
The Graphon Limit Hypothesis: Understanding
Neural Network Pruning via Infinite Width Analysis

Hoang Pham1, The-Anh Ta2, Tom Jacobs3, Rebekka Burkholz3, Long Tran-Thanh1

1 University of Warwick, 2 CSIRO’s Data61, 3 CISPA Helmholtz Center for Information Security
hoang.pham@warwick.ac.uk, theanh.ta@csiro.au, tom.jacobs@cispa.de,

burkholz@cispa.de, long.tran-thanh@warwick.ac.uk

Abstract

Sparse neural networks promise efficiency, yet training them effectively remains a
fundamental challenge. Despite advances in pruning methods that create sparse
architectures, understanding why some sparse structures are better trainable than
others with the same level of sparsity remains poorly understood. Aiming to de-
velop a systematic approach to this fundamental problem, we propose a novel
theoretical framework based on the theory of graph limits, particularly graphons,
that characterizes sparse neural networks in the infinite-width regime. Our key
insight is that connectivity patterns of sparse neural networks induced by pruning
methods converge to specific graphons as networks’ width tends to infinity, which
encodes implicit structural biases of different pruning methods. We postulate the
Graphon Limit Hypothesis and provide empirical evidence to support it. Leveraging
this graphon representation, we derive a Graphon Neural Tangent Kernel (Graphon
NTK) to study the training dynamics of sparse networks in the infinite width limit.
Graphon NTK provides a general framework for the theoretical analysis of sparse
networks. We empirically show that the spectral analysis of Graphon NTK corre-
lates with observed training dynamics of sparse networks, explaining the varying
convergence behaviours of different pruning methods. Our framework provides
theoretical insights into the impact of connectivity patterns on the trainability of
various sparse network architectures.

1 Introduction

Deep neural networks have achieved remarkable success in a wide range of machine learning tasks,
including computer vision [33, 18], natural language processing [63, 17], and scientific modeling [38].
A key ingredient in this success is overparameterisation [4, 9, 37, 5], networks are often trained with
many more parameters than are strictly necessary, which facilitates optimization and generalization.
However, this overparameterisation introduces substantial computational and memory overheads
[25, 61, 56, 69], hindering deployment in resource-constrained environments such as mobile/edge
devices, embedded systems, or real-time applications.

To address these challenges, network pruning has emerged as a fundamental approach for compressing
deep networks by removing redundant weights [41, 31, 23, 25]. By identifying and eliminating
parameters that contribute little to the model’s output, pruning can produce sparse subnetworks
that retain high performance while offering significant efficiency gains. Empirically, the Lottery
Ticket Hypothesis (LTH) [23] demonstrates that randomly initialised dense networks contain sparse
subnetworks (winning tickets) that, when trained in isolation, can match or exceed the performance
of the original network. This observation has sparked significant research efforts including iterative
pruning methods for finding such winning tickets [24, 14, 13, 28], post-training pruning approaches
[29], various Pruning at Initialisation (PaI) techniques [43, 62, 66, 56, 69], and dynamic sparse

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

training [51, 21, 44, 45]. Parallel to this empirical progress, theoretical work has sought to prove
the existence of effective sparse neural networks [49, 55, 11, 10]. Other works [48, 22] attempt to
understand the effectiveness of sparse neural networks by analyzing gradient flow during training.
Through the lens of the Ramanujan graph, [64, 7, 35] indicate that maximizing the graph connectivity
of sparse networks improves the performance of subnetworks. Recently, [74] have studied the training
dynamics of randomly pruned networks via NTK in an infinitely wide neural network setting.

Despite these advances, a comprehensive theoretical framework for understanding neural network
pruning and the training dynamics of general sparse neural networks remains elusive. A particularly
challenging aspect is explaining why sparse networks are often difficult to train effectively [26]. In
this paper, we aim to develop a systematic framework for analysing sparse networks obtained by PaI
methods. While NTK and other large width limit approaches [37, 5, 42] provide valuable tools for
analysing dense neural network training, they are not suitable for the sparse network settings due to a
fundamental difficulty of defining the limit of sparse networks of different sizes.

To address this problem, we develop a novel approach by leveraging graph limit theory. In particular,
a pruning method produces binary masks that determine the active connections between neurons in
layers. These masks can naturally be interpreted as the adjacency matrices of graphs defined over
neural network layers. As the width of the network increases, the size of these adjacency matrices
grows, and their structure becomes more regular and well-defined. In this view, the sequence of
pruning masks generated by increasingly wide networks forms a sequence of graphs.

We hypothesize that, in the infinite-width limit, this sequence of graphs converges to a graphon that
serves as a limit object for dense or structured sparse graphs [47, 8]. Informally, any large graph can
be viewed as a random sample from some underlying graphon W(u, v) encoding the probability of
an edge between node indices u and v [57]. We propose the Graphon Limit Hypothesis for sparse
neural networks obtained by a given pruning method in the large width limit and provide empirical
evidence to support it. Informally, the hypothesis states that:
Given a sparsity level, each network pruning method defines sequences of binary masks (M (l)

n) that
converges layer-wisely to graphons W(l) in cut distance as the network width n → ∞.

This new perspective allows us to unify diverse pruning techniques under a common mathematical
framework. For example, Random Pruning at initialisation produces subnets whose configuration
is an Erdős–Rényi random graph, hence its graphon limit corresponds to a constant graphon, while
other PaI methods produce graphons with different patterns. Crucially, these graphons can be used to
define an infinite-width model, analogous to how fully-connected networks yield NTK in the limit
[37, 5, 42]. We formalise this idea by introducing the Graphon Neural Tangent Kernel (Graphon
NTK), a kernel that captures the infinite-width behaviour of a pruned network specified by a graphon.

Our framework offers a new approach for analysing sparse neural networks through their graphon
limits, provides a theoretically grounded tool for understanding how pruning affects training dynamics,
and offers a principled basis for comparing or designing pruning strategies via their associated NTK
behaviour. This framework generalises previous work on randomly pruned networks [74] where
Random Pruning corresponds to constant graphons. Our contributions are summarised as follows:

• We introduce the concept of graphon limits of pruning masks and propose the Graphon
Limit Hypothesis that each pruning method corresponds to a distinct graphon in the infinite-
width limit, supported by empirical evidence showing that pruning masks exhibit structural
convergence and generate characteristic graphons.

• We formalise the Graphon NTK, a new kernel framework that combines pruning structure
with infinite-width analysis, and show how it can be derived from the graphon representation
of the mask, highlighting the key differences between NTK and Graphon NTK.

• We empirically establish a connection between the spectral properties of the Graphon
NTK and training dynamics of sparse networks, providing theoretical insights into how
connectivity patterns affect the trainability of sparse networks.

The remainder of this paper is organised as follows: Sections 2, 3 discuss related works and provide
preliminaries on graph limits, NTK, and pruning methods, respectively. In Section 4, we formalise
the Graphon Limit Hypothesis and provide empirical evidence for its validity. Section 5 derives the
Graphon NTK and its special case of Random Pruning. Section 6 presents our experimental results.
Section 7 concludes with a summary of our contributions and directions for future research.

2

2 Related work

Neural network pruning. Pruning has been extensively studied as a means of reducing the com-
putational and memory demands of deep networks. Early works propose magnitude-based pruning,
where weights with the smallest absolute values are removed after training [41, 32, 31]. The Lottery
Ticket Hypothesis (LTH) [23] represents a paradigm shift by demonstrating that dense networks
contain sparse subnetworks that can be trained in isolation to match or exceed the performance of the
original network. Follow-up works expand this observation across architectures [14, 13] and training
regimes [24, 28], while theoretical analyses [49, 55, 53, 10, 11] seek to establish formal conditions
under which such "winning tickets" exist. However, finding these winning tickets typically requires
computationally intensive iterative train-prune-retrain cycles. To address this computational burden,
Pruning at Initialisation (PaI) methods have emerged, which identify sparse subnetworks before
training begins. Subnetworks can be found based on the magnitude, gradient, or hessian information
[43, 65, 16, 3] or NTK-based scores [46, 54, 30, 67], while other methods [62, 56, 69] try to identify
these tickets based on the subnetworks’ configuration only. Despite these advances, analyses of
why different pruning methods yield varying performance at the same sparsity level remain largely
empirical. Works such as [48, 22, 36] have analysed gradient flow in sparse networks, while [74]
examines the NTK limit behaviour of randomly pruned networks. Our work advances these efforts
by providing a theoretical framework for understanding the limiting behaviour of pruned networks as
their width increases.

Graphon and graph limit. Graphons are limit objects of graph sequences and have become a
central tool in the study of large networks [47, 8]. A graphon is a symmetric measurable function
W : [0, 1]2 → [0, 1] that can be viewed as the continuum analogue of an adjacency matrix. Graphons
have been widely used in, e.g., modelling social networks [60, 58], and community detection [39, 1].
In machine learning, graphons have found use in graph neural network (GNN) analysis. Graphon
neural networks extend traditional GNNs by considering their behaviour in the limit of large graphs
[57, 52, 50, 34]. In particular, graphon neural networks operate on functions over [0, 1] rather than on
finite-dimensional vectors, which makes it possible to model infinitely large graphs or to generalise
across graphs of different sizes. Another line of work focuses on learning a graphon from a collection
of observed graphs [2, 12, 70, 68]. Specifically, to estimate graphons, SAS [12] reorders adjacency
matrices by degree before applying smoothing, SBA [2] fits a stochastic block model to the graph
data, GWB [70] relaxes the cut distance by Gromov-Wasserstein distance and minimizes this distance
between observed graphs, and IGNR [68] directly uses neural networks. However, to the best of our
knowledge, no prior work has connected graphons to the behaviour of pruning methods in neural
networks. Prior studies on pruning GNNs [15, 59, 75] focus on removing edges in input data graphs
to enhance computational efficiency or task performance. In contrast, we study pruning within the
model’s own weight graph, which form an implicit connectivity graph within the neural network
architecture itself. Our work introduces a novel interpretation: pruning masks of increasingly wide
neural networks define a sequence of binary graphs that converge to graphons, and these graphons
encode structural priors in the infinite-width limit.

Neural tangent kernel and infinite-width limit. The neural tangent kernel (NTK) [37, 5, 42, 19]
characterises the training dynamics of infinitely wide neural networks under gradient descent. In
this regime, training a network becomes equivalent to solving a kernel regression problem using the
NTK. The NTK has since been extended and studied across a wide variety of architectures, including
CNNs, RNNs, transformers, GNNs [5, 71, 72, 40, 20]. Among these, Graph Neural Tangent Kernels
(GNTKs) [20] allow study on the limiting behaviour of infinitely wide (the number of features) GNNs
trained via gradient descent. Later, [40] demonstrates that as the size of the graph increases, the GNTK
converges to a graphon neural tangent kernel 1. While most NTK analyses assume dense architectures,
recent studies have begun to explore sparse NTK models. [74] shows that Random Pruning preserves
the NTK in the infinite-width limit up to a scaling factor, with convergence improving at larger
widths. In particular, they apply pre-defined random masks on layers’ weights to derive the NTK.
Separately, [73] analyses sparsity induced by large bias initialisation, demonstrating that it leads
to structured sparse activations and improved NTK conditioning, yielding faster convergence and
tighter generalization bounds. Our work extends this line of research by developing a framework for
analysing arbitrary pruning methods through their limiting graphons. This enables a more nuanced
understanding of how different pruning strategies affect network trainability in the large width limit.

1This kernel, also named Graphon NTK in [40], is for graph data and is different from our kernel.

3

3 Preliminaries

3.1 Neural tangent kernel

The neural tangent kernel (NTK) [37, 19, 5, 42] provides a theoretical framework for understanding
the training dynamics of overparameterized neural networks. For a network f(x; θ) mapping input
x ∈ Rd to output in R, the NTK is defined as: Θ(x, x′) = ∇θf(x, θ)

⊤∇θf(x
′, θ).

In the limit where the width of each hidden layer tends to infinity and the parameters are initialised
randomly (e.g., with Gaussian scaling), the NTK converges to a deterministic kernel Θ0(x, x

′),
independent of training: for any given t ≥ 0,Θt(x, x

′) → Θ0(x, x
′), as n → ∞. More recent works

have shown that even networks with finite width, and any depth follows the NTK behaviour [5, 42].
Under gradient flow on the mean squared error loss, the predictions evolve according to a linear
differential equation, which admits the solution: f(X; θt) = f(X; θ0)e

−ηΘ0t +
(
I − e−ηΘ0t

)
ŷ,

where ŷ is the training label. This formula shows that the network predictions interpolate exponentially
toward the training labels ŷ, with convergence behaviour governed by the spectral properties of Θ0.
In particular, convergence is faster along directions corresponding to larger eigenvalues of the NTK.

Different architectures yield different limiting NTKs. For example, fully connected ReLU networks
admit closed-form recursive formulas for the entries of Θ0 [37], while convolutional and residual
architectures induce structured NTKs that encode translation invariance and hierarchical composition
[5]. Thus, the NTK framework bridges deep learning and kernel methods, offering theoretical insights
into optimisation and generalisation.

3.2 Graphon and graph limit theory

Graph limit theory provides an analytic framework for analysing large graphs. For a sequence of
graphs with an increasing number of nodes (Gn), one can often associate a limit object known as a
graphon which is a symmetric, measurable function W : [0, 1]2 → [0, 1] that encodes the connectivity
pattern between an infinite set of nodes [47, 8]. The function value W(x, y) represents the probability
of an edge between nodes indexed by x and y in the limit. Graphon theory is particularly useful for
capturing the limiting behaviour of a graph sequence (Gn) as the number of nodes n → ∞.

Each finite graph Gn with n vertices can be represented (up to relabelling) by a step function WGn

on [0, 1]2, where the unit interval is partitioned into n equal parts and edge presence is encoded by:
WGn

(x, y) = Aij ,∀(x, y) ∈
[
i−1
n , i

n

)
×
[
j−1
n , j

n

)
, with A being the adjacency matrix of Gn. A

sequence (Gn) is said to converge to a graphon W if the sequence (WGn
) converges to W in the

labelled cut distance:

d□(U ,W) = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

(U(x, y)−W(x, y))dxdy

∣∣∣∣ ,
where U and W are two graphons, and the supremum is taken over all measurable subsets S, T ⊆
[0, 1]. To account for vertex relabelling, we define the cut distance between two graphons up to
measure-preserving transformations. Let Φ be the set of all measure-preserving bijections ϕ :
[0, 1] → [0, 1]. The (label-invariant) cut distance between graphons U and W is modified to be:
δ□(U ,W) = infϕ∈Φ d□(U ,Wϕ) where Wϕ(x, y) = W(ϕ(x), ϕ(y)). A sequence of graphs (Gn)
with |V (Gn)| → ∞ is said to converge to a graphon W if limn→∞ δ□(WGn

,W) = 0.

The cut distance quantifies the similarity between two graph adjacency matrices or functions by
considering all possible labellings of their nodes [47]. Intuitively, two graphs are close in the cut
distance if their global connectivity structures are similar. An equivalent characterization of the
convergence of a graph sequence (Gn) to a graphon is based on homomorphism counting [8, 57].
Particularly, for every finite subgraph F , the homomorphism densities t(F,Gn) converge to t(F,W).
The homomorphism density t(F,G) represents the probability that a random map from the vertices
of F to those of G preserves all edges.

4 Graph limit and sparse neural networks
Neural network pruning produces binary masks over the network’s layers to specify which weights
are removed from each layer. These masks naturally define bipartite graphs between adjacent layers,
with the mask matrix M (l) ∈ {0, 1}nl−1×nl acting as the biadjacency matrix. We hypothesize that

4

pruning-induced structures can be modelled in the infinite-width limit using graphons, enabling a
unified geometric and functional interpretation of sparse neural networks.

4.1 Pruning masks as graphs

In a fully connected network, each neuron in layer l − 1 is connected to every neuron in layer l,
resulting in a dense weight matrix W (l) ∈ Rnl−1×nl . A pruning method replaces this weight matrix
with a masked version W̃ (l) = W (l) ⊙M (l) where M (l) ∈ {0, 1}nl−1×nl is the binary mask and
⊙ denotes elementwise multiplication. The binary mask M (l) defines a bipartite graph, and in the
infinite-width limit, we model it with a bipartite graphon W(l) : [0, 1]2 → [0, 1]. From this point
onward, we use W to denote a bipartite graphon, unless explicitly mentioned otherwise.

Despite being called “sparse”, most pruning methods retain a constant fraction of weights (e.g.,
10%), resulting in Θ(n2) connections for width n (although with very small constants). From a
graph-theoretic perspective, these remain dense graphs, where graphon theory applies. Thus, to ensure
well-defined graphon limits, we assume: (i) the pruning masks retain a constant fraction p > 0 of
weights (normally satisfied in pruning context), and (ii) the width of hidden layers remains comparable
across layers as n → ∞. Under these assumptions, given a pruning method, for a sequence of pruning
masks (M (l)

n) with increasing width, we can define their convergence to a bipartite graphon W(l)

analogously: limn→∞ δ□(WM
(l)
n
,W(l)) = 0 where W

M
(l)
n

is the bipartite graphon representation of

the mask M
(l)
n at layer l (see Section 3.2 for definition of graphon representation of graphs). As the

network width n → ∞, each mask matrix becomes a larger and more structured graph. Different
pruning methods induce different sequences (M (l)

n) of such biadjacency matrices.

4.2 Graphon Limit Hypothesis for neural network pruning

Graphon Limit Hypothesis. Given a sequence of neural networks (Nn) from a fixed architecture
class A with widths tending to infinity, the application of a pruning method P at fixed sparsity
level p > 0 produces sequences of binary masks (M (l)

n) that converge layer-wisely to deterministic
graphons W(l) in the cut distance. These limiting graphons depend only on A, p,P and characterize
the connectivity structure of the pruned networks in the infinite-width limit.

The graphon limit has the following geometry interpretation. A fundamental result from graph limit
theory states that a sequence of graphs (Gn) converges to a graphon W if and only if the density of
any fixed subgraph F in (Gn) converges to the density of F in W . In the context of neural networks,
this means the graphon limit asymptotically captures geometric patterns including path densities
(effective paths), and other structural motifs that influence the network’s computational properties.

This hypothesis has several important implications: (i) graphons W(l) serve as structural priors for
the pruned network in the infinite-width setting; (ii) each pruning method corresponds to a distinct
region in the space of graphons, determined by the method’s design; and (iii) structural differences
between pruning methods can be captured and compared through their limiting graphons.

4.3 Experiments on graph limit of pruning at initialisation methods

We empirically validate the Graphon Limit Hypothesis by examining whether pruning methods
converge to distinct, characteristic graphons as network width increases. We analyse four pruning at
initialisation methods: Random, SNIP [43], GraSP [65], and Synflow [62] across varying network
widths n ∈ {100, 500, 1000, 2000}, number of layers {4, 5}, and sparsity levels {70%, 80%, 90%}.
We conduct 100 independent trials per configuration and collect layer masks except for masks from
input and output layers. To visualise the emergent graphons, we employ the SAS method [12] that: (1)
Sorts nodes based on degree centrality (out-degree for layer l, in-degree for layer l+1); (2) Partitions
the sorted bipartite graph into a grid of intervals; (3) Computes the average edge density within each
interval. This degree-based sorting serves as an approximate measure-preserving transformation,
revealing underlying structural patterns while maintaining invariance to node permutations. We refer
to Appendix C for more details.

Figure 1 displays the estimated graphons with increasing network widths. Each pruning method
converges to a distinct pattern. In particular, Random Pruning converges to a constant graphon

5

Figure 1: Graph limit of subnetworks’ mask produced by PaI methods at 80% sparsity and the
corresponding convergence of graphons via Euclidean distances.

(Erdős-Rényi random graph), with uniform connection probability across all node positions. SNIP
and GraSP exhibit structured, non-uniform graphons with density gradients, preferentially connecting
high-centrality nodes. Synflow converges to a block-like graphon with sharp transitions, strongly
prioritising connections among high-centrality neurons. This method encourages sparse networks
with a high number of paths, which is also indicated in [56, 54].

To quantify convergence, we also show the Euclidean distance between density matrices at width n
and reference matrices at n = 2000 in Figure 1-right. Since all histograms are aligned via degree-
based sorting, we use the Euclidean distance between the density matrices as a proxy for the cut
distance. All methods demonstrate monotonic convergence, with distances decreasing as width
increases, confirming that the limiting graphon structure is an intrinsic characteristic of each pruning
algorithm.

These results provide compelling evidence that each pruning method induces a unique (up to rela-
belling), stable connectivity pattern in the large-width limit, validating our graphon hypothesis and
establishing a foundation for analysing pruning methods through graph limit theory.

5 Neural tangent kernel with graphon structure

In this section, we present the derivation of NTK for neural networks with graphon structure. This
novel formulation extends the standard NTK theory to accommodate networks where connectivity
patterns are modulated by graphon functions, providing insights into how sparse network architecture
influences learning dynamics.

5.1 Network structure and setup

In standard neural networks, weights between layers are typically sampled from identical independent
distributions. However, sparse networks exhibit connectivity patterns, where connection strength
depends on neuron positions. Graphon provides a mathematical tool to model such connectivity
patterns. Intuitively, we can view each neuron as having a position in [0, 1], and the graphon value
W(l)(u, v) represents the expected connection strength/probability between neurons at positions
u and v. Each layer’s structure is thus defined by its corresponding graphon W(l), providing a
continuous representation of the network’s connectivity.

6

Graphon-structured networks naturally connect to neural network pruning, where certain connections
are eliminated. In pruning, a binary mask M (l) is applied to weights: W̃ (l) = W (l) ⊙M (l). For
weights initialised as W (l)

ij ∼ N (0, σ2
w), pruning effectively modifies their variance: Var(W̃ (l)

ij) =

Var(W (l)
ij M

(l)
ij) = Var(W (l)

ij)M
(l)
ij = σ2

w M
(l)
ij .

Based on the Graphon Limit Hypothesis in Section 4, as network width increases, pruning masks
converge to graphons layer-wisely W(l)(ul, ul−1), representing the probability density of connections
between positions. In a finite network, the weights are sampled as: W (l)

ij ∼ N
(
0,W(l)

(
i
nl
, j
nl−1

))
,

where nl represents the width of layer l, and we consider σ2
w = 1 for simplicity [5]. Similar to the

standard NTK setting [37, 5], we remove the bias terms and consider a single output network. Unlike
standard networks where weights are i.i.d., our graphon-modulated weights have position-dependent
variances while maintaining independence. As we take layer widths to infinity nl → ∞, discrete
neuron indices approach to continuous positions in [0, 1]: i/nl → ul ∈ [0, 1] (position in layer l) and
j/nl−1 → ul−1 ∈ [0, 1] (position in layer l − 1). Summations over neurons become integrals over
positions, and the scaling term 1/nl−1 will be absorbed into the integral. The forward pass of an L
hidden layers network below illustrates this approach from discrete to continuous:

Discrete network Continuous network

z
(l)
i (x) =

1
√
nl−1

nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x), z(l)(ul, x) =

∫ 1

0

W (l)(ul, ul−1)h
(l−1)(ul−1, x) dul−1,

h
(l)
i (x) = σ(z

(l)
i (x)), h(l)(ul, x) = σ(z(l)(ul, x)),

f(x) =
1

√
nL

nL∑
j=1

W
(L+1)
ij h

(L)
j (x), f(x) =

∫ 1

0

W (L+1)(uL+1, uL)h
(L)(uL, x) duL,

where W (l)(ul, ul−1) ∼ N (0,W(l)(ul, ul−1)) is a random field modulated by the graphon. In addi-
tion, since the statistical properties of the network now is affected by the graphon structure, weights
are independent but not identically distributed random variables. We need additional assumptions to
ensure the Law of Large Numbers (LLN) and Central Limit Theorem (CLT) still apply. For the LLN
to hold in this non-iid setting, we assume: (i) the graphon values W(l)(ul, ul−1) are bounded, and
(ii) the average connectivity

∫ 1

0
W(l)(ul, ul−1)dul−1 are well-behaved for all positions ul. Similarly,

for the CLT to apply to pre-activations, we assume the Lindeberg-Feller [6] condition:

lim
nl−1→∞

1

nl−1

nl−1∑
j=1

E
[(

W
(l)
ij h

(l−1)
j (x)

)2
· 1{|W (l)

ij h
(l−1)
j (x)|>ϵ

√
nl−1}

]
= 0,

for all ϵ > 0. This condition ensures that no single weight-activation product dominates the sum,
allowing the pre-activations to still converge to Gaussian processes, albeit with position-dependent
covariance structures shaped by the graphon.

5.2 Graphon neural tangent kernel

We extend the NTK theory to networks with graphon-structured connectivity. We begin by character-
ising the limiting behaviour of pre-activations and activations in the infinite-width limit.

Proposition 1. For a neural network with layers structured by graphons W(l) : [0, 1]2 → [0, 1],
Lipschitz nonlinearity σ, and in the limit as n1, ..., nL → ∞, the pre-activations z(l)(ul, x) at every
hidden layer converge to centred Gaussian processes with covariance Σ̃(l), where Σ̃(l) is defined
recursively by:

Σ̃(1)(u1, u
′
1, x, x

′) = δ(u1 − u′
1)
1

d

d∑
j

W(1)(u1,
j

d
)(x · x′)j , (1)

Σ̃(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)

∫ 1

0

W(l)(ul, ul−1)Σ
(l−1)(ul−1, ul−1, x, x

′)dul−1, (2)

7

where (x · x′)j represents the input correlation at position j, the activation covariance Σ(l) is:

Σ(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)E(z,z′)∼N (0,Λ(l)(ul))[σ(z)σ(z

′)], (3)

δ(ul − u′
l) is the Dirac delta function, and Λ(l)(ul) is the position-dependent covariance matrix:

Λ(l)(ul) =

[
Σ̃(l)(ul, ul, x, x) Σ̃(l)(ul, ul, x, x

′)
Σ̃(l)(ul, ul, x

′, x) Σ̃(l)(ul, ul, x
′, x′)

]
.

Remark 1. The key difference between the standard NTK and Graphon NTK lies in the pre-activation
covariance formulation. In standard NTK, the pre-activation covariance Σ̃(l) equals the previous
layer’s activation covariance Σ(l−1). In contrast, the Graphon NTK modulates this with the graphon
function W(l), creating position-dependent covariance structures. This causes signals to propagate
non-uniformly through the network, with connectivity strength determined by the graphon values.

The NTK characterises how network outputs change with respect to parameters during training. Our
key result shows that the Graphon NTK also converges to a deterministic limit in the infinite-width
regime, but with a structure determined by the graphon connectivity patterns.
Theorem 1 (Graphon NTK). For a neural network with layers structured by graphons
W(l) : [0, 1]2 → [0, 1], Lipschitz nonlinearity σ, in the limit as n1, ..., nL → ∞, the
Graphon Neural Tangent Kernel (Graphon NTK) Θ(x, x′) converges to a deterministic kernel:

Θ(x, x′) =
L∑

l=1

∫ 1

0

(
Σ̇(l)(ul, ul, x, x

′)

∫
[0,1]L−l+1

L+1∏
m=l+1

W(m)(um, um−1)Σ̇
(m)(um, um, x, x′) dul+1

)

·
(∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul, (4)

where Σ̇(l)(ul, ul, x, x
′) = E[σ′(z(l)(ul, x))σ

′(z(l)(ul, x
′))] represents the expected correlation

between activation derivatives, and dul+1 = duL+1duL . . . dul+1.
Remark 2. The Graphon NTK explicitly shows how graphon functions W(l) shape the kernel through
position-dependent connectivity, in contrast to the standard NTK. This structure gives insights on the
heterogeneous learning dynamics of sparse model training, and allows modelling diverse connectivity
patterns.

The Graphon NTK provides a powerful framework for analysing how the pattern of connectivity
between neurons in sparse neural networks affects learning dynamics in the infinite-width limit. By
modulating the weight variances according to the graphon, we can model a wide range of structured
connectivity patterns, including those that arise from various network pruning strategies. We refer to
Appendix A for detailed proofs.

5.3 Graphon neural tangent kernel of Random Pruning

Our Graphon NTK framework encompasses a broad class of structured sparsity patterns with Random
Pruning being a special case. Specifically, when the underlying graphon is constant, i.e., W(u, v) = c
where c ∈ (0, 1], the resulting kernel simplifies to a scaled version of the standard NTK: Θ(x, x′) =
cL Θstd(x, x

′), where Θstd denotes the standard NTK of a fully-connected network with L hidden
layers. This special case was previously studied in [74] by applying random masks to weight matrices.
Our general framework of Graphon NTK not only recovers this result, but is also flexible enough to
analyse more complex sparsity connectivity patterns beyond Random Pruning.

This scaling directly influences network training dynamics. If λk is the k-th eigenvalue of Θstd,
then this k-th eigenvalue of the pruned network’s NTK becomes cLλk. Notably, while the absolute
learning speed is reduced, the relative dynamics between modes remain unchanged. This offers a
principled explanation for the empirical observation that sparse random networks converge more
slowly than their dense counterparts [27]. We refer to Appendix B for more discussions.

6 Numerical experiments

We illustrate the relationship between spectral properties of Graphon NTK and training dynamics
of finite sparse networks using three pruning methods: Random, SNIP [43], and Synflow [62] at

8

Figure 2: The training loss in the first 200 gradient update steps of training sparse networks produced
by Random, SNIP, and Synflow with different sparsity levels. At the beginning of the training phase,
subnetworks generated by SNIP and Synflow show a faster convergence speed than Random across
sparsity levels.

Figure 3: Spectral metrics of the Graphon NTK with different graphon functions and sparsity levels.

sparsity levels from 50% to 95%. Subnetworks are pruned from 4-layer networks with hidden size
n = 1024, then trained on MNIST. We approximate the Graphon NTK by graphon functions found
in Section 4. In particular, given the sparsity, we generate masks for 4-layer networks with hidden
dimension n = 1024 based on graphon functions. Then we compute the Graphon NTK based on a
batch of 1024 data samples from 10 classes in MNIST, and analyse four spectral metrics: eigenvalue
decay rate (α), effective rank trace(Θ)/λ1, spectral gap (λ1/λ2), and the energy concentration in

top-5 eigenvalues
∑5

i=1 λi∑n
j=1 λj

. We refer to Appendix D for further details.

Results and discussion. Figure 3 reveals that Random Pruning maintains relatively consistent
spectral properties across the sparsity levels, with stable decay rate, high effective rank, and broad
spectral spread. This reflects uniform eigenvalue scaling which is consistent with the constant graphon
analysis in Section 5.3, where Random Pruning acts as a global downscaling of the kernel. In contrast,
SNIP and Synflow increasingly concentrate their Graphon NTK energy in top eigenvalues as the
sparsity level grows, despite reduced effective rank and spectral gaps. This suggests a stronger focus
on dominant eigen-directions, aligning with their faster training loss reduction at the beginning when
compared with random subnetworks at the same sparsity in Figure 2.

The observed correlation between kernel spectral properties and training dynamics demonstrates an
initial insight of our Graphon NTK framework for sparse neural network training. These findings offer
both theoretical insight and practical guidance: Graphon NTK can serve as principled, training-free
indicators for evaluating pruning quality, and preserving key spectral characteristics should be a
design goal for future pruning algorithms, as also verified in [67].

7 Conclusion

In this paper, we introduce a novel theoretical framework for analysing sparse neural networks
through the lens of graph limit theory and neural tangent kernel. Our Graphon Limit Hypothesis
establishes a connection between pruning methods and their limiting graphons in the infinite-width
regime, providing a mathematical framework for understanding the structural properties of sparse
networks. We derive Graphon NTK which offers a meaningful tool for analysing how these structural
properties affect training dynamics of sparse networks. This paves the way for the theoretical study
of sparse models using tools from kernel and graph limit theories.

9

8 Limitations and future research directions

Our work introduces the Graphon NTK as a new theoretical tool for understanding neural network
pruning. While it establishes a solid foundation, several limitations remain, and each suggests
promising avenues for future research.

Formalising the Graphon Limit Hypothesis. A foundational aspect of our work is its reliance
on the Graphon Limit Hypothesis, which is the proposition that pruning masks converge to a limit
graphon. A key limitation is that we establish this hypothesis empirically, providing experimental
evidence across MLP architectures and pruning methods, rather than through a formal mathematical
proof. The theoretical framework of the Graphon NTK, which we use to study training dynamics
and spectral properties, is consequently built upon this compelling, yet unproven, foundation. This
immediately opens a critical avenue for future theoretical research to formally prove the existence
and uniqueness of these graphon limits.

From Static Analysis to Dynamic Pruning and Complex Architectures. Our analysis currently
focuses on the clean theoretical setting of pruning at initialisation using fixed masks on MLPs. This
controlled environment was essential for developing the core theory but does not yet encompass more
complex, real-world scenarios. This limitation presents a clear research trajectory which extends the
framework to dynamic pruning and advanced architectures. For iterative or continuous sparsification,
one can envision modelling the pruning process as an evolution of the graphon over time, potentially
recasting the problem as a gradient flow on the continuous space of graphons. A parallel effort will
be to generalise the Graphon NTK beyond MLPs to architectures like CNNs and Transformers.

Bridging the Theory-Practice Gap with Principled Algorithm Design. While our framework
provides a powerful lens for analysing existing pruning methods, a key limitation is the inherent gap
between its infinite-width theoretical predictions and the practical realities of finite-width networks.
Furthermore, our analysis explains why certain structures are effective but does not yet yield a
prescriptive algorithm for practitioners to create them. Future work can focus on creating graphon-
guided pruning algorithms that directly optimise for a target graphon with desirable spectral properties
(e.g., high energy concentration for faster convergence), thereby closing the loop from theory back
to practice. Beyond just designing masks, these insights could inform graphon-informed sparse
training methodologies, such as developing learning rate schedulers or weight initialisations based on
the eigenfunctions of the Graphon NTK. Such methods would be designed to explicitly accelerate
training and improve robustness, helping to bridge the theory-practice gap for finite networks.

9 Acknowledgements

RB acknowledges the Gauss Centre for Supercomputing e.V. for providing computing time on
the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC). RB is also grateful
for funding from the European Research Council (ERC) under the Horizon Europe Framework
Programme (HORIZON) for proposal number 101116395 SPARSE-ML.

References
[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments.

Journal of Machine Learning Research, 18(177):1–86, 2018.

[2] Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation
of a graphon: Theory and consistent estimation. Advances in Neural Information Processing
Systems, 26, 2013.

[3] Milad Alizadeh, Shyam A. Tailor, Luisa M Zintgraf, Joost van Amersfoort, Sebastian Farquhar,
Nicholas Donald Lane, and Yarin Gal. Prospect pruning: Finding trainable weights at ini-
tialization using meta-gradients. In International Conference on Learning Representations,
2022.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

10

[5] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in neural information
processing systems, 32, 2019.

[6] Krishna B Athreya and Soumendra N Lahiri. Measure theory and probability theory, volume 19.
Springer, 2006.

[7] Pal Bithika, Biswas Arindam, Kolay Sudeshna, Mitra Pabitra, and Basu Biswajit. A study on the
ramanujan graph property of winning lottery tickets. In International Conference on Machine
Learning, volume 162, pages 17186–17201, 2022.

[8] Christian Borgs, Jennifer T Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs i: Subgraph frequencies, metric properties and testing.
Advances in Mathematics, 219(6):1801–1851, 2008.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[10] Rebekka Burkholz. Convolutional and residual networks provably contain lottery tickets. In
International Conference on Machine Learning, pages 2414–2433. PMLR, 2022.

[11] Rebekka Burkholz. Most activation functions can win the lottery without excessive depth.
Advances in Neural Information Processing Systems, 35:18707–18720, 2022.

[12] Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph
models. In International Conference on Machine Learning, pages 208–216. PMLR, 2014.

[13] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16306–16316, 2021.

[14] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

[15] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International conference on machine learning,
pages 1695–1706. PMLR, 2021.

[16] Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr, Grégory Rogez, and Puneet K.
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. In
International Conference on Learning Representations, 2021.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[19] Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks.
In International Conference on Machine Learning, pages 1655–1664. PMLR, 2019.

[20] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in neural information processing systems, 32, 2019.

[21] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In International Conference on Machine Learning, pages
2943–2952. PMLR, 2020.

11

[22] Utku Evci, Yani Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural
networks and how lottery tickets win. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 6577–6586, 2022.

[23] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[24] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[25] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[26] Advait Gadhikar, Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Sign-in to the lottery:
Reparameterizing sparse training from scratch. arXiv preprint arXiv:2504.12801, 2025.

[27] Advait Gadhikar, Sree Harsha Nelaturu, and Rebekka Burkholz. Cyclic sparse training: Is it
enough? arXiv preprint arXiv:2406.02773, 2024.

[28] Advait Harshal Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding. In
The Twelfth International Conference on Learning Representations, 2024.

[29] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[30] Thomas Gebhart, Udit Saxena, and Paul Schrater. A unified paths perspective for pruning at
initialization. arXiv preprint arXiv:2101.10552, 2021.

[31] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[32] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[34] Daniel Herbst and Stefanie Jegelka. Higher-order graphon neural networks: Approximation and
cut distance. In The Thirteenth International Conference on Learning Representations, 2025.

[35] Duc N.M Hoang, Shiwei Liu, Radu Marculescu, and Zhangyang Wang. REVISITING PRUN-
ING AT INITIALIZATION THROUGH THE LENS OF RAMANUJAN GRAPH. In The
Eleventh International Conference on Learning Representations, 2023.

[36] Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification. In The
Thirteenth International Conference on Learning Representations, 2025.

[37] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[38] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

[39] Florian Klimm, Nick S Jones, and Michael T Schaub. Modularity maximization for graphons.
SIAM Journal on Applied Mathematics, 82(6):1930–1952, 2022.

[40] Sanjukta Krishnagopal and Luana Ruiz. Graph neural tangent kernel: Convergence on large
graphs. In International Conference on Machine Learning, pages 17827–17841. PMLR, 2023.

12

[41] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

[42] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

[43] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations,
2019.

[44] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen,
Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via
boosting pruning plasticity with neuroregeneration. Advances in Neural Information Processing
Systems, 34:9908–9922, 2021.

[45] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually
need dense over-parameterization? in-time over-parameterization in sparse training. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 6989–7000. PMLR,
18–24 Jul 2021.

[46] Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent
transfer. In International Conference on Machine Learning, pages 6336–6347. PMLR, 2020.

[47] László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

[48] Ekdeep Singh Lubana and Robert Dick. A gradient flow framework for analyzing network
pruning. In International Conference on Learning Representations, 2021.

[49] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery
ticket hypothesis: Pruning is all you need. In International Conference on Machine Learning,
pages 6682–6691. PMLR, 2020.

[50] Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an
extended graphon approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

[51] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[52] A Martina Neuman and Jason J Bramburger. Transferability of graph neural networks using
graphon and sampling theories. arXiv preprint arXiv:2307.13206, 2023.

[53] Bithika Pal, Arindam Biswas, Sudeshna Kolay, Pabitra Mitra, and Biswajit Basu. A study on the
ramanujan graph property of winning lottery tickets. In International Conference on Machine
Learning, pages 17186–17201. PMLR, 2022.

[54] Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that
learn fast and generalize well without training data. In International Conference on Machine
Learning, pages 8432–8442. PMLR, 2021.

[55] Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopou-
los. Optimal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient.
Advances in neural information processing systems, 33:2599–2610, 2020.

[56] Hoang Pham, Shiwei Liu, Lichuan Xiang, Dung Le, Hongkai Wen, Long Tran-Thanh, et al.
Towards data-agnostic pruning at initialization: what makes a good sparse mask? Advances in
Neural Information Processing Systems, 36:80044–80065, 2023.

[57] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702–1712, 2020.

13

[58] Mahalakshmi Sabanayagam, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar.
Graphon based clustering and testing of networks: Algorithms and theory. arXiv preprint
arXiv:2110.02722, 2021.

[59] Hyunjin Seo, Jihun Yun, and Eunho Yang. TEDDY: Trimming edges with degree-based
discrimination strategy. In The Twelfth International Conference on Learning Representations,
2024.

[60] Yi Su, Raymond KW Wong, and Thomas CM Lee. Network estimation via graphon with node
features. IEEE Transactions on Network Science and Engineering, 7(3):2078–2089, 2020.

[61] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[62] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information
Processing Systems, 33:6377–6389, 2020.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[64] Dharma Teja Vooturi, Girish Varma, and Kishore Kothapalli. Ramanujan bipartite graph
products for efficient block sparse neural networks. Concurrency and Computation: Practice
and Experience, 35(14):e6363, 2023.

[65] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[66] Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent advances on neural network
pruning at initialization. In International Joint Conference on Artificial Intelligence, 2022.

[67] Yite Wang, Dawei Li, and Ruoyu Sun. NTK-SAP: Improving neural network pruning by aligning
training dynamics. In The Eleventh International Conference on Learning Representations,
2023.

[68] Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 10619–10634. PMLR,
2023.

[69] Lichuan Xiang, Quan Nguyen-Tri, Lan-Cuong Nguyen, Hoang Pham, Khoat Than, Long Tran-
Thanh, and Hongkai Wen. DPai: Differentiable pruning at initialization with node-path balance
principle. In The Thirteenth International Conference on Learning Representations, 2025.

[70] Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via struc-
tured gromov-wasserstein barycenters. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10505–10513, 2021.

[71] Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

[72] Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent
kernel training dynamics. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 11762–11772. PMLR, 18–24 Jul 2021.

[73] Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence
and generalization of wide neural networks with large bias. arXiv preprint arXiv:2301.00327,
2023.

14

[74] Hongru Yang and Zhangyang Wang. On the neural tangent kernel analysis of randomly pruned
neural networks. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 1513–1553. PMLR, 25–27
Apr 2023.

[75] Guibin Zhang, Kun Wang, Wei Huang, Yanwei Yue, Yang Wang, Roger Zimmermann, Aojun
Zhou, Dawei Cheng, Jin Zeng, and Yuxuan Liang. Graph lottery ticket automated. In The
Twelfth International Conference on Learning Representations, 2024.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are in the abstract and the listed contributions in Section 1
reflect the main contributions made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have provided the limitation discussion in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

16

Justification: We have provided the necessary assumptions and proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the information for reproducing the main experimental
results and experimental settings in Sections 4, 6 and in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]
Justification: We have provided the code in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided details in experiment settings in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have conducted tests for the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We only provide the type of compute workers, but not the memory and time of
execution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to conform to the NeurIPS Code of Ethics in every respect of
the paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on understanding the training dynamics of sparse neural
networks, which is irrelevant to societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on understanding the training dynamics of sparse neural
networks, which has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package used in our
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not release new assets
Guidelines: :

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: this paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Contents

1 Introduction 1

2 Related work 3

3 Preliminaries 4

3.1 Neural tangent kernel . 4

3.2 Graphon and graph limit theory . 4

4 Graph limit and sparse neural networks 4

4.1 Pruning masks as graphs . 5

4.2 Graphon Limit Hypothesis for neural network pruning 5

4.3 Experiments on graph limit of pruning at initialisation methods 5

5 Neural tangent kernel with graphon structure 6

5.1 Network structure and setup . 6

5.2 Graphon neural tangent kernel . 7

5.3 Graphon neural tangent kernel of Random Pruning 8

6 Numerical experiments 8

7 Conclusion 9

8 Limitations and future research directions 10

9 Acknowledgements 10

A Details on graphon neural tangent kernel 24

A.1 Network structure and setup . 24

A.2 Forward propagation: covariance structure (proof of proposition 1) 26

A.3 Graphon neural tangent kernel convergence (proof of theorem 1) 28

B Details on graphon neural tangent kernel of Random pruning 31

C Experiments on graph limit of pruning at initialisation methods 33

D Details on numerical experiments 37

23

A Details on graphon neural tangent kernel

In this section, we present a comprehensive derivation of the NTK for neural networks with graphon
structure. This novel formulation extends the standard NTK theory to accommodate networks where
connectivity patterns are modulated by graphon functions, providing insights into how network
architecture influences learning dynamics. In particular, we first describe the network setting and the
transition from discrete to continuous network in Appendix A.1. Then we provide the proof for the
Proposition 1 in Appendix A.2 and for Theorem 1 in Appendix A.3, respectively.

A.1 Network structure and setup

Discrete neural network with graphon Consider a single output neural network with L hidden
layers where weights are modulated by a graphon function W(l) : [0, 1]2 → [0, 1]:

W
(l)
ij ∼ N

(
0, W(l)

(
i

nl
,

j

nl−1

))
. (5)

The graphon function governs the statistical structure and strength of synaptic connections between
neurons. Specifically, it describes how the variance of random weights varies based on the positions of
the connected neurons, thereby shaping the connectivity patterns and signal propagation across layers.
Unlike in standard neural networks where weights are identically distributed, graphon-modulated
weights have position-dependent variances while maintaining their independence.

Pre-activations and activations are computed as:

z
(l)
i (x) =

1
√
nl−1

nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x), (6)

h
(l)
i (x) = σ(z

(l)
i (x)). (7)

The network output for simplicity is a single output:

f(x) =
1

√
nL

nL∑
j=1

W
(L+1)
ij h

(L)
j (x). (8)

Connection to network pruning The graphon framework can be directly connected to network
pruning. In standard pruning, a binary mask M (l) is applied to the weights:

W̃ (l) = W (l) ⊙M (l), (9)

where ⊙ denotes element-wise multiplication and M
(l)
ij ∈ {0, 1} indicates whether the connection is

kept (1) or pruned (0). In the finite-width case, the variance of the pruned weights becomes:

Var(W̃ (l)
ij) = σ2

wM
(l)
ij , (10)

which equals either σ2
w (kept) or 0 (pruned). As network width increases (nl, nl−1 → ∞), the

pruning mask can be viewed as a step function over [0, 1]2, with M
(l)
ij corresponding to the value at(

i
nl
, j
nl−1

)
. In the limit, this mask converges to the graphon W(l)(ul, ul−1), which represents the

density or probability of connections in each region of the unit square. Different pruning methods
yield different graphon structures. Thus, the graphon-modulated weights can be interpreted as
modeling the effect of pruning directly within the network initialization, enabling analysis of pruned
network behavior in the infinite-width limit.

Continuous limit formulation As layer widths approach infinity (nl → ∞), we transition to
continuous indices:

• i/nl → ul ∈ [0, 1] (position in layer l),

24

• j/nl−1 → ul−1 ∈ [0, 1] (position in layer l − 1).

The continuous network becomes:

z(l)(ul, x) =

∫ 1

0

W (l)(ul, ul−1)h
(l−1)(ul−1, x)dul−1, (11)

h(l)(ul, x) = σ(z(l)(ul, x)), (12)

f(x) =

∫ 1

0

W (L+1)(uL+1, uL)h
(L)(uL, x)duL, (13)

where W (l)(ul, ul−1) ∼ N (0,W(l)(ul, ul−1)).

Statistical properties and convergence conditions In graphon-structured networks, weights
become independent but not identically distributed (non-i.i.d.) random variables. This change
requires careful consideration of the conditions under which the Law of Large Numbers (LLN) and
Central Limit Theorem (CLT) apply.

Law of Large Numbers in Graphon Networks

For the LLN to hold in the non-i.i.d. setting of graphon networks, the following conditions are
required:

• Bounded Graphon Values: W(l)(ul, ul−1) ≤ 1 ensures that Var(W (l)
ij) is bounded, pre-

venting any term from dominating the sum (satisfied by graphon definition).

• Well-Defined Average Connectivity: The integral
∫ 1

0
W(l)(ul, ul−1)dul−1 must be well-

defined for all positions ul, ensuring the "average effect" of connections per neuron is
stable.

Since the graphon values are bounded, the variances of weights and related quantities remain bounded,
ensuring the LLN applies to empirical averages throughout the network.

Central Limit Theorem and the Lindeberg-Feller Condition

For pre-activations to converge to Gaussian processes in graphon networks, we assume the Lindeberg-
Feller condition [6] is satisfied:

lim
nl−1→∞

1

σ2
n

nl−1∑
j=1

E
[
X2

j · 1{|zj |>ϵσn}
]
= 0, (14)

for all ϵ > 0, where Xj = 1√
nl−1

W
(l)
ij h

(l−1)
j (x), σ2

n =
∑nl−1

j=1 Var(Xj), and the pre-activation

zi =
∑nl−1

j Xj . This condition ensures that no single term in the sum disproportionately influences
the total variance. Then, the CLT applies despite the non-i.i.d. nature of the weights, allowing
pre-activations to converge to Gaussian processes with position-dependent covariance structures.

In our setting, the Lindeberg condition is satisfied due to the following structural properties of graphon
networks: (i) When network weights are initialized using a bounded graphon (W(l)(u, v) ≤ 1), each
connection’s variance is controlled, preventing any single weight from becoming dominant; (ii)
Activations from the previous layer h(l−1)

j (x) are bounded with sigmoid and tanh function, while
activations like ReLU tend to remain within reasonable ranges when networks are properly initialized
and inputs are normalized; (iii) The scaling factor of 1√

nl−1
in the pre-activation formula ensures

that individual pre-activation variances decrease proportionally as the network widens, scaling as
O(1

nl−1
). Together, these properties imply that as the layer width nl−1 → ∞, the influence of any

single term Xj becomes negligible relative to the total variance. Hence, the Lindeberg condition is
met, and the pre-activations converge in distribution to a Gaussian process with a position-dependent
covariance structure induced by the graphon.

25

A.2 Forward propagation: covariance structure (proof of proposition 1)

We first establish the statistical behaviour of signals as they propagate through the network. Our main
result for the forward pass is captured in the Proposition 1. For the sake of convenience, we re-state
the proposition here again:

Proposition 2. For a neural network with layers structured by graphons W(l) : [0, 1]2 → [0, 1],
Lipschitz nonlinearity σ, and in the limit as n1, ..., nL → ∞, the pre-activations z(l)(ul, x) at every
hidden layer converge to centred Gaussian processes with covariance Σ̃(l), where Σ̃(l) is defined
recursively by:

Σ̃(1)(u1, u
′
1, x, x

′) = δ(u1 − u′
1)
1

d

d∑
j

W(1)(u1,
j

d
)(x · x′)j , (15)

Σ̃(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)

∫ 1

0

W(l)(ul, ul−1)Σ
(l−1)(ul−1, ul−1, x, x

′)dul−1, (16)

where (x · x′)j represents the input correlation at position j, and the activation covariance Σ(l) is:

Σ(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)E(z,z′)∼N (0,Λ(l)(ul))[σ(z)σ(z

′)], (17)

where δ(ul − u′
l) is Dirac delta function, Λ(l)(ul) is the position-dependent covariance matrix:

Λ(l)(ul) =

[
Σ̃(l)(ul, ul, x, x) Σ̃(l)(ul, ul, x, x

′)
Σ̃(l)(ul, ul, x

′, x) Σ̃(l)(ul, ul, x
′, x′)

]
.

Proof:

We prove the proposition by induction on the layer index l. The key insight is to analyze how the
graphon structure affects the statistical properties of pre-activations as signals propagate through the
network. The proof works as follows:

Base case: first layer l = 1 For the first layer with graphon modulation:

W
(1)
ij ∼ N

(
0,W(1)

(
i

n1
,
j

d

))
, (18)

where d is the input dimension. The pre-activation covariance becomes:

E[z(1)i (x)z
(1)
i′ (x′)] = E

 1√
d

d∑
j=1

W
(1)
ij xj

(1√
d

d∑
k=1

W
(1)
i′k x

′
k

) (19)

=
1

d

d∑
j=1

d∑
k=1

E[W (1)
ij W

(1)
i′k]xjx

′
k. (20)

Since weights are independently sampled:

• E[W (1)
ij W

(1)
i′k] = 0 when (i, j) ̸= (i′, k) ,

• E[(W (1)
ij)2] = W(1)

(
i
n1

, j
d

)
when i = i′ and j = k .

Therefore:

E[z(1)i (x)z
(1)
i′ (x′)] = δii′

1

d

 d∑
j=1

W(1)

(
i

n1
,
j

d

)
xjx

′
j

 . (21)

26

As n1 → ∞ in the continuous limit with i/n1 → u1:

Σ̃(1)(u1, u
′
1, x, x

′) = δ(u1 − u′
1)
1

d

d∑
j

W(1)(u1,
j

d
)(x · x′)j , (22)

where · is the dot-product, (x · x′)j represents the input correlation at position j.

The activation covariance at position u1 is:

Σ(1)(u1, u
′
1, x, x

′) = δ(u1 − u′
1)E[σ(z(1)(u1, x))σ(z

(1)(u1, x
′))]. (23)

Since (z(1)(u1, x), z
(1)(u1, x

′)) follows a joint Gaussian distribution according to the CLT, this can
be computed as:

Σ(1)(u1, u
′
1, x, x

′) = δ(u1 − u′
1)E(z,z′)∼N (0,Λ(1)(u1))[σ(z)σ(z

′)] (24)

Where Λ(1)(u1) is the position-dependent covariance matrix:

Λ(1)(u1) =

[
Σ̃(1)(u1, u1, x, x) Σ̃(1)(u1, u1, x, x

′)
Σ̃(1)(u1, u1, x

′, x) Σ̃(1)(u1, u1, x
′, x′)

]
. (25)

Different from fully connected network, where the pre-activation covariance of the first layer becomes
covariance of the input layer Σ(0)(x, x′) = x.x′, in graphon networks, the pre-activation covariance
depends on the structure of the graphon.

Inductive step: subsequent layer l > 1 For layer l with graphon structure:

E[z(l)i (x)z
(l)
i′ (x′)] = E

 1

nl−1

nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x)

(nl−1∑
k=1

W
(l)
i′kh

(l−1)
k (x′)

) (26)

=
1

nl−1

nl−1∑
j=1

nl−1∑
k=1

E[W (l)
ij W

(l)
i′k]E[h

(l−1)
j (x)h

(l−1)
k (x′)]. (27)

Since weights are independently sampled and E[(W (l)
ij)2] = W(l)

(
i
nl
, j
nl−1

)
:

E[z(l)i (x)z
(l)
i′ (x′)] = δii′

 1

nl−1

nl−1∑
j=1

W(l)

(
i

nl
,

j

nl−1

)
E[h(l−1)

j (x)h
(l−1)
j (x′)]

 . (28)

In the continuous limit as j/nl−1 → ul−1, and 1/nl−1 is absorbed into the integral:

Σ̃(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)

∫ 1

0

W(l)(ul, ul−1)Σ
(l−1)(ul−1, ul−1, x, x

′)dul−1. (29)

The activation covariance is:

Σ(l)(ul, u
′
l, x, x

′) = δ(ul − u′
l)E(z,z′)∼N (0,Λ(l)(ul))[σ(z)σ(z

′)], (30)

where Λ(l)(ul) is the covariance matrix for pre-activations at position ul:

Λ(l)(ul) =

[
Σ̃(l)(ul, ul, x, x) Σ̃(l)(ul, ul, x, x

′)
Σ̃(l)(ul, ul, x

′, x) Σ̃(l)(ul, ul, x
′, x′)

]
. (31)

This completes the proof of Proposition 1 by induction. A critical insight is how the graphon structure
W(l)(ul, ul−1) directly modulates signal propagation, creating non-uniform information flow across
different network regions.

27

A.3 Graphon neural tangent kernel convergence (proof of theorem 1)

Our main theoretical result characterises the NTK for graphon-structured networks. For convenience,
we re-state the Theorem 1 here again:

Theorem 2 (Graphon NTK). For a neural network with layers structured by graphons W(l) :
[0, 1]2 → [0, 1], Lipschitz nonlinearity σ, in the limit as n1, ..., nL → ∞, the Graphon Neural
Tangent Kernel (Graphon NTK) Θ(x, x′) converges to a deterministic kernel:

Θ(x, x′) =

L∑
l=1

∫ 1

0

(
Σ̇(l)(ul, ul, x, x

′)

∫
[0,1]L−l+1

L+1∏
m=l+1

W(m)(um, um−1)Σ̇
(m)(um, um, x, x′) dul+1

)
(32)(∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul

where Σ̇(l)(ul, ul, x, x
′) = E[σ′(z(l)(ul, x))σ

′(z(l)(ul, x
′))] represents the expected correlation

between activation derivatives, and dul+1 = duL+1duL . . . dul+1.

Proof:

We prove the Graphon NTK by decomposing the derivation into three key steps: (1) characterizing
gradient flow through graphon-structured layers, (2) analyzing gradient correlations under infinite-
width statistical independence, and (3) integrating these correlations to derive a closed-form NTK
expression. This structured approach yields an interpretable kernel that reflects how the graphon
structure shapes learning dynamics across the network.

A.3.1 Backward propagation: gradient flow

Gradient recursion For layer L, applying the chain rule:

∂f(x)

∂z(L)(uL, x)
=

∂f(x)

∂h(L)(uL, x)

∂h(L)(uL, x)

∂z(L)(uL, x)
= W (L+1)(uL+1, uL)σ

′(z(L)(uL, x)). (33)

For earlier layers (l < L), the gradient with respect to pre-activations is:

∂f(x)

∂z(l)(ul, x)
= σ′(z(l)(ul, x))

∫ 1

0

∂f(x)

∂z(l+1)(ul+1, x)
W (l+1)(ul+1, ul)dul+1. (34)

Parameter gradients The gradients with respect to weights are:

∂f(x)

∂W (l)(ul, ul−1)
=

∂f(x)

∂z(l)(ul, x)
h(l−1)(ul−1, x). (35)

A.3.2 Graphon neural tangent kernel derivation

The Neural Tangent Kernel is defined as the inner product of gradients with respect to all parameters:

Θ(x, x′) =

L∑
l=1

∫ 1

0

∫ 1

0

E
[

∂f(x)

∂W (l)(ul, ul−1)

∂f(x′)

∂W (l)(ul, ul−1)

]
duldul−1. (36)

Layer-wise graphon NTK contribution The contribution to the Graphon NTK from layer l is:

Θl(x, x
′) =

∫ 1

0

∫ 1

0

E
[

∂f(x)

∂W (l)(ul, ul−1)

∂f(x′)

∂W (l)(ul, ul−1)

]
duldul−1 (37)

=

∫ 1

0

∫ 1

0

E
[

∂f(x)

∂z(l)(ul, x)
h(l−1)(ul−1, x)

∂f(x′)

∂z(l)(ul, x′)
h(l−1)(ul−1, x

′)

]
duldul−1.

(38)

28

At this point, we apply a key insight: In the infinite-width limit, by the LLN, the gradients ∂f(x)
∂z(l)(ul,x)

and the activations h(l−1)(ul−1, x) become statistically independent for distinct positions ul and
ul−1. This allows us to factorize the expectation:

Θl(x, x
′) =

∫ 1

0

E
[

∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

](∫ 1

0

E[h(l−1)(ul−1, x)h
(l−1)(ul−1, x

′)]dul−1

)
dul

(39)

=

∫ 1

0

E
[

∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

](∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul. (40)

Gradient correlation analysis To compute the NTK, we need to analyze the correlation between
gradients at different inputs:

E
[

∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

]
. (41)

From our backward propagation analysis in Equation 34, we have:

E
[

∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

]
= E

[
σ′(z(l)(ul, x))σ

′(z(l)(ul, x
′))∫ 1

0

∫ 1

0

∂f(x)

∂z(l+1)(ul+1, x)

∂f(x′)

∂z(l+1)(u′
l+1, x

′)
W (l+1)(ul+1, ul)W

(l+1)(u′
l+1, ul)dul+1du

′
l+1

]
.

(42)

In the infinite-width limit, (z(l)(ul, x), z
(l)(ul, x

′)) follows a bivariate Gaussian distribution, allowing
us to define:

Σ̇(l)(ul, ul, x, x
′) = E[σ′(z(l)(ul, x))σ

′(z(l)(ul, x
′))]. (43)

The weights W (l+1)(ul+1, ul) and W (l+1)(u′
l+1, ul) are independent for ul+1 ̸= u′

l+1, with:

E[W (l+1)(ul+1, ul)W
(l+1)(u′

l+1, ul)] = W(l+1)(ul+1, ul)δ(ul+1 − u′
l+1). (44)

Substituting this into our gradient correlation:

E
[

∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

]
= Σ̇(l)(ul, ul, x, x

′) (45)∫ 1

0

W(l+1)(ul+1, ul)E
[

∂f(x)

∂z(l+1)(ul+1, x)

∂f(x′)

∂z(l+1)(ul+1, x′)

]
dul+1.

Closed-form expression for Graphon NTK To derive the closed-form expression, we define:

G(l)(ul, x, x
′) = E

[
∂f(x)

∂z(l)(ul, x)

∂f(x′)

∂z(l)(ul, x′)

]
. (46)

From our derivation, G(l) follows the recursion:

G(l)(ul, x, x
′) = Σ̇(l)(ul, ul, x, x

′)

∫ 1

0

W(l+1)(ul+1, ul)G
(l+1)(ul+1, x, x

′)dul+1. (47)

With the base case G(L+1)(uL+1, x, x
′) = 1.

29

The general form for any layer l becomes:

G(l)(ul, x, x
′) = Σ̇(l)(ul, ul, x, x

′)

∫
[0,1]L−l+1

L+1∏
m=l+1

W(m)(um, um−1)Σ̇
(m)(um, um, x, x′) dul+1,

(48)

where dul+1 = duL+1duL . . . dul+1 and Σ̇(L+1)(uL+1, uL+1, x, x
′) = 1.

Substituting this into our formula for Θl:

Θl(x, x
′) =

∫ 1

0

G(l)(ul, x, x
′)

(∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul (49)

=

∫ 1

0

(
Σ̇(l)(ul, ul, x, x

′)

∫
[0,1]L−l+1

L+1∏
m=l+1

W(m)(um, um−1)Σ̇
(m)(um, um, x, x′) dul+1

)
(50)(∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul. (51)

The full Graphon NTK is the sum over all layers:

Θ(x, x′) =

L∑
l=1

Θl(x, x
′) (52)

=

L∑
l=1

∫ 1

0

(
Σ̇(l)(ul, ul, x, x

′)

∫
[0,1]L−l+1

L+1∏
m=l+1

W(m)(um, um−1)Σ̇
(m)(um, um, x, x′) dul+1

)
(53)(∫ 1

0

Σ(l−1)(ul−1, ul−1, x, x
′)dul−1

)
dul (54)

This expression reveals how the graphon structure at each layer shapes the Neural Tangent Kernel
through multiple integrals involving the graphon functions. The resulting kernel is position-dependent
and reflects the specific connectivity patterns encoded by the graphons.

A.3.3 Discussion and implication

The Graphon NTK provides a powerful analytical framework for understanding how structured
weight patterns influence neural network learning dynamics. Several key insights emerge:

1. Non-uniform signal propagation: The graphon structure creates position-dependent infor-
mation flow, with regions of higher graphon values propagating signals more strongly.

2. Relationship to pruning: The graphon formulation provides a continuous limit perspective
on network pruning, where the graphon W(l)(ul, ul−1) can be interpreted as the density or
probability of connections.

3. Position-dependent learning dynamics: Different regions of the network effectively learn
at different rates based on their connectivity patterns.

These theoretical results establish the foundation for analysing learning behaviours in neural networks
with connectivity patterns, providing insights that may guide the development of more efficient
architectural designs.

30

B Details on graphon neural tangent kernel of Random pruning

With Random pruning, pruning masks converge to constant graphons (the Erdős–Rényi random
graph) as the width tends to infinity. When the underlying graphons are constants, we observe a
uniform scaling effect on training dynamics.

For a constant graphon W (u, v) = c, the resulting NTK scales uniformly as:

Θ(x, x′) = cL Θstd(x, x
′), (55)

where Θ
(L)
std denotes the standard NTK of a fully-connected network.

Proof:

For the first hidden layer (l = 1), pre-activation covariance becomes:

Σ̃(1)(u, u′, x, x′) = δ(u− u′) (c(x · x′)) . (56)

For simplicity, assuming σ2
b = 0 (no biases):

Σ̃(1)(u, u′, x, x′) = c Σ̃
(1)
std (u, u

′, x, x′). (57)

This leads to activation covariance at first layer:

Σ(1)(u, u′, x, x′) = c Σ
(1)
std (u, u

′, x, x′). (58)

By induction, for any layer l:

Σ̃(l)(u, u′, x, x′) = δ(u− u′)

(
c

∫ 1

0

Σ(l−1)(v, v, x, x′)dv

)
(59)

= δ(u− u′)

(
c

∫ 1

0

cl−1 Σ
(l−1)
std (v, v, x, x′)dv

)
= δ(u− u′)

(
cl
∫ 1

0

Σ
(l−1)
std (v, v, x, x′)dv

)
= cl Σ̃

(l)
std(u, u

′, x, x′).

And the activation covariance at layer l is:

Σ(l)(u, u′, x, x′) = cl Σ
(l)
std(u, u

′, x, x′). (60)

We also assume that the activation function is ReLU, then the relationship between activation
derivative covariance:

Σ̇(l)(x, x′) = Σ̇
(l)
std(x, x

′). (61)

For the gradient correlation function:

G(l)(u, x, x′) = Σ̇(l)(u, u, x, x′)

∫ 1

0

W(l+1)(v, u)G(l+1)(v, x, x′)dv. (62)

For a homogeneous graphon, each backward step contributes a factor of c. Going from output layer
L+ 1 back to layer l:

31

G(L+1)(u, x, x′) = G
(L+1)
std (u, x, x′) = 1

G(L)(u, x, x′) = Σ̇(L)(u, u, x, x′)

∫ 1

0

W(L+1)(v, u)G(L+1)(v, x, x′)dv

G(L)(u, x, x′) = c Σ̇(L)(u, u, x, x′)

G(L)(u, x, x′) = c G
(L)
std (u, x, x′)

G(L−1)(u, x, x′) = Σ̇(L−1)(u, u, x, x′) c

∫ 1

0

G(L)(v, x, x′)dv

G(L−1)(u, x, x′) = c2G
(L−1)
std (u, x, x′)

By induction, we have:

G(l)(u, x, x′) = cL+1−l G
(l)
std(u, x, x

′). (63)

The layer-wise NTK contribution is:

Θl(x, x
′) =

∫ 1

0

G(l)(u, x, x′)

(∫ 1

0

Σ(l−1)(v, v, x, x′)dv

)
du. (64)

Substituting our findings:

Θl(x, x
′) =

∫ 1

0

cL+1−l Σ̇(l)(u, x, x′)

(∫ 1

0

cl−1 Σ
(l−1)
std (v, v′, x, x′)dv

)
du. (65)

When the activation integral dominates the constant 1 (which is typical in deep networks):

Θl(x, x
′) = cL+1−l cl−1 Θl,std(x, x

′) = cL Θl,std(x, x
′). (66)

Summing over all layers:

Θ(x, x′) =

L∑
l=1

Θl(x, x
′) = cL

L∑
l=1

Θl,std(x, x
′) = cL Θstd(x, x

′). (67)

This uniform scaling directly impacts convergence rates during training. If λk are the eigenvalues of
Θstd, then the eigenvalues of Θ become cLλk. Consequently, residual modes during training decay
as:

ak(t) = ak(0)e
−cLλkt. (68)

This scaling directly influences network training dynamics. If λk are the eigenvalues of Θstd, then
the eigenvalues of the pruned network’s NTK become cLλk. Notably, while the absolute learning
speed is reduced, the relative dynamics between modes remain unchanged. This offers a principled
explanation for the empirical observation that sparse random networks converge more slowly than
their dense counterparts [27].

More broadly, our framework extends beyond this homogeneous case, allowing for arbitrary position-
dependent graphons that induce heterogeneous learning dynamics. This highlights the generality and
flexibility of Graphon NTK in modeling structured sparsity and its effect on neural dynamics.

32

C Experiments on graph limit of pruning at initialisation methods

We empirically validate the graphon hypothesis by examining whether pruning methods converge to
distinct, characteristic graphons as network width increases. We analyze four pruning-at-initialization
methods: Random pruning, SNIP [43], GraSP [65], and Synflow [62] across varying network widths
n ∈ {100, 500, 1000, 2000}, layers 4, 5, and sparsity levels {70%, 80%, 90%}. We conduct 100
independent trials per configuration and exclude masks from input and output layers. We follow
Synflow [62] source code to produce masks 2. All the experiments are run on a single Nvidia A10
GPU (24GB).

To visualize the emergent graphons, we employ the SAS method [12] that:

1. Sorts nodes based on degree centrality (out-degree for layer l, in-degree for layer l+ 1). For
2D histogram, nodes in layer l and l + 1 are in the x-axis and y-axis, respectively.

2. Partitions the sorted bipartite graph into a grid of intervals. Each axis is split into K = 64
intervals.

3. Computes the average edge density within each interval.

This degree-based sorting serves as an approximate measure-preserving transformation, revealing
underlying structural patterns while maintaining invariance to node permutations.

We visualise graph limits of subnetworks’ masks produced by PaI methods at different sparsity levels
in 4- and 5-layer networks in Figures 5, 6, 7, 8, and 9. In particular, Random pruning converges
to a constant graphon (Erdős-Rényi random graph), with uniform connection probability across all
node positions. SNIP and GraSP exhibit structured, non-uniform graphons with density gradients,
preferentially connecting high-centrality nodes. Synflow converges to a block-like graphon with
sharp transitions, strongly prioritising connections among high-centrality neurons. In Figure 9, a large
part of neurons is eliminated in hidden layers creating a subnetwork with high paths. This observation
is also indicated in [56, 54], in which after each iteration, Synflow prunes weights connected to
low-degree nodes.

To quantify convergence, we show the Euclidean distance between density matrices at width N and
reference matrices at N = 2000 as in Figure 4. Since all histograms are aligned via degree-based
sorting, we used the Euclidean distance between the density matrices as a proxy for the cut distance

d(WN ,W2000) =

√∑
i,j

(HN (i, j)−H2000(i, j))2.

where H is the histogram.

All methods demonstrate monotonic convergence, with distances decreasing as width increases,
confirming that the limiting graphon structure is an intrinsic characteristic of each pruning algorithm.

These results provide compelling evidence that each pruning method induces a unique (up to rela-
belling), stable connectivity pattern in the large-width limit, validating our graphon hypothesis and
establishing a foundation for analysing pruning methods through graph limit theory.

2https://github.com/ganguli-lab/Synaptic-Flow

33

(a) Histogram convergence via Euclidean distance in 4-layer networks setting.

(b) Histogram convergence via Euclidean distance in 5-layer networks setting.

Figure 4: Histogram convergence via Euclidean distance.

(a) Graph limit of subnetworks’ mask produced by
Random pruning at different sparsity levels in 4-layer
networks.

(b) Graph limit of subnetworks’ mask produced by
SNIP pruning at different sparsity levels in 4-layer
networks.

(c) Graph limit of subnetworks’ mask produced by
GraSP pruning at different sparsity levels in 4-layer
networks.

(d) Graph limit of subnetworks’ mask produced by
Synflow pruning at different sparsity levels in 4-layer
networks.

Figure 5: Graph limit of subnetworks’ mask produced by PaI methods at different sparsity levels in
4-layer networks.

34

(a) First hidden layer. (b) Second hidden layer.

Figure 6: Graph limit of subnetworks’ mask produced by Random pruning at different sparsity levels
in 5-layer networks.

(a) First hidden layer. (b) Second hidden layer.

Figure 7: Graph limit of subnetworks’ mask produced by SNIP pruning at different sparsity levels in
5-layer networks.

(a) First hidden layer. (b) Second hidden layer.

Figure 8: Graph limit of subnetworks’ mask produced by GraSP pruning at different sparsity levels
in 5-layer networks.

(a) First hidden layer. (b) Second hidden layer.

Figure 9: Graph limit of subnetworks’ mask produced by Synflow pruning at different sparsity levels
in 5-layer networks.

35

Figure 10: Graph limit of subnetworks’ mask produced by Magnitude pruning at different sparsity
levels in 4-layer networks.

Magnitude Pruning at Initialisation. Through the experiment, we find that Magnitude produces
masks converge to constant graphons as shown in Figure 10. From a purely structural perspective,
Magnitude pruning is identical to that of Random pruning in case all the weights are i.i.d. initialised.
In particular, when all weights are i.i.d., the probability that any single weight wij has a magnitude
|wij| > Threshold is the same for all (i, j). Let this probability of preserving a connection be c.
By definition, a graph where every edge exists with an independent and identical probability c is an
Erdős–Rényi random graph, G(n, c). The well-known limit of a sequence of Erdős–Rényi graphs is
a constant graphon W(u, v) = c.

36

D Details on numerical experiments

Experimental setup We evaluate the relationship between Graphon NTK spectral properties and
sparse networks training dynamics using three pruning methods: Random Pruning, SNIP [43], and
SynFlow [62] at sparsity levels from 50% to 95%. Subnetworks are pruned from 4 hidden layers
network with width n = 1024, then trained on MNIST. Subnetworks are then trained on MNIST with
Adam Optimizer with 0.001 learning rate. All experiments are run 3 times. We illustrate the training
loss in the first 200 update steps during training.

We approximate the Graphon NTK by graphon functions provided in Section 4. In particular, given
the sparsity, we generate the mask for a 4 hidden layers network with width n = 1024 based on
graphon functions. Then we compute the Graphon NTK based on a batch of 1024 data samples from
10 classes in MNIST. Since the eigenvalues of the NTK (on the training data) quantify how much the
kernel emphasizes certain directions in function space, we analyze four spectral metrics based on
eigenvalues:

• Eigenvalue decay rate (α): The decay exponent α describes how fast these eigenvalues fall
off, and it is approximated by fitting into the pow-law curve λk ∝ k−α.

• Effective rank trace(Θ)/λ1: Quantifies the functional "dimensionality" of the kernel, show-
ing how many independent directions meaningfully contribute to learning; lower values
indicate stronger concentration on a few key patterns

• Spectral gap (λ1/λ2): The ratio between the first and second eigenvalues, revealing how
dominant the primary learning direction is compared to others; larger gaps indicate the
network will prioritize one function class extensively.

• Energy concentration
∑k

i=1 λi∑n
j=1 λj

: Measures what fraction of the kernel’s total power resides in
the top eigenvalues; higher concentration means the kernel heavily emphasizes a few key
patterns. We use k = 5 in our experiments.

Figure 11: The training loss in the first 200 gradient update steps of training sparse networks produced
by Random, SNIP, and Synflow with different sparsity levels compared with dense networks.

The training curves in Figure 11 reveal distinctive learning dynamics across pruning methods that
can be elegantly explained through the Graphon NTK framework. For all methods, increased
sparsity generally slows convergence, with dense networks typically converging fastest, but the
magnitude of this effect varies significantly between approaches. Random pruning exhibits the
strongest degradation with increased sparsity, showing a clear separation between different sparsity
levels. Meanwhile, SNIP and Synflow maintain better convergence than random pruning at equivalent
sparsity levels. These differences emerge from how each pruning method shapes the graphon structure
(W(l) functions) in the kernel formula.

37

	Introduction
	Related work
	Preliminaries
	Neural tangent kernel
	Graphon and graph limit theory

	Graph limit and sparse neural networks
	Pruning masks as graphs
	Graphon Limit Hypothesis for neural network pruning
	Experiments on graph limit of pruning at initialisation methods

	Neural tangent kernel with graphon structure
	Network structure and setup
	Graphon neural tangent kernel
	Graphon neural tangent kernel of Random Pruning

	Numerical experiments
	Conclusion
	Limitations and future research directions
	Acknowledgements
	Details on graphon neural tangent kernel
	Network structure and setup
	Forward propagation: covariance structure (proof of proposition 1)
	Graphon neural tangent kernel convergence (proof of theorem 1)

	Details on graphon neural tangent kernel of Random pruning
	Experiments on graph limit of pruning at initialisation methods
	Details on numerical experiments

