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Abstract

Contrastive Language-Image Pre-training (CLIP) on large-scale image-caption datasets
learns representations that can achieve remarkable zero-shot generalization. However, such
models require a massive amount of pre-training data. Improving the quality of the pre-
training data has been shown to be much more effective in improving CLIP’s performance
than increasing its volume. Nevertheless, finding a subset of image-caption pairs that prov-
ably generalizes on par with the full data when trained on, has remained an open question.
In this work, we propose the first theoretically rigorous data selection method for CLIP.
We show that subsets that best preserve the cross-covariance of the images and captions of
the full data best preserve CLIP’s generalization performance. Our extensive experiments
on ConceptualCaptions3M and ConceptualCaptions12M demonstrate that subsets of size
5%-10% found by ClipCov achieve over 150% and 40% the accuracy of the next best
baseline on ImageNet and its shifted versions. Moreover, we show that our subsets exhibit
average relative performance improvement over the next best baseline of nearly 50% across
14 downstream datasets.

1 Introduction

The success of Contrastive Language-Image Pre-training (CLIP) models like CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021), trained on enormous datasets of 400M and 1B
image-caption pairs, respectively, underscores a pivotal moment in AI where scale and data
diversity dramatically enhance model capabilities. These models have set new benchmarks
in zero-shot generalization and resilience to distribution shifts, illustrating the profound
impact of large-scale, diverse datasets. However, the reliance on such vast amounts of data
poses significant challenges, including computational costs and the environmental impact
of training, thereby raising critical questions about the efficiency and sustainability of data
usage in AI. Studies such as (Gadre et al., 2023) have started to address these concerns by
showing that smaller, meticulously curated datasets can sometimes outperform their volu-
minous counterparts. Yet, selecting optimally small yet effective subsets for CLIP remains
unsolved and the complex multimodal nature of CLIP makes existing data selection tech-
niques inapplicable (Yang et al., 2023; Joshi and Mirzasoleiman, 2023; Coleman et al., 2020).

Addressing this, our work leverages theoretical insights from (Nakada et al., 2023) i.e.
the cross-covariance of data determined the encoders learnt with CLIP and selects subsets
that preserve the cross-covariance of data, thus learning encoders similar to those learnt
on the full data. Empirically, we find our approach, ClipCov, can select subsets of sizes
5% and 10% from ConceptualCaptions3M and ConceptualCaptions12M (Sharma et al.,
2018) that can surpass the next best baseline significantly, achieving over 150% relative
performance improvement on ImageNet and its variants (Deng et al., 2009; Djolonga et al.,
2021; Wang et al., 2019; Recht et al., 2019; Barbu et al., 2019; Hendrycks et al., 2021), and
nearly 50% on average across 14 downstream datasets.

1



Data-Efficient Multi-Modal Contrastive Learning

5 10
Subset Size (%)

50

0

50

100

150

Re
la

tiv
e 

Im
pr

ov
em

en
t (

%
) 

 o
ve

r C
LI

P 
Sc

or
e

Semdedup
C-RHO
Random
Our Method

5 10
Subset Size (%)

60

40

20

0

20

40

Re
la

tiv
e 

Im
pr

ov
em

en
t 

 o
ve

r C
LI

P 
Sc

or
e

Semdedup
C-RHO
Random
Our Method

5 10
Subset Size (%)

30

20

10

0

10

20

30

40

50

Re
la

tiv
e 

Im
pr

ov
em

en
t (

%
) 

 o
ve

r C
LI

P 
Sc

or
e

Semdedup
C-RHO
Random
Our Method

Figure 1: IN, IN Dist. Shift. and Avg. on 14 Datasets (from left to right) on CC3M

2 Method

Let D = {(xiV , xiL)}i∈V be a set of n = |V | image-caption pairs i.e. the full training data
available to us, where xiV denotes the image and xiL denotes the caption of i-th example.
CLIP maximizes the representation similarity of paired image-captions and minimizes that
of unpaired image-captions using vision encoder fV and language encoder fL, respectively.
After training, the quality of the learned representations is evaluated by zero-shot classi-
fication on different downstream image classification datasets i.e. images are classified by
the similarity of their representation to the text representation of the downstream class
names. Our goal is to find a subset of training data S ⊆ V of size ns ≪ n, such that en-
coders trained on the subset achieve similar generalization, across downstream tasks using
zero-shot evaluation, to encoders trained on the full training data V .

The training dynamics on the full data V can be determined by the cross-covariance of
the full data (Nakada et al., 2023). Thus, the trained encoders on the full data and subset
are determined by their respective data cross-covariances. Hence, we can see that if the
cross-covariance of the subset S closely approximates the cross-covariance of the full data,
the encoders learnt on the subset S will be similar to the encoders learnt on the full data
V . Our method, ClipCov, selects subsets to do so by 1) preserving the centers of vision
and language data 2) capturing the alignment & spread (covariance) of vision and lan-
guage data. The pseudocode for ClipCovas well as theoretical guarantees for how similar
encoders learnt on these subsets are to those learnt on the full data appear in Appendix A.

3 Results and Conclusion Table 1: Performance on CC12M

Subset ImageNet IN Dist. Shift Avg.

CLIPCov 5% 13.61% 7.99% 11.68%
CLIP Score 5% 5.10% 4.42% 9.49%
CLIPCov 10% 22.71% 12.76% 16.87%
CLIP Score 10% 11.02% 8.55% 14.69%

Here, we compare the performance
of the 5% and 10% training sub-
sets found by ClipCov to sub-
sets found by data-filtering base-
lines, including C-RHO, SemD-
eDup, CLIP score and Random se-
lection. We use Conceptual Cap-
tions 3M and 12M used previously in (Goel et al., 2022). We evaluate all the methods on
ImageNet (IN), IN Variants (Distribution Shift) and 14 downstream tasks as proposed by
(Chen et al., 2020). Further details about the experiments appears in B. In conclusion, we
show that our theoretically backed method, ClipCov, that selects subsets to preserve the
cross-covariance of the full data can enable data-efficient multi-modal contrastive learning,
thus significantly speeding up training as well as improving downstream generalization.

2



Data-Efficient Multi-Modal Contrastive Learning

Broader Impact Statement

Data-efficient learning democratizes AI by lowering computational costs, making advanced
technologies accessible to a wider range of innovators and communities. However, before
deploying subset selection algorithms broadly, it’s crucial to assess their impact on different
sub-populations of data to ensure fairness in AI applications.
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Appendix A. Finding the Most Generalizable Subset

A.1 Problem Formulation

Data Distribution

Let D = {(xiV , xiL)}i∈V be a set of n = |V | image-caption pairs i.e. the full training data
available to us, where xiV denotes the image and xiL denotes the caption of i-th example.
Moreover, let XV be the set of images and XL be the set of captions in D. To model the
notion that paired image-captions describe the same underlying object, let image-caption
pair (xiV , x

i
L) ∈ D be generated as follows:

xiV = TV(u
i + ϵV) xiL = TL(u

i + ϵL) (1)

where: ui ∈ Rd is the shared underlying feature vector of example i; TV : Rd → RdV and
TL : Rd → RdL are the mappings from underlying feature space to the vision and language
data spaces, respectively; ϵV , ϵL are the noise in underlying features for vision and language,
respectively. We refer to uiV = ui + ϵiV and uiL = ui + ϵiL as the noisy underlying feature
for the image and caption, respectively. The underlying feature ui, for each image-caption
pair is sampled independently of each other and the noise ϵV , ϵL. Additionally, we assume
∀i, ∥uV∥i , ∥uL∥i and ∥TV∥ , ∥TL∥ is ≤ 1.

Similar to prior work Xue et al. (2023) studying uni-modal contrastive learning, we have
that the k-th coordinate of the underlying feature vector corresponds to the underlying
feature of latent class k. This data-distribution is identical to the data-distribution in
Nakada et al. (2023) to study multi-modal contrastive learning, with the sole addition of
latent-classes. The shared underlying feature helps us capture the notion that paired image-
captions represent the same underlying object (feature) e.g. ‘a dog’. The noise in the data
distribution allows us to model both the occurrence of mismatched pairs e.g. an image of ‘a
dog’ matched with caption ‘a cat’ as well as noise in data space for both images and texts
e.g. an image of ‘a dog with a cat in the background’ paired the caption ‘a dog’ or
the caption ‘a dog with a cat’ paired with an image of ‘a dog’.

Contrastive Language-Image Pre-training (CLIP)

CLIP maximizes the representation similarity of paired image-captions and minimizes that
of unpaired image-captions using vision encoder fV : RdV → RK and language encoder
fL : RdL → RK that map input data in vision and language data space into a shared K-
dimensional representation space, respectively (where K is the number of latent classes as
defined earlier). The CLIP loss is defined as follows:

LCLIP (fV , fL)=

− E
xV ,xL∼D

log
exp(fV(xV)

⊤fL(xL))

Ex−
L∼XL

exp(fV(xV)
⊤fL(x

−
L))

− E
xV ,xL∼D

log
exp(fV(xV)

⊤fL(xL)

Ex−
V∼XV

exp(fV(x
−
V )

⊤
fL(xL))

(2)

For simplicity of theoretical analysis, we consider linear encoders where fV(xV) = FV · xV
and fL(xL) = FL · xL where FV ∈ Rr×dV and FL ∈ Rr×dL , used widely across machine
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learning literature Nakada et al. (2023); Ji et al. (2021); Xue et al. (2023). Additionally, we
use the linear multimodal contrastive loss used in Nakada et al. (2023):

L(FV , FL) = −
1

2n(n− 1)

∑
i∈V

∑
j∈V
j ̸=i

(Aij −Aii) (3)

− 1

2n(n− 1)

∑
i∈V

∑
j∈V
j ̸=i

(Aji−Aii) +
ρ

2
∥F⊤

V FL∥2F ,

where Aij := (FVx
i
V)

⊤
(FLx

j
L). Both the CLIP loss and the linear multimodal contrastive

loss are derived from the same generalized multimodal contrastive loss and achieve similar
empirical performance Nakada et al. (2023).

Note that we only use linear encoders and the linear multi-modal contrastive loss function
in our theoretical analysis; the experiments in Section B are conducted with non-linear
encoders and the CLIP loss.

Zero-Shot Classification

After training, the quality of the learned representations is evaluated by zero-shot clas-
sification on different downstream image classification datasets. A downstream task DY
is defined as a classification task on unseen data where the latent classes Y ⊆ [K] are
a subset of latent classes of the pre-training data. For zero-shot classification on down-
stream task DY , we use the language encoder fL to encode the label (e.g. the name of the
class) corresponding to each latent class y ∈ Y; then, the classification of an example xV
is zsfV ,fL(xV) = argmaxk∈[K]

fVxV ·zk
∥fVxV∥∥zk∥ , where zk = ExLs.t.y(xL)=k[fL(xL)] is the average

representation of the label corresponding to class k i.e. an example xV is classified by the
closest (average) label representation. In practice, Radford et al. (2021) proposed using a
set of pre-engineered templates, e.g. ‘A photo of a {label}’ to create several captions
representing ‘{label}’. Thus, the average representation of the label would be the average
of the representations of the templates obtained using fL. The zero-shot error of fV , fL
is defined as the fraction of misclassified examples using the trained vision and language
encoders fV , fL:

Ezs(fV , fL) := PxV∼DY [y(xV) ̸= zsfV ,fL(xV)] . (4)

Finding Generalizable Multimodal Subsets

Our goal is to find a subset of training data S ⊆ V of size ns, such that encoders trained on
the subset achieve similar generalization, across downstream tasks using zero-shot evalua-
tion, to encoders trained on the full training data V . To do so, we formulate the problem
as finding a subset S such that the encoders learnt on the subset closely approximate the
encoders learnt on the full training data V :

S∗ = argmin
S⊆V,|S|≤ns

∥∥FS
V − FV

∥∥+ ∥∥FS
L − FL

∥∥ (5)

where FS
V , F

S
L are the vision, language encoders learnt on the subset S and FV , FL are the

encoders learnt on the the full training data V .
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Now, we present our method ClipCov. We first theoretically characterize how well the
encoders learnt on a subset S approximate the encoders learnt on the full (training) data V .
Then, we present ClipCov, our algorithm for efficiently finding S∗, the most generalizable
subset, from a massive corpus of image-caption pairs.

The training dynamics on the full data V can be determined by the cross-covariance of the
full data CV

D Nakada et al. (2023). First, the linear loss function (Eq. (3)) can be rewritten
as the SVD objective function:

L(FV , FL) = Tr(FVAF
⊤
L )− ρ

2
∥F⊤

V FL∥2F (6)

and then Nakada et al. (2023) shows that A is equal to the centered cross-covariance matrix
of the full data CV

D

A = CV
D :=

1

|V |
∑
i∈V

(xiV − µxV )(x
i
L − µxL)

⊤
(7)

where µxV = ExV∈XV xV is the center of vision data and µxL = ExL∈XL xL is the cen-
ter of language data. 1 The cross-covariance matrix for image-caption data captures the
covariance between paired image-captions.

Thus, the trained encoders on the full data and subset are determined by their respective
data cross-covariance matrices:

L(FV , FL) = argmax
FV ,FL

Tr(FVC
V
DF⊤

L )− ρ

2
∥F⊤

V FL∥2F (8)

L(FS
V , F

S
L ) = argmax

FV ,FL

Tr(FS
V C

S
DF

S
L
⊤
)− ρ

2
∥FS

V
⊤
FS
L ∥2F (9)

where CS
D is the data cross-covariance matrix of the subset S.

Hence, we can see that if CS
D, the cross-covariance of the subset S, closely approximates

CV
D , the cross-covariance of the full data, the encoders learnt on the subset S will be similar

to the encoders learnt on the full data V .

A.2 Preserving the Cross-Covariance of Data

To preserve the cross-covariance of the full data, we can preserve the cross-covariance of
noisy image and caption underlying features.

Let CV
U = 1

|V |
∑

i∈V (u
i
V−Ei∈V uiV)(u

i
L − Ei∈V uiL)

⊤
and CS

U = 1
|S|
∑

i∈S(u
i
V−Ei∈S uiV)(u

i
L − Ei∈S uiL)

⊤

be the cross-covariance of noisy underlying features for the full data V and subset S, re-
spectively.

∥∥CV
D − CS

D
∥∥ =

∥∥∥TVCV
U T⊤

L − TVCS
UT

⊤
L

∥∥∥ (10)

≤ ∥TV∥ ∥TL∥
∥∥∥CV

U − CS
U

∥∥∥ (11)

≤
∥∥∥CV

U − CS
U

∥∥∥ (Since, ∥TV∥ = ∥TL∥ ≤ 1) (12)

1. Since |V | is large, we replace |V | − 1 with |V | for simplicity.
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With this, we have that if the subset S preserves the cross-covariance of noisy underlying
feature of the full data V , it can preserve the data cross-covariance of the full data.
From the definition of cross-covariance, we have that the [CV

U ](k1,k2) captures the cross-
covariance between the k1-th and k2-th co-ordinate of the underlying feature vector, which
correspond to the underlying features for the k1-th and k2-th latent classes respectively.
Since underlying features in different latent classes are sampled independently of each other,
the cross-covariance between the noisy underlying features of different latent classes is
entirely due to noise. Hence, the objective is to preserve the cross-covariance within latent
classes and ensure cross-covariance across latent classes is 0 (since it is caused by the noise).
To do so, we can minimize the following objective:

min
S⊆V,|S|≤ns

∥∥∥diag(CS
U )− diag(CV

U )
∥∥∥+ ∥∥∥CS

U − diag(CS
U )
∥∥∥ (13)

where we preserve the cross-covariance within latent classes with the first term and destroy
the cross-covariance across latent classes with the second term.
Preserving the Cross-Covariance within Latent Classes
We now discuss how to preserve the cross-covariance within a given latent class k i.e.
minimizing the absolute value of [CS

U ](k,k) − [CV
U ](k,k).

Let µV
V = Ei∈V uiV and µV

L = Ei∈V uiL be the mean noisy shared features of images and
captions in the full data V , respectively. Similarly, let µS

V = Ei∈S uiV and µS
L = Ei∈S uiL be

mean noisy shared features images and captions in the subset S.

[CS
Zp

](k,k) − [CV
Zp

](k,k) =

1

|S|
∑
i∈S

[
(uiV − µS

V)(u
i
L − µS

L)
⊤]

(k,k)

− 1

|V |
∑
j∈V

[
(ujV − µV

V )(u
j
L − µV

L )
⊤]

(k,k)
(14)

Without the noise in the image and caption underlying features, the cross-covariance for
underlying feature of latent class k is entirely determined by examples in latent class k.
Thus, we should only preserve the terms of the cross-covariance for underlying feature of
latent class k contributed by examples in latent class k in the full data V and the subset S.

Eq.(14) =
1

|V ||S|
∑
i∈Sk

∑
j∈Vk

[
(uiV − µS

V)(u
i
L − µS

L)
⊤

− (ujL − µV
L )(u

j
V − µV

V )
⊤
]
(k,k)

(15)

≤ 1

|V ||S|

(∑
i∈Sk

∑
j∈Vk

∥∥∥uiV − ujL

∥∥∥+ ∥∥∥uiL − ujV

∥∥∥)
+
∥∥µS

V − µV
L
∥∥+ ∥∥µS

L − µV
V
∥∥︸ ︷︷ ︸

cross-modal distance of means

(16)

The complete derivation from Eq. (14) to Eq. (16) appears in Appendix D.
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But minimizing the first term is sufficient to ensure that cross-modal distance of means is
minimized. Here, we show this for the difference between µS

V and µV
L :

∥∥µS
V − µV

L
∥∥ =

∥∥∥∥∥∥ 1

|S|
∑
i∈S

uiV −
1

|V |
∑
j∈V

ujL

∥∥∥∥∥∥ (17)

≤ 1

|V ||S|
∑
i∈S

∑
j∈V

∥∥∥uiV − ujL

∥∥∥ (18)

A symmetric argument holds for the difference between µS
L and µV

V .
Thus, preserving the cross-covariance within all latent classes k ∈ [K] can be done by
minimizing ∀k ∈ K:

1

|V ||S|
∑
i∈Sk

∑
j∈Vk

∥∥∥uiV − ujL

∥∥∥+ ∥∥∥uiL − ujV

∥∥∥ (19)

However, in practice, we do not have access to these noisy underlying features. Instead,
we approximate them using the representations of a vision and language encoder trained
on the full data. We refer to these encoders as the proxy vision encoder fp

V and the proxy
language encoder fp

L. Nakada et al. (2023) shows that vision and language encoders trained
on the full data recover the corresponding noisy underlying features 2, respectively.

fp
V(xV) = uV , ∀xV ∈ XV (20)

fp
L(xL) = uL,∀xL ∈ XL (21)

Using the proxy encoders, we now introduce the notion of cross-modal similarity.
Definition. Cross Modal Similarity We define the cross-modal similarity between any
two examples i, j ∈ V as the sum of the similarities between the representations of the
images of examples i and j with the other’s caption. Formally, ∀i, j ∈ V , we have:

sim(i, j) = fp
V(x

i
V)

⊤fp
L(x

j
L) + fp

V(x
j
V)

⊤fp
L(x

i
L) (22)

We can now maximize the cross-modal similarity sim(i, j) to minimize
∥∥∥uiV − ujL

∥∥∥+∥∥∥uiL − ujV

∥∥∥
for all i ∈ S, j ∈ V . Thus, minimizing (19) ∀k ∈ K is equivalent to maximizing

∑
i∈Sk

∑
j∈Vk

sim(i, j), ∀k ∈
K. To maximize ∀k ∈ K simultaneously, we maximize:∑

k∈K

1

|Vk|
∑
i∈Sk

∑
j∈Vk

sim(i, j) (23)

where normalizing by latent class size Vk is to optimize equally for smaller and larger latent
classes.
In practice, since the data within latent classes is often imbalanced, to prevent large sub-
groups within latent classes from dominating the objective, we penalize the similarity be-
tween selected examples to encourage diversity in selected examples. Thus, we optimize to

2. up to orthogonal transformation, for clarity, we assume that this recovery is exact.
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preserve the cross-covariance within latent classes by maximizing Fintra-class(S) :=

∑
k∈K

1

|Vk|

∑
i∈Sk
j∈Vk

sim(i, j)− 1

2

∑
i∈Sk
j∈Sk

sim(i, j)

 (24)

To guide the objective towards selecting diverse examples within latent class, in addition to
penalizing the similarity of selected examples, we add Fself(S) =

∑
i∈S sim(i, j) i.e. priori-

tizing examples with high cross-modal similarity to themselves. For a trained CLIP model,
examples that are most centrally located in the data have the highest cross-modal similarity
to themselves. Intuitively, this is because groups of similar examples together introduce a
large gradient during the training to pull their images and captions together. Hence, the
most central example in dense groups will have the highest cross-modal similarities at the
end of training. Thus, picking examples with high cross-modal similarity to themselves al-
lows us to capture the different dense subgroups within a latent classes. Hence, we preserve
the cross-covariance within latent classes by maximizing Fintra-class(S) + Fself(S) =

∑
k∈K

1

|Vk|

∑
i∈Sk
j∈Vk

sim(i, j)− 1

2

∑
i∈Sk
j∈Sk

sim(i, j)


︸ ︷︷ ︸

Fintra-class(S)

+
∑
i∈S

sim(i, j)︸ ︷︷ ︸
Fself(S)

(25)

Figure 2: Visualization of examples selected by Fintra-class(S) +Fself(S) in Cross-Modal
Similarity Space

Subgroups	in	
Latent	Class	k

Latent	Class	k

Selected

Not	Selected

To illustrate what kinds of examples are selected by this objective, we provide a visualization
in Fig. 2 which shows the selected examples are similar to all the examples in the latent class,
even from smaller subgroups. From Fig. 2, we can see how such a subset is representative
of the latent class and thus can capture the cross-covariance within the latent class.
Destroying Cross-Covariance Across Latent Classes

11
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Algorithm 1 ClipCov: Finding S∗

1: Input: Dataset V , Subset size ns, proxy encoders: fp
V and fp

L,
2: Output: Subset S
3: {V1, ..., VK} ← approximate latent classes
4: S ← {}
5: F (S) := Fcross

cov
(S)− F reg

intra-class(S) + Flabel-sim(S) (Objective 30)

6: S ← ∅
7: while |S| ≤ ns do
8: e← argmaxe∈D\S F (e|S)
9: S ← S ∪ {e}

10: end while
11: return double-greedy(S)

We now discuss how to ensure cross-covariance across latent classes is destroyed i.e. as
close to 0 as possible. The cross-covariance across latent classes k1 and k2 is entirely due
to noise in the underlying feature vector resulting in image-caption pair in latent class k1
appearing with the underlying feature of latent class k2 and vice-a-versa. Thus, we can
minimize the cross-covariance across latent classes k1 and k2 by selecting image-caption
pairs from latent class k1 that are most dissimilar to examples in latent class k2 i.e. do not
have the underlying feature of latent class k2 (and vice-a-versa). Thus, we minimize the
average similarity of examples to other latent classes. The following objective, Finter-class(S),
formalizes this:

Finter-class(S) :=
∑

k1,k2∈[K]
k1 ̸=k2

∑
i∈Sk

∑
j∈Vk2

sim(i, j)

|Vk2 |
(26)

where sim(i, j) is the cross-modal similarity between image-caption pair i and j as defined in

Def. A.2 and
∑

i∈Sk

∑
j∈Vk2

sim(i,j)
|Vk2

| is exactly the average cross-modal similarity of image-

caption pair i to image-caption pairs in Vk2 . In practice, we can compute this average
cross-modal similarity efficiently, by first averaging the image-caption representations of
latent class k2 and then computing the cross-modal similarity between examples i ∈ Vk1

and the average image-caption representations of Vk2 .
Preserving Cross-Covariance of Data
Hence, we can preserve the cross-covariance of the data by maximizing the following objec-
tive Fcross

cov
(S):

Fcross
cov

(S) := Fintra-class(S) + Fself(S)− Finter-class(S) (27)

A.3 Deriving the Final Objective for Finding the Most Generalizable Subset

We now discuss two practical considerations that often arise when learning from large
vision-language datasets and also account for them in the final objective to find subset S.

12
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Label Centrality for Zero-shot Classification While preserving the cross-covariance
within latent classes allows us to ensure that images in a given latent class can correctly
be paired with their corresponding captions, zero-shot classification measures similarity of
images representations to the text representations of labels for the latent classes. This is
highly sensitive to the name of the label being similar to the captions of the corresponding
latent class. To explicitly ensure that the selected captions are similar to the labels used,
we introduce Flabel-sim(S)

Flabel-sim(S) =
∑
k∈[K]

∑
i∈Sk

αfp
L(x

i
L)

⊤
fp
L(yk)

−
∑
i∈Sk

α
fp
L(x

i
L)

⊤
fp
L(yk)

|Vk|
(28)

where α is the ratio of average cross-modal similarity to the average similarity in text 3

Here, the second term prevents domination of classes with very good similarity to the label.
This improves the zero-shot performance on various datasets.
Dealing with Imbalanced Data In practice, when the sizes of latent classes are extremely
imbalanced i.e. some latent classes in the data are much larger than others, this leads to
Fintra-class(S) for large latent classes dominating the objective. Hence, we further regular-
ize Fintra-class(S) to avoid only selecting examples from large latent classes by deducting
F reg
intra-class(S) from the objective. F reg

intra-class(S) :=

F reg
intra-class(S) =

∑
k∈K

1

|Vk|
∑
i∈Sk
j∈Vk

sim(i, j)

|Vk|
(29)

which is approximately the average sum of intra-class cross-modal similarity of the selected
subset S.
Final Objective Hence, the final objective for finding the most generalizable subset S∗ is:

S∗≈ argmax
S⊆V,|S|≤ns

Fcross
cov

(S)−F reg
intra-class(S)+Flabel-sim(S) (30)

A.4 ClipCov: Efficiently Finding the Most Generalizable Subset

Here, we discuss how the proxy representations and latent classes required to optimize
Objective (30) are obtained. We then present ClipCov and show how it can efficiently find
this subset from massive datasets.
Obtaining Proxy Representations We can use any pretrained CLIP as the proxy en-
coders to determine the proxy representations cross-covariance matrix. The effectiveness
of ClipCov is dependent on how closely the proxy representations recover the underlying
features of the full data. Hence, we use the open-source pretrained CLIP encoders provided
by Radford et al. (2021), which are trained on massive amounts of data and obtain impres-
sive zero-shot generalization, thus likely recover the underlying features of the full data V
well.

3. Empirically, we find α ≈ 1
2
.
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Approximating Latent Classes In practice, we do not have access to latent classes re-
quired to optimize Objective (30). Instead, we approximately recover latent classes using
zero-shot classification using the proxy encoders. Moreover, in practice, models trained
using CLIP are evaluated on a variety of downstream tasks that do not always have com-
mon latent classes; thus, in finding the subset S∗, we use fine-grained latent classes (e.g.
ImageNet-1k latent classes) to capture nearly all downstream latent classes.
Scaling to Massive Datasets Since Finter-class(S) can be computed using the average
representations of latent classes, in practice, ClipCov only needs to compute pairwise
cross-modal similarities within latent classes. Here, the fine-grained latent classes used also
ensure that computing pairwise cross-modal similarities within latent classes is inexpensive.
Maximizing Objective (30) is NP-hard as it requires evaluating an exponential number of
subsets. To efficiently find a near-optimal subset, we note that Fcross

cov
(S) is approximately

non-monotone submodular, and Flabel-sim(S), F
reg
intra-class(S) are modular. So Objective (30)

is approximately submodular. Thus, we can find a good subset using an algorithm for non-
monotone submodular function maximization under a cardinality constraint. In particular,
we first use the greedy algorithm to find a subset, and then filter the subset by applying
unconstrained submodular maximization Mirzasoleiman et al. (2016). The greedy algorithm
starts with the empty set S0 = ∅, and at each iteration t, it chooses an element e ∈
V that maximizes the marginal utility F (e|St) = F (St ∪ {e}) − F (St). Formally, St =
St−1 ∪ {argmaxe∈V F (e|St−1)}. For unconstrained maximization, we use the double-greedy
algorithm Buchbinder et al. (2015), which calculates ae = F (e|∅) and be = F (V \{e}) for all
e ∈ S, and then keeps examples for which ae ≥ be. The complexity of the greedy algorithm
is O(nk) to find k out of n examples, and can be further speed up using lazy evaluation
Minoux (2005). The double-greedy applied to the subset has a complexity of O(k). Hence,
the subset can be found efficiently. Algorithm 1 illustrates our pseudocode.
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Appendix B. Experiments

Subset Size Method ImageNet ImageNet Dist. Shift Avg. over 14 Datasets

5%

Random 1.27% 1.10% 6.99%
C-RHO 0.42% 0.59% 6.05%

SemDeDup 0.85% 0.82% 5.89%
CLIP Score 1.65% 1.76% 7.42%
ClipCov 4.46% 2.55% 9.91%

10%

Random 3.95% 2.43% 11.50%
C-RHO 1.89% 1.56% 8.90%

SemDeDup 2.60% 1.87% 9.40%
CLIP Score 6.48% 4.44% 12.84%
ClipCov 11.33% 5.97% 16.14%

Table 2: Comparing Performance of 5% and 10% Subsets Selected from ConceptualCap-
tions3M

In this section, we compare the zero-shot performance of the 5% and 10% training subsets
found by ClipCov subsets found by data-filtering baselines, including C-RHO, SemDeDup,
CLIP score and Random selection. Moreover, we conduct an extensive ablation on the
various components of ClipCov.

Dataset & Evaluation We use Conceptual Captions 3M Sharma et al. (2018) which
includes 3 million image-captions pairs, and has been widely employed for benchmark eval-
uations in various studies focusing on contrastive language-image pre-training Yang and
Mirzasoleiman (2023); Goel et al. (2022); Li et al. (2022). We evaluate all the methods on
downstream tasks proposed by Chen et al. (2020) and used in prior work for evaluating
CLIP Yang and Mirzasoleiman (2023); Goel et al. (2022); Li et al. (2022). The exact list
of datasets and corresponding accuracies appears in Appendix C.1.

Training Setup For pre-training, we use an open-source implementation of CLIP, with
default ResNet-50 as the image encoder and a Transformer as the text encoder. Each
experiment is run with a batch size of 512 for 30 epochs, consistent with Yang and Mirza-
soleiman (2023).

Baselines The data-filtering baselines we consider are: (1) CLIP Score Gadre et al. (2023),
(2) C-RHO Maini et al. (2023), (3) SemDeDup Abbas et al. (2023), and (4) random subsets.
CLIP score discard image-caption pairs with the smallest similarity between their image
and caption representations, obtained using a pretrained CLIP. C-RHO is an extension to
RHO Mindermann et al. (2022) for CLIP. It computes the similarity of paired image-caption
representations using a pre-trained CLIP and compares it to the similarity obtained using a
model partially trained (for 5 epochs) on the full data. Then, image-captions pairs with the
smallest difference between these similarities are discarded. SemDeDup clusters the image
representations of examples and then discards examples from each cluster that are most
similar to each other.

Zero-Shot Performance Table 2 shows that, both specifically on ImageNet and across
datasets, ClipCov is able to outperform previous baselines. Moreover, our results demon-
strate that all common data-filtering baselines, except CLIP Score, fail to extract gener-
alizable subsets from datasets that are already filtered. This is evidenced from the these
methods performing worse even than Random subsets. In contrast, ClipCov successfully
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Method ImageNet ImageNet Dist. Shift Avg. over 14 Datasets
Fcross

cov
(S) 9.00% 5.30% 14.40%

Fcross
cov

(S)− F reg
intra-class(S) 8.94% 5.10% 14.26%

Fcross
cov

(S) + Flabel-sim(S) 10.87% 5.73% 13.91%

ClipCov 11.33% 5.97% 16.14%

Table 3: Ablation over Objective

Method ImageNet ImgNet Shift Avg.
CLIP Score 5.01% 3.16% 10.53%
ClipCov 6.70% 3.48% 13.68%

Table 4: Ablation over Proxy Encoders

extract subsets that can preserve the downstream generalization performance on various
datasets and outperforms CLIP Score. Fig. 1 shows that ClipCov achieves over 150% and
40% relative performance improvement over CLIP Score (the next best baseline) on Ima-
geNet and its shifted versions. Moreover, it also shows that ClipCov nearly 50% relative
performance improvement on average across the 14 downstream tasks.
Ablation Study Table 3 ablates over the objective and shows that both Flabel-sim(S) and
F reg
intra-class(S) are essential additions to Fcross

cov
(S). Table 4 compares the performance of

ClipCov and CLIP Score where the similarities are computed using a model trained on
ConceptualCaptions3M rather than the open-source CLIP provided in Radford et al. (2021).
These results show that ClipCov is not sensitive to choice of proxy model. The drop in
performance for both CLIP Score and ClipCovwhen compared to the subsets in Table
2, shows that using cross-modal similarities from encoders trained on more diverse and
balanced data (e.g. CLIP from Radford et al. (2021))is beneficial to both CLIP Score and
ClipCov.
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Appendix C. Experimental Details

C.1 Downstream Datasets and Accuracies

Datasets

The 14 downstream datasets we evaluate on are the following (similar to the downstream
datasets used by Yang and Mirzasoleiman (2023); Goel et al. (2022)):

Table 5: Downstream Datasets

Datasets

Caltech101
CIFAR10
CIFAR100

DTD
Food101
ImageNet
STL10
SVHN
SUN397

ImageNet-Sketch
ImageNet-V2
ImageNet-A
ImageNet-R
ObjectNet

Accuracies

Datasets Random C-RHO SemDeDup CLIP Score ClipCov

Caltech101 5.62% 2.93% 4.37% 11.29% 14.15%
CIFAR10 15.43% 16.57% 12.51% 14.79% 18.64%
CIFAR100 3.98% 1.56% 2.12% 3.82% 2.96%

DTD 1.91% 2.61% 1.17% 1.97% 3.67%
Food101 2.38% 1.19% 1.49% 2.88% 3.04%
ImageNet 1.27% 0.42% 0.85% 1.65% 4.46%
STL10 18.01% 16.91% 19.41% 16.79% 23.46%
SVHN 8.74% 11.03% 8.55% 9.25% 10.97%
SUN397 5.56% 1.27% 2.58% 4.33% 7.81%

ImageNet-Sketch 0.23% 0.24% 0.28% 0.68% 0.84%
ImageNet-V2 1.18% 0.42% 0.75% 1.53% 3.76%
ImageNet-A 1.17% 0.76% 1.15% 1.44% 1.55%
ImageNet-R 2.32% 1.13% 1.37% 4.22% 5.52%
ObjectNet 0.60% 0.41% 0.53% 0.91% 1.07%

Table 6: 5% Subset Sizes Per Dataset Accuracies
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Datasets Random C-RHO SemDeDup CLIP Score ClipCov

Caltech101 19.90% 10.19% 14.77% 28.76% 28.13%
CIFAR10 20.27% 22.06% 18.55% 18.55% 26.81%
CIFAR100 4.60% 4.28% 3.99% 6.60% 6.53%

DTD 3.19% 2.61% 1.01% 2.07% 2.93%
Food101 3.54% 1.85% 2.77% 5.79% 6.03%
ImageNet 3.95% 1.89% 2.60% 6.48% 11.33%
STL10 26.32% 22.95% 24.84% 26.59% 34.75%
SVHN 8.18% 8.78% 8.35% 7.61% 10.14%
SUN397 13.57% 5.45% 7.75% 13.15% 18.62%

ImageNet-Sketch 1.13% 0.77% 0.64% 2.76% 3.89%
ImageNet-V2 3.66% 1.66% 2.55% 5.00% 9.04%
ImageNet-A 1.37% 1.28% 1.45% 1.69% 2.07%
ImageNet-R 4.87% 3.21% 3.65% 11.02% 12.71%
ObjectNet 1.11% 0.86% 1.07% 1.74% 2.12%

Table 7: 10% Subset Sizes Per Dataset Accuracies

C.2 Additional Experiments Comparing CLIPScore (next best baseline) and
ClipCov(Subset Sizes 6%, 8%)

Subset Size Method ImageNet ImageNet Dist. Shift Avg. over 14 Datasets

6%
CLIPScore 2.75% 2.37% 8.77%
ClipCov 6.30% 3.53% 11.33%

8%
CLIPScore 4.69% 3.66% 11.24%
ClipCov 9.70% 4.83% 13.72%

Table 8: Comparing Performance of 6% and 8% Subsets Selected from ConceptualCap-
tions3M

C.3 Additional Training Details

The experiments were conducted using NVIDIA A100s and NVIDIA RTX A6000 GPUs.
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Appendix D. Full Derivation from Eq. (14) to Eq. (16)

Let µV
V = Ei∈V uiV and µV

L = Ei∈V uiL be the mean noisy shared features of images and
captions in the full data V , respectively. Similarly, let µS

V = Ei∈S uiV and µS
L = Ei∈S uiL be

mean noisy shared features images and captions in the subset S.

[CS
Zp

](k,k) − [CV
Zp

](k,k) =

1

|S|
∑
i∈S

[
(uiV − µS

V)(u
i
L − µS

L)
⊤]

(k,k)

− 1

|V |
∑
j∈V

[
(ujV − µV

V )(u
j
L − µV

L )
⊤]

(k,k)
(31)

Since the (k,k)-th element of (ujV − µV
V )(u

j
L − µV

L )
⊤

is the same as the (k,k)-th element of

(ujL − µV
L )(u

j
V − µV

V )
⊤

=
1

|S|
∑
i∈S

[
(uiV − µS

V)(u
i
L − µS

L)
⊤]

(k,k)

− 1

|V |
∑
j∈V

[
(ujL − µV

L )(u
j
V − µV

V )
⊤]

(k,k)
(32)

1

|V ||S|
∑
i∈S

∑
j∈V

[
(uiV − µS

V)(u
i
L − µS

L)
⊤

− (ujL − µV
L )(u

j
V − µV

V )
⊤
]
(k,k)

(33)

For the population data, the cross-covariance for underlying feature of latent class k is
entirely determined by examples in latent class k. Thus, we should only preserve the cross-
covariance for underlying feature of latent class k, for examples in latent class k in the full
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data and the subset S.

=
1

|V ||S|
∑
i∈Sk

∑
j∈Vk

[
(uiV − µS

V)(u
i
L − µS

L)
⊤

− (ujL − µV
L )(u

j
V − µV

V )
⊤
]
(k,k)

(34)

=
1

|V ||S|
∑
i∈Sk

∑
j∈Vk

[
uiVu

i
L
⊤ − ujLu

j
V
⊤
]
(k,k)

−

[
uiVµ

S
L
⊤ − ujLµ

V
V
⊤
]
(k,k)

−

[
µS
Vu

i
L
⊤ − µV

Lu
j
V
⊤
]
(k,k)

+

[
µS
Vµ

S
L
⊤ − µV

Lµ
V
V
⊤
]
(k,k)

Since the norm of all the vectors above is bounded by 1

≤ 1

|V ||S|
∑
i∈Sk

∑
j∈Vk

∥∥∥uiV − ujL

∥∥∥∥∥∥uiL − ujV

∥∥∥
+
∥∥∥uiV − ujL

∥∥∥∥∥µS
L − µV

V
∥∥+ ∥∥∥uiL − ujV

∥∥∥∥∥µS
L − µV

V
∥∥ (35)

≤ 1

|V ||S|
∑
i∈Sk

∑
j∈Vk

∥∥∥uiV − ujL

∥∥∥+ ∥∥∥uiL − ujV

∥∥∥
+
∥∥µS

V − µV
L
∥∥+ ∥∥µS

L − µV
V
∥∥ (36)

≤ 1

|V ||S|

(∑
i∈Sk

∑
j∈Vk

∥∥∥uiV − ujL

∥∥∥+ ∥∥∥uiL − ujV

∥∥∥)
+
∥∥µS

V − µV
L
∥∥+ ∥∥µS

L − µV
V
∥∥︸ ︷︷ ︸

cross-modal distance of means

(37)
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