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Abstract

Weak signal detection traditionally relies on001
counting-based representations of the data,002
tracking feature frequencies, such as keywords003
or topics, over time. However, these methods004
struggle with adaptability and often fail to de-005
tect trends at an early stage. In this work, we006
propose TrendRep, a novel embedding-based007
trend representation that leverages long con-008
text embeddings to encode richer semantics009
within time windows, providing a more robust010
and adaptable approach to weak signal detec-011
tion. To evaluate TrendRep, we construct a012
new dataset and introduce a quantitative eval-013
uation framework with defined ground truth014
and key performance metrics. Experimental015
results show that TrendRep outperforms con-016
ventional approaches, demonstrating the effec-017
tiveness of embedding-based representations018
and highlighting the potential of long context019
embeddings for weak signal detection.1020

1 Introduction021

In today’s fast-paced world driven by constant022

change and big data, detecting emerging trends023

at an early stage is crucial for informed decision-024

making and strategic planning. Since Ansoff (1975)025

coined the term "weak signal", it has been widely026

used to describe subtle, emerging trends that were027

not significant in the past but predicted to rise in the028

future (Holopainen and Toivonen, 2012; van Veen029

and Ortt, 2021; Ha et al., 2023). Weak signal de-030

tection from text data has been extensively studied031

across various data sources, including news articles032

(Yoon, 2012; El Akrouchi et al., 2021), academic033

research papers (Boutaleb et al., 2024), and social034

media data (Nazir et al., 2019). Insights from these035

studies have had significant impacts on domains036

such as technology (Ebadi et al., 2022), politics037

1The implementation of TrendRep and the Trends2025
dataset are available at https://anonymous.4open.
science/r/TrendRep-EE16. We will make the repository
public upon acceptance.

and economy (Baumeister and Kilian, 2016), busi- 038

ness and finance (Mühlroth and Grottke, 2018), 039

and healthcare (Nicolaidou et al., 2021). On the 040

road to more effective weak signal detection, there 041

are mainly two challenges: detecting signals early 042

enough to act on them and distinguishing meaning- 043

ful signals from random fluctuations. 044

Weak signal detection relies on a trend represen- 045

tation of text corpora, which defines how signals 046

are extracted and analyzed over time. A common 047

approach is counting-based representations, where 048

weak signals are detected by tracking the raw fre- 049

quency of specific keywords (Yoon, 2012) or topics 050

(Park and Kim, 2021). This method assumes that a 051

rise in frequency reflects the emergence of a mean- 052

ingful trend. However, it suffers from two critical 053

limitations. First, counting-based methods treat 054

signals as isolated frequency shifts, ignoring the 055

semantic relationships between keywords or top- 056

ics. Just as the Bag-of-Words model disregards 057

word order and context (Salton et al., 1975), these 058

methods fail to capture how weak signals interact, 059

evolve, or influence one another. This lack of con- 060

textual understanding leaves considerable room for 061

developing better trend representations of text data. 062

Second, counting-based representations are highly 063

sensitive to dataset characteristics. Since weak sig- 064

nals are identified based on raw frequency changes, 065

the same threshold that works well in one dataset 066

may completely fail in another. As a result, tradi- 067

tional methods require extensive threshold tuning 068

for each dataset to balance sensitivity and precision. 069

This lack of adaptability makes counting-based ap- 070

proaches impractical for real-world applications 071

where emerging trends must be detected dynami- 072

cally and across diverse data sources. These limita- 073

tions motivate the development of a more context- 074

aware and adaptable trend representation for weak 075

signal detection. 076

On the other hand, text embeddings produced 077

by modern transformer-based models (e.g., Devlin 078
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et al., 2019; Touvron et al., 2023) have demon-079

strated strong performance across a wide range of080

NLP tasks that require deep natural language un-081

derstanding. To overcome the constraints of input082

length, researchers have explored training long con-083

text embedding models from scratch (Chen et al.,084

2024) and extending context windows of existing085

models (Zhu et al., 2024). However, benchmarks086

such as Bai et al. (2024) primarily evaluate long087

context embeddings on a narrow set of tasks, leav-088

ing their broader potential in information retrieval089

and text mining unexplored. In particular, the ef-090

fectiveness of long context embeddings in weak091

signal detection remains uncertain, as it is unclear092

how well they can represent chronological docu-093

ment sets and capture underlying trends. In this094

work, we investigate whether long context embed-095

dings offer a more effective trend representation096

than traditional counting-based methods.097

Challenges also lie in the quantitative evalua-098

tion of weak signal detection. Most prior studies099

have conducted qualitative analysis (El Akrouchi100

et al., 2021; Boutaleb et al., 2024) due to the lack101

of well-defined ground truth data, as discussed in102

BERTrend (Boutaleb et al., 2024). To the best103

of our knowledge, no widely accepted metrics or104

benchmarks currently exist for this task. As a re-105

sult, there is also a lack of objective comparisons106

between different approaches, making it difficult107

to measure progress in the field. In this work, we108

take an initial step toward establishing a quantita-109

tive evaluation framework for weak signal detec-110

tion. We construct datasets specifically designed111

for this task, define ground truth timestamps indi-112

cating trend emergence, and systematically com-113

pare our approach with existing methods.114

To summarize, our contributions are as follows:115

• We introduce a novel trend representation in116

contrast to the conventional counting-based117

representation, and reveal that our approach118

detects weak signals more effectively and ro-119

bustly across diverse datasets.120

• We explore the potential of long context em-121

beddings beyond conventional benchmarks,122

and investigate their capabilities in represent-123

ing chronological document sets and captur-124

ing trends.125

• We provide a paradigm for quantitative eval-126

uation of weak signal detection, laying the127

groundwork for approach comparisons and 128

future advancements in the field. 129

2 Related Work 130

2.1 Topic Modeling 131

Topic modeling has played a central role in weak 132

signal detection by uncovering latent topics within 133

document collections. Conventional approaches, 134

such as Latent Dirichlet Allocation (LDA) (Blei 135

et al., 2003) and Non-Negative Matrix Factoriza- 136

tion (NMF) (Févotte and Idier, 2010), rely on Bag- 137

of-Words representations to model documents as 138

mixtures of latent topics. 139

Recent advancements in topic modeling have 140

leveraged text embeddings for better represen- 141

tations of the text. Sia et al. (2020) applied 142

centroid-based clustering on word embeddings, 143

while Angelov (2020) introduced joint document 144

and word semantic embeddings to derive topic vec- 145

tors. Grootendorst (2022) further extended these 146

methods by employing Sentence-BERT (Reimers 147

and Gurevych, 2019) to generate document em- 148

beddings, and Wu et al. (2024) proposed a novel 149

Embedding Transport Plan to map document em- 150

beddings into topic embeddings. 151

These embedding-based approaches enable the 152

computation of topic embeddings, typically repre- 153

sented as centroids of document embedding clus- 154

ters. Collectively, they have established a strong 155

foundation for the embedding-based weak signal 156

detection in our work. 157

2.2 Weak Signal Detection 158

Early weak signal detection methods were 159

keyword-based, detecting trends by tracking key- 160

word occurrence over time. Yoon (2012) intro- 161

duced keyword portfolio maps, which were later 162

adapted for signal detection across various domains 163

(Sheng et al., 2017, 2019; Goria, 2022). More re- 164

cently, topics have largely replaced keywords to 165

better capture underlying trends, as first explored 166

by Park and Kim (2021) and further demonstrated 167

in Ebadi et al. (2024). 168

Both keyword-based and topic-based weak sig- 169

nal detection rely on counting-based representa- 170

tions, extracting signals by measuring keyword or 171

document counts within a corpus. Figure 1(a) uses 172

hypothetical topics to illustrate a counting-based 173

representation, where document count changes 174

over time serve as signals for weak trend emer- 175

gence. The significance and dynamics of these sig- 176
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nals are typically evaluated using metrics such as177

frequency, velocity (growth rate), and acceleration.178

However, these methods often fail to detect trends179

early, as they depend on frequency shifts rather180

than deeper semantic patterns. They also struggle181

to generalize across different datasets, requiring ex-182

tensive threshold tuning for optimal performance.183

In contrast, we introduce TrendRep, a trend184

representation based on long context embeddings,185

which captures topic evolution through semantic re-186

lationships rather than relying solely on frequency-187

based metrics. TrendRep operates within an em-188

bedding space and is sensitive to dynamic changes189

like velocity and acceleration, allowing for more190

robust and adaptable weak signal detection.191

2.3 Topic Detection and Tracking (TDT)192

TDT and weak signal detection both analyze evolv-193

ing topics within text corpora, but they differ in194

objectives, methodologies, and outputs. The term195

TDT was introduced by Aiello et al. (2013) and196

is defined as the task of extracting topics from a197

stream of textual information and quantifying their198

trend over time. TDT primarily focuses on describ-199

ing past events, clustering or classifying documents200

into coherent topic groups to track the evolution201

of discussions. In contrast, weak signal detection202

aims to identify emerging trends as early as possi-203

ble, often before they gain widespread recognition.204

Rather than focusing on topic structure, weak sig-205

nal detection emphasizes dynamic patterns within206

the data.207

Despite these differences, weak signal detection208

often shares techniques with TDT, such as topic209

modeling. Additionally, datasets originally de-210

signed for TDT can be repurposed for trend detec-211

tion with proper annotation of trend starting points212

along the timeline.213

2.4 Long Context Embedding214

Most existing approaches for long context embed-215

ding models rely on backbone models that are na-216

tive to handling long context inputs. More recently,217

Zhu et al. (2024) proposed adapting context win-218

dow extension techniques, originally developed for219

LLMs, to improve text embedding models. A sim-220

ple technique is Parallel Context Windows (PCW)221

(Ratner et al., 2022), where a long input is first seg-222

mented into shorter chunks, each processed indi-223

vidually by a text embedding model. The final long224

context embedding is obtained by aggregating the225

embeddings of all chunks. To mitigate the loss of226

interactions between chunks, more advanced tech- 227

niques have been introduced, such as SelfExtend 228

(Jin et al., 2024), DCA (An et al., 2024), PI (Chen 229

et al., 2023), and YaRN (Peng et al., 2023), which 230

incorporate refined position embedding techniques 231

to better preserve the underlying relationships be- 232

tween chunks. 233

In our work, individual documents are relatively 234

short, and we treat all documents within a time 235

range as a single long context. Since our focus 236

is on trend representation rather than preserving 237

interactions between documents, cross-document 238

interactions are less of a concern. Given its simplic- 239

ity and effectiveness, we adopt PCW as the basis 240

for our approach. 241

3 Methodology 242

In this section, we introduce TrendRep, a novel 243

trend representation designed to capture trends 244

from arbitrary text corpora. We detail the process 245

of extracting TrendRep from a corpus and demon- 246

strate its use in weak signal detection. 247

3.1 TrendRep Extraction 248

Extracting TrendRep involves two key components: 249

topic embeddings and temporal embeddings. 250

3.1.1 Topic Embeddings 251

Topic embeddings are calculated based on text em- 252

beddings, as described in Section 2.1. For datasets 253

without predefined topic labels, embedding-based 254

topic modeling is applied to discover underlying 255

topics in the corpus and compute the embedding 256

of each topic. For datasets with predefined topic 257

labels, topic embeddings are defined as the cluster 258

centroids of the text embeddings for all documents 259

within each topic. The embedding for topic k is 260

calculated as follows: 261

CEk =

∑n
i=1 Ei

n
(1) 262

where Ei is the ith document embedding of topic 263

k, and n is the total number of documents shar- 264

ing the topic label k. The notation CE stands for 265

cluster embeddings to avoid confusion with TE for 266

temporal embeddings below. 267

Figure 1(b) illustrates the topic embeddings in 268

the embedding space, where three hypothetical top- 269

ics (CE1, CE2, CE3) are represented as dots. 270

3.1.2 Temporal Embeddings 271

Temporal embeddings represent all documents 272

within a specific time window. To compute these 273
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Figure 1: Comparison of Counting-Based and Embedding-Based Weak Signal Detection. (a) Counting-based
weak signal detection tracks trends by analyzing document count changes over time. (b) Embedding-based weak
signal detection represents topics and time windows in a shared embedding space. Topic embeddings (dots) define
the semantic structure, while temporal embeddings (stars) capture the distribution of topics at different time steps.
The movement of temporal embeddings over time reflects trend evolution.

embeddings, the corpus is segmented into time274

windows (e.g., weeks, days, or hours) based on275

the dataset’s characteristics. A long context con-276

sists of all documents within a time window, and277

its text embedding serves as the temporal embed-278

ding. Among approaches for computing long con-279

text embeddings described in Section 2.3, we adopt280

PCW for its simplicity and effectiveness. Follow-281

ing the PCW experiment setup in Zhu et al. (2024),282

temporal embeddings are computed by averaging283

document embeddings within each time window,284

with no overlap between adjacent documents. The285

calculation of temporal embedding at time step t is286

as follows:287

TEt =

∑m
j=1 Ej

m
(2)288

where Ej is the jth document embedding in time289

window t, and m is the total number of documents290

within time window t.291

In Figure 1(b), temporal embeddings are shown292

as stars (TE1, TE2, TE3, TE4), and their movement293

in the embedding space illustrates the evolution of294

trends over time.295

3.1.3 Similarity Matrix296

Inspired by prior work in topic modeling (Groo-297

tendorst, 2022; Wu et al., 2024), which computes298

pairwise similarity scores between document em-299

beddings and topic embeddings to assign topic la-300

bels to new documents, we extend this approach to301

reveal the relationship between time windows and302

topics.303

Specifically, we compute pairwise similarity 304

scores between each temporal embedding and each 305

topic embedding, producing a T × K similarity 306

matrix, where T is the number of time windows, 307

and K is the number of topics. 308

As formulated in Eq. (3), the similarity score 309

between temporal embedding TEt and topic embed- 310

ding CEk is computed as the Euclidean distance, 311

followed by an exponential transformation to map 312

the distance to a 0-1 range. 313

simtk = exp(−∥TEt − CEk∥2) (3) 314

In Figure 1(b), the dotted lines between temporal 315

embedding TE1 and topic embeddings (CE1, CE2, 316

CE3) visually represent these similarity relation- 317

ships, indicating how the temporal embedding is 318

positioned based on its proximity to different topic 319

embeddings. 320

3.1.4 Normalization 321

Normalization is applied sequentially for the simi- 322

larity matrix, first along the topic axis and then the 323

temporal axis. For the topic axis, we adopt parame- 324

terized softmax normalization as described in Jang 325

et al. (2017). At each temporal step t, we generate 326

a normalized vector yt ∈ ∆K−1, in which 327

ytk =
exp(−∥TEt − CEk∥2/τ)∑K

k′=1 exp(−∥TEt − CEk′∥2/τ)
(4) 328

for k = 1, . . . ,K, where the differentiable parame- 329

ter τ = 0.1. 330
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For normalization along the temporal axis, we331

first experiment with the full normalization across332

all temporal slices as formulated in Eq. (5). How-333

ever, it risks leaking future data into past trend334

detection.335

ztk =
ytk∑T

t′=1 yt′k
(5)336

To address the risks in full normalization, we337

also experiment with step-wise normalization re-338

stricted to temporal slices preceding and including339

the current time window, as formulated in Eq. (6).340

ztk =
ytk∑t

t′=1 yt′k
(6)341

This normalized similarity matrix reflects the342

topic distribution within each time window and343

serves as the basis for analyzing topic evolution344

over time. We refer to this matrix as TrendRep.345

3.2 Dynamic Metrics346

We calculate two key dynamics of TrendRep as the347

main indicators for weak signals:348

• Velocity: The difference in normalized sim-349

ilarity scores between consecutive time win-350

dows.351

• Acceleration: The difference in velocity be-352

tween consecutive time windows.353

Weak signals are detected by applying simple354

thresholds on velocity and acceleration, such as355

velocity > 0 and acceleration > 0. These thresh-356

olds effectively highlight topics experiencing rapid357

changes over time.358

3.3 Practical Considerations359

When computing TrendRep, it is crucial to address360

potential biases that can arise from overlap between361

topic and temporal embeddings. Specifically, if the362

same document embeddings are used to compute363

both topic embeddings and temporal embeddings,364

the similarity scores between them will tend to be365

disproportionately high compared to other pairs.366

This inflated similarity arises because the shared367

embeddings introduce artificial alignment, under-368

mining the objectivity of the signal detection pro-369

cess.370

To mitigate this bias, we propose using a sub-371

set of document embeddings, or sub-clusters, for372

calculating topic embeddings. These sub-clusters373

should include only a portion of the document em-374

beddings within each topic. Importantly, the doc-375

uments included in these sub-clusters should be376

Dataset #Docs #Topics #Trends #TWs
News2013 8,726 222 180 144
Trends2025 1,668,934 2,663 100 216

Table 1: Dataset Statistics

excluded from the calculation of temporal embed- 377

dings. By ensuring no overlap between the embed- 378

dings used for topic and temporal representations, 379

we can maintain unbiased similarity scores. 380

4 Quantitative Experiments 381

In this section, we present our datasets, evaluation 382

metrics, and experiment setup for the quantitative 383

evaluation of weak signal detection. A valid weak 384

signal should indicate the onset of an emerging 385

trend, and our evaluation is designed based on this 386

premise. 387

4.1 Datasets 388

We use two datasets for quantitative experiments: 389

News2013 and Trends2025, whose statistics are 390

summarized in Table 1. Each dataset is required to 391

contain: (1) documents with timestamps indicating 392

their release times, (2) a topic label for each doc- 393

ument, and (3) ground truth timestamps, marking 394

the start of each emerging trend. We describe be- 395

low how these datasets were collected or modified 396

to satisfy these requirements. 397

4.1.1 News2013 398

News2013 originates from the topic detection and 399

tracking (TDT) study in Jiang et al. (2024). It was 400

derived as the English subset from the multilingual 401

news dataset in Miranda et al. (2018), which itself 402

is based on Rupnik et al. (2015).2 We adopt this 403

dataset because each document is accompanied by 404

(1) a release timestamp and (2) a topic event label. 405

These labels have served as ground truth in prior 406

TDT experiments (Jiang et al., 2024), and we use 407

them as the predefined topic labels to avoid intro- 408

ducing bias from topic modeling. Our experiments 409

are conducted on the test set, split by hours. 410

However, to repurpose this TDT dataset for weak 411

signal detection, we must address two key issues: 412

1. Scarcity of Topics: News2013 test set con- 413

tains 222 topics scattered among 10 months, 414

averaging less than one active topic per day. 415

Sparsely distributed topics make the exper- 416

iment results less convincing, even when 417

2https://github.com/Priberam/news-clustering/,
distributed under The 3-Clause BSD License
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trends are successfully detected. To address418

this, we compressed the timeline by paral-419

lelly relocating the 205 short-lived topics and420

their associated news articles into a six-day421

span. Each topic was randomly assigned a422

starting point within the span. The remaining423

17 longer-duration topics were excluded from424

our experiments.425

2. Lack of Trend Start Labels: News2013426

lacks explicit annotations for when topics start427

trending. To generate these labels, we em-428

ployed a statistical trend detection method.429

First, we counted the number of news articles430

per topic per hour. Next, we applied the Pettitt431

Test (Pettitt, 1979) to identify change points432

in each trend, followed by the Mann-Kendall433

Test (Mann, 1945; Kendall, 1975) to detect434

increasing trends. This combined approach435

of Pettitt Test and Mann-Kendall Test, origi-436

nally proposed in Helsel and Hirsch (1993),437

has been widely used in various fields such438

as environmental science (Slater et al., 2021),439

finance (Yoo et al., 2021), healthcare (Chen440

et al., 2022), and academic research (Curiac441

et al., 2022). The detected change points pre-442

ceding increasing trends were annotated as the443

ground truth for trend start times.444

4.1.2 Trends2025445

Trends2025 is an original dataset created to provide446

diverse weak signal distributions and more accurate447

trend start annotations.448

We collected 100 topics that began trending be-449

tween January 2 and January 9, 2025, using Google450

Trends (Google Trends, 2025). For each topic, we451

retrieved its name, a list of associated search key-452

words in English, and the timestamp marking when453

it started trending. We searched Reddit by these454

keywords, and gathered the top 250 posts for each455

keyword within the same date range, resulting in456

250× number of keywords posts per topic.457

Although the Reddit API limited us from retriev-458

ing more posts via keyword searches, we identified459

15,779 seed subreddits where these top posts origi-460

nated. To enrich the dataset and simulate real-world461

scenarios where numerous topics are simultane-462

ously active, we collected all new posts created in463

these seed subreddits between January 1 and Jan-464

uary 9, 2025. The title and the body of each post465

were stacked together to form one document.466

One missing component in this dataset was467

document-level topic labels. Since not all posts 468

were related to one of the 100 trending topics, we 469

performed topic modeling from scratch to allow 470

for the presence of other unrelated topics. We first 471

computed topic embeddings for the 100 trending 472

topics using the top posts retrieved via keyword 473

searches, where each document embedding was 474

computed using a Sentence-BERT model3. Follow- 475

ing Boutaleb et al. (2024), the corpus was split by 476

hours, and a BERTopic model was trained for each 477

hour. Topics with cosine similarity below 0.7 were 478

merged. This resulted in a total of 2,663 topics, of 479

which 100 corresponded to the trending topics of 480

interest, while the remaining topics were treated as 481

noise during evaluation. 482

4.1.3 Datasets Comparison 483

Table 1 compares the sizes of the two datasets. Be- 484

yond dataset size, we also highlight the differences 485

in weak signal distributions that stem from varying 486

noise levels. Figure 2(a) shows the ratio distribu- 487

tion of emerging topics among all active topics with 488

positive document counts. A higher ratio indicates 489

fewer noise signals. Figure 2(b) illustrates the per- 490

centile rank distribution of the document count for 491

emerging trends at their start time. A higher per- 492

centile rank suggests that noise signals have lower 493

activeness. These metrics significantly influence 494

conventional weak signal detection approaches that 495

rely on raw feature frequencies, requiring careful 496

threshold tuning for optimal performance. 497

4.2 Evaluation Metrics 498

In our experiments, the outcome for each topic is 499

a set of timestamps marking the detected starting 500

points of the trend. To evaluate the effectiveness 501

of weak signals as early indicators of emerging 502

trends, we compute recall, precision, and F1-score 503

by comparing the detected timestamps against the 504

ground truth. 505

However, requiring detected timestamps to 506

match the exact ground truth does not align with 507

the goal of weak signal detection, which is often to 508

detect trends before they gain widespread attention. 509

To address this, we expand the acceptable detec- 510

tion window to include the 24 hours preceding the 511

ground truth timestamp. Recall, precision, and F1- 512

score are then calculated based on this expanded 513

3Distributed under Apache License 2.0: https:
//huggingface.co/sentence-transformers/
all-MiniLM-L6-v2, distributed under Apache License
2.0
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Figure 2: Comparison of weak signal distributions in the two datasets. (a) The ratio distribution of emerging topics
among active topics. (b) Document count percentile rank distribution at the trend start time.

24-hour range as the evaluation criteria.514

In addition to these metrics, we calculate the515

root mean square error (RMSE) for the Trends2025516

dataset to measure the average time deviation be-517

tween detected timestamps and the ground truth.518

RMSE provides insight into how early or late the519

detected trends are relative to the actual trend start520

times. Smaller RMSE values indicate higher detec-521

tion accuracy. Notably, RMSE is calculated only522

for the Trends2025 dataset and not for News2013,523

where topics in the ground truth may have no trends524

or multiple trends. In such cases, RMSE becomes525

unreliable and therefore is excluded from the eval-526

uation.527

4.3 Experiment Setup and Results528

In our experiments, we focus on comparing trend529

representations rather than signal detection algo-530

rithms. Therefore, weak signals are detected by531

applying simple thresholds to each representation,532

and an emerging trend is detected when a topic533

transitions from having no weak signals to carrying534

a weak signal. Since different trend representations535

are derived from various dataset characteristics, the536

thresholds in use are selected to fit each representa-537

tion.538

We evaluate TrendRep against two baseline rep-539

resentations: document counts and topic popular-540

ity. Document counts represent a widely used541

frequency-based method, while topic popularity542

follows the state-of-the-art approach described in543

Boutaleb et al. (2024). The experiments are con-544

ducted on both News2013 and Trends2025, using545

hourly time granularity for signal detection.546

For TrendRep, we first compute document em-547

beddings using a Sentence-BERT model4, followed 548

by the computation of topic and temporal embed- 549

dings. For News2013 dataset, despite the bias men- 550

tioned in Section 3.3, all documents are used to 551

calculate both embeddings due to data scarcity. For 552

Trends2025 dataset, topic embeddings are derived 553

from the top posts retrieved via keyword searches, 554

while temporal embeddings are computed from the 555

remaining documents. Using these embeddings, 556

we construct a similarity matrix and apply normal- 557

ization. As mentioned in section 3.2.1, normalizing 558

across all time windows could inadvertently intro- 559

duce future information into weak signal detection. 560

To address this, we report results for two variants 561

in Table 2: TrendRep-full, which is fully normal- 562

ized across all time windows, and TrendRep-step, 563

which applies step-wise normalization where only 564

temporal embeddings up to the current time win- 565

dow are used. Finally, velocity and acceleration are 566

calculated for each topic at every hour, and a weak 567

signal is detected when both exceed zero. 568

For the document counts baseline, we adopt the 569

method proposed by Park and Kim (2021), where a 570

topic is considered to carry a weak signal when its 571

proportion among all topics is below the average, 572

and its growth rate is positive. For the topic popu- 573

larity approach, we follow the method proposed by 574

Boutaleb et al. (2024). The same decay factor and 575

thresholds are adopted, where a topic is considered 576

to carry a weak signal if its popularity falls between 577

the 10th and 50th percentiles. 578

The experiment results are shown in Table 2. 579

4https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2, distributed under Apache License 2.0
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Approach News2013 Trends2025
Precision Recall F1 Precision Recall F1 RMSE

Doc Counts None Detected 12.57 86.87 21.97 87.55
Popularity 5.83 7.22 6.45 3.45 5.05 4.10 131.94

TrendRep-full 7.67 56.67 13.51 14.38 100 25.14 77.24
TrendRep-step 6.77 55.0 12.06 12.86 100 22.80 83.46

Table 2: Experiment Results

4.4 Results Analysis580

As discussed in Section 4.1.3, News2013 and581

Trends2025 exhibit different weak signal distribu-582

tions due to varying noise levels. Despite these583

differences, TrendRep demonstrates superior per-584

formance on both datasets compared to conven-585

tional trend representations, with the fully normal-586

ized TrendRep slightly outperforming its step-wise587

normalized variant.588

Using document counts as a trend representa-589

tion can yield decent performance on data with590

a certain noise level, as evidenced by the results591

on Trends2025. However, this approach lacks ro-592

bustness across diverse datasets and fails to detect593

any weak signals in News2013, which has a differ-594

ent noise signal distribution. This limitation arises595

because, in News2013, noise topics are relatively596

inactive, while trending topics inherently have doc-597

ument counts above the mean value. As a result,598

effectively detecting emerging trends with docu-599

ment counts requires careful threshold tuning for600

each dataset or application.601

On the other hand, the topic popularity approach602

yields consistently low performance across both603

datasets in our experiments. We observed a per-604

sistent lag in detection, with most trends identified605

within 48 hours after their ground truth starting606

points. While this delayed detection might be use-607

ful for general trend analysis, it is unsuitable to608

detect emerging trends, which requires high sensi-609

tivity at the earliest stages of trend development.610

5 Conclusions611

In this work, we introduced TrendRep, a novel612

long context embedding-based trend representation613

that contrasts with conventional counting-based614

methods. Our experimental results demonstrate615

that TrendRep detects weak signals as emerging616

trends more effectively and robustly across diverse617

datasets. Beyond weak signal detection, our study618

extends the potential of long context embeddings619

beyond conventional benchmarks. By leveraging620

long context embeddings to represent chronologi- 621

cal document sets, we explored their potential for 622

capturing semantic structures in evolving textual 623

data. Additionally, we addressed the long-standing 624

challenge of quantitatively evaluating weak signal 625

detection. We introduced a new evaluation frame- 626

work, defining ground truth trend indicators and 627

key metrics, enabling systematic comparisons be- 628

tween different weak signal detection approaches. 629

6 Limitations 630

While TrendRep offers significant improvements 631

over counting-based methods, several limitations 632

remain. 633

First, our approach relies on Parallel Context 634

Windows for long context embeddings, which is 635

effective when dealing with individually short doc- 636

uments. However, when longer documents are in- 637

volved, simply aggregating chunk embeddings may 638

not be sufficient to preserve cross-chunk interac- 639

tions. Future work could explore alternative long 640

context embedding techniques for signal detection. 641

Second, while TrendRep consistently achieves 642

higher recall, its precision remains modest. This 643

suggests that relying solely on threshold-based de- 644

tection may not fully address false-positive cases. 645

To further improve precision, we plan to explore 646

more advanced signal detection algorithms that 647

could better model temporal variations and outlier 648

behaviors in emerging trends. 649

Finally, while our evaluation framework intro- 650

duces quantitative metrics for weak signal detec- 651

tion, the concept of trend often involves subjective 652

human interpretation. Future research could ex- 653

plore human-in-the-loop evaluation methods or hy- 654

brid approaches that integrate qualitative insights 655

with quantitative metrics for a more comprehensive 656

assessment of emerging trends and weak signals. 657
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