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Abstract

Weak signal detection traditionally relies on
counting-based representations of the data,
tracking feature frequencies, such as keywords
or topics, over time. However, these methods
struggle with adaptability and often fail to de-
tect trends at an early stage. In this work, we
propose TrendRep, a novel embedding-based
trend representation that leverages long con-
text embeddings to encode richer semantics
within time windows, providing a more robust
and adaptable approach to weak signal detec-
tion. To evaluate TrendRep, we construct a
new dataset and introduce a quantitative eval-
uation framework with defined ground truth
and key performance metrics. Experimental
results show that TrendRep outperforms con-
ventional approaches, demonstrating the effec-
tiveness of embedding-based representations
and highlighting the potential of long context
embeddings for weak signal detection.’

1 Introduction

In today’s fast-paced world driven by constant
change and big data, detecting emerging trends
at an early stage is crucial for informed decision-
making and strategic planning. Since Ansoff (1975)
coined the term "weak signal", it has been widely
used to describe subtle, emerging trends that were
not significant in the past but predicted to rise in the
future (Holopainen and Toivonen, 2012; van Veen
and Ortt, 2021; Ha et al., 2023). Weak signal de-
tection from text data has been extensively studied
across various data sources, including news articles
(Yoon, 2012; El Akrouchi et al., 2021), academic
research papers (Boutaleb et al., 2024), and social
media data (Nazir et al., 2019). Insights from these
studies have had significant impacts on domains
such as technology (Ebadi et al., 2022), politics

"The implementation of TrendRep and the Trends2025
dataset are available at https://anonymous.4open.

science/r/TrendRep-EE16. We will make the repository
public upon acceptance.

and economy (Baumeister and Kilian, 2016), busi-
ness and finance (Miihlroth and Grottke, 2018),
and healthcare (Nicolaidou et al., 2021). On the
road to more effective weak signal detection, there
are mainly two challenges: detecting signals early
enough to act on them and distinguishing meaning-
ful signals from random fluctuations.

Weak signal detection relies on a trend represen-
tation of text corpora, which defines how signals
are extracted and analyzed over time. A common
approach is counting-based representations, where
weak signals are detected by tracking the raw fre-
quency of specific keywords (Yoon, 2012) or topics
(Park and Kim, 2021). This method assumes that a
rise in frequency reflects the emergence of a mean-
ingful trend. However, it suffers from two critical
limitations. First, counting-based methods treat
signals as isolated frequency shifts, ignoring the
semantic relationships between keywords or top-
ics. Just as the Bag-of-Words model disregards
word order and context (Salton et al., 1975), these
methods fail to capture how weak signals interact,
evolve, or influence one another. This lack of con-
textual understanding leaves considerable room for
developing better trend representations of text data.
Second, counting-based representations are highly
sensitive to dataset characteristics. Since weak sig-
nals are identified based on raw frequency changes,
the same threshold that works well in one dataset
may completely fail in another. As a result, tradi-
tional methods require extensive threshold tuning
for each dataset to balance sensitivity and precision.
This lack of adaptability makes counting-based ap-
proaches impractical for real-world applications
where emerging trends must be detected dynami-
cally and across diverse data sources. These limita-
tions motivate the development of a more context-
aware and adaptable trend representation for weak
signal detection.

On the other hand, text embeddings produced
by modern transformer-based models (e.g., Devlin
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et al., 2019; Touvron et al., 2023) have demon-
strated strong performance across a wide range of
NLP tasks that require deep natural language un-
derstanding. To overcome the constraints of input
length, researchers have explored training long con-
text embedding models from scratch (Chen et al.,
2024) and extending context windows of existing
models (Zhu et al., 2024). However, benchmarks
such as Bai et al. (2024) primarily evaluate long
context embeddings on a narrow set of tasks, leav-
ing their broader potential in information retrieval
and text mining unexplored. In particular, the ef-
fectiveness of long context embeddings in weak
signal detection remains uncertain, as it is unclear
how well they can represent chronological docu-
ment sets and capture underlying trends. In this
work, we investigate whether long context embed-
dings offer a more effective trend representation
than traditional counting-based methods.

Challenges also lie in the quantitative evalua-
tion of weak signal detection. Most prior studies
have conducted qualitative analysis (El Akrouchi
et al., 2021; Boutaleb et al., 2024) due to the lack
of well-defined ground truth data, as discussed in
BERTrend (Boutaleb et al., 2024). To the best
of our knowledge, no widely accepted metrics or
benchmarks currently exist for this task. As a re-
sult, there is also a lack of objective comparisons
between different approaches, making it difficult
to measure progress in the field. In this work, we
take an initial step toward establishing a quantita-
tive evaluation framework for weak signal detec-
tion. We construct datasets specifically designed
for this task, define ground truth timestamps indi-
cating trend emergence, and systematically com-
pare our approach with existing methods.

To summarize, our contributions are as follows:

* We introduce a novel trend representation in
contrast to the conventional counting-based
representation, and reveal that our approach
detects weak signals more effectively and ro-
bustly across diverse datasets.

* We explore the potential of long context em-
beddings beyond conventional benchmarks,
and investigate their capabilities in represent-
ing chronological document sets and captur-
ing trends.

* We provide a paradigm for quantitative eval-
uation of weak signal detection, laying the

groundwork for approach comparisons and
future advancements in the field.

2 Related Work
2.1 Topic Modeling

Topic modeling has played a central role in weak
signal detection by uncovering latent topics within
document collections. Conventional approaches,
such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) and Non-Negative Matrix Factoriza-
tion (NMF) (Févotte and Idier, 2010), rely on Bag-
of-Words representations to model documents as
mixtures of latent topics.

Recent advancements in topic modeling have
leveraged text embeddings for better represen-
tations of the text. Sia et al. (2020) applied
centroid-based clustering on word embeddings,
while Angelov (2020) introduced joint document
and word semantic embeddings to derive topic vec-
tors. Grootendorst (2022) further extended these
methods by employing Sentence-BERT (Reimers
and Gurevych, 2019) to generate document em-
beddings, and Wu et al. (2024) proposed a novel
Embedding Transport Plan to map document em-
beddings into topic embeddings.

These embedding-based approaches enable the
computation of topic embeddings, typically repre-
sented as centroids of document embedding clus-
ters. Collectively, they have established a strong
foundation for the embedding-based weak signal
detection in our work.

2.2 Weak Signal Detection

Early weak signal detection methods were
keyword-based, detecting trends by tracking key-
word occurrence over time. Yoon (2012) intro-
duced keyword portfolio maps, which were later
adapted for signal detection across various domains
(Sheng et al., 2017, 2019; Goria, 2022). More re-
cently, topics have largely replaced keywords to
better capture underlying trends, as first explored
by Park and Kim (2021) and further demonstrated
in Ebadi et al. (2024).

Both keyword-based and topic-based weak sig-
nal detection rely on counting-based representa-
tions, extracting signals by measuring keyword or
document counts within a corpus. Figure 1(a) uses
hypothetical topics to illustrate a counting-based
representation, where document count changes
over time serve as signals for weak trend emer-
gence. The significance and dynamics of these sig-



nals are typically evaluated using metrics such as
frequency, velocity (growth rate), and acceleration.
However, these methods often fail to detect trends
early, as they depend on frequency shifts rather
than deeper semantic patterns. They also struggle
to generalize across different datasets, requiring ex-
tensive threshold tuning for optimal performance.

In contrast, we introduce TrendRep, a trend
representation based on long context embeddings,
which captures topic evolution through semantic re-
lationships rather than relying solely on frequency-
based metrics. TrendRep operates within an em-
bedding space and is sensitive to dynamic changes
like velocity and acceleration, allowing for more
robust and adaptable weak signal detection.

2.3 Topic Detection and Tracking (TDT)

TDT and weak signal detection both analyze evolv-
ing topics within text corpora, but they differ in
objectives, methodologies, and outputs. The term
TDT was introduced by Aiello et al. (2013) and
is defined as the task of extracting topics from a
stream of textual information and quantifying their
trend over time. TDT primarily focuses on describ-
ing past events, clustering or classifying documents
into coherent topic groups to track the evolution
of discussions. In contrast, weak signal detection
aims to identify emerging trends as early as possi-
ble, often before they gain widespread recognition.
Rather than focusing on topic structure, weak sig-
nal detection emphasizes dynamic patterns within
the data.

Despite these differences, weak signal detection
often shares techniques with TDT, such as topic
modeling. Additionally, datasets originally de-
signed for TDT can be repurposed for trend detec-
tion with proper annotation of trend starting points
along the timeline.

2.4 Long Context Embedding

Most existing approaches for long context embed-
ding models rely on backbone models that are na-
tive to handling long context inputs. More recently,
Zhu et al. (2024) proposed adapting context win-
dow extension techniques, originally developed for
LLMs, to improve text embedding models. A sim-
ple technique is Parallel Context Windows (PCW)
(Ratner et al., 2022), where a long input is first seg-
mented into shorter chunks, each processed indi-
vidually by a text embedding model. The final long
context embedding is obtained by aggregating the
embeddings of all chunks. To mitigate the loss of

interactions between chunks, more advanced tech-
niques have been introduced, such as SelfExtend
(Jin et al., 2024), DCA (An et al., 2024), PI (Chen
et al., 2023), and YaRN (Peng et al., 2023), which
incorporate refined position embedding techniques
to better preserve the underlying relationships be-
tween chunks.

In our work, individual documents are relatively
short, and we treat all documents within a time
range as a single long context. Since our focus
is on trend representation rather than preserving
interactions between documents, cross-document
interactions are less of a concern. Given its simplic-
ity and effectiveness, we adopt PCW as the basis
for our approach.

3 Methodology

In this section, we introduce TrendRep, a novel
trend representation designed to capture trends
from arbitrary text corpora. We detail the process
of extracting TrendRep from a corpus and demon-
strate its use in weak signal detection.

3.1 TrendRep Extraction

Extracting TrendRep involves two key components:
topic embeddings and temporal embeddings.

3.1.1 Topic Embeddings

Topic embeddings are calculated based on text em-
beddings, as described in Section 2.1. For datasets
without predefined topic labels, embedding-based
topic modeling is applied to discover underlying
topics in the corpus and compute the embedding
of each topic. For datasets with predefined topic
labels, topic embeddings are defined as the cluster
centroids of the text embeddings for all documents
within each topic. The embedding for topic k& is
calculated as follows:

— Z?:l Ei
N n

CE; (D

where F; is the ith document embedding of topic
k, and n is the total number of documents shar-
ing the topic label k. The notation CE stands for
cluster embeddings to avoid confusion with TE for
temporal embeddings below.

Figure 1(b) illustrates the topic embeddings in
the embedding space, where three hypothetical top-
ics (CEy, CEs, CE3) are represented as dots.

3.1.2 Temporal Embeddings

Temporal embeddings represent all documents
within a specific time window. To compute these
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Figure 1: Comparison of Counting-Based and Embedding-Based Weak Signal Detection. (a) Counting-based
weak signal detection tracks trends by analyzing document count changes over time. (b) Embedding-based weak
signal detection represents topics and time windows in a shared embedding space. Topic embeddings (dots) define
the semantic structure, while temporal embeddings (stars) capture the distribution of topics at different time steps.
The movement of temporal embeddings over time reflects trend evolution.

embeddings, the corpus is segmented into time
windows (e.g., weeks, days, or hours) based on
the dataset’s characteristics. A long context con-
sists of all documents within a time window, and
its text embedding serves as the temporal embed-
ding. Among approaches for computing long con-
text embeddings described in Section 2.3, we adopt
PCW for its simplicity and effectiveness. Follow-
ing the PCW experiment setup in Zhu et al. (2024),
temporal embeddings are computed by averaging
document embeddings within each time window,
with no overlap between adjacent documents. The
calculation of temporal embedding at time step ¢ is

as follows: "
Z j=1 Ej
m

TE; = 2

where Ej is the jth document embedding in time
window ¢, and m is the total number of documents
within time window £.

In Figure 1(b), temporal embeddings are shown
as stars (TE1, TE,, TE3, TE,), and their movement
in the embedding space illustrates the evolution of
trends over time.

3.1.3 Similarity Matrix

Inspired by prior work in topic modeling (Groo-
tendorst, 2022; Wu et al., 2024), which computes
pairwise similarity scores between document em-
beddings and topic embeddings to assign topic la-
bels to new documents, we extend this approach to
reveal the relationship between time windows and
topics.

Specifically, we compute pairwise similarity
scores between each temporal embedding and each
topic embedding, producing a T' x K similarity
matrix, where 7" is the number of time windows,
and K is the number of topics.

As formulated in Eq. (3), the similarity score
between temporal embedding TE; and topic embed-
ding CE}, is computed as the Euclidean distance,
followed by an exponential transformation to map
the distance to a 0-1 range.

simyy, = exp(—||TE; — CEk”Q) 3)

In Figure 1(b), the dotted lines between temporal
embedding TE; and topic embeddings (CE7, CEs,
CE3) visually represent these similarity relation-
ships, indicating how the temporal embedding is
positioned based on its proximity to different topic
embeddings.

3.1.4 Normalization

Normalization is applied sequentially for the simi-
larity matrix, first along the topic axis and then the
temporal axis. For the topic axis, we adopt parame-
terized softmax normalization as described in Jang
et al. (2017). At each temporal step ¢, we generate
a normalized vector y; € AX~1 in which

exp(—||TE; — CEL||?/7)

Ytk = (4)
Sy exp(—||TE; — CEy|[2/7)

for k =1,..., K, where the differentiable parame-
ter 7 = 0.1.



For normalization along the temporal axis, we
first experiment with the full normalization across
all temporal slices as formulated in Eq. (5). How-
ever, it risks leaking future data into past trend

detection.
Ytk

23::1 Yt'k
To address the risks in full normalization, we
also experiment with step-wise normalization re-
stricted to temporal slices preceding and including
the current time window, as formulated in Eq. (6).

_ Ytk

-t
Ztl —1 Ytk
This normalized similarity matrix reflects the

topic distribution within each time window and

serves as the basis for analyzing topic evolution
over time. We refer to this matrix as TrendRep.

(&)

2tk
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3.2 Dynamic Metrics

We calculate two key dynamics of TrendRep as the
main indicators for weak signals:

* Velocity: The difference in normalized sim-
ilarity scores between consecutive time win-
dows.

* Acceleration: The difference in velocity be-
tween consecutive time windows.

Weak signals are detected by applying simple
thresholds on velocity and acceleration, such as
velocity > 0 and acceleration > 0. These thresh-
olds effectively highlight topics experiencing rapid
changes over time.

3.3 Practical Considerations

When computing TrendRep, it is crucial to address
potential biases that can arise from overlap between
topic and temporal embeddings. Specifically, if the
same document embeddings are used to compute
both topic embeddings and temporal embeddings,
the similarity scores between them will tend to be
disproportionately high compared to other pairs.
This inflated similarity arises because the shared
embeddings introduce artificial alignment, under-
mining the objectivity of the signal detection pro-
cess.

To mitigate this bias, we propose using a sub-
set of document embeddings, or sub-clusters, for
calculating topic embeddings. These sub-clusters
should include only a portion of the document em-
beddings within each topic. Importantly, the doc-
uments included in these sub-clusters should be

Dataset #Docs #Topics | #Trends | #TWs
News2013 8,726 222 180 144
Trends2025 | 1,668,934 | 2,663 100 216

Table 1: Dataset Statistics

excluded from the calculation of temporal embed-
dings. By ensuring no overlap between the embed-
dings used for topic and temporal representations,
we can maintain unbiased similarity scores.

4 Quantitative Experiments

In this section, we present our datasets, evaluation
metrics, and experiment setup for the quantitative
evaluation of weak signal detection. A valid weak
signal should indicate the onset of an emerging
trend, and our evaluation is designed based on this
premise.

4.1 Datasets

We use two datasets for quantitative experiments:
News2013 and Trends2025, whose statistics are
summarized in Table 1. Each dataset is required to
contain: (1) documents with timestamps indicating
their release times, (2) a topic label for each doc-
ument, and (3) ground truth timestamps, marking
the start of each emerging trend. We describe be-
low how these datasets were collected or modified
to satisfy these requirements.

4.1.1 News2013

News2013 originates from the topic detection and
tracking (TDT) study in Jiang et al. (2024). It was
derived as the English subset from the multilingual
news dataset in Miranda et al. (2018), which itself
is based on Rupnik et al. (2015).> We adopt this
dataset because each document is accompanied by
(1) a release timestamp and (2) a topic event label.
These labels have served as ground truth in prior
TDT experiments (Jiang et al., 2024), and we use
them as the predefined topic labels to avoid intro-
ducing bias from topic modeling. Our experiments
are conducted on the test set, split by hours.
However, to repurpose this TDT dataset for weak
signal detection, we must address two key issues:

1. Scarcity of Topics: News2013 test set con-
tains 222 topics scattered among 10 months,
averaging less than one active topic per day.
Sparsely distributed topics make the exper-
iment results less convincing, even when

2https: //github.com/Priberam/news-clustering/,
distributed under The 3-Clause BSD License
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trends are successfully detected. To address
this, we compressed the timeline by paral-
lelly relocating the 205 short-lived topics and
their associated news articles into a six-day
span. Each topic was randomly assigned a
starting point within the span. The remaining
17 longer-duration topics were excluded from
our experiments.

2. Lack of Trend Start Labels: News2013
lacks explicit annotations for when topics start
trending. To generate these labels, we em-
ployed a statistical trend detection method.
First, we counted the number of news articles
per topic per hour. Next, we applied the Pettitt
Test (Pettitt, 1979) to identify change points
in each trend, followed by the Mann-Kendall
Test (Mann, 1945; Kendall, 1975) to detect
increasing trends. This combined approach
of Pettitt Test and Mann-Kendall Test, origi-
nally proposed in Helsel and Hirsch (1993),
has been widely used in various fields such
as environmental science (Slater et al., 2021),
finance (Yoo et al., 2021), healthcare (Chen
et al., 2022), and academic research (Curiac
et al., 2022). The detected change points pre-
ceding increasing trends were annotated as the
ground truth for trend start times.

4.1.2 Trends2025

Trends2025 is an original dataset created to provide
diverse weak signal distributions and more accurate
trend start annotations.

We collected 100 topics that began trending be-
tween January 2 and January 9, 2025, using Google
Trends (Google Trends, 2025). For each topic, we
retrieved its name, a list of associated search key-
words in English, and the timestamp marking when
it started trending. We searched Reddit by these
keywords, and gathered the top 250 posts for each
keyword within the same date range, resulting in
250 x number of keywords posts per topic.

Although the Reddit API limited us from retriev-
ing more posts via keyword searches, we identified
15,779 seed subreddits where these top posts origi-
nated. To enrich the dataset and simulate real-world
scenarios where numerous topics are simultane-
ously active, we collected all new posts created in
these seed subreddits between January 1 and Jan-
uary 9, 2025. The title and the body of each post
were stacked together to form one document.

One missing component in this dataset was

document-level topic labels. Since not all posts
were related to one of the 100 trending topics, we
performed topic modeling from scratch to allow
for the presence of other unrelated topics. We first
computed topic embeddings for the 100 trending
topics using the top posts retrieved via keyword
searches, where each document embedding was
computed using a Sentence-BERT model®. Follow-
ing Boutaleb et al. (2024), the corpus was split by
hours, and a BERTopic model was trained for each
hour. Topics with cosine similarity below 0.7 were
merged. This resulted in a total of 2,663 topics, of
which 100 corresponded to the trending topics of
interest, while the remaining topics were treated as
noise during evaluation.

4.1.3 Datasets Comparison

Table 1 compares the sizes of the two datasets. Be-
yond dataset size, we also highlight the differences
in weak signal distributions that stem from varying
noise levels. Figure 2(a) shows the ratio distribu-
tion of emerging topics among all active topics with
positive document counts. A higher ratio indicates
fewer noise signals. Figure 2(b) illustrates the per-
centile rank distribution of the document count for
emerging trends at their start time. A higher per-
centile rank suggests that noise signals have lower
activeness. These metrics significantly influence
conventional weak signal detection approaches that
rely on raw feature frequencies, requiring careful
threshold tuning for optimal performance.

4.2 Evaluation Metrics

In our experiments, the outcome for each topic is
a set of timestamps marking the detected starting
points of the trend. To evaluate the effectiveness
of weak signals as early indicators of emerging
trends, we compute recall, precision, and F1-score
by comparing the detected timestamps against the
ground truth.

However, requiring detected timestamps to
match the exact ground truth does not align with
the goal of weak signal detection, which is often to
detect trends before they gain widespread attention.
To address this, we expand the acceptable detec-
tion window to include the 24 hours preceding the
ground truth timestamp. Recall, precision, and F1-
score are then calculated based on this expanded

*Distributed under Apache License 2.0:
//huggingface.co/sentence-transformers/
all-MinilLM-L6-v2, distributed under Apache License
2.0
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Figure 2: Comparison of weak signal distributions in the two datasets. (a) The ratio distribution of emerging topics
among active topics. (b) Document count percentile rank distribution at the trend start time.

24-hour range as the evaluation criteria.

In addition to these metrics, we calculate the
root mean square error (RMSE) for the Trends2025
dataset to measure the average time deviation be-
tween detected timestamps and the ground truth.
RMSE provides insight into how early or late the
detected trends are relative to the actual trend start
times. Smaller RMSE values indicate higher detec-
tion accuracy. Notably, RMSE is calculated only
for the Trends2025 dataset and not for News2013,
where topics in the ground truth may have no trends
or multiple trends. In such cases, RMSE becomes
unreliable and therefore is excluded from the eval-
uation.

4.3 Experiment Setup and Results

In our experiments, we focus on comparing trend
representations rather than signal detection algo-
rithms. Therefore, weak signals are detected by
applying simple thresholds to each representation,
and an emerging trend is detected when a topic
transitions from having no weak signals to carrying
a weak signal. Since different trend representations
are derived from various dataset characteristics, the
thresholds in use are selected to fit each representa-
tion.

We evaluate TrendRep against two baseline rep-
resentations: document counts and topic popular-
ity. Document counts represent a widely used
frequency-based method, while topic popularity
follows the state-of-the-art approach described in
Boutaleb et al. (2024). The experiments are con-
ducted on both News2013 and Trends2025, using
hourly time granularity for signal detection.

For TrendRep, we first compute document em-

beddings using a Sentence-BERT model*, followed
by the computation of topic and temporal embed-
dings. For News2013 dataset, despite the bias men-
tioned in Section 3.3, all documents are used to
calculate both embeddings due to data scarcity. For
Trends2025 dataset, topic embeddings are derived
from the top posts retrieved via keyword searches,
while temporal embeddings are computed from the
remaining documents. Using these embeddings,
we construct a similarity matrix and apply normal-
ization. As mentioned in section 3.2.1, normalizing
across all time windows could inadvertently intro-
duce future information into weak signal detection.
To address this, we report results for two variants
in Table 2: TrendRep-full, which is fully normal-
ized across all time windows, and TrendRep-step,
which applies step-wise normalization where only
temporal embeddings up to the current time win-
dow are used. Finally, velocity and acceleration are
calculated for each topic at every hour, and a weak
signal is detected when both exceed zero.

For the document counts baseline, we adopt the
method proposed by Park and Kim (2021), where a
topic is considered to carry a weak signal when its
proportion among all topics is below the average,
and its growth rate is positive. For the topic popu-
larity approach, we follow the method proposed by
Boutaleb et al. (2024). The same decay factor and
thresholds are adopted, where a topic is considered
to carry a weak signal if its popularity falls between
the 10th and 50th percentiles.

The experiment results are shown in Table 2.

4https ://huggingface.co/sentence-transformers/
all-MinilLM-L6-v2, distributed under Apache License 2.0
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Approach News2013 Trends2025
Precision Recall F1 Precision Recall F1 RMSE
Doc Counts None Detected 12.57 86.87 2197 87.55
Popularity 5.83 7.22 6.45 3.45 5.05 410 131.94
TrendRep-full 7.67 56.67 13.51 14.38 100 25.14 77.24
TrendRep-step 6.77 55.0 12.06 12.86 100 22.80 83.46

Table 2: Experiment Results

4.4 Results Analysis

As discussed in Section 4.1.3, News2013 and
Trends2025 exhibit different weak signal distribu-
tions due to varying noise levels. Despite these
differences, TrendRep demonstrates superior per-
formance on both datasets compared to conven-
tional trend representations, with the fully normal-
ized TrendRep slightly outperforming its step-wise
normalized variant.

Using document counts as a trend representa-
tion can yield decent performance on data with
a certain noise level, as evidenced by the results
on Trends2025. However, this approach lacks ro-
bustness across diverse datasets and fails to detect
any weak signals in News2013, which has a differ-
ent noise signal distribution. This limitation arises
because, in News2013, noise topics are relatively
inactive, while trending topics inherently have doc-
ument counts above the mean value. As a result,
effectively detecting emerging trends with docu-
ment counts requires careful threshold tuning for
each dataset or application.

On the other hand, the topic popularity approach
yields consistently low performance across both
datasets in our experiments. We observed a per-
sistent lag in detection, with most trends identified
within 48 hours after their ground truth starting
points. While this delayed detection might be use-
ful for general trend analysis, it is unsuitable to
detect emerging trends, which requires high sensi-
tivity at the earliest stages of trend development.

5 Conclusions

In this work, we introduced TrendRep, a novel
long context embedding-based trend representation
that contrasts with conventional counting-based
methods. Our experimental results demonstrate
that TrendRep detects weak signals as emerging
trends more effectively and robustly across diverse
datasets. Beyond weak signal detection, our study
extends the potential of long context embeddings
beyond conventional benchmarks. By leveraging

long context embeddings to represent chronologi-
cal document sets, we explored their potential for
capturing semantic structures in evolving textual
data. Additionally, we addressed the long-standing
challenge of quantitatively evaluating weak signal
detection. We introduced a new evaluation frame-
work, defining ground truth trend indicators and
key metrics, enabling systematic comparisons be-
tween different weak signal detection approaches.

6 Limitations

While TrendRep offers significant improvements
over counting-based methods, several limitations
remain.

First, our approach relies on Parallel Context
Windows for long context embeddings, which is
effective when dealing with individually short doc-
uments. However, when longer documents are in-
volved, simply aggregating chunk embeddings may
not be sufficient to preserve cross-chunk interac-
tions. Future work could explore alternative long
context embedding techniques for signal detection.

Second, while TrendRep consistently achieves
higher recall, its precision remains modest. This
suggests that relying solely on threshold-based de-
tection may not fully address false-positive cases.
To further improve precision, we plan to explore
more advanced signal detection algorithms that
could better model temporal variations and outlier
behaviors in emerging trends.

Finally, while our evaluation framework intro-
duces quantitative metrics for weak signal detec-
tion, the concept of trend often involves subjective
human interpretation. Future research could ex-
plore human-in-the-loop evaluation methods or hy-
brid approaches that integrate qualitative insights
with quantitative metrics for a more comprehensive
assessment of emerging trends and weak signals.

References

Luca Maria Aiello, Georgios Petkos, Carlos J. Martin-
Dancausa, David P. A. Corney, Symeon Papadopou-



los, Ryan Skraba, Ayse Goker, Yiannis Kompatsiaris,
and Alejandro Jaimes. 2013. Sensing trending top-
ics in twitter. IEEE Transactions on Multimedia,
15:1268-1282.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong,
Xipeng Qiu, Chang Zhou, and Lingpeng Kong. 2024.
Training-free long-context scaling of large language
models. arXiv preprint arXiv:2402.17463.

Dimo Angelov. 2020. Top2vec: Distributed representa-
tions of topics. Preprint, arXiv:2008.09470.

H. Igor Ansoff. 1975. Managing strategic surprise by
response to weak signals. California Management
Review, 18(2):21-33.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Christiane Baumeister and Lutz Kilian. 2016. Forty
years of oil price fluctuations: Why the price of oil
may still surprise us. Journal of Economic Perspec-
tives, 30(1):139-160.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993-1022.

Allaa Boutaleb, Jerome Picault, and Guillaume Gros-
jean. 2024. BERTrend: Neural topic modeling for
emerging trends detection. In Proceedings of the
Workshop on the Future of Event Detection (Fu-
turED), pages 1-17, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024. M3-
embedding: Multi-linguality, multi-functionality,
multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 2318-2335, Bangkok, Thailand. Association
for Computational Linguistics.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Xiang Chen, Hui Wang, Weixuan Lyu, and Ran Xu.
2022. The mann-kendall-sneyers test to identify
the change points of covid-19 time series in the
united states. BMC Medical Research Methodology,
22(1):233.

Christian-Daniel Curiac, Ovidiu Banias, and Mihai
Micea. 2022. Evaluating research trends from journal
paper metadata, considering the research publication
latency. Mathematics, 10(2).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ashkan Ebadi, Alain Auger, and Yvan Gauthier. 2022.
Detecting emerging technologies and their evolution
using deep learning and weak signal analysis. Jour-
nal of Informetrics, 16(4):101344.

Ashkan Ebadi, Alain Auger, and Yvan Gauthier. 2024.
WISDOM: an ai-powered framework for emerging
research detection using weak signal analysis and
advanced topic modeling. CoRR, abs/2409.15340.

Manal El Akrouchi, Houda Benbrahim, and Ismail Kas-
sou. 2021. End-to-end lda-based automatic weak
signal detection in web news. Knowledge-Based Sys-
tems, 212:106650.

Cédric Févotte and Jérome Idier. 2010. Algorithms
for nonnegative matrix factorization with the beta-
divergence. CoRR, abs/1010.1763.

Google Trends. 2025. Google Trends. Accessed: 2025-
01-09.

Stéphane Goria. 2022. A deck of cards to help track
design trends to assist the creation of new products.
International Journal of Technology, Innovation and
Management (IJTIM), 2(2):1-17.

Maarten Grootendorst. 2022.  Bertopic: Neural
topic modeling with a class-based tf-idf procedure.
Preprint, arXiv:2203.05794.

Taehyun Ha, Heyoung Yang, and Sungwha Hong. 2023.
Automated weak signal detection and prediction us-
ing keyword network clustering and graph convolu-
tional network. Futures, 152:103202.

Dennis R Helsel and Robert M Hirsch. 1993. Statistical
methods in water resources. Elsevier.

Mari Holopainen and Marja Toivonen. 2012. Weak sig-
nals: Ansoff today. Futures, 44(3):198-205. Special
Issue: Weak Signals.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Hang Jiang, Doug Beeferman, Weiquan Mao, and Deb
Roy. 2024. Topic detection and tracking with time-
aware document embeddings. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 16293—-16303,
Torino, Italia. ELRA and ICCL.


https://api.semanticscholar.org/CorpusID:17417886
https://api.semanticscholar.org/CorpusID:17417886
https://api.semanticscholar.org/CorpusID:17417886
https://arxiv.org/abs/2008.09470
https://arxiv.org/abs/2008.09470
https://arxiv.org/abs/2008.09470
https://doi.org/10.2307/41164635
https://doi.org/10.2307/41164635
https://doi.org/10.2307/41164635
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.futured-1.1
https://doi.org/10.18653/v1/2024.futured-1.1
https://doi.org/10.18653/v1/2024.futured-1.1
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.1186/s12874-022-01714-6
https://doi.org/10.1186/s12874-022-01714-6
https://doi.org/10.1186/s12874-022-01714-6
https://doi.org/10.1186/s12874-022-01714-6
https://doi.org/10.1186/s12874-022-01714-6
https://doi.org/10.3390/math10020233
https://doi.org/10.3390/math10020233
https://doi.org/10.3390/math10020233
https://doi.org/10.3390/math10020233
https://doi.org/10.3390/math10020233
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.joi.2022.101344
https://doi.org/10.1016/j.joi.2022.101344
https://doi.org/10.1016/j.joi.2022.101344
https://doi.org/10.48550/ARXIV.2409.15340
https://doi.org/10.48550/ARXIV.2409.15340
https://doi.org/10.48550/ARXIV.2409.15340
https://doi.org/10.48550/ARXIV.2409.15340
https://doi.org/10.48550/ARXIV.2409.15340
https://doi.org/10.1016/j.knosys.2020.106650
https://doi.org/10.1016/j.knosys.2020.106650
https://doi.org/10.1016/j.knosys.2020.106650
https://arxiv.org/abs/1010.1763
https://arxiv.org/abs/1010.1763
https://arxiv.org/abs/1010.1763
https://arxiv.org/abs/1010.1763
https://arxiv.org/abs/1010.1763
https://trends.google.com/trending?geo=US
https://arxiv.org/abs/2203.05794
https://arxiv.org/abs/2203.05794
https://arxiv.org/abs/2203.05794
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2023.103202
https://doi.org/10.1016/j.futures.2011.10.002
https://doi.org/10.1016/j.futures.2011.10.002
https://doi.org/10.1016/j.futures.2011.10.002
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://aclanthology.org/2024.lrec-main.1416/
https://aclanthology.org/2024.lrec-main.1416/
https://aclanthology.org/2024.lrec-main.1416/

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. 2024. LIm maybe longlm: Self-extend
IIm context window without tuning. arXiv preprint
arXiv:2401.01325.

Maurice G. Kendall. 1975. Rank Correlation Methods,
4th edition. Charles Griffin.

Henry B Mann. 1945. Nonparametric tests against trend.
Econometrica: Journal of the econometric society,
pages 245-259.

Sebastido Miranda, Artiirs Znotin$, Shay B. Cohen, and
Guntis Barzdins. 2018. Multilingual clustering of
streaming news. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4535-4544, Brussels, Belgium.
Association for Computational Linguistics.

Christian Miihlroth and Michael Grottke. 2018. A sys-
tematic literature review of mining weak signals and
trends for corporate foresight. Journal of Business
Economics, 88(5):643-687.

Faria Nazir, Mustansar Ali Ghazanfar, Muazzam Magq-
sood, Farhan Aadil, Seungmin Rho, and Irfan
Mehmood. 2019. Social media signal detection us-
ing tweets volume, hashtag, and sentiment analysis.
Multimedia Tools and Applications, 78:3553-3586.

Olga Nicolaidou, Christos Dimopoulos, Cleo Varianou-
Mikellidou, Georgios Boustras, and Neophytos
Mikellides. 2021. The use of weak signals in occu-
pational safety and health: An investigation. Safety
science, 139:105253.

Chankook Park and Minkyu Kim. 2021. A study on the
characteristics of academic topics related to renew-
able energy using the structural topic modeling and
the weak signal concept. Energies, 14(5).

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Anthony N Pettitt. 1979. A non-parametric approach
to the change-point problem. Journal of the Royal
Statistical Society: Series C (Applied Statistics),
28(2):126-135.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Parallel context windows for large language
models. arXiv preprint arXiv:2212.10947.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

10

Jan Rupnik, Andrej Muhic, Gregor Leban, Primoz
Skraba, Blaz Fortuna, and Marko Grobelnik. 2015.
News across languages - cross-lingual document sim-
ilarity and event tracking. CoRR, abs/1512.07046.

G. Salton, A. Wong, and C. S. Yang. 1975. A vector
space model for automatic indexing. Commun. ACM,
18(11):613-620.

Jie Sheng, Joseph Amankwah-Amoah, and Xiaojun
Wang. 2017. A multidisciplinary perspective of big
data in management research. International Journal
of Production Economics, 191:97-112.

Jie Sheng, Joseph Amankwah-Amoah, and Xiaojun
Wang. 2019. Technology in the 21st century: New
challenges and opportunities. Technological Fore-
casting and Social Change, 143:321-335.

Suzanna Sia, Ayush Dalmia, and Sabrina J. Mielke.
2020. Tired of topic models? clusters of pretrained
word embeddings make for fast and good topics too!
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1728-1736, Online. Association for Computa-
tional Linguistics.

. J. Slater, B. Anderson, M. Buechel, S. Dadson,
S. Han, S. Harrigan, T. Kelder, K. Kowal, T. Lees,
T. Matthews, C. Murphy, and R. L. Wilby. 2021. Non-
stationary weather and water extremes: a review of
methods for their detection, attribution, and man-
agement. Hydrology and Earth System Sciences,
25(7):3897-3935.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Barbara L. van Veen and J.Roland Ortt. 2021. Uni-
fying weak signals definitions to improve construct
understanding. Futures, 134:102837.

Xiaobao Wu, Thong Thanh Nguyen, Delvin Ce Zhang,
William Yang Wang, and Anh Tuan Luu. 2024.
Fastopic: Pretrained transformer is a fast, adaptive,
stable, and transferable topic model. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Sanghyuk Yoo, Sangyong Jeon, Seunghwan Jeong,
Heesoo Lee, Hosun Ryou, Taehyun Park, Yeonji
Choi, and Kyongjoo Oh. 2021. Prediction of the
change points in stock markets using dae-Istm. Sus-
tainability, 13(21).

Janghyeok Yoon. 2012. Detecting weak signals for
long-term business opportunities using text mining
of web news. Expert Systems with Applications,
39(16):12543-12550.


https://doi.org/10.18653/v1/D18-1483
https://doi.org/10.18653/v1/D18-1483
https://doi.org/10.18653/v1/D18-1483
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.3390/en14051497
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/1512.07046
https://arxiv.org/abs/1512.07046
https://arxiv.org/abs/1512.07046
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.18653/v1/2020.emnlp-main.135
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://doi.org/10.5194/hess-25-3897-2021
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1016/j.futures.2021.102837
https://doi.org/10.1016/j.futures.2021.102837
https://doi.org/10.1016/j.futures.2021.102837
https://doi.org/10.1016/j.futures.2021.102837
https://doi.org/10.1016/j.futures.2021.102837
https://doi.org/10.3390/su132111822
https://doi.org/10.3390/su132111822
https://doi.org/10.3390/su132111822
https://doi.org/10.1016/j.eswa.2012.04.059
https://doi.org/10.1016/j.eswa.2012.04.059
https://doi.org/10.1016/j.eswa.2012.04.059
https://doi.org/10.1016/j.eswa.2012.04.059
https://doi.org/10.1016/j.eswa.2012.04.059

Dawei Zhu, Liang Wang, Nan Yang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2024. LongEmbed:
Extending embedding models for long context re-
trieval. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 802—-816, Miami, Florida, USA. Association
for Computational Linguistics.

11


https://doi.org/10.18653/v1/2024.emnlp-main.47
https://doi.org/10.18653/v1/2024.emnlp-main.47
https://doi.org/10.18653/v1/2024.emnlp-main.47
https://doi.org/10.18653/v1/2024.emnlp-main.47
https://doi.org/10.18653/v1/2024.emnlp-main.47

	Introduction
	Related Work
	Topic Modeling
	Weak Signal Detection
	Topic Detection and Tracking (TDT)
	Long Context Embedding

	Methodology
	TrendRep Extraction
	Topic Embeddings
	Temporal Embeddings
	Similarity Matrix
	Normalization

	Dynamic Metrics
	Practical Considerations

	Quantitative Experiments
	Datasets
	News2013
	Trends2025
	Datasets Comparison

	Evaluation Metrics
	Experiment Setup and Results
	Results Analysis

	Conclusions
	Limitations

