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Abstract
Recent advances in natural language processing
have relied heavily on using Transformer-based
language models. However, Transformers often
require large parameter sizes and model depth.
Existing Transformer-free approaches using state-
space models demonstrate superiority over Trans-
formers, yet they still lack a neuro-biologically
connection to the human brain. This paper pro-
poses LasF , representing Language tokens as
Functionals of semantic fields, to simulate the
neuronal behaviors for better language model-
ing. The LasF module is equivalent to a non-
linear approximator tailored for sequential data.
By replacing the final layers of pre-trained lan-
guage models with the LasF module, we obtain
LasF -based models. Experiments conducted for
standard reading comprehension and question-
answering tasks demonstrate that the LasF -based
models consistently improve accuracy with fewer
parameters. Besides, we use CommonsenseQA’s
blind test set to evaluate a full-parameter tuned
LasF -based model, which outperforms the prior
best ensemble and single models by 0.4% and
3.1%, respectively. Furthermore, our LasF -only
language model trained from scratch outperforms
existing parameter-efficient language models on
standard datasets such as WikiText103 and Pen-
nTreebank.

1. Introduction
Language modeling is a crucial task in natural language pro-
cessing (NLP), representing a key component in developing
brain-inspired artificial general intelligence capable of fully
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understanding human language (Zhao et al., 2023). Cur-
rently the most representative language modeling methods
are built upon Transformer-based structures (Vaswani et al.,
2017; Devlin et al., 2018; Radford et al., 2019; Brown et al.,
2020). These models represent language tokens as high-
dimensional distributed embeddings (Bengio et al., 2000),
utilizing an attention mechanism (Vaswani et al., 2017) to
interpret the linguistic relations among tokens as linear re-
lations. Although Transformer-based models demonstrate
outstanding performance in downstream NLP tasks, they en-
counter practical challenges regarding to the computational
efficiency (Fournier et al., 2023).

Some non-Transformer models, such as state-space mod-
els (SSM), including S4 (Gu et al., 2021), H3 (Fu et al.,
2022), and Hyena (Poli et al., 2023), have significantly
enhanced language model performance on public tasks. De-
spite their computational efficiency, they differ significantly
from how the human brain represents semantic relations
among language tokens. Specifically, they still rely on sim-
plified linearity to express the highly nonlinear semantic
relations between language tokens, limiting the represen-
tational capacity. In contrast, the human brain processes
linguistic information in a highly nonlinear manner (Patter-
son et al., 2007). It transforms language tokens into signals
perceivable by neurons, representing the semantic relations
between different language tokens using nonlinear, field-like
relations. This mechanism allows for a more comprehensive
expression of dynamic semantic features from all neurons.
In linguistics, the field-like relation is interpreted as the
semantic field, denoting a semantically structured group
of the lexical set of language tokens (Jackson & Amvela,
2007). Each token has varying semantic fields that express
its multiple linguistic relations to other tokens.

In fact, many existing studies (Toneva & Wehbe, 2019; Oota
et al., 2022b;a; Sun & Moens, 2023) attempt to integrate
the brain-inspired mechanism into computational language
models. However, they have yet to demonstrate performance
comparable to Transformer-based or SSM-based language
models in practical scenarios. To address this issue, we pro-
pose a computationally friendly mechanism for interpreting
language tokens as functional representations of semantic
fields. This approach allows us to express semantic rela-
tions between language tokens using more complex seman-
tic fields while maintaining low computational complexity.
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Figure 1: Pipeline of a LasF Module. This process is designed to simulate the dynamic interactions of neurons within
semantic fields, from receiving to emitting signals. The input X is mapped to the neuron states Q on Ns distinct semantic
fields (Eq. 2), along with the signals S they receive (Eq. 7). Within each semantic field, neurons compute their temporary
outputs H based on interactions with each other (Eq. 8). The semantic fields then derive their actual output signals O from
interactions among their overall states Q̃ (Eq. 9). The final output result Ŷ is obtained by summing the actual output signals
O from each semantic field (Eq. 12).

In mathematical terms, a functional can be perceived as a
function of functions, representing a real-valued function on
a space of functions with functions as its arguments (Lang,
2012). Indeed, a semantic field refers to a function, and the
interactions between semantic fields refer to a functional.

The proposed LasF module, constructed based on the func-
tional semantic field, is equivalent to a nonlinear mapping
function suitable for sequential data. As presented in Fig-
ure 1, it comprises multiple semantic fields, each responsible
for capturing distinct intrinsic linguistic patterns. A LasF
module first transforms the current input sequence of em-
beddings into dynamic neurons within each semantic field.
Simultaneously, it converts these embeddings into the sig-
nals received by neurons within different semantic fields.
Subsequently, each neuron decides how to receive these
signals and emits its output signals based on interactions
with neurons inside and across semantic fields. In this way,
we establish a LasF module capable of encoding inputs and
transforming them into arbitrary output signals.

We conduct experiments on three NLP tasks, including read-
ing comprehension on SQuAD2.0 (Rajpurkar et al., 2018),
question answering task on Commonsense QA (Talmor
et al., 2018), Physical Interaction QA (Bisk et al., 2020), and
Social Interaction QA (Sap et al., 2019), and language mod-
eling on WikiText-103 (Merity et al., 2016) and PennTree-
bank datasets (Marcus et al., 1993). For the reading com-
prehension and question answering tasks, we observe that
replacing the output layer of the pre-trained LLaMA (Tou-

vron et al., 2023) models with the LasF module resulted in
a consistent accuracy improvement with fewer parameters.
We also conduct full-parameter tuning on several LasF -
based BERT models. In the blind test set of Commonsense
QA1, our LasF -based ALBERT model in a single model
setting outperforms the previous best ensemble and single
models by 0.4% and 3.1%, respectively. Notably, the prior
best single model UnifiedQA (Raffel et al., 2020) is 47×
larger than ours.

We also build a LasF -only language model trained from
scratch. Empirical results show that the LasF -only lan-
guage model achieves lower perplexity than other existing
Transformer or SSM-based approaches. It is worth noting
that the LasF -only language models contain no more than
3 layers, meaning it can attain language modeling capabil-
ities with fewer neural layers, i.e., a FLAT rather than a
DEEP model. This finding aligns with the shallow brain
hypothesis (Suzuki et al., 2023), which posits that a shal-
low neural structure composed of carefully designed par-
allel computing units may have equally strong linguistic
processing capabilities. Codes are available at https:
//github.com/pzqpzq/flat-learning.

1https://www.tau-nlp.sites.tau.ac.il/
csqa-leaderboard, where our model refers to Albert+KasF
, short for Knowledge as Functionals. We only compare with
the models that do not use ConceptNet since the CsQA’s team
officially no longer accepts this submission type. As ConceptNet
was used to create the dataset, it filters the human-generated
distractors, reducing the 5-way multi-choice to a simpler one.
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2. Preliminaries
2.1. Problem Formulation

Given a sequential input, such as a sentence represented as
a sequence of word embeddings, denoted as X ∈ RLX×DX ,
where LX and DX are the length and dimension of X,
respectively. Our objectives consist of three components:

(1) Constructing a nonlinear module capable of mapping
any sequential input denoted as X to a target Y ∈ RLY ×DY

with minimal approximation error. (see Section 3)

(2) Integrating such a nonlinear module with a well-formed
text encoder, e.g., pre-trained large language model, for
various downstream NLP tasks. (see Section 4)

(3) Building a language model from scratch utilizing these
nonlinear modules to perform language modeling tasks with
minimal parameter usage. (see Section 5)

2.2. Neuronal Dynamics for Semantic Field

In linguistics, a semantic field denotes a collection of words
interconnected by meaning, concept, or topic. These words
share a common semantic feature, and their interconnec-
tions derive from their meanings within a particular context.
From a neuro-biological perspective, the human brain uti-
lizes semantic fields to comprehend the semantic informa-
tion between language tokens, forming a process of global
understanding of languages. This process is equivalent to
the interaction of signals between neuron clusters with dif-
ferent topological structures.

Mainstream distributed word embeddings simplify this
process and implicitly express the topological structures
amongst neurons as dense weight matrices in a deep neural
network. However, such a representation often leads to sig-
nificant parameter redundancy. Given N neurons, for two
arbitrary neurons i and j, we use a parameter wij similar
to neural weights to express their relation. As a result, we
need N2 trainable parameters to describe their topological
structure. This representation results in inefficient parameter
utilization. Inspired by Pei & Wang (2023), we can implic-
itly represent the topological structure amongst neurons,
using the dynamical states of these neurons, expressed as D-
dimensional embeddings, e.g., qi ∈ RD, where i ∈ [1, N ]
and D ≪ N . Then, the relation between neurons i and
j can be expressed using a shared metric function µ, such
as the Lp-norm, i.e., wij = µ(qi,qj) = ∥qi − qj∥p. This
way, we only need N ×D trainable parameters to describe
the topological structure between these N neurons.

Therefore, the key to simulating semantic field interaction
lies in transforming input data into embedding-like neuronal
dynamics and enabling neurons to determine how to pro-
cess signals based on the relations between these neuronal
dynamics, aka., neuronal states.

2.3. Dealing with Semantic Fields via Functionals

We begin with relevant neurobiological knowledge about
how the human brain operates based on Gazzaniga et al.
(2006). Specifically, the cerebral cortex is the most essen-
tial part of the human brain, and it plays a crucial role
in perception, awareness, thought, memory, and language.
Neurons in the cerebral cortex are organized into horizontal
cortical layers and radially into cortical columns and mini-
columns. A human brain has 2–4 million cortical columns,
with 50 to 100 cortical minicolumns per cortical column.
Neurons within the cortical minicolumn encode similar fea-
tures, share identical inputs and outputs, are interconnected,
and constitute a fundamental computational unit of the cere-
bral cortex. Upon receiving a signal, various cortical mini-
columns in the brain’s cortex combine the states of internal
neurons, i.e., neuronal states, to process the signal. Subse-
quently, neuronal communication occurs between adjacent
cortical minicolumns, and specific brain regions integrate
the temporary signal outputs of each cortical column based
on neuronal communication. We use functional, i.e., the
function of functions, as the mathematical interpretation of
this neuronal communication.

From a biological view, the semantic field essentially cor-
responds to the cortical column of the human brain. Each
semantic field refers to a cluster of neighboring neurons
designed for the initial processing of raw signals received
by the brain. Intuitively, the relation between tokens within
the semantic field neatly corresponds to various linguistic
patterns. For example, specific semantic fields are adept
at capturing Part-of-Speech features between tokens, while
others excel at capturing dependency features or named en-
tities among tokens. This characteristic closely aligns with
the observed functional specialization in different regions
of the human brain. Therefore, opting for the semantic field
as our model’s fundamental component is biologically more
plausible and more apt at the linguistic level.

3. Functional Representation of Words
This section presents how to interpret a sequence of words
as a functional representation of semantic fields. Then,
we build a nonlinear module via this proposed functional
representation to map the sequential data.

We begin by defining semantic fields that serve as global
variables. These semantic fields are composed of neurons
capable of interacting and influencing each other. These
semantic fields transform the current input data, i.e., X, into
neuronal states and establish associations between the cur-
rent and past inputs through interactions among neurons.
This design allows us to capture more comprehensive his-
torical semantic information. However, relying solely on
semantic fields enables us to capture only global high-level
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semantic information of X, lacking the ability to capture
specific low-level linguistic details. To address this issue,
we integrate semantic fields with functionals. Recall that a
functional is the function of functions. Since each semantic
field refers to a function, we regard the interactions between
semantic fields as functional, guiding each semantic field
on processing X in a more detailed and targeted manner.

Based on the above pipeline, we construct a nonlinear map-
ping module, LasF, for sequential data. Each LasF module
contains several trainable neuronal projections that capture
the neuronal states in the semantic fields, i.e., the high-level
semantic information, and several trainable signal projec-
tions that capture X’s low-level linguistic details.

Complete Workflow of a LasF Module: Before delving
into the detailed implementation of the LasF block, let us
take a brief glimpse at the workflow:

Q[l] = D[l]
⊤
XL[l] ∈ RLQ×DQ

S[l] = DS [l]
⊤
XLS [l] ∈ RLQ×DS

Ψ[l, i, j] = µ(Q[l, i],Q[l, j]) ∈ R

Q̃[l] =
1

LQ

LQ∑
i=1

Q[l, i] ∈ RDQ

Φ[l,m] =

Nf∑
k=1

µk(Q̃[l], Q̃[m]) ∈ R

O[l] = σ
( Ns∑

m=1

Φ[l,m] ·Ψ[m] · S[m]
)
∈ RLQ×DS

Ŷ = DY
⊤
( Ns∑

l=1

O[l]
)
LY ∈ RLY ×DY

(1)

where LQ, DQ, DS , Ns, Nf ∈ N+; l,m ∈ [1, Ns]; i, j ∈
[1, LQ], where Ns is the number of semantic fields, and µ
and {µk} are specific metrics like Lp-norm. The mappings
D,L,DS ,LS ,DY and LY are trainable linear projections
whose details will be presented later.

3.1. Neuronal Projections and Functional Relations

The neuronal projections are divided into two categories,
length-wise and dimension-wise, to capture more linguis-
tic patterns. The length-wise neuronal projection L ∈
RNs×DX×DQ maps the inputs to Ns distinct neuronal dy-
namics along with X’s length. Similarly, the dimension-wise
neuronal projection D ∈ RNs×LX×LQ maps the inputs to
Ns distinct neuronal dynamics along with X’s dimension.
For a specific semantic field with index l, it follows,

Q[l] = D[l]
⊤
XL[l] ∈ RLQ×DQ (2)

where l ∈ [1, Ns] and Q[l] refers to the neuronal states of
the semantic field l, which contains LQ neurons interpreted

as DQ-dimensional embeddings. Next, we present how to
obtain the functional, i.e., the interaction between semantic
fields. First, we compute the relations between neurons
within each semantic field, yielding neuron-level relational
matrices Ψ ∈ RNs×LQ×LQ ,

Ψ[l, i, j] = µ(Q[l, i],Q[l, j]) (3)

where µ : RDQ × RDQ → R is a specific metric function,
e.g., Lp-norm, cosine similarity. To obtain the relations
amongst all neurons across all semantic fields, a straight-
forward approach is to sum these obtained neuron-level
relational matrices as follows,

Ψ̂[i, j] =

Ns∑
l=1

Ψ[l, i, j] (4)

However, the interacting patterns captured by Eq. 4 are
highly limited, failing to capture interactions between neu-
rons from different semantic fields adequately. To overcome
this limitation, it is imperative to compute relations between
all semantic fields. First, a concise encoding method is re-
quired to define each semantic field. For instance, a straight-
forward approach involves averaging the neuronal states of
all neurons within a given semantic field,

Q̃[l] =
1

LQ

LQ∑
i=1

Q[l, i] ∈ RDQ (5)

Then, we obtain a field-level relational matrix Φ ∈ RNs×Ns

via computing the relations amongst Q̃[1], ..., Q̃[Ns] using
Nf distinct metrics,

Φ[l,m] =

Nf∑
k=1

µk(Q̃[l], Q̃[m]) (6)

where {µk} is a set of pre-defined metrics containing Lp-
norm with p = {1, 2, 3}. In the end, we obtain Ns neuron-
level relational matrices Ψ[l] ∈ RLQ×LQ , l ∈ [1, Ns] and
a field-level relational matrix Φ ∈ RNs×Ns . The field-
level relational matrix Φ serves as a functional, guiding the
neuron-level relational matrices Ψ[l], i.e., functions, to col-
laboratively process the input data X. These neuron-level
and field-level relational matrices act as a functional repre-
sentation of neuronal relations. Unlike Eq. 4 that statically
describes the neuronal relations, the functional representa-
tion dynamically deals with the neuronal relations during
the inference. We will present more implementation details
after introducing the signal projections.

3.2. Signal Projections and Functional Mappings

A signal projection is a set of linear transformations used
to map input data X ∈ RLX×DX onto signals S ∈
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RNs×LQ×DS for all neurons in each semantic field. Sim-
ilar to a neuronal projection, it involves two categories of
linear projections, i.e., DS ∈ RNs×LX×LQ , and LS ∈
RNs×DX×DS , such that,

S[l] = DS [l]
⊤
XLS [l] ∈ RLQ×DS (7)

Now we can obtain the signal received by each neuron; we
represent the signal received by a neuron i in a semantic field
l as S[l, i] ∈ RDS . Intuitively, each semantic field returns a
temporary output H ∈ RNs×LQ×DS by simply simulating
the process of signal propagation amongst neurons using
the neuron-level relational matrices, i.e.,

H[l, i] = σ
( LQ∑

j=1

Ψ[l, i, j] · S[l, j]
)
∈ RDS (8)

where σ is a nonlinear activation function, e.g., sigmoid, and
i ∈ [1, LQ] is the index of a neuron. Next, we elaborate
on processing these signals and generating the final output
using the functional representation proposed in Section 3.1.
The core idea is that each semantic field aggregates informa-
tion from all semantic fields, and the field-level relational
matrix Φ serves as a weighting mechanism. Specifically, the
actual output signal O[l] ∈ RLQ×DS of a semantic field l
is the weighted sum of the temporary output signals H[m]
from all other semantic fields m = {1, ..., Ns} under the
guidance of Φ to implement the weighting process,

O[l] = σ

(
Ns∑

m=1

Φ[l,m] ·H[m]

)
(9)

To be compatible with parallel computing, we vectorize
Eq. 8 and Eq. 9 as follows,

O[l] = σ

(
Ns∑

m=1

Φ[l,m] ·Ψ[m] · S[m]

)
∈ RLQ×DS (10)

We can further vectorize Eq. 10 via batch computation,

O = σ(ΦΨS) ∈ RNs×LQ×DS (11)

Finally, we obtain the ultimate output by summing the out-
put signals O[l] from each semantic field, i.e.,

Ŷ = DY
⊤
( Ns∑

l=1

O[l]
)
LY (12)

where DY ∈ RLQ×LY and LY ∈ RDQ×DY are trainable
linear projections used to shape-align the output signal with
the target output Y ∈ RLY ×DY . In Appendix E, we further
validate that our LasF module is conceptually different
from a typical Transformer.

4. Integrating LasF with Pre-trained LMs
Next, we explore the integration of the LasF module with
pre-trained language models using Transformers. The
method is straightforward: We can directly replace the last
Transformer layer and its output, used as the classifier, in
the pre-trained language model with the LasF module. The
specific replacement depends on the NLP downstream task
at hand. For example, in the case of a multiple-choice task,
considering a pre-trained language model, whose last Trans-
former layer receives input data X ∈ RLX×DX , with the
final output of its subsequent classifier Linear layer being
Y ∈ R1×DY , where DY represents the number of choices.
We can directly replace this Transformer layer and its sub-
sequent classifier Linear layer with the LasF module. The
hyperparameters such as LX , DX , LY and DY are predeter-
mined in terms of the current task, while other hyperparam-
eters like LQ, DQ, DS , Ns and Nf can be adjusted based
on their performance on the development set.

Note that pre-trained language models like BERT can han-
dle variable-length input sequences. Therefore, we must
consider the case for a flexible LX . We propose two types
of solutions. The first type involves converting all train-
able projections in the LasF module related to LX 7→ LQ

into non-trainable kernels, such as an identity matrix with
LX = LQ, Gaussian kernel, etc. The second type involves
training D and DS based on the maximum value LX might
take, and then, during inference, truncating these projec-
tions based on the actual length of the input sequence.
Empirical results show that if we add positional encod-
ings (Vaswani et al., 2017) to LasF’s inputs, their per-
formance is almost identical. By default, we apply the
first solution that degrades D and DS to non-trainable ker-
nels such that D[l, i, j] = Ds[l, i, j] = N (i − j), where
l ∈ [1, Ns], i, j ∈ [1, LQ] and N refers to a normal Gaus-
sian distribution.

Building on the approach above, the LasF module can also
be combined with generative LLM. Taking LLaMA2 as an
example, we can replace its Linear layer output of shape
R4096×32000 with an LasF module of DX = 4096, LY = 1
and DY = 32000, and degrade the trainable projections
D,DS related to LX and LQ to non-trainable kernels. Ex-
periments show that compared to using an identity matrix as
the kernel, using a more complex kernel (such as a Gaussian
kernel) allows the LasF module to have stronger seman-
tic capturing capabilities. However, future work requires
exploring whether the additional computational cost of com-
plex kernels can ensure the model’s cost-effectiveness.

5. Language Model from Scrath via LasF

In Sec. 4, we discuss integrating the LasF module with
pre-trained language models. Since we can replace the last
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Transformer layer and its output Linear layer with a LasF
module, we can also replace all Transformer layers with
LasF modules. The reduced LasF module, termed rLasF ,
is presented as follows:

Q[l] = D[l]
⊤
XL[l] ∈ RLQ×DQ

S[l] = DS [l]
⊤
XLS [l] ∈ RLQ×DS

Ψ[l, i, j] = µ(Q[l, i],Q[l, j]) · Λ[i, j] ∈ R

Φ[l,m] =

Nf∑
k=1

µk(

LQ∑
i=1

Q[l, i],

LQ∑
i=1

Q[m, i]) ∈ R

Ŷ =

Ns∑
l=1

σ(ΦΨS)[l]LY ∈ RLQ×DY

(13)

where all variable notations here follow the previous sec-
tions, except LQ = LX = LY , DQ = DS , and DX = DY .
The smoothing term Λ ∈ RLQ×LQ acts as a masking mech-
anism such that Λ[i, j] = 0 if j > i else Λ[i, j] = 1. The
length-related projections D and DS are degraded into non-
trainable kernels for computational efficiency. The rLasF
module described in Eq. 13 acts as a nonlinear operator that
maps an input X ∈ RL×D to an output Y ∈ RL×D of the
same shape.

Following the standard autoregressive language modeling
pipeline, we proceed to construct our language model that
maps the randomly initiated input encodings X ∈ RL×D

with varying length L and fixed dimension D to the output
Y ∈ RL×Nv , where Nv is the vocabulary size. We stack
several rLasF layers, and then append the LasF module
described in Eq. 1 after the final rLasF layer to obtain the
ultimate output, i.e.,

Ŷ(1) = rLasF (X)

Ŷ(r+1) = rLasF (Ŷ(r)), r ∈ [1, Nr − 2]

Ŷ = LasF (Ŷ(Nr−1))

(14)

where Nr is the total number of LasF -based layers stacking
together. Empirical results demonstrate that even with a very
small Nr, e.g., Nr = 2, the language modeling capability
of the resulting LasF -based language model surpasses that
of language models with 10+ layers of Transformers.

6. Experiments
We focus on three NLP tasks involving seven public datasets:
reading comprehension on SQuAD2.0 (Rajpurkar et al.,
2018), question answering on CsQA (Talmor et al., 2018),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019)), and
language modeling on WikiText-103 (Merity et al., 2016),
PennTreebank (Marcus et al., 1993). Besides, we also test
the representational capacity of LasF-based encoding in
the task of semantic compression on WikiQA (Yang et al.,

2015), see Appendix A. All experiments can be conducted
on a single 24GB memory GeForce RTX 4090 GPU, on
which we can train a LasF-based language model within a
week.

6.1. Reading Comprehension

For reading comprehension, we use SQuAD2.0 dataset (Ra-
jpurkar et al., 2018), which is a challenging natural language
understanding benchmark for reading comprehension. The
dataset combines 100, 000 questions extracted from its for-
mer version with over 50, 000 new unanswerable questions
written by crowdworkers. The training dataset contains
87k answerable and 43k unanswerable questions. In this
task, we use some fine-tuned base models2, e.g., RoBERTa-
base (Liu et al., 2019), ALBERT-base (Lan et al., 2019),
and DeBERTa-base (He et al., 2020), as the text encoders
to obtain the encoded inputs feeding into the LasF module
defined via the mechanism presented in Section 4, followed
by fine-tuning them on the SQuAD2.0’s training dataset.
Besides, we set DY = 2 and DS = DQ as defaults. The
exact values of NS and DS = DQ are presented in Table 1.
Empirical results show that replacing the output layer of a
BERT-based language model with LasF module can capture
more linguistic patterns. All the LasF-based language mod-
els outperform their original forms with fewer parameters.

6.2. Question Answering

For question answering, we use three datasets, including
Commonsense QA (Talmor et al., 2018), Physical Interac-
tion QA (Bisk et al., 2020), and Social Interaction QA (Sap
et al., 2019). To be specific, CommonsenseQA (CsQA)
is a 5-way multiple choice QA dataset for commonsense
question answering, Physical IQA (PIQA) is a 2-way mul-
tiple choice QA dataset focusing on everyday situations
with a preference for typical solutions, Moreover, Social
IQA (SIQA) is a three-way multiple-choice QA dataset
focusing on reasoning about people’s actions and social
implications. For each QA dataset, we first conduct experi-
ments on LLaMA-7B and LLaMA-13B, whose last Linear
layers of shapes R4096×32000 and R5120×32000 are replaced
with a LasF module of LY = 1 and DY = 5. The exact
values of NS , DQ, and DS are presented in Table 2. We
train the newly added LasF modules on the training set
while LLaMA’s other parameters remain fixed. Empirical
results show that the LasF modules are compatible with
large language models to capture more semantic features.

We also test our method on CsQA’s blind test set, using
RoBERTa-large (Liu et al., 2019) and ALBERT-xxlarge-
v2 (Lan et al., 2019) as the pre-trained text encoders, re-

2We select the best-performing models among the fully open-
sourced and computational affordable models in the leaderboard.
The models’ structures are also relatively representative.
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Table 1: Performance comparison on SQuAD2.0 dataset. We test our method for reading comprehension tasks by
replacing the output layers of the selected fine-tuned pre-trained models. For each model, we use three configurations for
LasF, denoting as the form of Sx-Dy, where x refers to the number of semantic fields Ns, and y refers to the dimension of
neuronal states DQ.

Base Model Output Layer No.Params EM (%) F1 (%) Improvement (%)

ALBERT-base

Transformer + Linear 7.68M 76.05 79.15 0
LasF (S10-D10) 0.15M 76.12 79.04 - 0.11
LasF (S10-D20) 0.31M 76.59 79.92 + 0.77
LasF (S20-D20) 0.61M 77.22 80.33 + 1.18

RoBERTa-base

Transformer + Linear 7.68M 79.78 82.32 0
LasF (S10-D10) 0.15M 79.80 82.38 + 0.06
LasF (S10-D20) 0.31M 80.35 83.12 + 0.80
LasF (S20-D20) 0.61M 80.73 83.35 + 1.03

DeBERTa-base

Transformer + Linear 7.68M 81.25 84.50 0
LasF (S10-D10) 0.15M 81.25 84.31 - 0.19
LasF (S10-D20) 0.31M 82.07 85.15 + 0.65
LasF (S20-D20) 0.61M 82.44 85.54 + 1.04

Table 2: Performance comparison on Question Answering Datasets. For each model, we use two configurations for
LasF, denoting as the form of Sx-DQy-DSz, where x refers to the number of semantic fields Ns, y refers to the dimension
of neuronal states DQ, and z refers to the dimension of signals.

Output Layer No.Params Accuracy (%)

CSQA PIQA SIQA

LLaMA-7B
Transformer + Linear 131.1M 57.8 79.8 48.9

LasF (S10-DQ10-DS512) 21.7M 56.9 80.0 49.2
LasF (S20-DQ20-DS1024) 86.1M 62.2 80.8 49.8

LLaMA-13B
Transformer+Linear 163.8M 67.3 80.1 50.4

LasF (S10-DQ10-DS512) 27.1M 67.0 80.5 50.4
LasF (S20-DQ20-DS1024) 86.1M 69.4 82.1 51.8

spectively, followed by fine-tuning the whole model on the
training set. In this case, we set DQ = DS = 30 and
Ns = 10 as defaults. Table 3 shows that LasF outperforms
strong fine-tuned LM baselines (e.g., RoBERTa-large and
ALBERT-xxlarge) and the best amongst all the single mod-
els. Specifically, UnifiedQA (Khashabi et al., 2020) has
11B parameters and is based on T5, impractical to fine-
tune without strong GPU servers. ALBERT+HeadHunter
uses Open Mind CommonSense corpus (Singh et al., 2002)
as an additional knowledge base regarded as an extended
commonsenseQA dataset. Our LasF still outperforms Uni-
fiedQA and HeadHunter by 3.1% and 3.8%, respectively.
As presented in Table 5, we also conduct in-house con-
trolled experiments on CsQA’s development sets, compared
with several comparable methods applied to base language
models.

6.3. Language Modeling

For language modeling, we only conduct small-scale experi-
ments, due to limited computational resources, on WikiText-
103 (Merity et al., 2016) and PennTreebank (Marcus et al.,
1993) datasets to evaluate the LasF -based language models.

The model architecture follows Eq. 14 with DX = 768,
DQ = 15, and Ns = 12. (For other hyper-parameters, see
Table 6.) For training details, we use SGD with a decaying
learning rate starting from 0.3 as the optimizer; we set the
batch size as 16 and the maximum number of epochs as 50.
We only train our language models on WikiText-103 or Pen-
nTreebank training set without training on additional text
corpus. As presented in Table 4, our LasF-based language
models trained from scratch achieve lower perplexities than
other Transformer-based and Transformer-free models.

Although the current experimental scale is small and can-
not conclusively demonstrate that the LasF module outper-
forms the Transformer, empirical results indicate that LasF
concept is effective for learning in larger-scale language
scenarios. Additionally, we observe that LasF exhibits a
higher layer efficiency, meaning it can achieve stronger lan-
guage modeling capabilities with fewer layers. In Table 4,
we observe that, under comparable parameter conditions,
a two-layer LasF -based language model significantly out-
performs a two-layer Transformer-based language model in
terms of perplexity. Overall, LasF -based language models
can achieve language modeling capabilities comparable to
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Table 3: Test accuracy on CommonsenseQA’s official leaderboard. Note that models with * use ConceptNet. The
CSQA’s official team no longer accepts submission using ConceptNet. Our method outperforms all the prior ensemble and
single models presented in CsQA’s official leaderboard.

Methods Parameters Test-Acc. (%) Use External Sources

single ensemble QA datasets KGs

BERT-large ∼ 345M 56.7 - - -
KagNet* > 345M - 58.9 ✓ ✓
RoBERTa-large ∼ 354M 72.1 72.5 - -
ALBERT-large ∼ 223M 73.5 76.5 - -
ALBERT+PathGenerator > 345M 75.6 78.2 - ✓
QA-GNN* ∼ 360M 76.1 - - ✓
ALBERT+HGN* ∼ 355M 77.3 - - ✓
T5 ≥ 11B 78.1 - - -
ALBERT+HeadHunter ∼ 283M 78.4 78.3 - ✓
UnifiedQA ∼ 11B 79.1 - ✓ -
DeBERTa ∼ 1.5B - 79.6 ✓ -
ALBERT+SFR - - 81.8 - -

ALBERT+LasF (Ours) ∼ 225M 82.2 - - -

Table 4: Performance comparision on WikiText103 and PennTreebank for Language Modeling. All models use the
same GPT2 tokenizer. The results for models with ∗ are taken from Radford et al. (2019) and Poli et al. (2023).

Model No.Parameters No.Layers Extra
Training Data

Time Cost per batch Perplexity (↓)

Training Inference WikiText103 PennTreebank

Transformer 92M 2 × 265 48 45.8 72.5
Transformer ∗ 125M 12 × - - 18.6 54.5
GPT-2 small ∗ 125M 12

√
- - 37.5 65.8

Reformer ∗ 125M 12
√

- - 26.0 -
Hybrid H3 ∗ 125M 12

√
- - 23.7 -

S4 ∗ 249M 12 × - - 21.8 -
Hyena ∗ 125M 12 × - - 18.5 -

S5-Hyena ∗ 125M 12 × - - 18.3 -
LasF (Ours) 83M 1 × 65 12 20.2 59.8
LasF (Ours) 107M 2 × 107 18 17.2 49.2
LasF (Ours) 122M 3 × 155 26 16.5 44.3

deeper models with fewer layers, i.e., a flatter model struc-
ture. This observation suggests that interpreting language
tokens in the form of a functional semantic field may be
more similar to the mechanisms by which the human brain
processes language, the two primary components of the hu-
man brain cortex, the neocortex and allocortex, have only
six and four layers, respectively (Shipp, 2007).

Table 4 also indicates that, under the same number of lay-
ers and parameter size, the training and inference times of
LasF -based language models are approximately 2.6 times
faster than Transformer-based language models. Moreover,
there is still room for speeding up the metrics-based matrix
computation in LasF -based language models, as there are
fast algorithms specifically designed for matrix multiplica-
tion in metric spaces (Indyk & Silwal, 2022; Pei & Wang,
2023). The details of implementing this improvement are
left for future work.

7. Why a FLAT LasF can Work
Unlike multi-head Attention, which uses a Query-Key in-
formation retrieval approach to achieve nonlinear mapping,
the LasF module focuses on achieving nonlinear mapping
through transmitting signals between neurons and neuronal
groups. The signal transmission amongst one layer of neu-
rons is equivalent to the feed-forward process across multi-
ple neural layers. Intuitively, we interpret an LasF module as
a time-variant dynamical system containing neurons trans-
mitting signals. For brevity, we simplify the time-variant
LasF module as follows,

S(t+1)[l; i] = f (l)
s

(
Q[l; i],S(t)[l; i]

)
S̃(t+1) = F

(
Q̃[l], S̃(t)[l]

)
.

(15)

Here, l ∈ [1, Ns], where Ns is the number of semantic fields,
S represents the signals transmitted between neurons, and Q
represents the states of the neurons; S̃ and Q̃ are the merged
encodings of {Q[1], ...Q[NQ]} and {S[1], ...,S[NS ]}. For
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Table 5: Performance comparison on CommonsenseQA
in-house controlled experiments. As the official test set
is hidden, we report the accuracies of in-house dev (IHdev-
Acc) and test (IHtest-Acc), following the data split of Lin
et al. (2019). The DEKCOR* and KEAR* methods use
the prohibited ConceptNet, whose empty triplets explic-
itly correspond to the human-generated distractor choices.
Therefore, we randomly initiate the empty triplets to elimi-
nate the shortcut hints.

Methods IHdev-Acc. (%) IHtest-Acc. (%)

GPT-3.5-turbo 73.3 -

RoBERTa-large 73.1 ± 0.5 68.7 ± 0.6

+KagNet 73.5 ± 0.2 69.0 ± 0.8
+PathGenerator - 72.7 ± 0.4
+QA-GNN 76.5 ± 0.2 73.4 ± 0.9
+HGN - 73.6 ± 0.3
+LasF (Ours) 79.5 ± 0.3 75.4 ± 0.4

ALBERT-large 78.7 ± 0.4 75.1 ± 0.4

+DEKCOR* 80.3 -
+KEAR* 81.2 -
+Headhunter 83.3 -
+LasF (Ours) 87.1 ± 0.3 83.8 ± 0.4

instance, Eq. 5 presents a merged encoding as Q̃. The f and
F denote specific trainable nonlinear functions.

Obviously, the pre-training process for a flattened LasF
model forces LasF to use fewer time-steps to reach equilib-
rium, i.e., S(t+1) = S(t), as presented in Eq. 15, since more
time-steps and the resulting increased neuronal interaction
lead to an exponentially increasing loss. We now under-
stand that the pre-training process for LasF is equivalent
to reducing the required time-steps. Next, we can observe
that the number of these time-steps is actually equivalent
to the model’s depth. This is because state-space modes
that require more time-steps are mathematically equivalent
to deeper neural models. Therefore, we can conclude that
the pre-training process for LasF also equates to forcing
LasF to achieve the representational capacity of a deeper
neural model with less depth. This explains why a flat LasF
model’s language modeling capability is competitive with
that of a deep Transformer model.

8. Ablation Study
We conduct ablation experiments on the language modeling
task, and the experimental results are presented in Table 6.
The controlled variables involve metrics µ involved in Eq. 3,
the set of metrics {µk} involved in Eq. 6, and the length-
related projections D and DS involved in Eq. 2 and Eq. 7.

Table 6: Ablation Study on Language Modeling.

Components Variants Perplexity (↓)

WikiText103 PennTreebank

2layer LasF / 17.2 49.2

µ

Cosine-sim 17.8 50.1
L1-norm 17.6 49.5
L2-norm 17.2 49.2
L3-norm 17.3 49.4

µk

L1-norm 18.3 52.2
L1,2-norm 17.8 50.5
L1,2,3-norm 17.2 49.2

D {Ds}
Truncated 17.6 49.3
Identity 17.5 49.2

Gaussian 17.2 49.2

9. Limitation
We would like to discuss briefly on the limitation of our
LasF, particularly regarding to the GPU implementation
and hyper-parameter tuning issues:

• CUDA Implementation. One challenge we face is the
limited availability of well-established CUDA pack-
ages for efficiently computing metric-based operations
that are intensively required by our method. Integrating
our approach into the Large Language Model (LLM)
community demands additional efforts, particularly in
terms of CUDA implementation and acceleration.

• Hyper-parameter Tuning. The introduction of novel
concepts in our method, such as neuronal groups, rep-
resents an area that is not extensively explored in the
existing literature. Consequently, further investigations
are needed to empirically establish the relationships be-
tween these concepts and their theoretical implications.
We acknowledge the importance of refining the content
regarding to these novel elements and will address this
concern in the revision by providing additional insights
and analyses.

10. Conclusion
In this study, we introduce a novel approach termed LasF,
which simulates semantic fields using functional represen-
tation to model language. This method offers enhanced
interpretability from a linguistic and neuro-biological per-
spective while substantially increasing parameter efficiency.
Empirical results across reading comprehension, question
answering, and language modeling tasks consistently illus-
trate the superiority of LasF compared with other language
modeling paradigms. In the future, we aim to train a general-
purpose large-scale flat LLM from scratch based on LasF .
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A. Functional representation of semantic units in semantic compression task
A semantic unit is analogous to a token/word and is strictly a conceptual element that implements reasoning tasks. A
well-formed reasoning model needs as few semantic units as possible while preserving its reasoning capacity as much as
possible. Giving a semantic unit with index i ∈ {1, ...,M}, Instead of treating it as a fixed-dimensional encoding, we treat it
as a functional Fi that takes the functional and tensor-formed parameters, including the objectives T, the external states E,
and the internal states I as the arguments, followed by returning a task-specific encoding vi as the output:

vi = Fi(T,E, I) (16)

The parameters in Eq. 16 have yet to be defined precisely. One can freely define the parameters towards the need of a given
task, such as semantic compression, reading comprehension, and question answering.

For better understanding, we show how to instantiate Eq. 16 to facilitate the task of semantic compression (Cai et al.,
2021). This task is to find the top-K largest components of z = Vy ∈ Rn×1 given a query vector y ∈ RDv×1 and n
Dv-dimensional encodings V ∈ Rn×Dv under limited computational cost. In this case, the query y is the external state E in
Eq. 16. The internal states I contain two parts: the remaining computational budget and the original-dimensional encoding
Vi ∈ RDv×1. The objective T minimizes the query loss between the computed ẑ and the actual z, and the computational
cost as follow,

T(D
′

v) =

K∑
k=1

γk∥y⊤Vrk − (P[D
′

v]y)
⊤(P[D

′

v]Vrk)∥+D
′

v

2
(17)

where D
′

v ∈ [1, Dv−1], γ ∈ [0, 1], P[D
′

v] ∈ RD
′
v×Dv . The index rk refers to the candidate that corresponds to the k-largest

components of z, i.e., zrk = y⊤Vrk is the k-largest ones of {z1, ..., zn}. P[D
′

v] is trained by minimizing T(D
′

v) using a
set of provided queries y. In this case, Fi presents a heuristic way to recursively compute Vy, reducing the dimensions
step-by-step. During a T -step iterative process, D(0)

v = Dv

10 < D
(1)
v < ... < D

(T )
v , we compute the reduced V(t)y(t) and

filter out the candidates, i.e., reduce the candidates’ size from R(t−1) ∈ N+ to R(t) ∈ [1, R(t−1)], followed by further
reducing the dimensions, computing and filtering out, etc., until the computational budget is consumed. The analytical form
of Fi for this task can be defined as

v
(t)
i = Fi(T, y, I(t)) = P[D(t)

v ]v
(0)
i = P

[
η
(
Ψ−

t−1∑
s=0

R(s)D(s)
v

2) 1
2

]
v
(0)
i (18)

where v(0)
i = Vi, η ∈ (0, 1) is a predefined parameter that compromises the extra computational cost during pre-processing,

and Ψ ∈ N is the initial computational budget that determines the expected computational complexity. The parameter
P[D

(t)
v ] ∈ RD(t)

v ×Dv is pre-trained by back-propagating the objective T defined in Eq. 17. A candidate encoding i with a
higher ẑ(t)i is more likely to be selected by the filtering mechanism, where details are omitted for simplicity. Note that this
functional representation can perform specified tasks more efficiently, ensuring an optimal trade-off between the execution
process’s cost and efficiency. However, as illustrated above, this mechanism is too specific, it needs further generalized
implementation.

The WikiQA dataset (Yang et al., 2015) contains 3047 questions/queries and 29258 sentences/candidates, in which 1473
sentences were labeled as the answer to their related questions. Bing query logs were used as the query source to reflect
the real-world case. Each query is linked to a Wikipedia article that contains the answer. We use the heuristic functional
representation presented by Eq. 18 on this benchmark to show that the proposed functional representation contains more
semantic patterns than other fixed-dimensional representations.

Table 7 lists the baseline methods for semantic compression. Incremental PCA, i.e., iPCA (Evangelopoulos et al., 2012)
reduces the query and candidate embeddings to lower dimensional compressed vectors. Kernel PCA (Mingbo et al., 2021)
configures a non-linear mapping to transform the embeddings to higher-dimensional space, followed by standard PCA to
project them back to lower-dimensional linearly separable space. Locally Linear Embedding, i.e., LLE) aims to discover
non-linear structures in the dataset and also preserve the distances within local neighborhoods (Roweis & Saul, 2000).
Isometric Mapping, i.e., Isomap, uses the spectral theory to preserve the geodesic distances in the lower dimensional
space (Tenenbaum et al., 2000).
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Table 7: Performance comparison on WikiQA dataset. We test our method on the task of semantic query on different
dimension settings. Each dimension setting refers to a limited computational budget, i.e., the time cost for implementing
the complete query task should not exceed a specific value. We use the original embeddings generated by three distinct
pre-trained text encoders. Then, we apply five methods to compress the generated embeddings or reduce the computational
complexity to meet the limited computational budgets. The top 1 or top 3 accuracies are recorded.

Compress dim dim=10 dim=20 dim=30 dim=50 dim=768

Actual Time Cost
for Query (seconds) 0.3-0.4 0.4-0.5 0.5-0.7 1.1-1.3 12-13

Text Encoder Method Top1 Top1 Top1 Top1 Top3 Top1 Top3

All-mpnet

iPCA 0.0887 0.2759 0.3842 0.4926 0.7340

0.5615 0.8374
kPCA 0.0690 0.2364 0.3941 0.5222 0.7438
LLE 0.2167 0.2463 0.2562 0.2611 0.5025

Isomap 0.2463 0.2562 0.2759 0.2906 0.5813
LasF (Ours) 0.2611 0.3892 0.4384 0.5665 0.8079

Qa-mpnet

iPCA 0.0345 0.1330 0.2611 0.4433 0.6749

0.6010 0.8276
kPCA 0.0246 0.1231 0.2512 0.4433 0.6601
LLE 0.1674 0.1921 0.2019 0.1921 0.3744

Isomap 0.1133 0.1133 0.1478 0.1724 0.3645
LasF (Ours) 0.1872 0.3892 0.4828 0.5764 0.8177

Distil-roberta

iPCA 0.0493 0.2315 0.3399 0.3941 0.6749

0.3990 0.7192
kPCA 0.0542 0.2213 0.3005 0.3892 0.6700
LLE 0.1478 0.1823 0.1970 0.1773 0.3695

Isomap 0.1773 0.2069 0.2118 0.2118 0.5074
LasF (Ours) 0.2808 0.2709 0.3892 0.4089 0.6946

A.1. Semantic compression

Semantic search aims to improve search accuracy by capturing the semantic information of the content candidates. In Table 7,
we choose three pre-trained models designed for semantic search, including All-mpnet (Song et al., 2020), Qa-mpnet (Song
et al., 2020), and Distil-roberta (Sanh et al., 2019). to encode the queries and the candidate contents to generate contextual
representations with the original dimension of 768 (Reimers & Gurevych, 2019). The experiments are conducted on four
dimension settings, i.e., dim = {10, 20, 30, 50}. The heuristic LasF using Eq. 18 takes the original 768-dimensional
embeddings as v(0) defined in Eq. 18. We also list the actual time cost of our method for implementing semantic query to
validate the fairness of comparison. LasF in all cases performs better than other methods regarding query accuracy. We
observe that using the functional representation to encode the sentences, the contextual representations containing less than
10% of the original parameters perform competitively with the original 768-dim representations in semantic search. On text
encoders of All-mpnet and Distil-roberta, our method with much fewer parameters and complexity performs even better
than the original 768-dimensional representation obtained by a large-scale pretrained model, demonstrating the advantage of
LasF in encoding the relational information underneath the data.

B. Empirical results on CsQA’s complicated sentences
We investigate whether LasF makes consistent improvements in tasks requiring more complicated reasoning. We follow
Zhang et al. (2022) to categorize the dev set into three proxies, i.e., a) the number of prepositional phrases in the question
stems, b) the existence of a negation term (e.g., no, not), and c) the existence of a hedging term (e.g., possibly, probably). We
implement the data split via the spaCy toolkit (Vasiliev, 2020). Each token with a dependency relation prep or neg is labeled
as a propositional or negation term, respectively. The results are presented in Table 8, where we see LasF significantly
outperforms other competitors in all the settings. The improvement can be attributed to the trainable metric functions of
LasF that capture the semantic relations amongst tokens. Therefore, LasF succeeds in dealing with negation and hedge
terms with more sensitive meanings than the others.
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Table 8: Performance comparison on CommonsenseQA IHdev set to validate LasF’s improvements on complex
questions. The experimental setting follows Zhang et al. (2022). Except for the base models, the accuracy improvements
are listed on the right side of the accuracy.

Methods No. Prepositional Phrases Negation
Term

Hedge
Term

0 1 2 3 4∼7

RoBERTa 66.7 72.3 76.3 74.3 69.5 63.8 70.7

+QA-GNN 76.7 +10.0 76.2 +3.9 79.1 +2.8 74.9 +0.6 81.4 +10.9 66.2 +2.4 76.0 +5.3
+GreaseLM 75.7 +9.0 79.3 +7.0 80.4 +4.1 77.2 +2.9 84.7 +15.2 69.9 +6.1 78.4 +7.7
+LasF (Ours) 77.9 +11.2 79.8 +7.5 81.5 +5.2 80.6 +6.6 85.0 +15.5 81.5 +7.5 78.9 +8.2

ALBERT 73.9 77.8 78.7 75.0 78.9 81.4 70.8

+KEAR 80.6 +6.7 82.8 +5.0 80.1 +1.4 80.6 +5.6 84.2 +5.3 86.6 +5.2 73.9 +3.1
+LasF (Ours) 83.8 +9.9 83.6 +5.8 84.8 +6.1 86.1 +11.1 94.7 +15.8 88.7 +7.3 79.3 +8.5

C. Mathematical Validation
Theoretically, the metric functions µ and {µk, k ∈ [1, Nf ]} defined in Eq. 3 and Eq. 5 is dense in C(Id) that denotes
the space of continuous functions on a finite d-dimensional cube (Theorem C.1). Thus, provided with a specific set of
semantic fields N , a well-formed prompt S, and a discriminatory metric function µ, our LasF can approximate arbitrary
function amongst semantic units. This theorem guarantees that LasF can facilitate the usage of knowledge as nonlinear
and dynamical functions. It also validates that the nonlinear dynamic functions of LasF can be of arbitrarily large model
capacity with an arbitrary size of trainable parameters, supporting the full utilization of arbitrary-scale knowledge bases.
Moreover, we can replace a query token with a proper candidate that provides sufficient information from arbitrarily large
external knowledge sources.

Theorem C.1. Let V be a d-dimensional vector space, Ψ : Rd × Rd → Rd constructed using a functional F and functions
N defined above, be a continuous and discriminatory function on Id, and fi : Rd → RN×d be a vector field for ui ∈ V .
Then there exists a signed regular Borel measure µ on Id such that fi(θ) + fj(−θ) = µ(ui − uj) for arbitrary θ ∈ Rd and
S is dense in C(Id).

Proof. We can easily construct a well-formed measure µ. We can prove in an apagogical manner that Ψ is dense in C(Id).
Suppose that Ψ is not dense in C(Id), then the closure of Ψ is a subset of C(Id): Ψ ⊂ C(Id). By Hahn-Banach Theorem,
there exists a non-zero bounded linear functional L on C(Id) such that L (Ψ) = L (Ψ) = 0. By Reisz Representation
Theorem, we have

L (Ψ) =

∫
θ

Ψ
(
fi(θ), fj(θ)

)
dµ(θ) = 0 (19)

for every pair of ui and uj . Since Ψ is discriminatory, we must have µ = 0, which contradicts the assertions that L ̸= 0
and µ are regular.

D. Discussion on the potential of Employing external Knowledge Bases
Based on the definition of LasF, we have validated its ability in modeling the semantic unit relations in sentences. Another
advantage of LasF is that it is naturally compatible on the task of encoding external knowledge bases. To elaborate, one
can establish a semantic field in the form of a knowledge graph by substituting the dynamic state Q of semantic units
with embeddings of entities from a knowledge graph. Following this, we change the metric between Qs as the vector of
relations between entities, creating an independent semantic field detached from the input X. In our preliminary experiments
conducted on CsQA, we noted that adopting the mentioned approach to convey knowledge related to the query using
corresponding triplets in ConceptNet led to an improvement of approximately 3.5% in model accuracy. Nevertheless, due to
the evaluation protocol of CsQA that ConceptNet is not allowed to use, we have not included this part of results in the main
part. Furthermore, our findings indicate that by ensuring precision and accuracy in the independent semantic field through
manual annotation, the model accuracy could be enhanced to over 94%, showing the significant potential for an enhanced
LasF through integration with well-established external knowledge bases.
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E. A conceptual comparison with Transformer
Indeed, our approach shares similarities with the multi-head attention mechanism of Transformer, as both models involve
modeling linguistic elements and utilizing their relations to control subsequent computation processes. We admit that among
neural models compatible with matrix multiplication-based computing architectures, Transformer can be considered one of
the closest approximations to brain operation mechanisms. Consequently, it is inevitable that a newly proposed and effective
language model structure approximates Transformer in the underlying computational process. However, fundamental
differences still exist between LasF and Transformer.

First, while Transformer only considers relations between tokens, resulting in an attention matrix size dependent on the
input sequence length, LasF construct the projections along both the length dimension and the embedding dimension of
each token, yielding a relational matrix containing richer information.

Second, Transformer maps an input sequence to Q and K matrices, generating QK⊤ as the relational matrix. In contrast,
LasF maps the inputs to a single matrix Q (distinct from Transformer’s Query matrix Q), which describes neuronal states,
and directly constructs the relational matrix using the relationships within Q itself. This single-matrix approach not only
saves memory space compared to using separate Q and K matrices but also enhances computational efficiency.

Third, the construction of LasF’s relational matrix involves forming a distance matrix from the neuronal states’ corresponding
matrix Q through a metric function. There exists computationally efficient algorithms (Indyk & Silwal, 2022) for matrix-
vector multiplication with distance matrices, reducing the time complexity from O(n2) to O(ndp), where d represents the
dimensions of neuronal states and p corresponds to an Lp-norm as the metric function. Although we haven’t utilized this fast
algorithm in our experiments due to incomplete CUDA programming specifically for it, the computational time measured
already shows advantages over Transformer (refer to the Time Cost column in Table 4). Completion of CUDA programming
based on Indyk & Silwal (2022) and Pei & Wang (2023) could further enhance LasF’s computational efficiency.

Fourth, LasF inherently possesses a Mixture of Experts (MoE) structure. Its field-level relational matrix computation (as
seen in Eq. 6) evaluates the relationships between various semantic fields (analogous to neuronal communication among
different cortical mini-columns in the brain’s cerebral cortex) and uses these relationships to control the output of each
semantic field. In contrast, Transformer directly combines the outputs of various attention blocks using MLP layers. Through
experiments focusing on WikiText103, we observe a significant decline in the resulting language modeling ability if we
were to directly combine the outputs of semantic fields using an MLP, akin to Transformer. For instance, the perplexity
(PPL) would increase from 16.5 to 27.4.

Fifth, the core idea of LasF differs from that of Transformer. While Transformer’s core operation is based on Query-Key
retrieval, LasF’s core operation revolves around signal transmission between neurons. Although they share similarities
in implementation, their underlying principles are fundamentally different. The various semantic fields in LasF can be
associated with neuronal behaviors of different regions in the human brain when performing different cognitive tasks.
Different semantic fields indeed correspond to specific linguistic patterns/structures. For instance, some semantic fields
focus more on capturing Part-of-Speech information between tokens, while others focus on capturing dependency features
or named entities. LasF enables a better integration of NLP with linguistics and neuroscience, thereby enhancing the
interpretability of neural language models.
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