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ABSTRACT

Fragment-based drug discovery (FBDD) is limited by the need to construct and
maintain static fragment libraries. To overcome these challenges, we propose a
novel evolutionary framework. Our method starts with sample molecules that are
fragmented and fed into a policy-decoupled architecture. This architecture uti-
lizes reinforcement-learning-guided crossover and mutation operators to recom-
bine and modify fragments. This approach expands the latent fragment space
without relying on predefined libraries. By employing a grid-based fragment-
masked crossover, our method enables combinatorial explorations and extends
beyond conventional fragmentation patterns. In comparative experiments, our
method outperforms recent state-of-the-art methods on most PMO benchmarks
and target-protein docking tasks. Additionally, it achieves a low average synthetic
accessibility (SA) score and maintains a structural novelty rate above 90%.

1 INTRODUCTION

Computer-aided molecular generation has emerged as a crucial pillar of contemporary drug dis-
covery. It capitalizes on advancements in deep learning and evolutionary computation to navigate
extensive chemical spaces, offering greater efficiency than traditional high-throughput screening and
medicinal chemistry methods (Xue et al., 2025). Among these strategies, fragment-based drug de-
sign (FBDD) stands out by integrating low-molecular-weight fragments into lead compounds that
exhibit high affinity, potency, and favorable drug-like properties (Maziarz et al., 2021). This method-
ology leverages the synthetic tractability and diverse binding modes of small fragments. It applies
structure-guided optimization to achieve high precision. The balance between hit rate, chemical
diversity, and synthetic feasibility makes FBDD a widely adopted approach (Geng et al., 2023).

Over the last decade, numerous implementations of FBDD have been proposed (Xie et al., 2021;
Jensen, 2019; Tripp & Hernández-Lobato, 2023). The processes of these methods include: (1) con-
structing comprehensive fragment vocabularies via extraction techniques (Yang et al., 2021; Xie
et al., 2021; Maziarz et al., 2021), (2) maintaining and expanding these vocabularies through frag-
ment modification (Jensen, 2019; Tripp & Hernández-Lobato, 2023; Lee et al., 2024b;a), and (3)
employing deep neural architectures to explore combinatorial assembly (Jin et al., 2020b; Maziarz
et al., 2021; Kong et al., 2022; Geng et al., 2023; Yang et al., 2021; Lee et al., 2024b;a).

Nevertheless, they face several critical limitations: (i) reliance on predefined fragment libraries in-
herently constrains chemical exploration; (ii) construction and maintenance of these libraries incur
significant inefficiencies (Wang et al., 2022); and (iii) integration of fragments into deep generative
models often yields a black-box generation process, reduces the interpretability and complicates
multi-property balancing (Angelo et al., 2023).

To address these limitations, we propose a Reinforcement Learning-Driven Grid-based Fragment-
Masked Multi-objective Evolutionary Algorithm (RL-GFM). RL-GFM obviates the need to pre-
define and maintain the fragment libraries by dynamically recombining and modifying molecules
through variously designed crossover and mutation operators.

The main contributions of this paper can be summarized as follows:
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• RL-based crossover and mutation: We employ a policy-decoupled architecture, wherein
two actor–critic reinforcement learning (RL) agents specialize in operator coordination.
By integrating multi-objective dominance information into policy backpropagation, these
agents learn to select mutation rules for the mutation operator and pair elite parents for the
crossover operator. This design avoids reliance on random-walk-like exploration, thereby
mitigating the risk of unstable performance.

• Grid-based fragment-masked crossover: To transcend conventional fragmentation pat-
terns, we partition molecules into spatial grid regions and enforce masked bond-cleavage
rules. Reference points guide parent pairing to maximize inter-grid diversity and intra-grid
convergence. Non-scaffold single bonds are randomly cleaved and recombined ac-
cording to validated dissociation/recombination protocols. Constraining randomness to
pharmacophore-compatible regions enables the algorithm to escape local optima and gen-
erate synthetically tractable, structurally novel candidates (achieving ≥ 90% novelty).

• Interpretability and Multi-objective optimization capabilities: The core generation pro-
cess of our method is grounded in a multi-objective evolutionary algorithm (MOEA),
which inherently incorporates multi-objective optimization capabilities. To avoid sacri-
ficing the primary objective, we employ distinct functional strategies tailored to different
tasks. Moreover, by enabling explicit operations on SMILES strings (e.g., bond cleavage
and recombination rules, Krenn et al. (2022)), the algorithm renders the generation process
interpretable.

The remainder of this article is organized as follows. Section 2 reviews related work, Section 3
details the design and implementation of our RL-GFM framework, Section 4 evaluates our method
on PMO and target-protein docking tasks, and Section 5 concludes with future directions.

2 RELATED WORK

FBDD has emerged as a prominent strategy in molecular generation. Early approaches primarily
relied on constructing fragment libraries through extraction methods (Yang et al., 2021; Xie et al.,
2021; Maziarz et al., 2021). However, the use of static libraries inherently restricts the chemical
space that can be explored. Even recent FBDD-related methods Tan et al. (2022); Khemchandani
et al. (2020) that integrate reinforcement learning or graph models still fail to address these three
core limitations: they either rely on predefined fragment/graph templates (limitation (i)), lack in-
terpretable assembly rules (limitation (iii)), or neglect efficient multi-property balancing (Mercado
et al., 2021). This underscores the need for a dynamic, interpretable framework like our RL-GFM.

To address this, more recent methods (Tripp & Hernández-Lobato, 2023; Lee et al., 2024b;a) employ
genetic algorithms with crossover and mutation operators to dynamically evolve fragment combina-
tions. These approaches typically optimize either a single molecular property or combine multiple
objectives into a single scalar function, often neglecting the inherent trade-offs among objectives
(Xie et al., 2021). In contrast, Verhellen et al. (Verhellen, 2022) employed the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) algorithm to perform multi-objective molecular optimiza-
tion. This approach decomposes parent molecules (SMILES strings) into fragments, generates off-
spring molecules through recombining and modifing these fragments. The generated molecules
are selected by non-dominated sorting and crowding distance computations. Unlike methods that
depend on predefined fragment vocabularies, this strategy leverages evolutionary principles to nav-
igate the chemical space. Despite its strengths in multi-objective optimization and interpretability,
this method remains vulnerable to issues such as stochasticity and premature convergence to local
optima, which can hinder its ability to transcend existing fragment and assembly models.

To overcome these limitations, we propose the RL-GFM framework, which incorporates RL agents
to guide search, a grid-based fragment-masked crossover mechanism to transcend existing frag-
ments, and a core process governed by a MOEA for balancing multiple objectives. By integrating
these components, RL-GFM delivers more consistent and robust performance in complex molecular
discovery tasks.
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Figure 1: Workflow of the RL-GFM Algorithm. The population is initialized from ZINC250K;
molecules are generated via three kinds of operators: grid-based fragment-masked crossover, RL-
based crossover, and RL-based mutation. Finally, all molecules are filtered down to N molecules
for the next generation by the NSGA-II selector paired with customized multi-objective functions..

3 METHODS

The proposed RL-GFM framework integrates adaptive policy control with fragment-guided struc-
tural exploration. It comprises three core components: (1) a grid-based fragment-masked crossover
operator, which facilitates diversity-driven recombination; (2) RL-driven crossover and mutation
operators, designed to enable targeted exploration; and (3) a Pareto-optimal solution selector paired
with customized multi-objective functions to identify solutions with balanced objectives. The frame-
work’s overall workflow is depicted in Figure 1.

3.1 GRID-BASED FRAGMENT-MASKED CROSSOVER

Grid-based strategies are commonly employed as a solution selection mechanism in multi-objective
optimization, where partitioning the objective space into multiple grid cells serves to enhance solu-
tion diversity (Yang et al., 2013; Xu et al., 2023). Within RL-GFM, we adapt this grid-based strategy
for parent pairing by defining two types of specialized reference points—grid ideal points and global
ideal points—that guide the parent pairing process. Leveraging these paired parent molecules, we
then implement a fragment-masked crossover mechanism, which further enhances chemical struc-
tural diversity and strengthens the algorithm’s capacity to explore the chemical space.

The grid-based parent pairing method organizes candidate solutions in the objective space to
balance diversity and convergence. First, for each objective dimension fk (k = 1, 2, . . . ,M), the
maximum observed value fmax

k is determined and the interval [0, fmax
k ] is divided into five equal

sub-intervals. Their Cartesian product then defines 5M hypercubes (grid cells). Each solution x is
assigned to a cell via G(x) =

⊗M
k=1

⌊
fk(x)
fmax
k /5

⌋
.

In cases where a grid cell contains only a single solution, that solution is reassigned to its nearest
non-empty neighboring grid. For each non-empty grid Gi, we compute the Euclidean distance

d(x) =
√∑M

k=1 fk(x)
2 for all x ∈ Gi, and designate the solution with the maximum d(x) as the

grid’s ideal point Ii. The pairing mechanism is implemented hierarchically: locally, each solution
within Gi is paired with its grid’s ideal point to preserve diversity; globally, all grid ideal points
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are paired with a global ideal point Ig (selected from the grid with the highest index) to promote
convergence. This dual-level strategy ensures both intra-grid diversity and inter-grid convergence,
thereby allocating resources in proportion to grid density (see Figure 2a).

(a) Grid-based parent pairs (b) Masked molecule

Figure 2: Grid-based fragment-masked crossover. (a) Each solution within a grid is paired with its
respective grid’s ideal point; all grid ideal points are then paired with the global ideal point. (b)
Bonds internal to the scaffold or those connecting the scaffold and side chains are assigned a mask
value of 0 (highlighted in pink), while bonds within the side chains are assigned a mask value of 1
(not highlighted), where a random cut can be made.

The fragment-masked crossover mechanism is introduced to balance structural preservation and
chemical diversity, building on the grid-based parent pair approach. Inspired by Li et al. (2024)(Li
et al., 2024), this process begins by dividing each molecule into two functional components, as illus-
trated in Figure 2b. The protected scaffold (highlighted in pink) comprises the core structural motifs
essential for molecular stability and bioactivity, while the side chains (not highlighted) represent
modifiable peripheral substituents. Bonds are categorized according to their roles: those internal
to the scaffold or connecting the scaffold and side chains are assigned a mask of 0, whereas bonds
within the side chains receive a mask of 1. A randomized cleavage is then applied to the regions with
mask 1, splitting each molecule into fragments. Fragments from grid-based paired parent molecules
are recombined, enabling exploration of under-explored regions of chemical space. By protecting
the core scaffold and exposing peripheral substituents for randomized bond cleavage, this mecha-
nism maintains synthetic accessibility and bioactivity while enabling controlled chemical diversity.

3.2 RL-BASED CROSSOVER & MUTATION

In our framework, two specialized reinforcement learning (RL) policies are introduced to guide
molecular evolution. The goal is to train an actor (the policy, denoted as π) to select optimal actions
(crossover or mutation), and a critic (the value function, denoted as V ) to evaluate the quality of
the current molecular state. Both policies are optimized using an actor-critic method, where their
parameters, θa for the actor and θc for the critic, are updated based on a reward signal ri derived
from the quality of the generated offspring.

RL-based Crossover Policy: The crossover actor π×(ai,j | si; θa) is a transformer-decoder with
cross-attention designed to select an appropriate parent molecule ai,j to cross with the current
molecule si. First, a shared two-layer MLP encodes the Morgan fingerprint (FP(·)) of the cur-
rent molecule (si) and each candidate parent (ai,j) into latent vectors. The decoder then computes
pairwise compatibility scores via cross-attention, and a softmax function yields the selection prob-
abilities. The crossover critic is a single linear layer applied to the shared encoder output. It is
formulated as V ×(si; θc) = w⊤

c Enc(si), where Enc(si) is the latent vector for state si produced by
the encoder.

RL-based Mutation Policy: The mutation actor πµ(ai,j | si; θa) is a two-layer ReLU-MLP that
outputs a probability distribution over a set of predefined mutation operations ai,jj = 1P . Its hidden
state hi is computed as hi = ReLU(W2,ReLU(W1,FP(si))), and the policy is πµ(ai, j | si) =
softmax(W3, hi). Similarly, its critic V µ(si; θc) = w′!⊤

c hi is a linear layer operating on hi.

Loss Formulation: Both policies are optimized via a unified actor-critic framework. For each
policy type ∗ ∈ {×, µ}, let θa denote the policy-specific actor parameters and θc represent shared
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critic parameters. At each training iteration, the actor samples an action ai,j from the candidate set
{ai,j}Qj=1 following the policy π∗(ai,j | si; θa), where si is the molecular state and ai,j corresponds
to either a crossover partner or mutation operation. The loss function for policy ∗ is:

L∗(θa, θc) =
1

N

N∑
i=1

[
− log π∗(ai,j | si; θa) ·A∗

i + (V ∗(si; θc)− ri)
2
]

(1)

where A∗
i = ri − V ∗(si; θc) is the advantage function. The reward ri is defined as:

ri =


GMean(foff,i), if i-th offspring is Pareto-optimal,
−ϵ, if i-th offspring is non-Pareto-optimal,
−GMean(foff,i), if same parent pair is used.

(2)

with GMean(f) ≜ (
∏n

k=1 fk)
1/n and ϵ = 10−6. GMean is chosen to avoid single-objective dom-

inance. This design synergizes with Pareto optimality by quantifying the ”dominance strength” of
Pareto solutions, guiding the RL policy to prioritize multi-objective balanced parent pairs. The small
value of ϵ avoids overwhelming the policy update with excessive penalty signals for non-Pareto solu-
tions, while still serving as a weak constraint to guide exploration away from low-quality molecules.

The advantage term A∗
i prioritizes actions yielding higher returns than the critic’s baseline estimate,

while the mean squared error (MSE) term (V ∗(si; θc)− ri)
2 trains the critic to improve value pre-

dictions.

Crossover and mutation: The crossover policy determines parent pair molecules, which are then
split into fragments and randomly recombined to form new molecules. For mutation, specific mu-
tation rules are selected by the policy; these rules modify the molecules to facilitate exploration of
chemical novelty. Their synergistic operation establishes an evolutionary loop consistent with the
process described in (Verhellen, 2022).

3.3 MULTI-OBJECTIVE OPTIMIZATION

NSGA-II selector: After generating molecules via crossover and mutation, these resulting
molecules are filtered using the NSGA-II selector. This selector leverages fast non-dominated sort-
ing and crowding-distance computation to enable efficient traversal of the multi-objective search
space; its pseudocode is provided in Appendix 1.4.

Customized objective functions: We employ two strategies: complete attribute separation and
adaptive weighting scheme. The former guarantees that molecules exhibiting improved performance
in each attribute, albeit with the risk of sacrificing primary objective. By contrast, the adaptive
weighting scheme treats the primary objective as an independent target while defining composite
targets for secondary objectives, wherein adaptive parameters dynamically regulate their trade-offs.

On the PMO benchmark tasks, the adaptive weighting scheme is formulated as follows:

[Obj1, Obj2] =
[
score, λ× score + ŜA

]
, λ = 1− 1

1 + exp
(
−k (x−max calls/2)

) (3)

where score denotes the PMO task score; λ is computed via a sigmoid decay function; and k =

0.001 is an attenuation coefficient. The synthetic accessibility ŜA score is normalized as ŜA =
10−SA

9 , as defined in (Lee et al., 2024a).

For docking tasks, we adopt the complete attribute separation approach, defining a tri-objective
function as:

[Obj1, Obj2, Obj3] =
[
D̂S, QED, ŜA

]
(4)

with D̂S = − clip(DS,−20, 0)
20 in accordance with (Lee et al., 2024a). This explicit separation prevents

any single factor from dominating the selection process.
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Table 1: Baseline methods employed for experimental comparison, classified by representation
modalities (columns) and optimization algorithms (rows).

SMILES SELFIES Graph (fragment)
EA Mol-GA/NSGA-II STONED/GA+D Graph-GA
BO GP-BO
SBM Genetic-GFN/GEGL MARS
HC LSTM-HC
RL REINVENT SELFIES-REINVENT MORLD/GEAM/RationaleRL/FREED
VAE JT-VAE/HierVAE/PS-VAE
DM MOOD
Transformer RetMol f-RAG

In the PMO benchmark, we prioritize task-specific optimization above all else, with SA serving as a
secondary consideration; accordingly, we employ an adaptive weighting scheme for the evaluation
function. By contrast, in the molecular docking task, we regard docking score, SA, and Quantitative
Estimate of Drug-likeness (QED) as equally critical, and thus adopt a fully decoupled attribute-
separation approach.

4 EXPERIMENTS

In this section, we extensively evaluate RL-GFM across multiple molecular optimization tasks de-
signed to reflect diverse challenges in drug discovery.

Table 1 provides a comprehensive overview of the algorithms used in the experimental evaluation.
The methodologies include three molecular representation modalities: SMILES strings, SELFIES
strings (Krenn et al., 2020), and graph (fragment)-based representations. Additionally, eight distinct
optimization strategies are employed: Evolutionary Algorithms (EA), Bayesian Optimization (BO),
Score-Based Modeling (SBM), Hill Climbing (HC), Reinforcement Learning (RL), Variational Au-
toencoders (VAE), Diffusion Models (DM), and Transformer.

For all tasks, molecules are drawn from a standard repository (ZINC250k (Irwin et al., 2012)). All
molecules are filtered according to the rules in (Verhellen, 2022).

4.1 EXPERIMENTS ON PMO BENCHMARK

Setup. We evaluate RL-GFM’s performance across all 23 PMO benchmark tasks. Following the
benchmark’s standard protocol, we cap the number of oracle queries at 3,000 (10,000 for baselines
according to Lee et al. (2024a)) and assess optimization efficacy using the area under the curve
(AUC) of the average property scores for the top-10 molecules as a function of the number of oracle
calls. Beyond optimization, we assess three critical drug-discovery criteria—diversity, novelty, and
synthesizability (SA)—of the generated compounds. Diversity is quantified using the Therapeutics
Data Commons (TDC) library (Huang et al., 2021). Novelty is defined as the proportion of gener-
ated molecules whose maximum Tanimoto similarity to any molecule in ZINC250k is below 0.4.
SA is measured by the standard Synthetic Accessibility Score, where lower scores indicate easier
synthesis. All the experiment configuration followed (Lee et al., 2024a) unless otherwise noted.

Baseline. We selected nine algorithms from Table 1 as our baseline set: the six top-performing meth-
ods reported by the PMO benchmark—REINVENT (Olivecrona et al., 2017), Graph-GA (Jensen,
2019), SELFIES-REINVENT, GP-BO (Tripp et al., 2021), STONED (Nigam et al., 2021), and
LSTM-HC (Brown et al., 2019)—together with two recent state-of-the-art approaches, f-RAG (Lee
et al., 2024a) and Genetic-GFN (Kim et al., 2024), and the highly effective GA-based Mol-GA
(Tripp & Hernández-Lobato, 2023).

Results. The main experimental results are summarized in Figure 3. For visual clarity, the fig-
ure compares RL-GFM against the five top-performing methods from the original PMO bench-
mark. Our method demonstrates highly competitive performance across the 23 benchmark tasks.
The complete statistical results for the comparison against all nine state-of-the-art baselines are de-
tailed in the Appendix 1.5. Our proposed algorithm achieves superior performance in the majority
of cases, attaining the highest cumulative score of 18.007 across all benchmarks, representing a
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Figure 3: Statistical analysis of top-10 PMO AUC scores.

6.4% improvement over the second-best performing method (f-RAG) and 47.3% over the weakest
baseline (LSTM-HC). Notably, RL-GFM exhibits particular dominance in similarity-based tasks
such as albuterol similarity (0.995 vs 0.977 for f-RAG) and mestranol similarity (0.939 vs 0.708
for Genetic-GFN), suggesting enhanced capability in structural analog generation. The method
also excels in complex multi-property optimization (MPO) challenges, including amlodipine mpo,
fexofenadine mpo and zaleplon mpo, where it outperforms all baselines by significant margins.
A remarkable achievement is observed in the valsartan smarts task, where RL-GFM attains near-
perfect performance (0.979) compared to the zero performance of most algorithms, such as Mol-
GA (0.000), Graph-GA (0.000), and GP-BO (0.000), demonstrating exceptional SMARTS pattern
matching capabilities.

The comprehensive evaluation of molecular design efficiency across 23 PMO benchmarks reveals
the trade-offs between chemical diversity, structural novelty, and SA. As shown in Table 2, RL-
GFM achieves the best balance among these metrics, with the highest average diversity (0.573) and
novelty (0.912), while maintaining a competitive SA score of 2.332. This tripartite optimization
underscores RL-GFM’s ability to explore uncharted chemical space without sacrificing practical
synthesizability, a core challenge in de novo drug design.

Table 2: Average top-100 diversity, novelty, and SA scores across 23 tasks (best in bold).

Metric RL-GFM (ours) Genetic GFN Mol GA REINVENT

Average diversity ↑ 0.573 0.443 0.491 0.468
Average novelty ↑ 0.912 0.724 0.845 0.540
Average SA score ↓ 2.332 3.770 4.605 3.207

4.2 EXPERIMENTS ON DOCKING SCORE

Setup. We evaluated RL-GFM on a battery of multi-objective molecular design tasks that seek to
maximize binding affinity against a given protein target while simultaneously preserving favorable
QED and SA. Binding affinities were approximated by docking scores (in kcal/mol) computed with
QuickVina 2 (Alhossary et al., 2015) against five clinically relevant targets—PARP1, FA7, 5HT1B,
BRAF, and JAK2—where more negative scores denote stronger predicted interactions. To ensure
practical relevance, we quantified QED and SA using the methods described in (Bickerton et al.,
2012) and (Ertl & Schuffenhauer, 2009). Consistent with prior work (Lee et al., 2024a), we fo-
cused on the top 5% of novel candidates by docking score, with maximum Tanimoto similarity to
any molecule in ZINC250k below 0.40, docking score below the median of known actives, QED
exceeding 0.50, and SA under 5.0. In all cases, docking scores are reported as mean ± standard
deviation over three independent runs, with smaller (more negative) values indicating tighter pre-
dicted binding. The Novel hit ratio (%) quantifies the proportion of unique and novel hits within the
generated molecular corpus.

Baselines. To benchmark performance, we compared RL-GFM against sixteen contemporary
generative methods spanning variational autoencoders (JT-VAE (Jin et al., 2018), HierVAE (Jin

7
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Table 3: Novel top 5% docking score (kcal/mol) results. The results are the means and standard
deviations of 3 independent runs. The results for compared methods are taken from Lee et al. (Lee
et al. 2024a,b). Lower is better, and the best results are highlighted in bold.

Method Target protein

parp1 fa7 5ht1b braf jak2

JT-VAE -9.482 ± 0.132 -7.683 ± 0.048 -9.382 ± 0.332 -9.079 ± 0.069 -8.885 ± 0.026
REINVENT -8.702 ± 0.523 -7.205 ± 0.264 -8.770 ± 0.316 -8.392 ± 0.400 -8.165 ± 0.277
Graph GA -10.949 ± 0.532 -7.365 ± 0.326 -10.422 ± 0.670 -10.789 ± 0.341 -10.167 ± 0.576
MORLD -7.532 ± 0.260 -6.263 ± 0.165 -7.869 ± 0.650 -8.040 ± 0.337 -7.816 ± 0.133
HierVAE -9.487 ± 0.278 -6.812 ± 0.274 -8.081 ± 0.252 -8.978 ± 0.525 -8.285 ± 0.370
GA+D -8.365 ± 0.201 -6.539 ± 0.297 -8.567 ± 0.177 -9.371 ± 0.728 -8.610 ± 0.104
MARS -9.716 ± 0.082 -7.839 ± 0.018 -9.804 ± 0.073 -9.569 ± 0.078 -9.150 ± 0.114
GEGL -9.329 ± 0.170 -7.470 ± 0.013 -9.086 ± 0.067 -9.073 ± 0.047 -8.601 ± 0.038

RationaleRL -10.663 ± 0.086 -8.129 ± 0.048 -9.005 ± 0.155 No hit found -9.398 ± 0.076
FREED -10.579 ± 0.104 -8.378 ± 0.044 -10.714 ± 0.183 -10.561 ± 0.080 -9.735 ± 0.022
PS-VAE -9.978 ± 0.091 -8.028 ± 0.050 -9.887 ± 0.115 -9.637 ± 0.049 -9.464 ± 0.129
MOOD -10.865 ± 0.113 -8.160 ± 0.071 -11.145 ± 0.042 -11.063 ± 0.034 -10.147 ± 0.060
RetMol -8.590 ± 0.475 -5.448 ± 0.688 -6.980 ± 0.740 -8.811 ± 0.574 -7.133 ± 0.242

Genetic GFN -9.227 ± 0.644 -7.288 ± 0.433 -8.973 ± 0.804 -8.719 ± 0.190 -8.539 ± 0.592
GEAM -12.891 ± 0.158 -9.890 ± 0.116 -12.374 ± 0.036 -12.342 ± 0.095 -11.816 ± 0.067
f-RAG -12.945 ± 0.053 -9.899 ± 0.205 -12.670 ± 0.144 -12.390 ± 0.046 -11.842 ± 0.316

RL-GFM (ours) -12.960±0.01 -10.310±0.03 -13.343±0.2 -12.671±0.05 -12.090±0.07

Table 4: Novel hit ratio (%) results. The results are the means and the standard deviations of 3
runs. The results for the baselines are taken from Lee et al. (Lee et al. 2024b). The best results are
highlighted in bold.

Method Target protein

parp1 fa7 5ht1b braf jak2

REINVENT 0.480 ± 0.344 0.213 ± 0.081 2.453 ± 0.561 0.127 ± 0.088 0.613 ± 0.167
Graph GA 4.811 ± 1.661 0.422 ± 0.193 7.011 ± 2.732 3.767 ± 1.498 5.311 ± 1.667
MORLD 0.047 ± 0.050 0.007 ± 0.013 0.880 ± 0.735 0.047 ± 0.040 0.227 ± 0.118
HierVAE 0.553 ± 0.214 0.007 ± 0.013 0.507 ± 0.278 0.207 ± 0.220 0.227 ± 0.127

RationaleRL 4.267 ± 0.450 0.900 ± 0.098 2.967 ± 0.307 0.000 ± 0.000 2.967 ± 0.196
FREED 4.627 ± 0.727 1.332 ± 0.113 16.767 ± 0.897 2.940 ± 0.359 5.800 ± 0.295
PS-VAE 1.644 ± 0.389 0.478 ± 0.140 12.622 ± 1.437 0.367 ± 0.047 4.178 ± 0.933
MOOD 7.017 ± 0.428 0.733 ± 0.141 18.673 ± 0.423 5.240 ± 0.285 9.200 ± 0.524
GEAM 40.567 ± 0.825 20.711 ± 1.873 38.489 ± 0.350 27.900 ± 1.822 42.950 ± 1.117

RL-GFM (ours) 43.250 ± 1.041 35.570 ± 1.547 70.070 ± 5.051 42.667 ± 2.245 42.557 ± 3.482

et al., 2020a), PS-VAE (Kong et al., 2022)), reinforcement-learning and policy-gradient approaches
(REINVENT (Olivecrona et al., 2017), RationaleRL (Jin et al., 2020b), GEGL (Ahn et al., 2020),
FREED (Yang et al., 2021), MORLD (Jeon & Kim, 2020), MARS (Xie et al., 2021)), genetic-based
optimizers (Graph GA (Jensen, 2019), GA + D (Nigam et al., 2020)), as well as more recent methods
(RetMol (Wang et al., 2022), MOOD (Lee et al., 2023), Genetic GFN (Kim et al., 2024), GEAM
(Lee et al., 2024b), f-RAG (Lee et al., 2024a)).

Results. From the results represented in Table 3, our RL-GFM method achieves the most favorable
mean docking scores on all five targets, consistently surpassing the previous best-performing base-
lines (f-RAG and GEAM). Against PARP1, RL-GFM reaches −12.96± 0.01 kcal/mol, marginally
improving on f-RAG’s −12.945 ± 0.053 kcal/mol; the improvement is more pronounced on FA7
(−10.31 ± 0.03 vs. −9.899 ± 0.205 kcal/mol), 5HT1B (−13.34 ± 0.20 vs. −12.670 ± 0.144
kcal/mol), BRAF (−12.67 ± 0.05 vs. −12.390 ± 0.046 kcal/mol), and JAK2 (−12.09 ± 0.07 vs.
−11.842±0.316 kcal/mol). These gains—ranging from 0.015 kcal/mol on PARP1 to 0.67 kcal/mol
on 5HT1B—demonstrate that RL-GFM systematically identifies higher-affinity chemotypes than
the compared baselines.
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Figure 4: Ablation Study Results. Performance Comparison of NSGA-II Baseline, NSGA-II with
Grid-Based Fragment-Masked Crossover (NSGA-II w Grid), and the Full RL-GFM Algorithm on
several PMO tasks

Furthermore, we evaluated the model’s ability to discover novel chemical matter, measured by the
novel hit ratio (%) presented in Table 4. RL-GFM demonstrates exceptional performance, achiev-
ing the highest hit ratio on four of the five targets. The improvements over the next-best baseline,
GEAM, are particularly striking for 5HT1B, where RL-GFM achieves a 70.070 ± 5.05 ratio com-
pared to GEAM’s 38.489± 0.350, and for FA7 (35.570± 1.547 vs. 20.711± 1.873). For the JAK2
target, RL-GFM (42.557± 3.482) performs on par with the leading baseline (42.950± 1.117). This
confirms that our method not only refines molecules towards high-scoring regions but is also highly
effective at exploring the chemical space to identify new and diverse molecular structures.

In summary, RL-GFM not only matches or exceeds the state-of-the-art on small-molecule opti-
mization benchmarks but also delivers the strongest predicted binding affinities in structure-based
docking tasks, with excellent reproducibility across independent runs.

4.3 ABLATION STUDY

To validate the contributions of RL-GFM’s core components, we conducted ablation experiments
within 2000 function calls across diverse PMO tasks with three experimental groups: NSGA-
II (baseline) (Verhellen, 2022), NSGA-II w Grid (NSGA-II integrated with grid-based fragment-
masked crossover), and the full RL-GFM.

Results in Figure 4 indicate that NSGA-II w Grid outperforms the NSGA-II baseline across all
experimental tasks, including the average score of 23 PMO tasks, confirming that the grid-based
crossover effectively enhances chemical space exploration efficiency. Further, the full RL-GFM
achieves an additional performance improvement compared to NSGA-II w Grid. This demonstrates
that RL-driven operators enable targeted exploration of high-potential molecular regions. Overall,
the ablation study verifies the necessity of each component.

5 CONCLUSION

In this study, we introduce RL-GFM, a novel framework that integrates innovative crossover and
mutation operators within an NSGA-II-based optimization architecture to guide molecular de-
sign—thereby mitigating key limitations of fragment-based drug discovery (FBDD), including
reliance on predefined and curated libraries, inadequate interpretability, and suboptimal multi-
objective balancing. Notably, the RL-driven coordination of crossover and mutation operators en-
hances adaptive decision-making in navigating trade-offs between objectives, while the grid-based
fragment-masked crossover augments both the efficiency and breadth of chemical space exploration.
Future work will focus on reconciling RL-based guidance with the inherent stochastic exploration
properties of evolutionary algorithms to further refine the balance between targeted search precision
and structural diversity in complex chemical spaces.
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