset for 5-way 5 shot few-shot
classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR with selected
backbones

Figure 7: TSNE plots of feature spaces corresponding to MSL Curiosity Image dataset for 5-way 5
shot few-shot classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR
with selected backbones

Figure 8: TSNE plots of feature spaces corresponding to PlantVillage dataset for 5-way 5 shot
few-shot classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR with
selected backbones

provide us with high FSL performance without any prior knowledge about the backbones. Obviously,
SOTA methods (e.g. KPCA) may have much better performance if the "right" backbone model is fed
into it, but their performance is very much dependent on the input backbones (shown in Tables 1 and
2 in (14)), whereas DECiFR can maintain its performance even if the worst model architectures are
given to it (see PlantVillage results in Table 1 where RegNet128 has the worst performance by itself
but the performance is enhanced by a large margin even if it is passed to DEC).

5.6 Additional Comparative Analysis

We evaluate the performance of our method by comparing it with SOTA methods on RESISC45
and EuroSat datasets. As these datasets are satellite imagery datasets, it is harder, even for human
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Figure 9: TSNE plots of feature spaces corresponding to CUB dataset for 5-way 5 shot few-shot
classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR with selected
backbones

Figure 10: TSNE plots of feature spaces corresponding to EuroSat dataset for 5-way 5 shot few-shot
classification using a) Worst Single Backbone, b) Best Single Backbone, c) DECiFR with selected
backbones

eyes to learn the representations. Therefore, many of the well-known methods suffer from learning
meaningful representations. Table. 10 and 11 show that DECiFR achieves comparable accuracy to
state-of-art methods, and is very close to KProp in 5-way 5-shot experiments. It should be emphasized
that KProp (along with most of the SOTA algorithms) uses the best-performing backbone for feature
extraction without prior knowledge about the best-performing backbone the performance of these
methods will degrade substantially (shown in Tables 1 and 2 in (14)). The main advantage of DECiFR
is that it does not require prior knowledge of the backbone proficiency.

Backbone Mars Surface RESISC MSL Curiosity Plant Village CUB EuroSat
EsViT 34.02 / 35.18 91.51 / 91.27 68.13 / 70.96 92.81 / 93.92 54.48 / 52.94 90.07 / 90.92

ResNet20 35.83 / 34.21 86.70 / 84.71 69.25 / 69.32 92.71 / 91.12 90.64 / 90.86 83.06 / 81.64
SimClr 39.39 / 41.62 80.40 / 79.01 72.77 / 72.91 90.82 / 91.15 63.92 / 67.68 81.29 / 85.17

ResNet50 38.38 / 40.51 86.07 / 87.59 71.41 / 71.68 91.38 / 90.61 90.61 / 88.07 81.65 / 76.62
ResNet18 35.57 / 36.83 86.00 / 87.14 70.96 / 68.94 92.21 / 90.39 89.21 / 89.40 82.71 / 83.23

ResNet101 35.94 / 33.73 84.18 / 87.83 72.38 / 67.90 91.67 / 91.90 89.01 / 90.42 81.73 / 83.74
ResNext50 35.28 / 35.38 84.38 / 86.40 69.43 / 69.62 90.59 / 89.96 89.63 / 91.32 81.60 / 81.80

ResNext101 37.11 / 38.79 84.61 / 85.33 70.01 / 70.78 91.46 / 92.69 89.91 / 89.37 82.57 / 85.14
WResNet50 41.52 / 41.15 86.35 / 89.54 71.22 / 71.16 93.89 / 93.71 90.93 / 91.09 82.62 / 86.28
WResNet101 35.41 / 37.01 85.42 / 85.03 69.84 / 71.30 93.21 / 93.71 88.79 / 90.05 82.28 / 81.99
RegNet128 19.68 / 22.50 27.88 / 27.96 31.48 / 29.77 26.13 / 28.91 50.15 / 50.12 27.19 / 23.81
RegNet8 35.34 / 38.65 84.60 / 86.84 69.32 / 70.26 92.57 / 91.37 90.78 / 90.80 81.39 / 83.49

EfficientNet 30.90 / 31.80 61.81 / 57.57 49.82 / 41.47 78.56 / 79.22 36.36 / 36.52 71.54 / 71.84
ConvNext 38.17 / 40.61 84.37 / 85.83 70.32 / 71.20 91.40 / 91.64 88.89 / 90.89 81.91 / 82.69

Table 9: 5-way 5-shot accuracy using single backbones with KNN (left value) and cKNN (right value)
for label propagation.
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Method 1-shot 2-shot 5-shot

ProtoNets (56) 60.66% 72.18% 81.21%
MatchingNets (61) 60.21% 69.59% 75.75%

Adaptive Subspaces (55) 60.55% 69.17% 79.16%
KProp (14) 83.17% 87.06% 92.08%

DECiFR (ours) 65.93% 71.73% 89.18%
Table 10: 5-way few-shot accuracy using DECiFR compared with SOTA on RESISC45 dataset.

Method 1-shot 2-shot 5-shot

ProtoNets (56) 39.93% 44.97% 55.08%
MatchingNets (61) 37.40% 39.57% 44.86%

Adaptive Subspaces (55) 27.55% 36.85% 40.42%
KProp (14) 77.20% 83.40% 90.44%

DECiFR (ours) 64.54% 72.61% 89.81%
Table 11: 5-way few-shot accuracy using DECiFR compared with SOTA on EuroSat dataset.

To test the robustness of our proposed method, we also looked at the different combinations of
selected backbones. Fig. 11a shows two interesting aspects of our algorithm: I) Incorporating the
DEC autoencoder helps with the clustering performance, as RegNet128 used as a single backbone
achieves few-shot accuracy of 96.45% after being passed to the DEC autoencoder whereas the
accuracy is much less (52% which is shown in Section 5.5) if the features are used without using the
DEC autoencoder. II) DECiFR is robust among all the different combinations of selected backbones
at the pre-processing stage. To evaluate the robustness of DECiFR further, we selected 4 backbones at
random, each of which is from a different class of backbones. We chose EsViT (transformer-based),
SimCLR (contrastive self-supervision-based), ResNet20, and WideResNet50 model architectures.
Fig. 11b shows that by combining the backbones based on the DECiFR pre-processing stage, the few-
shot accuracy is higher, however, combining all of the features from these backbones still achieves
higher accuracy compared to other combinations. In general, Fig. 11 shows that by combining all the
4 selected backbones from the pre-processing stage, we can achieve a comparably accurate model
in comparison to other combinations. We also evaluated the robustness of DECiFR by using other
backbone combinations which are discussed in Section 5.7.

Method 1-shot 5-shot

SOT (54) 95.80% 97.12%
PT+MAP (10) 95.48% 93.99%

PEMnE-BMS* (28) 94.87% 96.43%
LST+MAP (13) 91.68% 94.09%

EASE (70) 91.68% 94.12%
TDM (35) 84.36% 93.37%

ProtoNets (56) 71.88% 87.42%
MatchingNets (61) 72.36% 83.64%

Adaptive Subspaces (55) 63.30% 78.25%
KProp (14) 81.08% 89.39%

DECiFR (ours) 90.67% 96.76%
Table 12: 5-way few-shot accuracy using DECiFR compared with SOTA on CUB200 dataset. Top
two accuracies are highlighted in bold

Following we compare the 1, 2, and 5 shot accuracy corresponding to DECiFR with other state-of-the-
art methods on CUB, CIFAR100-FS, and MiniImageNet datasets when n = 5. Table 12 shows that
DECiFR achieves the second-best 5-shot accuracy (also on the leaderboard) compared to the state-of-
the-art methods. Additionally, it should be mentioned that the majority of methods in Tables 12, 10,
and 11 use a single well-performing backbone. However, in real-world scenarios, it is challenging
to decipher which backbone is more suitable for FSL, so the necessity for a model-agnostic FSL
method is not addressed by many of the methods that DECiFR is compared against.
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*Note: R18 = ResNet18, R20 = ResNet20, WR101= WideResNet101, Reg128 =RegNet128

(a)

*Note: Es = EsViT, R20 = ResNet20,Sim = SimCLR, WR50= WideResNet50

(b)

Figure 11: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of 4 a)
selected backbones by the pre-processing module (DUNN-index), b)randomly selected backbones on
the CUB200 dataset.

Next, we evaluate the performance of our method by comparing it with SOTA methods on Fewshot-
CIFAR100 and miniImageNet datasets. Table. 13 and 14 show that DECiFR achieves comparable
accuracy to SOTA methods (second-best 1-shot accuracy). It should be noted that DECiFR does not
rely on fine-tuning or prior knowledge of good-performing backbones, unlike the approach in (3),
which currently achieves the best results. The backbone selection in (3) significantly impacts their
performance, but our proposed algorithm does not require such prior knowledge. We do not require
to "decipher" which backbone is more suitable for the specific FSL task, making DECiFR a more
versatile approach.

5.7 Robustness

Finally, we present additional results on the robustness of our proposed method. Figures 12 to
16 present the 5-way 5-shot accuracy of DECiFR using all the different combinations of selected
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Method 1-shot 5-shot

ProtoNets (56) 41.54% 57.08%
KProp (14) 42.01% 57.91%

EASY Inductive (3) 47.94% 64.14%
EASY Transductive (3) 54.47% 65.82%

DECiFR (ours) 48.35% 60.68%
Table 13: 5-way few-shot accuracy using DECiFR compared with SOTA on the Fewshot-CIFAR100
dataset. The top two accuracies are highlighted in bold

Method 1-shot 5-shot

ProtoNets (56) 60.37% 78.02%
KProp (14) 71.95% 79.26%

EASY Inductive (3) 70.63% 86.28%
EASY Transductive (3) 82.31% 88.57%

DECiFR (ours) 77.01% 84.07%
Table 14: 5-way few-shot accuracy using DECiFR compared with SOTA on the miniImageNet
dataset. The top two accuracies are highlighted in bold

backbones by the pre-processing module (DUNN-index) versus 4 randomly selected backbones
on various datasets. We can observe that by combining all the 4 selected backbones from the pre-
processing stage, we can achieve a comparably accurate model in comparison to other combinations.
An additional observation is that the accuracy using the selected backbones at the pre-processing
stage is higher compared to a combination of 4 randomly selected models.

*Note: Sim = SimCLR, R101 = ResNet101, Rx50 =
ResNext50, Rx101 = ResNext101, WR101=

WideResNet101
(a)

*Note: Es = EsViT, R20 = ResNet20, Sim = SimCLR,
WR50= WideResNet50

(b)

Figure 12: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of a) 5
selected backbones by the pre-processing module (DUNN-index), b) 4 randomly selected backbones
on the MSL Curiosity Rover dataset.
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*Note: Es = EsViT, R50 = ResNet50, Rx50 =
ResNext50

(a)

*Note: Es = EsViT, R20 = ResNet20,Sim = SimCLR,
WR50= WideResNet50

(b)

Figure 13: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of a) 3
selected backbones by the pre-processing module (DUNN-index), b) 4 randomly selected backbones
on the RESISC45 dataset.

*Note: R50 = ResNet50, R101 = ResNet101, Rx50 =
ResNext50, Rx101 = ResNext101, WR101=

WideResNet101
(a)

*Note: Es = EsViT, R20 = ResNet20,Sim = SimCLR,
WR50= WideResNet50

(b)

Figure 14: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of a) 5
selected backbones by the pre-processing module (DUNN-index), b) 4 randomly selected backbones
on the Mars surface images dataset.

*Note: WR101= WideResNet101, Reg128
=RegNet128

(a)

*Note: Es = EsViT, R20 = ResNet20,Sim = SimCLR,
WR50= WideResNet50

(b)

Figure 15: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of a) 2
selected backbones by the pre-processing module (DUNN-index), b) 4 randomly selected backbones
on the PlantVillage dataset.

20



*Note: Es = EsViT, R20 = ResNet20, WR50=
WideResNet50, Rx101 = ResNext101, WR101=

WideResNet101
(a)

*Note: Es = EsViT, R20 = ResNet20,Sim = SimCLR,
WR50= WideResNet50

(b)

Figure 16: 5-way 5-shot few-shot accuracy of DECiFR using all the different combinations of a) 5
selected backbones by the pre-processing module (DUNN-index), b) 4 randomly selected backbones
on the EuroSat dataset.
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