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Abstract
The proliferation of Large Language Models (LLMs), each with different capabili-1

ties and costs, has driven the need for LLM routers that intelligently and dynam-2

ically select the best model for a given query. Evaluating these routing systems3

is important yet inherently challenging due to the complex interplay of multiple4

factors: the selection of representative input queries, the composition of the model5

pool, and the definition of comprehensive evaluation metrics for optimal routing6

decisions. Through extensive analysis of existing benchmarks, we identify critical7

limitations that may lead to incomplete results and/or misleading conclusions about8

router performance: (1) limited task diversity, (2) imbalanced model pools, and (3)9

oversimplified evaluation methodologies. To address these limitations, we propose10

a novel evaluation framework that incorporates diverse task distributions, a balanced11

model pool with complementary model strengths, and multi-faceted metrics that12

reflect real-world deployment scenarios. We implement this framework as an open-13

source benchmark, the code and dataset are shared anonymously at: https://14

anonymous.4open.science/r/rethinking-routing-evaluation-DE3015

1 Introduction16

The rapid proliferation of Large Language Models (LLMs) presents a critical challenge: which17

model best achieves desired performance while minimizing cost? [16, 3, 9] Models like GPT-o318

excel at complex reasoning but cost significantly more than alternatives like Mixtral-8×7B [6], while19

domain-specialized models often outperform general ones in their expertise areas [18, 15].20

LLM routing systems address this by dynamically selecting the most appropriate model for21

each query [3, 16, 9]. A routing system maps queries p ∈ P to models m ∈ M via22

function R : P → M, optimizing objectives like: m∗ = argmaxmi∈M q̂i(p), m∗ =23

argminmi∈M ci(p) subject to q̂i(p) ≥ T24

To design effective LLM routers, rigorous evaluation becomes especially crucial [4, 5]. However,25

evaluating LLM routers is inherently challenging, as optimal routing decisions are context-dependent26

and shaped by specific priorities and constraints. Unlike evaluating LLM performance where each27

query can be assessed against ground truth, optimal routing strategies depend on specific deployment28

contexts. Even for the same query, the optimal routing decision may vary under different constraints.29

Our analysis reveals current benchmarks suffer from: (1) limited task diversity, (2) imbalanced model30

pools where one model dominates, and (3) oversimplified metrics focusing only on accuracy. We in-31

troduce RouterBench+, featuring 33,337 queries across 68 categories, 85 models with complementary32

strengths, and multi-faceted evaluation with OOD testing. Our contributions include:33

• Systematic analysis revealing critical limitations in existing routing benchmarks34

• Evaluation methodology addressing task diversity, model balance, and realistic metrics35

• Open-source platform enabling rigorous routing assessment under realistic conditions36
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Figure 1: An illustration of LLM routing systems. An ideal LLM router should choose the model
with highest expected performance under the specified constraints like costs.

2 Rethinking Current Evaluation Practices37

We analyze current routing evaluation practices across three dimensions: tasks, models, and eval-38

uation metrics, identifying critical limitations through extensive experimentation. We use three39

prominent benchmarks: EMBEDLLM [22], ROUTERBENCH [4], and MIXINSTRUCT [7]. We test40

both clustering-based (K-Means, K-NN) and learning-based (MLP, Matrix Factorization) routing41

methods, along with Heuristic and Oracle baselines. Routing quality is visualized using a deferral42

curve that captures the trade-off between routing quality and resource usage under cost constraints.43

For details of the benchmarks, routing methods, and evaluation metrics, please refer to Appendix B–E.44

2.1 Tasks: More Diversity and Less Redundancy45

Problem 1: Lack of Specialized Tasks. Generally, tasks can be categorized as common-sense46

tasks where general models perform well (e.g., piqa with 78% average accuracy), and domain-47

specific tasks where specialists excel (e.g., medmcqa where specialists achieve 69.8% vs 41.73% for48

general models). However, current benchmarks are biased toward common-sense tasks, which fails49

to evaluate routers’ ability to handle domain-specific tasks that benefit most from model routing.50

To quantify this imbalance, we propose a specialist score for each task: specialist_scoretask =51

Eb∈B[max
m∈M(b)

non-gen
ACC(b)

m,t − ACC(b)
gen,t], measuring the average performance gap between the best52

specialist and generalist models across cost budgets. Figure 2(a) shows ROUTERBENCH lacks53

sufficient specialist tasks, with EMBEDLLM showing similar patterns (see Appendix F).54

Problem 2: Task Redundancy. Current benchmarks also suffer from significant task redundancy.55

Through cosine similarity analysis (detailed in Appendix F), we identified 1,346 duplicate query56

groups where 99.9% contained label disagreements across models—far exceeding the overall label57

mismatch rate of 37.7%. Removing such duplicates improved performance for learning-based58

methods (Figure 2(b)), confirming that duplicate queries with conflicting labels mislead routers.59

(a) Limited specialized tasks

Method Avg Acc (%) Peak Acc (%)

Orig Clean Orig Clean

K-NN 54.35 54.04 67.37 66.50
KMeans 54.03 54.00 66.77 66.70
MLP 53.78 53.84 64.17 65.13
MF 50.48 50.90 60.07 60.87

(b) Performance after removing duplicates

Figure 2: Task diversity issues in current benchmarks: (a) specialist scores reveal limited specialized
tasks; (b) removing duplicate queries improves learning-based methods.

Insights ❶. Current benchmarks overestimate the value of large but non-diverse training sets; in60

reality, much of the routing signal is concentrated in a smaller, more representative subset of tasks. To61

build more effective routing benchmarks, we should improve task diversity—especially by including62

more domain-specific tasks—and reduce redundancy, particularly tasks with inconsistent labels.63

2.2 Models: More Specialists and Less Dominance64

Problem 1: Model Dominance. We quantify model dominance using average rank across tasks.65

ROUTERBENCH’s top model ranks 1.36 on average (near-universal best performance), while EM-66

BEDLLM’s top model ranks 6.4 (more balanced competition) (see Appendix G). Without specialist67

models, routers could simply select the best generalist, which make advanced routing unnecessary.68
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Effective Expert Model Extension. To address this limitation, we propose augmenting the model69

pool with pseudo-specialist models—artificial models designed to perform well on specific tasks70

and average elsewhere. These pseudo-models are not meant for deployment but serve as controlled71

interventions to examine how task-specialized models influence routing behavior. They allow us72

to test whether the router moves beyond favoring top generalists and begins making more diverse,73

task-aware selections.74

For each pseudo-specialist model, we need to identify appropriate task types where they can demon-75

strate their expertise. We selected three specific task types to create our pseudo-specialist models,76

each designed to excel at one particular task. These tasks satisfy the following criteria:77

• The mean accuracy across existing models is low, suggesting that they are challenging.78

• The gap between the best general model and the mean is modest, so no existing model dominates.79

• The task has a non-negligible representation that impacts the overall performance in the benchmark.80

Table 1: Selected tasks for pseudo specialist models.
Task Prompt % Mean Acc. Best Model Acc. Pseudo Model Acc.
Social Reasoning 5.42 33.76% 36.22% 65.00%
Logical Reasoning 1.82 28.28% 45.93% 70.00%
Graduatel-Lvl Reasoning 3.23 22.44% 33.51% 60.00%

Each pseudo model is in-81

jected into the benchmark82

with high performance on a83

specific task (Table 1) and84

average performance else-85

where, simulating models trained for niche tasks. We use EMBEDLLM as the task selection pool.86

Table 2: Changes in router agreement
with the top-1 generalist model after
adding pseudo specialist models. Neg-
ative values indicate decreased reliance
on the dominant model.

Task K-NN KMeans MF MLP
Overall -0.84 -2.40 -0.64 -8.40
logiqa -20.55 -31.03 -2.81 -17.48
social_iqa -2.69 0.00 +0.29 -7.92
gpqa -1.59 -13.15 +1.90 -9.75

We further define the agreement score as the average per-87

centage of queries for which a router selects the same88

model as the heuristic router. This metric reflects how89

closely a learned router mimics static generalist selec-90

tion. A lower score indicates more diverse, task-specific91

choices, suggesting less reliance on the generalist strategy.92

As shown in Table 2, overall agreement with the heuris-93

tic router drops slightly across all methods. However, on94

the tasks targeted by the pseudo models, the reduction is95

significantly more pronounced.96

Problem 2: Model Redundancy. We also observe redundancy in the model pool. Using a Jaccard-97

style similarity score (detailed in Appendix G), we reduced EmbedLLM’s model pool from 112 to98

82 (27% reduction) without degrading routing performance, confirming that meaningful routing99

decisions can be made with a leaner model pool.100

Insights ❷. Effective routing evaluation depends on a model pool with meaningful diversity, both101

in capability and specialization. Rather than including many models with overlapping strengths,102

the pool should consist of models with distinct specialties. A simple yet effective way to enhance103

current model pools is to introduce pseudo-specialist models that simulate task-specific expertise,104

encouraging routers to move beyond generic selection and make more nuanced, task-aware decisions.105

2.3 Evaluation Paradigms: Comprehensive Measurements106

Problems. Current evaluation paradigms suffer from at least two limitations: (1) Limited cost107

awareness: Existing evaluations often overlook the importance of selecting smaller, more efficient108

models when appropriate, leading to inflated costs and suboptimal routing decisions. (2) Lack of109

OOD evaluation: Current frameworks rarely test router performance on OOD inputs, an essential110

aspect for ensuring robustness in real-world deployments.111

Figure 3: Binary routing evaluation:
Llama-2 7B vs 70B trade-offs.

Solution 1: Cost-Aware Routing Evaluation ❸. We in-112

troduce a paradigm to assess how routers balance between113

strong generalist and lightweight models (Figure 3), pro-114

ducing trade-off curves between accuracy and model cost115

(additional results in Appendix H.1).116

Solution 2: OOD Testing ❹. We evaluate robustness by117

holding out entire task categories (e.g., math tasks) from118

training. Table 3 shows significant performance drops,119

revealing brittleness of current approaches.120
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Figure 4: The improvement of our proposed benchmark.

Table 3: OOD performance degradation
on math categories.

Category K-NN ∆ KMeans ∆ MF ∆ MLP ∆

mathqa -9.29 -16.88 -6.33 -14.34
asdiv -58.59 -69.19 -40.40 -57.07
gsm8k -14.28 -14.29 -29.47 -35.72

Insights. Current benchmarks inadequately assess router121

performance in realistic scenarios. The OOD performance122

degradation (Table 3) reveals the brittleness of existing123

approaches with novel queries, highlighting the need for124

better generalization testing. Additionally, the binary rout-125

ing paradigm (Figure 3) shows that routing algorithms126

have distinct efficiency-performance trade-offs, requiring evaluation beyond single-point metrics.127

3 Remastered Benchmark Design128

Figure 4 shows the strength of our evaluation framework, we address the identified limitations through129

three key design principles:130

Diverse task distributions ❶: We subsample tasks from EMBEDLLM using the proposed specialist131

score, emphasizing tasks where non-generalist models provide additional value. This creates a task132

pool with both broad coverage and meaningful routing opportunities.133

Balanced model pool ❷: We eliminate redundancy using similarity-aware greedy pruning (reducing134

30 models) and introduce three pseudo-specialist models for challenging tasks, ensuring no single135

model dominates across all tasks.136

Multi-faceted evaluation ❸❹: We combine classification-based and routing-rate paradigms with137

explicit OOD testing, capturing cost-performance trade-offs and real-world deployment readiness.138

The final dataset contains 85 models, 68 categories, and 33,337 queries (3 million datapoints).139

4 Results and Discussion140

Benchmark Performance. We evaluate routing methods on our remastered benchmark. K-NN141

achieves the highest performance with an area under the deferral curve of 0.567 and peak accuracy142

of 69.83% (Table 4). Our dataset successfully mitigates single model dominance as shown by the143

deferral curves (Figure 11 in Appendix). Binary routing results reveal distinct efficiency-performance144

patterns across model combinations (see Figure 12 in Appendix).145

Table 4: Area and peak accuracy of
routing methods.

Method Area ↑ Peak (%) ↑

K-NN 0.567 69.83
KMeans 0.560 68.93
MLP 0.554 67.60
MF 0.515 61.60
Heuristic 0.507 60.73

Key Findings. Our analysis reveals three critical limitations146

in current routing evaluation: (1) benchmarks lack task diver-147

sity, particularly domain-specific tasks where specialists excel;148

(2) model pools suffer from single-model dominance, making149

routing trivial; and (3) evaluation methodologies ignore cost-150

performance trade-offs and OOD robustness. These findings151

explain why existing routers often perform only marginally152

better than simple heuristics.153

Implications. Effective routing evaluation requires careful attention to all three components—tasks,154

models, and metrics. Our specialist score and pseudo-specialist models provide practical tools for155

constructing balanced benchmarks. The multi-faceted evaluation approach, combining traditional156

metrics with binary routing paradigms and OOD testing, offers comprehensive insights into router157

behavior.158

Future Directions. This work establishes a foundation for more rigorous LLM routing evaluation.159

As the LLM ecosystem continues to evolve, maintaining diverse, balanced benchmarks will remain160

crucial. Future work should explore automated benchmark construction and dynamic adaptation to161

emerging models and tasks.162

4



References163

[1] Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, and Yu Zhang. Routerdc: Query-164

based router by dual contrastive learning for assembling large language models, 2024.165

[2] Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and166

cascading for llms, 2025.167

[3] Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections,168

2025.169

[4] Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath,170

Kurt Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm171

routing system, 2024.172

[5] Zhongzhan Huang, Guoming Ling, Vincent S Liang, Yupei Lin, Yandong Chen, Shanshan173

Zhong, Hefeng Wu, and Liang Lin. Routereval: A comprehensive benchmark for routing llms174

to explore model-level scaling up in llms. arXiv preprint arXiv:2503.10657, 2025.175

[6] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris176

Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,177

et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.178

[7] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language179

models with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.180

[8] Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang,181

Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar.182

Universal model routing for efficient llm inference, 2025.183

[9] Yang Li. Llm bandit: Cost-efficient llm generation via preference-conditioned dynamic routing,184

2025.185

[10] Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.186

Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin187

Duh, Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference of the188

North American Chapter of the Association for Computational Linguistics: Human Language189

Technologies (Volume 1: Long Papers), pages 1964–1974, Mexico City, Mexico, June 2024.190

Association for Computational Linguistics.191

[11] Sentence-Transformers. all-minilm-l12-v2. https://huggingface.co/192

sentence-transformers/all-MiniLM-L12-v2, 2021. Accessed: 2025-05-13.193

[12] Sentence-Transformers. all-mpnet-base-v2. https://huggingface.co/194

sentence-transformers/all-mpnet-base-v2, 2021. Accessed: 2025-05-13.195

[13] KV Srivatsa, Kaushal Kumar Maurya, and Ekaterina Kochmar. Harnessing the power of multiple196

minds: Lessons learned from llm routing. arXiv preprint arXiv:2405.00467, 2024.197

[14] Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Dilipbhai Shah, Han Jin,198

Yuhang Yao, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model router199

for efficient llm inference. arXiv preprint arXiv:2408.12320, 2024.200

[15] Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan201

Chang, Andrew Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist202

biomedical ai. Nejm Ai, 1(3):AIoa2300138, 2024.203

[16] Clovis Varangot-Reille, Christophe Bouvard, Antoine Gourru, Mathieu Ciancone, Marion204

Schaeffer, and François Jacquenet. Doing more with less – implementing routing strategies in205

large language model-based systems: An extended survey, 2025.206

[17] Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie207

Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. arXiv208

preprint arXiv:2502.18482, 2025.209

5

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


[18] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng210

Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward211

mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.212

[19] Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan213

Qi. Masrouter: Learning to route llms for multi-agent systems, 2025.214

[20] Tuo Zhang, Asal Mehradfar, Dimitrios Dimitriadis, and Salman Avestimehr. Leveraging215

uncertainty estimation for efficient llm routing, 2025.216

[21] Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Capability instruction tuning: A new paradigm217

for dynamic llm routing, 2025.218

[22] Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchan-219

dran. Embedllm: Learning compact representations of large language models. arXiv preprint220

arXiv:2410.02223, 2024.221

6



A Related Work222

LLM Model Selection and Routing. Intelligent LLM routers have emerged to route queries across223

diverse models to balance performance, cost, and latency [3, 16, 9, 19, 20]. Routing strategies224

can be categorized as predictive and non-predictive [16, 4]. Predictive approaches include classi-225

fication based on prompt features [13], graph-based methods (GraphRouter [3]), dynamic routing226

(MixLLM [17]), and multi-armed bandit formulations (LLM Bandit [9]). Non-predictive methods227

include cascading, while hybrid approaches like Cascade Routing [2] combine routing flexibility228

with sequential processing. Frameworks like TensorOpera Router [14] further enhance multi-model229

inference efficiency. The proliferation of LLM routing methods has produced the requirement for230

effective router evaluation [1, 10, 21].231

Benchmarks for Multi-LLM Systems. Several benchmarks have been developed to evaluate232

routing strategies. RouterBench [4] provides a framework with inference outcomes across models233

and tasks [2, 17]. EmbedLLM [22] introduces compact vector embeddings for efficient model234

selection. MixInstruct [7] offers a mixture-of-instructions dataset with a two-stage ensembling235

approach. RouterEval [5] presents a large-scale benchmark with over 8,500 models and 200 million236

routing records. These benchmarks are crucial for developing robust routing systems that enable237

efficient, cost-effective LLM deployment [3, 13, 16, 9].238

Despite the growing body of work on LLM routing techniques and benchmarks, we identify a239

critical gap: the evaluation methodology itself has not been systematically examined. Even the240

most comprehensive and recently released benchmarks, such as RouterEval [5], primarily aggregate241

large volumes of data and models without addressing fundamental flaws in evaluation design. This242

paper fills that gap by critically analyzing current evaluation practices and providing concrete243

recommendations for improvement.244

B Details about Text Encoder245

Text encoder is a critical component of LLM routers, which transforms input prompts into embeddings246

used for routing decisions. To ensure faithful and fair comparison, we follow prior work [22,247

4] and adopt consistent encoder choices per benchmark: we use all-MiniLM-L12-v2 [11] for248

ROUTERBENCH and MIXINSTRUCT, and all-mpnet-base-v2 [12] for EMBEDLLM.249

C Details about Benchmarks250

Table 5 summarizes the statistics of used benchmarks. EmbedLLM provides the largest number of251

models, while RouterBench provides a realistic cost setting. MixInstruct focuses on open-domain252

user prompts, using soft metrics like BARTScore to evaluate output quality.253

Table 5: Comparison of benchmark datasets for LLM routing evaluation.

Benchmark # Models # Queries # Categories Metric Cost Info

EmbedLLM [22] 112 35,673 80 Binary (0/1) param size (B)
RouterBench [4] 11 36,497 86 Binary (0/1) USD per 1k queries
MixInstruct [7] 12 110,000 5 (Open-domain) exp(BARTScore) param size (B)

D Details about Routing Methods254

The state-of-the-art LLM routing approaches fall into two primary categories: clustering-based and255

learning-based. We also include two reference baselines to contextualize performance.256

• K-Means [8]: This method clusters training queries into K clusters based on their embeddings.257

Given a test query q, the router finds the closest cluster Ck and selects the model m∗ that performs258

best on average within that cluster:259

m∗ = arg max
mi∈M

[
1

|Ck|
∑
l∈Ck

metric(mi, l)

]
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where Ck is the set of training prompts in the cluster of q, and metric denotes either a binary260

correctness label or exp(BARTScore).261

• K-NN [4]: Instead of relying on cluster centroids, this method finds the K nearest neighbors of the262

query q in the training set (based on embedding distance) and routes to the model with the highest263

average score on those neighbors.264

• MLP [4]: For each LLM mi, a separate MLP is trained to predict the performance score for query265

q:266

Pi(x) = f(Wn · σ(. . . σ(W1 · x+ b1) . . .) + bn)

where x is the query embedding, σ denotes the activation function, and f is the final output layer.267

The model m∗ with the highest predicted score Pi(q) is selected.268

• Collaborative Filtering (Matrix Factorization) [22]: This method treats the model routing task269

as a matrix completion problem. Given a binary matrix Y ∈ {0, 1}M×Q representing whether270

model mi correctly answered query qj , it learns latent embeddings for models and queries by271

factorizing Y as:272

Yij ≈ u⊤
i vj

where ui ∈ Rd is the latent embedding for model mi and vj ∈ Rd for query qj . At inference time,273

the router computes vq (e.g., via a linear projection from query embedding) and selects the model274

with the highest predicted score:275

m∗ = arg max
mi∈M

u⊤
i vq

• Heuristic Router: This baseline selects the best-performing model from the training set for each276

cost budget. At each test time cost step, it routes all queries to the model that achieved the highest277

average training accuracy within the allowed cost:278

m∗ = arg max
mi∈M, cost(mi)≤c

TrainAcc(mi)

• Oracle Router: This upper-bound baseline assumes access to the ground truth performance of all279

models at test time. For each query, it routes to the best model among those allowed by the cost280

constraint:281

m∗ = arg max
mi∈M, cost(mi)≤c

metric(mi, q)

It represents the best possible routing performance under the given budget.282

E Details about Evaluation Metrics and Deferrel Curve283

Evaluation Metric. We evaluate routing performance using metrics aligned with each benchmark’s284

design. For RouterBench [4] and EmbedLLM [22], the correctness label is binary—each LLM either285

answers a query correctly or not. For MixInstruct [7], we adopt the exponentiated BARTScore,286

following prior work [8, 7]. While MixInstruct was originally intended to benchmark ensemble287

generation quality from outputs of multiple LLMs, recent works have adapted it for routing by288

assigning scores to individual LLM responses based on similarity to GPT-4. However, this introduces289

a dependency on GPT-4 as a reference model, which we will discuss further in Section 2.3.290

Deferral Curve. Routing quality is visualized using a deferral curve, where the x-axis corresponds291

to the model cost budget and the y-axis reflects routing quality (accuracy or exp(BARTScore)). The292

cost budget represents the maximum cost (e.g., in dollars) a router can spend per query. However,293

because actual API pricing varies and is not always available, prior work [8] approximates cost using294

the number of model parameters—a practical proxy that correlates with both latency and financial295

cost for EmbedLLM [22] and MixInstruct [7]. This deferral curve captures the trade-off between296

routing quality and resource usage, allowing comparison of different routing strategies under cost297

constraints.298

F Supplementary Result for Task Diversity299

Here we provide more results and discussions on Task Diversity Problems in Section 2.1. Figure 5300

shows the specialist scores for EMBEDLLM, complementing the ROUTERBENCH results shown in301

the main text. Both benchmarks exhibit a similar lack of specialist-demanding tasks.302
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Figure 5: Specialist scores in EMBEDLLM dataset, showing limited specialized tasks similar to
ROUTERBENCH.

Figure 6: Category similarity heatmap based
on average query embeddings. Redundancy is
visible across GPQA-like categories (Upper-
Left).

Figure 7: Routing accuracy when removing duplicate
categories (e.g., GPQA variants). Performance is
preserved even under OOD evaluation.

Additionally, as shown in Figure 6, several task categories exhibit high similarity in their average303

query embeddings. For instance, GPQA-like categories cluster tightly in the embedding space,304

suggesting that they may not offer distinct routing challenges.305

In our experiments, we found that even after removing duplicate categories from the training set—306

those identified as redundant in the heatmap—the router still performs strongly. Figure 7 shows that307

this holds true even under OOD evaluation, where the dropped categories are tested at inference time.308

This suggests that current benchmarks may overestimate the value of large or diverse-looking training309

sets when, in reality, much of the routing signal is concentrated in a smaller, more representative310

subset of tasks. We also empirically assess the redundancy within categories, where we progressively311

dropped a portion of training data within each category and retrained the router.312

G Supplementary Result for Model Diversity313

Here we provide more results and discussions on Model Dominance and Redundancy Problems in314

Section 2.2.315

G.1 Model Dominance Analysis316

As detailed in the main text, we compute each model’s average rank across task categories to quantify317

model dominance. Table 6 shows the full results. In ROUTERBENCH, model ID 5 dominates318

with an average rank of 1.36, meaning it is the best-performing model for most tasks. In contrast,319

EMBEDLLM’s more diverse model pool shows less dominance, with the top model achieving only320

6.43 average rank.321
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Table 6: Top-5 models by their average rank across tasks. Lower values indicate greater dominance.

EMBEDLLM ROUTERBENCH
Rank Model ID Avg. Rank (↓) Rank Model ID Avg. Rank (↓)

1 50 6.43 1 5 1.36
2 83 9.88 2 10 3.20
3 42 10.03 3 4 3.78
4 49 10.95 4 9 3.88
5 5 11.24 5 3 5.39

G.2 Model Redundancy Analysis322

Figure 8: Performance comparison after reducing the model pool by 30 models. This shows that routers can
maintain routing effectiveness across different cost budgets.

We observed redundancy in the model pool, as evidenced by overlapping performance points (Indi-323

vidual Models’ grey crossings) across cost settings in Figure 8. Such redundancy adds little value for324

training or evaluating router performance. We quantify model-level similarity using a Jaccard-style325

score based on shared correct predictions:326

sim(mi,mj) =
|{q | mi(q) = 1 ∧mj(q) = 1}|
|{q | mi(q) = 1 ∨mj(q) = 1}|

where mi(q) denotes whether model mi answered query q correctly. This metric captures functional327

overlap across the entire benchmark.328

To validate this, we propose a greedy pruning strategy to reduce model redundancy while preserving329

routing effectiveness. At each step, we compute a score for each model based on:330

score(mi) = λ · Accuracy(mi)− (1− λ) · AvgSim(mi)

where AvgSim(mi) is the average Jaccard similarity of model mi to all other models (based on331

overlapping correct predictions), and λ balances performance versus uniqueness. The model with the332

lowest score is removed, and the process repeats until a target number of models remains.333

We apply this strategy to the EmbedLLM benchmark, reducing the model pool from 112 to 82 (a 27%334

reduction). As shown in Figure 8, routing performance across methods remains comparable to the335

full model pool. This demonstrates that removing redundant models does not degrade routing quality336

and that meaningful routing decisions can still be made with a leaner model pool.337

H Supplementary Result for Evaluation Methodology338

H.1 Binary Routing Evaluation Details339

To complement the traditional cost-accuracy deferral curves, we introduced a binary routing evaluation340

paradigm in Section 2.3 to assess how effectively a router balances between a strong generalist (large341
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(a) Llama-2 7B and CausalLM-34B-Beta (b) Mistral 7B and CausalLM-34B-Beta

Figure 9: Binary routing evaluation paradigm showing performance trade-offs.

model) and a lightweight alternative (small model). Here, we provide additional details about the342

evaluation setup and key observations.343

Figure 10: Binary routing evaluation: Mistral 7B vs Llama-2 70B trade-offs, complementing the
Llama-2 7B vs 70B results shown in the main text.

We fix the large model to be CausalLM-34B-Beta, given its similar superior performance across a344

wide range of general-purpose tasks, comparable to that of 70B-sized models. For small models, we345

consider two widely used options: Mistral-7b-v0.1 and LLaMA-2-7b-chat-hf. These models346

represent different trade-offs in model families and capability, making them ideal candidates for347

evaluating routing flexibility.348

In this setting, each routing method ranks the queries by its confidence score for the small model and349

routes a varying fraction of queries accordingly, as in Figure 9. The remaining queries are deferred to350

the large model. This produces a continuous accuracy curve as a function of the fraction of queries351

routed to the large model.352

Across both small model settings, we observe that learned routers generally follow a linear trade-off353

curve, indicating that they lack precise mechanisms to identify which queries can be reliably handled354

by the small model. Notably, clustering-based methods perform sub-linearly at lower deferral ratios,355

suggesting they often misclassify harder queries as easy ones and route them to the small models. This356

reinforces the need for more fine-grained routing strategies that can better distinguish between simple357

and complex inputs. Surprisingly, Matrix Factorization performed extremely well on classifying358

between Mistral-7B and CausalLM-34B-Beta, suggesting the potential of learning-based methods in359

certain model pair settings.360
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Table 7: OOD Performance change on selected categories in EMBEDLLM when these categories are
excluded from training.

Category K-NN ∆ KMeans ∆ MF ∆ MLP ∆

mathqa -9.29 -16.88 -6.33 -14.34
asdiv -58.59 -69.19 -40.40 -57.07
gsm8k -14.28 -14.29 -29.47 -35.72
medmcqa -11.58 -7.91 -6.78 -9.89
mmlu_clinical_knowledge 0.00 +7.41 -14.82 -3.70

Average -18.75 -20.17 -19.56 -24.14

H.2 OOD Routing Evaluation Details361

We evaluate the robustness of routing methods under out-of-distribution (OOD) scenarios by training362

and evaluating routers on different domains. We consider two distinct OOD settings: (1) excluding363

all math-related queries (e.g., mathqa, asdiv, gsm8k), and (2) excluding all medical-related queries364

(e.g., medmcqa, mmlu_clinical_knowledge). These categories are chosen for their semantic365

distinctiveness and task specificity, providing strong settings to evaluate how well routers generalize366

to unseen topics.367

As shown in Table 7, all routing methods suffer performance degradation in OOD settings, with the368

most significant drops occurring on asdiv and gsm8k. MLP-based routers tend to experience the369

steepest accuracy declines overall, while matrix factorization (MF) demonstrates greater robustness,370

particularly on math-related tasks.371

These results highlight that existing routing strategies are brittle when deployed in domains un-372

seen during training, reinforcing the need for more semantically aware or domain-adaptive routing373

mechanisms.374

H.3 Results on Remastered Benchmark375

Figure 11: Deferral curves on our Remastered Benchmark showing routing performance across
different cost budgets.

I Supplementary Result on MIX-INSTRUCT376

In Figure 13, we present the routing results in deferral curve on MIX-INSTRUCT dataset. While the377

same baseline routers are evaluated, we do not consider MIX-INSTRUCT as our primary benchmark378

due to several limitations:379

• Limited Evaluation Metrics: MIX-INSTRUCT uses BARTScore to measure the similarity between380

a model’s output and a reference response generated by GPT-4. This approach conflates model381

quality with similarity to GPT-4, making it less suitable for evaluating true routing performance.382
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(a) Llama-2 7B and Llama-2 70B (b) Mistral 7B and Llama-2 70B

Figure 12: Binary routing evaluation on Remastered Benchmark shows performance trade-offs across
different model pairs.

Figure 13: Routing performance on MIX-INSTRUCT.

It favors models that mimic GPT-4’s phrasing—even when other models might generate more383

informative or appropriate responses—thus undermining the purpose of routing for capability-based384

model selection.385

• Limited Task Diversity: The benchmark contains only five tasks, all of which fall under casual or386

instruction-following dialog. These tasks do not capture the breadth of real-world user queries,387

particularly in domains requiring specialized knowledge (e.g., science, math, law), thereby limiting388

the opportunity for routing to leverage model specialization.389

• Restricted Model Pool: MIX-INSTRUCT covers about 10 models—comparable to Router-390

Bench—restricting the expressiveness of routing policies. In contrast, EMBEDLLM benchmark391

includes over 100 models with diverse strengths while having some issues we listed in Section 2,392

offered a more realistic and rigorous setting for evaluating routing capabilities.393
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