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ABSTRACT

Diffusion models excel at short-horizon robot planning, yet scaling them to long-
horizon tasks remains challenging due to computational constraints and limited
training data. Existing compositional approaches stitch together short segments
by separately denoising each component and averaging overlapping regions. How-
ever, this suffers from instability as the factorization assumption breaks down
in noisy data space, leading to inconsistent global plans. We propose that the
key to stable compositional generation lies in enforcing boundary agreement on
the estimated clean data (Tweedie estimates) rather than on noisy intermediate
states. Our method formulates long-horizon planning as inference over a chain-
structured factor graph of overlapping video chunks, where pretrained short-horizon
video diffusion models provide local priors. At inference time, we enforce bound-
ary agreement through a novel combination of synchronous and asynchronous
message passing that operates on Tweedie estimates, producing globally consis-
tent guidance without requiring additional training. Our training-free framework
demonstrates significant improvements over existing baselines across 100 simula-
tion tasks spanning 4 diverse scenes, effectively generalizing to unseen start-goal
combinations that were not present in the original training data. Project website:
https://comp-visual-planning.github.io/

1 INTRODUCTION

Generative diffusion models have shown strong capacity for modeling complex, high-dimensional
distributions over images, videos, and robot plans. In planning, they offer a compelling alternative
to per-instance optimization: instead of solving a new search problem for every start–goal pair, we
can sample likely solutions from a learned generator. However, extending video-based planning to
long horizons remains challenging: most backbones are trained on short clips, compute and memory
scale unfavorably with sequence length, and long-range constraints (contacts, object persistence, and
start–goal satisfaction) must be maintained throughout the rollout.

We adopt a compositional generation perspective on long-horizon planning. Rather than using a
single model to produce an entire trajectory, we compose plans from overlapping, short-horizon
factors produced by a pretrained diffusion model. The central challenge is the consistency of this
composition: during forward diffusion, noisy variables become entangled across time, breaking
factorization assumptions behind common compositional heuristics (e.g., score averaging) (Zhang
et al., 2023; Mishra et al., 2023; 2024; Bar-Tal et al., 2023) and yielding brittle behavior when
long-range constraints must propagate.

Our key insight is to compose where diffusion model estimations are most reliable: on their Tweedie
estimates. We formulate planning as inference in a chain-structured factor graph over overlapping
video chunks. Local priors come from a short-horizon diffusion backbone; global coherence is
enforced by boundary agreement on Tweedie predictions, not on noisy states. We derive two
complementary message-passing mechanisms on these denoised variables: a synchronous scheme
that views the chain as a Gaussian linear system and drives a single residual to zero with parallel,
order-invariant updates, and an asynchronous scheme that propagates constraints via one-sided,
stop-gradient targets for faster and more stable convergence. Both yield training-free guidance terms
that we integrate into a DDIM sampler via diffusion-sphere guidance, balancing alignment with
sample diversity.

1

https://comp-visual-planning.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We instantiate this approach for compositional visual diffusion planning, representing a plan as a
sequence of images. Crucially, the method operates purely at inference time: the short-horizon
diffusion backbone is trained once on short clips and then frozen; at test time we compose long-
horizon plans via message passing on Tweedie estimates, with no additional training, fine-tuning, or
task-specific adapters. The amount of test-time compute is controllable through the number of factors
and guidance strength, enabling a direct plug-and-play use with existing backbones.

In summary, the key contributions of this work are: (1) A diffusion planning framework that
models long-horizon plans as chain-structured factor graphs over video segments and enforces
boundary agreement on Tweedie estimates rather than on noisy diffusion states. (2) Joint synchronous
and asynchronous message passing over denoised variables, coupled with a training-free sampler
that guides DDIM steps with diffusion-sphere guidance derived from message-passing residuals,
preserving local sample quality, parallelism, and diversity while enforcing boundary agreement. (3)
A compositional planning benchmark and empirical study demonstrating significant improvements in
temporal coherence, static quality, and task success on held-out start–goal combinations compared
with prior compositional baselines (Zhang et al., 2023) that operate on noisy diffusion states.

2 RELATED WORK

Diffusion Models For Planning. A flurry of work has leveraged diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) for planning (Janner et al., 2022; Ajay et al., 2022; Dong et al., 2024a;
He et al., 2023a; Ubukata et al., 2024; Lu et al., 2025; Chen et al., 2024a; Liang et al., 2023; Dong
et al., 2024b), with various applications such as path finding (Carvalho et al., 2025; Luo et al., 2024),
robotics (Pearce et al., 2023; Fang et al., 2024), and multi-agent (Zhu et al., 2024; Shaoul et al., 2024).
Performance can be further improved by increasing test-time compute such as tree search (Feng et al.,
2024a; Yoon et al., 2025), hierarchical planning (Li et al., 2023; Chen et al., 2024b), and post-hoc
refinement (Lee et al., 2024; Wang et al., 2022). Despite strong results, most prior work studies
diffusion planning in low-dimensional state spaces that yield 2D trajectories. While recent work (Xu
et al., 2025; Xie et al., 2025; Huang et al., 2024a) begins to consider more complex state spaces,
they typically target simple or task-specific scenarios. In this paper, we investigate visual diffusion
planning, where a plan is represented as a sequence of images, and we introduce a training-free
sampling method that scales to significantly longer horizons and to unseen start–goal combinations.

Compositional Diffusion Generation. Compositional diffusion models are now well studied (Du
et al., 2020; Garipov et al., 2023; Du & Kaelbling, 2024; Mahajan et al., 2024; Okawa et al.,
2024; Thornton et al., 2025). One thread develops samplers for logical conjunctions of conditions,
combining multiple prompts or constraints into coherent generations (Liu et al., 2022; Bradley et al.,
2025; Zhang et al., 2025; Yang et al., 2023). A complementary thread scales the number of inference-
time tokens while reusing models trained on short horizons—yielding wide-field panoramas (Zhang
et al., 2023; Bar-Tal et al., 2023; Kim et al., 2024a; Lee et al., 2023), longer-duration videos (Wang
et al., 2023; Kim et al., 2024b; 2025), and extended-horizon robotic plans (Zhang et al., 2023; Mishra
et al., 2023; Luo et al., 2025). However, existing compositional methods suffer from instability
when applied to noisy diffusion states, as they typically rely on score averaging or other heuristic
combinations that assume factorization holds throughout the denoising process. In contrast, our
approach operates on clean Tweedie estimates rather than noisy intermediate states, formulates the
problem as factor graph inference with explicit boundary constraints, and employs principled message
passing to maintain global consistency—yielding substantial improvements in both stability and plan
quality over prior compositional planning methods.

Inference-Time Guidance for Diffusion Model. Inference-time guidance steers diffusion sampling
without retraining, enabling adaptive, controllable behavior at test time. This flexibility has driven
progress in image restoration (inpainting, deblurring) (Chung et al., 2024; Yang et al., 2024; Yu et al.,
2023; Ye et al., 2024; Song et al., 2023a), style transfer (Bansal et al., 2023; He et al., 2023b), and
robot motion/behavior generation (Liao et al., 2025; Black et al., 2025; Du & Song, 2025; Song et al.,
2023b; Feng et al., 2024b). However, most existing methods steers a fixed-length output, we frame
guidance as a form of message passing between tokens—allowing information to propagate across
the sequence. This perspective lets us stitch together short behavioral fragments into long-range,
temporally consistent visual plan.
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3 PRELIMINARIES

3.1 FACTOR GRAPH FORMULATION FOR COMPOSITIONAL DISTRIBUTIONS

A factor graph z = [u1, u2, . . . , um] is a bipartite graph connecting factor nodes {xi}ni=1 and variable
nodes {u}mj=1, where xj ⊆ [u1, u2, . . . , um]. An undirected edge between xi and uj exists if and
only if uj ∈ xi. Given a factor graph that represents the factorization of joint distribution, previous
works approximate it with Bethe approximation (Zhang et al., 2023):

p(zt) :=

n∏
i=1

p(xit)

m∏
j=1

p(ujt )
1−dj , (1)

where dj is the degree of each variable uj . Therefore, the estimated score is base on Bethe
approximation is:

∇zt log p(zt) =

n∑
i=1

∇xi
t
log p(xit) +

m∑
j=1

(1− dj)∇uj
t
log(ujt ). (2)

However, Bethe approximation(Eq. 1) holds in clean data (i.e., diffusion timestep t = 0), but does
not hold when t > 0, we further prove its gap later (Theorem 1).

3.2 DIFFUSION MODEL AND TRAINING-FREE GUIDED DIFFUSION

Diffusion Models are a class of generative model that generates sample in the desired distribu-
tion from an initial Gaussian distribution p(xT ) by iteratively performing a denoising process. It
has a pre-defined forward process q(xt |x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ᾱ is a scalar

dependent on diffusion timestep t. In this work, we directly estimate Tweedie when training:
Et,x0,ϵt [∥x0 − xθ(xt, t)∥2](x0 predictor) and apply a DDIM step when sampling:

xt−1 =
√
ᾱtx0|t +

√
1− ᾱt − σ2

t

xt −
√
ᾱtx0|t√

1− ᾱt
+ σtϵt, (3)

where estimated Tweedie x0|t is the output of xθ(xt, t).

Classifier Guidance (Dhariwal & Nichol, 2021) proposes to train a time dependent classifier in
conditional generative tasks. Specifically, the conditional distribution p(xt|y) can be modeled by
Bayes Rules p(xt|y) = p(xt)p(y|xt)/p(y) : ∇xt

log p(xt | y) = ∇xt
log p(xt) +∇xt

log p(y |xt),
where y represents the condition or measurement. This paper focuses on conditional guidance in
a training-free manner, all the guidance in this paper is in training-free manner. In training-free
guidance setting, instead of explicitly training a classifier, the guidance term p(y |xt) can be modeled
as a potential function exp (−L(x0|t)), which simplifies to a gradient-descent update during inference
time:

∇xt
log p(y |xt) = ∇xt

log
exp (−L(x0|t))

Z
= −∇xt

L(x0|t), (4)

where x0|t = xθ(xt, t) estimated by Tweedie’s Predictor. Since exp (−L(x0|t)) is a point estimation
of distribution of Ex0∼p(x0|xt)[exp(−L(x0))], and the gap between them has a upper bound (Chung
et al., 2024) and lower bound (Yang et al., 2024), Diffusion sphere guidance (Yang et al., 2024)
is proposed to eliminate this gap based by formulating a constrained optimization problem over
a hypersphere with the mean to be

√
ᾱtx0|t +

√
1− ᾱt − σ2 xt−

√
ᾱtx0|t√

1−ᾱt
and radius

√
sσt(s is the

shape of xt), and derive a closed form solution for the update :

xt−1 =
√
ᾱtx0|t +

√
1− ᾱt − σ2

xt −
√
ᾱtx0√

1− ᾱt
−

√
sσt

∇xt
L(x0|t)∥∥∇xt
L(x0|t)

∥∥ . (5)

4 METHOD

We formulate long-horizon planning as inference over a chain-structured factor graph of overlap-
ping video chunks, where pretrained short-horizon diffusion models provide local priors. Our key
innovation is enforcing boundary agreement on estimated clean data (Tweedie estimates) rather than
noisy intermediate states, addressing the core limitation that factorization assumptions break down
during diffusion sampling. We achieve this through novel synchronous and asynchronous message
passing that operates on Tweedie estimates, producing globally consistent guidance without additional
training. The approach involves formulating the planning problem as a factor graph (Section 4.1),
deriving its distribution (Section 4.2), and sampling via our message passing scheme (Section 4.3).
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Training as a Unified Factor Inference as a Chained-Structured Factor Graph
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Figure 1: Compositional Visual Planning via Inference Time Diffuser Scaling. We train a short-horizon
visual diffusion model on clips treated as a single factor. At inference, we scale visual planning horizon without
retraining by chaining overlapping factors into a linear factor graph: the start and goal boundary variables
are anchored at the ends, while neighboring factors exchange information through shared transition boundary
variables.

4.1 PROBLEM FORMULATION

While a diffusion model can learn a prior over short, local behaviors, long-horizon planning requires
additional structure to ensure feasibility. Beyond satisfying the start and the goal, intermediate pieces
must stitch with local consistency. We therefore train a short-horizon diffusion model xθ on local
task segments; at test time, given a start image and a goal image, we sample from a Gaussian prior,
partition the trajectory into overlapping chunks, generate each chunk with xθ, and compose them into
a coherent plan that is finally mapped back to an action sequence through inverse dynamics model.

We represent the plan as a linear chain z = [u1, . . . , um] and place n overlapping factors xi =
[u2i−1, u2i, u2i+1], i = 1, . . . , n, each collecting three consecutive frames. The endpoints u1 = s
and um = g serve as the start and goal boundary variables. Let Ai and Bi denote linear selectors that
extract the first and last frames of factor xi, respectively. The feasibility of a plan is enforced by the
following boundary agreements:

(Start/Goal Anchoring) A1x
1 = s, Bnx

n = g,

(Transition Boundary) Bix
i = Ai+1x

i+1, i = 1, . . . , n− 1.
(6)

This factorization reduces global planning to local generation with explicit boundary equalities and
scales by reusing the same local model xθ across time while preserving consistency via start–goal
anchoring and transition agreements. All factors/variable in latent space encoded by the Cosmos
tokenizer (et. al., 2025) into a compact latent representation; we perform planning entirely in this
latent space rather than pixels, which reduces dimensionality to save compute.

4.2 DISTRIBUTION OF FACTOR GRAPH

Prior work (Zhang et al., 2023; Mishra et al., 2023; 2024) relies on the Bethe-style product of factors
normalized by variables (Eq. 1), which is accurate on clean data. Forward diffusion, however, perturbs
factorization assumption between factors and variables.

Theorem 1 (Noisy-Bethe Gap Theorem). Consider a linear chain z = [u1, u2, u3] with pair-
wise factors [u1, u2] and [u2, u3], where u2 is the transition boundary variable. Assume
the forward noising processes are p(u1t , u

2
t |u1, u2), p(u2t , u

3
t |u2, u3), and p(u2t |u2). Let

a(u2) =
∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1, b(u2) =

∫
p(u2, u3)p(u2t , u

3
t |u2, u3) du3, c(u2) =

p(u2)p(u2t |u2), Z =
∫
c(u2) du2, and q(u2) = c(u2)/Z. Denote by p(u1t , u

2
t , u

3
t ) the true noisy

distribution and by p̂(u1t , u
2
t , u

3
t ) the estimator from Eq. 1. Then the gap between true distribution

and estimated distribution is:
∆ = p(u1t , u

2
t , u

3
t )− p̂(u1t , u

2
t , u

3
t ) = Z Covu2∼q

[
a
c ,

b
c

]
. (7)

Interpretation. The proof is in appendix A. We can view a(u2) as the left-factor message into the
boundary u2, b(u2) as the right-factor message into the boundary, and c(u2) as the local boundary

4
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evidence. Intuitively, a(u2) and b(u2) quantify how the left and right pairwise factors, after passing
through their respective forward-noise channels, “vote” for different boundary values u2. The term
c(u2) provides the unary baseline that captures how plausible each boundary value is on its own
(and how it transmits noise). The noisy-Bethe gap ∆ is exactly the covariance—under the boundary
weighting q—between the two relative gains a(u2)/c(u2) and b(u2)/c(u2). When these gains are
uncorrelated (or proportional) across u2, the covariance vanishes and the Bethe approximation
remains accurate. Forward diffusion typically introduces shared, heteroscedastic distortions in u2,
which make the two gains rise and fall together; this produces a nonzero covariance and, consequently,
a systematic gap.

(a) Dataset Distribution (b) Diffcollage/GSC (c) Ours

Figure 2: Motivating toy example. We train a short-horizon diffu-
sion model on circular arc clips (left). At test time, three 120◦ arc
generators are composed to form a three-petal “flower”.

Figure 2 illustrates the core failure
mode of Diffcollage which is de-
ployed based on noisy factorization as-
sumption. A DiffCollage/GSC-style
stitcher (middle) drifts and leaves
boundary gaps, while our inference-
time message passing (right) aligns
shared boundaries and closes the
loops. This mirrors the limitation of a
Bethe-style product of factors (Eq. 1)
under forward diffusion: noise cor-
rupts factorization assumption. Moti-
vated by the Noisy-Bethe gap, instead

of enforcing dependencies directly among the noisy factors x1:nt , we impose them on the concatenated
Tweedie (denoised) estimates x1:n0|t . Accordingly, our approximation to the factor-graph distribution
is:

p(zt) =

n∏
i=1

p(xit) · exp(−L(x1:n0|t )), (8)

where exp(−L(x1:n0|t )) acts as a potential that penalizes inconsistencies—and thus enforces depen-
dencies—among the estimated clean variables x1:n0|t = xθ(x

1:n
t ).

4.3 JOINTLY SYNCHRONOUS AND ASYNCHRONOUS MESSAGE PASSING

Message passing proceeds through boundary factors: when the transition boundaries together with
the start and goal boundaries agree, the plan is feasible (see Eq. 6). We therefore optimize boundary
agreement explicitly. Our synchronous scheme treats the chain as a Gaussian linear system and
drives a single residual (Σ−1x1:n0|t = η) to zero via parallel updates, but can be numerically stiff.
Our asynchronous scheme uses one-sided, stop-gradient targets to propagate constraints forward
and backward in a TD-style manner, yielding faster and more stable convergence at the cost of mild
bias. Finally, diffusion-sphere guidance interpolates between unconditional sampling and loss-driven
descent, balancing alignment and diversity.

4.3.1 SYNCHRONOUS MESSAGE PASSING

We encode the boundary condition as a Gaussian potential, ψi−1,i := exp(− 1
ci−1

∥Bi−1x
i−1
0|t −

Aix
i
0|t∥

2), where ci−1 denotes the variance.

Theorem 2 (Synchronous Message Passing Constraint). Let x1:n ∈ Rn×tchw denote the concatenated
intermediate factors in a chain-structured factor graph with transition boundaries ψi−1,i. Given
the start boundary ψs,1 and the goal boundary ψn,g, the joint constraints distribution over all
intermediate factors is Gaussian:

psync(x
1:n | s, g) ∝ exp(− 1

2 (x
1:n)

T
Σ−1x1:n + ηTx1:n), (9)

where Σ−1 =


AT

1 A1

c0
+

BT
1 B1

c1
−BT

1 A2

c1

−AT
2 B1

c1

AT
2 A2

c1
+

BT
2 B2

c2
−BT

2 A3

c2

−AT
3 B2

c2

AT
3 A3

c2
+

BT
3 B3

c3
. . .

 , η =



AT
1 s
c0
0
0
...

BT
n g
cn

 .
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The detailed proof is in appendix B. We perform synchronous message passing on the estimated
Tweedie factors x1:n0|t by penalizing the deviation from the consistent linear system Σ−1x1:n0|t = η. In
practice, we set ci = 1 for all i = 0, . . . , n.:

Lsync =
∥∥∥Σ−1x1:n0|t − η

∥∥∥ (10)

Here, synchronous refers to a lockstep update schedule, in which all updates are computed from
the same current iterate and applied simultaneously. This scheme preserves parallelism, eliminates
order-dependent effects, and guides the Tweedie estimates toward satisfying the chain constraints.

4.3.2 ASYNCHRONOUS MESSAGE PASSING

While the synchronous objective is conceptually clean, the resulting hard consistency constraint is
difficult to optimize and often exhibits slow or unstable convergence (Ortiz et al., 2021). To improve
stability and speed, we adopt an asynchronous scheme with bootstrapped targets and stop-gradient,
akin to temporal-difference updates Hansen et al. (2024); Li et al. (2025). Concretely, we optimize:

Lasync =
∥∥∥s−A1x

1
0|t

∥∥∥+

n−1∑
i=1

γi
∥∥∥sg(Bix̂

i
0|t)−Ai+1x

i+1
0|t

∥∥∥︸ ︷︷ ︸
forward passing

+

n−1∑
i=1

γn−i
∥∥∥Bix

i
0|t − sg(Ai+1x̂

i+1
0|t )

∥∥∥+
∥∥∥Bnx

n
0|t − g

∥∥∥︸ ︷︷ ︸
backward passing

,

(11)

where sg(·)is the stop-gradient operator, x̂i+1
0|t is a target produced by diffusion model with latest

parameters, and xi0|t is produced by an EMA of the model parameters. The discount γ down-weights
messages as they move away from the start or the goal.

The boundary terms
∥∥∥s−A1x

1
0|t

∥∥∥ and
∥∥∥Bnx

n
0|t − g

∥∥∥ anchor the chain to the start and goal. The

forward message loss penalizes mismatch between Bix̂
i
0|t (outgoing) and Ai+1x

i+1
0|t (incoming), with

sg(·) enforcing one-way forward passing. Similarly, the backward message loss mirrors the same
constraint in the reverse direction.

4.3.3 DIFFUSION-SPHERE GUIDED MESSAGE PASSING

Having derived differentiable losses for synchronous and asynchronous message passing, we adopt
the training-free guidance of DSG (Yang et al., 2024). As noted by DSG (Eq. 5), stronger guidance
improves alignment but can reduce sample diversity. To balance alignment and exploration, we
interpolate between the unconditional sampling direction and the normalized descent direction
induced by our loss:

dm = dsample + gr(d
∗ − dsample), x1:nt−1 = µ1:n

t−1 + r
dm
∥dm∥

. (12)

Here dsample = σtϵt is the unconditional annealing step, d∗ = −
√
s σt ·

∇
x1:n
t

L

∥∇
x1:n
t

L∥ is the steepest

descent direction for our sync/async objective, and dm is subsequently normalized to satisfy the
spherical-Gaussian constraint.

4.4 COMPOSITIONAL VIDEO PLANNING VIA INFERENCE-TIME DIFFUSION SCALING

The procedure for compositional generation is summarized in Algorithm 1. At a high level, the
goal is to generate long-horizon trajectories by decomposing them into overlapping local factors
and enforcing boundary agreement across those factors during the diffusion sampling process. At
each timestep, DDIM provides the base update, while a joint synchronous–asynchronous message
passing loss defines a residual that Diffusion Sphere Guidance interpolates against, steering updates
toward agreement without collapsing diversity. The resulting updates are local and parallel across
overlapping factors yet collectively converge to a feasible, consistent plan. After all steps, merging
the denoised chunks yields a smooth, temporally aligned trajectory z0.

For robot manipulation planning, we train a video diffusion model on randomly sampled short
chunks from long-horizon demonstrations and an inverse dynamics model that predicts actions from
consecutive frames. At test time, we condition the diffusion model on start and goal images and
apply the compositional generation procedure to produce complete video plans. The resulting visual
trajectory is converted into executable robot actions via the inverse dynamics model. The procedure

6
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Algorithm 1 Compositional Generation

1: Require: Model EMA xθ, Latest Model x̂θ
2: Hyperparameters: Diffusion Time Step T , number of factors chained n, guidance weight g
3: Sample zT ∼ N (0, I)
4: Split zT to n overlapping chunks x1:nT
5: for t = T to 1 do
6: x1:n0|t = xθ(x

1:n
t ) ▷ forward model passing

7: x̂1:n0|t = x̂θ(x
1:n
t )

8: µ1:n
t−1 =

√
ᾱtx

1:n
0|t +

√
1− ᾱt − σ2

x1:n
t −

√
ᾱtx

1:n
0|t√

1−ᾱt
▷ DDIM Step

9: L = Lsync + Lasync ▷ Jointly sync and async message passing

10: d∗ = −
√
sσt ·

∇
x1:n
t

L

∥L∥ ▷ Diffusion Sphere Guidance
11: dsample = σtϵt
12: dm = dsample + g(d∗ − dsample)
13: x1:nt−1 = µ1:n

t−1 + r dm

∥dm∥
14: end for
15: merge chunks x1:n0 to get final plan z0
16: return z0

is training-free, plug-and-play, and compatible with unconditional short-horizon diffusion backbones,
enabling generalization to unseen start-goal combinations without task-specific retraining.

5 EXPERIMENTS

We present experiment results on multiple robotic manipulation scenes spanning 100 tasks (18 in
distribution, 82 out of distribution) of varying difficulties. Our objective is to investigate (1) the
visual fidelity of the generated video plans (Section 5.1) (2) how the proposed compositional visual
planning can generalize to long-horizon unseen tasks (Section 5.2) (3) how each proposed component
affect the generation performance of our method (Section 5.3).

Figure 3: Tool-Use setup.This task involves 2 start and 2
goal configurations. We also evaluate on more challeng-
ing tasks. A complete list of task settings is provided in
Appendix D.

Compositional Planning Benchmark. We de-
velop a benchmark for compositional planning
in robotic manipulation based on ManiSkill (Mu
et al., 2021), where each scene contains N start
states and N goal states, resulting in N · N
tasks (i.e., different start/goal pairs) per scene,
as shown in Figure 3. Our training datasets only
contains demonstrations for N start-goal pairs.
At test time, we evaluate the planner on both
the N seen start–goal pairs (in-distribution) and
the remaining N · N − N unseen pairs (out-
of-distribution), since a capable planner should
generalize to new combinations if the dataset
covers all the required fragments. For example,
in the Tool-Use setting (Figure 3), demonstra-
tions cover only the blue or green regions; the

planner must generalize across them to form cross-region plans unseen in the dataset but composable
from its fragments. We address this type of generation by learning from short demonstration chunks
randomly taken from long-horizon tasks and compositionally generates multiple chunks at inference
time to construct the final plan.

Evaluation Setup. Given specified start and goal image as task context, our method first synthesize
a sequence of frames as subgoals. We then use an MLP-based inverse dynamics model to predict
the pose of end-effector for the robot to execute, conditioned on adjacent images. The inverse
dynamics models are trained using the same demonstrations as the planner conditioned on adjacent
images. We report both the video quality metrics and the success rates of the planners over the robotic
manipulation tasks. An episode is counted as success if the target objects ends up the specified
state within a small tolerance. For each environment, we report the success rate over all evaluation
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episodes. We evaluate all methods with 5 random seeds for each experiment and report the mean and
standard deviation.

Baselines. For policy-based baseline, details are in Appendix C. For compositional baseline DiffCol-
lage/GSC (where GSC is DiffCollage adapted to robotic planning), we condition on the start and
goal images to generate an entire plan by noisy factorization Eq. 2, and then use an inverse dynamics
model to execute that plan.

5.1 VIDEO GENERATION QUALITY STUDY

Beyond reporting task success rate, we also evaluate the visual fidelity of the synthesized video plans.
Even when rollouts verify feasibility, perceptual quality still warrants careful analysis. Accordingly,
we score generated videos with VBench++ (Huang et al., 2024b), focusing on robotics-centric
metrics that matter for control: Dynamic Quality (inter-frame), which includes (i) motion smooth-
ness—capturing temporal stability of robot/object motion—and (ii) background consistency—testing
whether the scene remains coherent over time; and Static Quality (frame-wise), which includes
Aesthetic and Imaging Quality to ensure frames are clear and largely artifact-free.

Scene Type
Dynamic Quality ↑ Static Quality ↑

Motion Smoothness Background Consistency Aesthetic Imaging

DiffCollage Ours DiffCollage Ours DiffCollage Ours DiffCollage Ours

Tool-Use
IND 0.45±0.06 0.98±0.03 0.48±0.05 0.94±0.03 0.47±0.02 0.46±0.02 0.42±0.03 0.70±0.02

OOD 0.41±0.06 0.96±0.05 0.38±0.07 0.89±0.06 0.42±0.03 0.48±0.03 0.40±0.05 0.70±0.04

Drawer
IND 0.43±0.03 0.85±0.03 0.50±0.04 0.86±0.03 0.50±0.02 0.54±0.02 0.39±0.02 0.73±0.02

OOD 0.44±0.05 0.96±0.05 0.41±0.06 0.89±0.05 0.45±0.03 0.48±0.03 0.42±0.04 0.70±0.04

Cube
IND 0.40±0.04 0.96±0.03 0.52±0.04 0.90±0.03 0.49±0.02 0.51±0.02 0.33±0.03 0.65±0.02

OOD 0.42±0.06 0.97±0.05 0.39±0.06 0.91±0.05 0.51±0.03 0.52±0.03 0.41±0.05 0.63±0.04

Puzzle
IND 0.40±0.03 0.96±0.03 0.47±0.04 0.90±0.03 0.49±0.04 0.48±0.02 0.44±0.03 0.70±0.02

OOD 0.39±0.06 0.97±0.05 0.48±0.06 0.90±0.05 0.46±0.03 0.47±0.03 0.38±0.05 0.70±0.04

Overall
IND 0.41±0.04 0.94±0.06 0.49±0.04 0.90±0.04 0.49±0.03 0.50±0.03 0.40±0.05 0.70±0.03

OOD 0.40±0.06 0.97±0.05 0.45±0.07 0.90±0.05 0.46±0.04 0.48±0.03 0.39±0.05 0.69±0.05

Table 1: Comparison across four scenes on Dynamic/Static Quality. Our results are averaged over
5 seeds and standard deviations are shown after the ± sign.
Our generation strategy substantially improves the time-dependent properties that matter for control:
across all scenes and distributions, Motion Smoothness and Background Consistency far exceed
DiffCollage (Zhang et al., 2023). This translates into dynamically executable trajectories and coherent
spatiotemporal scenes. In terms of static quality, Aesthetic remains comparable, while Imaging shows
a consistent and large advantage, directly reflecting fewer blurry frames and cleaner visuals.

5.2 COMPOSITIONAL PLANNING BENCHMARK

We present the robot manipulation success rates of 4 different escenes in Table 2. We separately
report the success rates of IND and OOD tasks, where IND represents the N tasks seen in the training
data while OOD represents the N ·N −N unseen tasks. We observe that DiffCollage fails at almost
all tasks. Qualitatively, we find that the synthesized images of DiffCollage tend to be blurry or even
unrealisitc, perhaps due to its score averaging sampling scheme. Such suboptimal images will further
confuses the inverse dynamic models, cause unstable behaviors and failures. In contrast, our method
achieves significantly higher success rates, indicating that the generated visual plans are realistic and
accurate for the inverse dynamic model to follow. We also include several multiple representative
policy learning baselines, such as Goal-Conditioned Diffusion Policy (GCDP). We notice that though
strong policy learning baseline is able to perform well on IND tasks, their performance suffers from
a significant degradation on OOD tasks. In contrast, our method—enabled by the graphical chain
formulation and message passing—maintains stable performance regardless of the task distribution.

5.3 ABLATION STUDIES

Jointly Synchronous & Asynchronous Message Passing. We compare the success rates of three
variants of our test-time compositional sampling scheme in Puzzle Scene: Only Synchronous Loss
(Sync Only), Only Asynchronous Loss (Async Only), and Joint Synchronous and Asynchronous
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Scene Type LCBC LCDP GCBC GCDP Diffcollage Ours

Tool-Use IND 80±7 95±2 85±5 96±3 1±2 97±3

OOD 15±3 37±8 13±6 42±13 0±0 96±2

Drawer IND 35±6 54±6 30±5 50±6 0±0 53±5

OOD 6±5 26±14 7±5 18±16 0±0 52±6

Cube IND 28±3 58±5 26±4 60±3 0±0 64±10

OOD 8±3 22±12 5±5 24±13 0±0 65±9

Puzzle IND 23±5 48±5 19±6 47±3 0±0 50±11

OOD 0±0 11±9 0±0 12±11 0±0 50±13

Overall IND 33±18 57±15 30±21 56±16 0±1 59±17

OOD 2±4 15±12 15±12 15±13 0±0 54±14

Table 2: Quantitative Results on Compositional Planning Bench. We benchmark our method on
the 100 test-time tasks across 4 scenes with 30 episodes per task. Our results are averaged over 5
seeds and standard deviations are shown after the ± sign.
Loss (Sync & Async), as shown in Figure 4. Sync only suffers from overly tight constraints that are
difficult to optimize, leading to lower success rates. In contrast, the asynchronous variant performs
better. Combining the two—Sync & Async—outperforms either alone, likely due to its more effective
balance of constraint enforcement and flexibility.

Scaling in Sampling Steps. We study how the number of diffusion sampling steps affects the
planning performance on Drawer Scene (Figure 5). Success rates improve as the number of steps
increases, demonstrating that our method scales effectively with additional test-time compute. We
hypothesize that taking more steps enables deeper cross-factor message passing through repeated
denoising and guidance updates, which in turn reduces boundary inconsistencies and yields more
accurate, temporally coherent plans.
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Figure 4: Effect of synchronous and asyn-
chronous message passing. Results are averaged
over 5 seeds on the Cube scene. Combining(Sync
& Async) achieves the best results for both in-
distribution and out-of-distribution tasks.
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Figure 5: Effect of sampling steps on planning perfor-
mance. Results are averaged over 5 seeds on Drawer Scene.
Increasing the number of diffusion sampling steps improves
success rates for both in-distribution and out-of-distribution
tasks.

6 DISCUSSION AND CONCLUSION

Limitations. Our method has several limitations. First, it relies on the accuracy of the estimated clean
data (Tweedie estimates) during denoising, since guidance losses are computed on these estimates.
This sensitivity could be mitigated by performing multi-step Tweedie estimation or by scaling up
training data and model capacity. Second, as in prior work, the number of test-time composed
segments, n, must be specified manually. Developing procedures that automatically infer n from
task structure and uncertainty would be an interesting future research direction. Lastly, our approach
can be more computationally demanding than direct averaging-based sampling, because test-time
guidance is implemented via gradient-based optimization(Table 4). Exploring lighter optimization
schedules could potentially reduce this overhead.

Conclusion We introduced Compositional Visual Planning, an inference-time method that composes
long-horizon plans by stitching overlapping video factors with message passing on Tweedie estimates.
A chain-structured factor graph imposes global consistency, enforced via joint synchronous and
asynchronous updates, while diffusion-sphere guidance balances alignment and diversity without
retraining. Compositional Visual Planning is plug-and-play with short-horizon diffusion video
prediction model, scales with test-time compute, and generalizes to unseen start–goal combinations.
Beyond robotics, the framework is applicable to broader domains, such as panorama image generation
and long-form text-to-video synthesis, which we leave for future exploration.
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REPRODUCIBILITY STATEMENT

We promise to provide all the source code to reproduce the results in this paper, including the proposed
algorithm and the evaluation benchmark.
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APPENDIX

A NOISY-BETHE GAP THEOREM

Theorem 1 (Noisy-Bethe Gap Theorem). Consider a linear chain z = [u1, u2, u3] with pair-
wise factors [u1, u2] and [u2, u3], where u2 is the transition boundary variable. Assume
the forward noising processes are p(u1t , u

2
t |u1, u2), p(u2t , u

3
t |u2, u3), and p(u2t |u2). Let

a(u2) =
∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1, b(u2) =

∫
p(u2, u3)p(u2t , u

3
t |u2, u3) du3, c(u2) =

p(u2)p(u2t |u2), Z =
∫
c(u2) du2, and q(u2) = c(u2)/Z. Denote by p(u1t , u

2
t , u

3
t ) the true noisy

distribution and by p̂(u1t , u
2
t , u

3
t ) the estimator from Eq. 1. Then the gap between true distribution

and estimated distribution is:
∆ = p(u1t , u

2
t , u

3
t )− p̂(u1t , u

2
t , u

3
t ) = Z Covu2∼q

[
a
c ,

b
c

]
. (7)

Proof. The true noisy distribution is:

p(u1t , u
2
t , u

3
t ) =

∫
p(u1t , u

2
t , u

3
t , u

1, u2, u3) du1du2du3

=

∫
p(u1, u2, u3)p(u1t , u

2
t , u

3
t |u1, u2, u3) du1du2du3

=

∫
p(u1, u2)p(u1t , u

2
t |u1, u2)p(u2, u3)p(u2t , u3t |u2, u3)
p(u2)p(u2t |u2)

du1du2du3

=

∫ ∫
p(u1, u2)p(u1t , u

2
t |u1, u2)du1

∫
p(u2, u3)p(u2t , u

3
t |u2, u3)du3

p(u2)p(u2t |u2)
du2

(13)

The estimator used in (Zhang et al., 2023; Mishra et al., 2023; 2024) is:

p̂(u1t , u
2
t , u

3
t ) =

∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1du2

∫
p(u2, u3)p(u2t , u

3
t |u2, u3) du2du3∫

p(u2)p(u2t |u2) du2
(14)

Define the left-factor message into u2 as a(u2) =
∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1, the right-factor

message into u2 as b(u2) =
∫
p(u2, u3)p(u2t , u

3
t |u2, u3) du3, and the local boundary evidence

c(u2) = p(u2)p(u2t |u2). Then p(u1t , u
2
t , u

3
t ) =

∫
ab
c du

2 and p̂(u1t , u
2
t , u

3
t ) =

∫
a du2

∫
b du2∫

c du2 .

Introduce a change of measure by setting q(u2) = c
Z with Z =

∫
c du2. For the true distribution, we

have:

p(u1t , u
2
t , u

3
t )

=

∫ ∫
p(u1, u2)p(u1t , u

2
t |u1, u2)du1

∫
p(u2, u3)p(u2t , u

3
t |u2, u3)du3

p(u2)p(u2t |u2)
p(u2)p(u2t |u2)
p(u2)p(u2t |u2)

Z

Z
du2

= Z

∫ ∫
p(u1, u2)p(u1t , u

2
t |u1, u2)du1

p(u2)p(u2t |u2)

∫
p(u2, u3)p(u2t , u

3
t |u2, u3)du3

p(u2)p(u2t |u2)
p(u2)p(u2t |u2)

Z
du2

= Z Eu∼q(u2)[
a
c
b
c ]

(15)

For the estimator, observe that:∫
a(u2) du2 =

∫
(

∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1) du2

=

∫
(

∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1)

p(u2)p(ut|u2)
p(u2)p(ut|u2)

Z

Z
du2

= Z

∫
(
∫
p(u1, u2)p(u1t , u

2
t |u1, u2) du1)

p(u2)p(ut|u2)
p(u2)p(ut|u2)

Z
du2

= Z Eu2∼q(u2)[
a
c ]

(16)
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By the same argument,
∫
b(u2)du2 = Z Eu2∼q(u2)[

b
c ], therefore the estimated distribution:

p̂(u1t , u
2
t , u

3
t ) = Z Eu2∼q(u2)[

a
c ]Eu2∼q(u2)[

b
c ]. (17)

Finally, the difference between the true and estimated distributions is:

∆ = p(u1t , u
2
t , u

3
t )− p̂(u1t , u

2
t , u

3
t )

= Z Eu∼q(u2)[
a
c
b
c ]− Z Eu2∼q(u2)[

a
c ]Eu2∼q(u2)[

b
c ]

= Z Cov[ac ,
b
c ].

(18)

This shows that the estimator departs from the true distribution by a covariance term under the
reweighted boundary measure q(u2), scaled by Z.

B SYNCHRONOUS MESSAGE PASSING

Theorem 2 (Synchronous Message Passing Constraint). Let x1:n ∈ Rn×tchw denote the concatenated
intermediate factors in a chain-structured factor graph with transition boundaries ψi−1,i. Given
the start boundary ψs,1 and the goal boundary ψn,g, the joint constraints distribution over all
intermediate factors is Gaussian:

psync(x
1:n | s, g) ∝ exp(− 1

2 (x
1:n)

T
Σ−1x1:n + ηTx1:n), (9)

where Σ−1 =


AT

1 A1

c0
+

BT
1 B1

c1
−BT

1 A2

c1

−AT
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−BT
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. . .

 , η =
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1 s
c0
0
0
...

BT
n g
cn

 .

Proof. psync(x1:n | s, g) can be represented as a product of dependencies over all boundary variables:

p(x1:n | s, g)sync = ψs,1(s, x1)ψ1,2(x1, x2) · · · ψn−1(xn−1, xn)ψn,g(xn, g). (19)
The aim of this equation is to express the joint distribution over all intermediate states, given initial
and final state:

p(x1:n | s, g) = ψ0(s, x1)ψ1(x1, x2) · · · ψn−1(xn−1, xn)ψn(xn, g)

∝ exp
(
− 1

c0
∥s−A1x1∥2 −

1

c1
∥B1x1 −A2x2∥2 −

1

c2
∥B2x2 −A3x3∥2

− · · · − 1

cn−1
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∥Bnxn − g∥2

)
= exp
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(20)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Σ−1 =
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0
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.

C BASELINE IMPLEMENTATIONS

Language-Conditioned Behavioral Cloning (LCBC). The policy uses a T5 text encoder to embed
natural-language instructions. We concatenate the text embedding with image features extracted by a
ResNet backbone, and feed the result into an MLP policy head. The model is trained in a supervised
manner to predict a single action at each timestep, conditioned on both the language input and the
current observation.

Language-Conditioned Diffusion Policy (LCDP). LCDP follows the same text encoding pipeline
as LCBC with a T5 encoder, but replaces the MLP head with a Transformer-based policy head. The
Transformer generates chunks of actions rather than single-step predictions, allowing multi-step
reasoning conditioned on language and observations.

Goal-Conditioned Behavioral Cloning (GCBC). GCBC uses a ResNet backbone to encode both
the current observation image and the goal image. The concatenated features are passed through
an MLP policy head, which outputs a single action. This provides a goal-aware baseline without
language conditioning.

Goal-Conditioned Diffusion Policy (GCDP). GCDP employs a ResNet backbone with a Transformer
policy head, conditioned jointly on the current observation and the goal image. The model outputs
action chunks, enabling multi-step planning toward the goal state.

DiffCollage / GSC. DiffCollage is a generative video diffusion model, and GSC refers to its adaptation
for robotic planning. Given a start image and a goal image, the model directly generates an entire
visual plan (a sequence of intermediate frames). We then employ a separately trained inverse dynamics
model to convert the visual plan into executable robot actions.

D COMPOSITIONAL PLANNING TASKS

D.1 DATASET AND SIMULATION SETUP

Assets. Our asset library combines 3D models and textures from ShapeNet (Chang et al., 2015)
and RoboCasa (Nasiriany et al., 2024). We additionally apply simple high-quality texture(e.g.,
wood, plastic, metal finishes) to increase visual fidelity. All simulations are conducted in the
SAPIEN engine (Xiang et al., 2020), which provides high-fidelity physics and rendering for robotic
manipulation.

State and Action Space. The observation space consists solely of RGB images with resolution
256× 256× 3, without access to privileged information such as depth or ground-truth states. The
action space is parameterized by the end-effector position (3D Cartesian coordinates), orientation
represented as a quaternion (4D), and a binary scalar controlling the gripper open/close state. During
initialization, all object poses are randomized within a 0.2m radius from their nominal positions,
ensuring sufficient variability and out-of-distribution test cases.

Demonstrations. We provide 300 expert demonstrations for each of the N start–goal combinations
across all scenes, resulting in thousands of trajectories spanning tool-use, drawer manipulation,
cube rearrangement, and puzzle solving. Each demonstration is generated via scripted policies that
guarantee feasibility and success. For the LCBC and LCDP baselines, we further annotate each
demonstration with natural-language descriptions of the task. Tese annotations also help evaluate
how well language-conditioned models can generalize across start–goal variations.

Success Condition. A rollout is considered successful if all objects reach their target configurations
within a predefined spatial threshold.
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D.2 TOOL

The Tool scene requires the robot to manipulate a tool in order to push the cube to the target location.
Success is achieved when the cube reaches the designated target area within a fixed distance threshold.
Direct manipulation is not possible, so the robot must use the provided tool to accomplish the task.

Figure 6: Visualization of Tool Scene.

D.3 DRAWER

The Drawer scene requires the robot to manipulate drawers into closed states and use the brush to
draw on the canvas. Depending on the start state, the brush may be located in different spaces, and
the robot must go to the correct space and retrieve it. After grasping the brush, the drawer must often
be closed again before drawing, to avoid collision between the arm and the drawer.

Figure 7: Visualization of Drawer Scene.
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D.4 CUBE

The Cube scene requires the robot to manipulate multiple colored cubes, first arranging them into a
prescribed order and then placing each cube into its designated goal region. This task evaluates the
planner’s ability to identify and distinguish between object colors, maintain the correct ordering, and
execute precise placement into multiple targets.

Figure 8: Visualization of Cube Scene.

D.5 PUZZLE

The Puzzle scene poses the most challenging test of compositional planning. The robot must first
arrange multiple colored blocks into a specific intermediate configuration, and then place them into
distinct goal slots. This requires not only accurate object manipulation and ordering, but also the
ability to chain together multiple sub-tasks that were only observed in isolation during demonstrations.

Figure 9: Visualization of Puzzle Scene.
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E IMPLEMENTATION DETAILS

Software. All experiments are conducted on Ubuntu 20.04.6 with Python 3.10 and PyTorch 2.2.1.

Training. Models are trained on NVIDIA H200 GPUs.

Deployment Hardware. For deployment, we use a single NVIDIA L40S GPU.

Model Inputs and Outputs. All observations are first encoded into tokens using the Cosmos
tokenizer. We adopt DiT backbones for video generation, using DiT-L or DiT-XL (Peebles & Xie,
2023) depending on the scene. Video generation is performed entirely in the token space. For
control, we employ a simple MLP-based inverse dynamics model, which predicts low-level actions
conditioned on consecutive frames.

Hyperparameters. We report all hyperparameters used during both training and inference for full
transparency. For fairness and reproducibility, we do not perform any hyperparameter search or use a
learning rate scheduler; all experiments are conducted with fixed values throughout. This ensures
that performance gains arise from the method itself rather than extensive hyperparameter tuning. We
also keep hyperparameters consistent across different tasks and scenes, unless otherwise specified, to
highlight the robustness of our approach.

Hyperparameter Value

Diffusion Time Step 500
Batch Size 512
Optimizer Adam
Learning Rate 1× 10−4

Iterations 1M
Discount Factor γ 0.6
Sampling Time Steps 300
Guidance Weight gr 0.6

Table 3: Relevant hyperparameters used in our experiments.

F DEPLOYMENT TIME STUDY

All results in Table 4 are reported under the same setting of 300 DDIM steps. Compared to DiffCol-
lage, our method incurs higher wall-clock time because it requires test-time backpropagation through
the diffusion model in order to enforce consistency via message passing. This extra computation
accounts for the increase in sampling time, but is necessary to achieve the significant gains in success
rates reported in the main results.

Scene # Models Composed Sampling Time (s) ↓

DiffCollage Ours

Tool-Use 3 7.1 17.2
Drawer 5 18.9 30.4
Cube 5 21.1 31.7
Puzzle 6 30.4 61.8

Table 4: Sampling time during deployment. This is measured as the mean wall-clock time across
all samples within a single scene.
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