
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTTREK : AGENT TRAJECTORY SYNTHESIS
VIA GUIDING REPLAY WITH WEB TUTORIALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical User Interface (GUI) agents hold great potential for automating com-
plex tasks across diverse digital environments, from web applications to desktop
software. However, the development of such agents is hindered by the lack of
high-quality, multi-step trajectory data required for effective training. Existing ap-
proaches rely on expensive and labor-intensive human annotation, making them
unsustainable at scale. To address this challenge, we propose AgentTrek, a
scalable data synthesis pipeline that generates high-quality GUI agent trajectories
by leveraging web tutorials. Our method automatically gathers tutorial-like texts
from the internet, transforms them into task goals with step-by-step instructions,
and employs a visual-language model (VLM) agent to simulate their execution
in a real digital environment. A VLM-based evaluator ensures the correctness of
the generated trajectories. We demonstrate that training GUI agents with these
synthesized trajectories significantly improves their grounding and planning per-
formance over the current models. Moreover, our approach is more cost-efficient
compared to traditional human annotation methods. This work underscores the
potential of guided replay with web tutorials as a viable strategy for large-scale
GUI agent training, paving the way for more capable and autonomous digital
agents.

1 INTRODUCTION

Figure 1: Expected GUI agent trajectories

Graphical User Interfaces (GUIs) are a fundamental
medium for human-computer interaction, enabling
users to perform tasks across various digital plat-
forms. Automating GUI operations through agentic
automation has the potential to significantly enhance
productivity by enabling autonomous task comple-
tion using human-centric tools. Additionally, this
approach can foster the development of advanced AI
systems capable of learning from rich digital envi-
ronments.

Recent advancements in large language models
(LLMs) have endowed the models with powerful
abilities in understanding, reasoning, and decision-
making, which are essential for the evolution of GUI
agents in diverse contexts such as web (Zheng et al.,
2024b), desktop (Xie et al., 2024), and mobile applications (Zhang et al., 2023). Despite these ad-
vancements, the performance of GUI agents remains suboptimal. Contemporary Large Language
Models (LLMs) are primarily engineered and trained on datasets optimized for generating informa-
tive responses (Ouyang et al., 2022; OpenAI et al., 2024). Their architecture and training paradigms
are not inherently designed to make complex, sequential action decisions that require long-term ob-
servation and historical context. Consequently, training GUI agents with multi-step trajectory data
is crucial to improving their capabilities.

High-quality GUI agent trajectories contain several key components: a high-level goal, a sequence of
interleaved observations, natural language reasoning, and grounded actions (as shown in Figure 1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the AgentTrek Pipeline: (1) Automatic Tutorial Collection from the In-
ternet: Tutorial-related data is extracted and filtered from internet sources using heuristic methods
and a FastText model. An LLM processes the filtered textual data, transforming it into structured
tutorials. (2) Trajectory data collection via guided replay: A VLM agent interacts with the real
digital environment guided by tutorials, while high-quality trajectory data, including observations,
actions, and reasoning, is collected. Another VLM evaluator acts as a judger to further improve the
effectiveness of the synthetic dataset. (3) Training and fine-tuning with replay data: The collected
trajectory data is used to train and fine-tune GUI agent models, which are evaluated on standard
agent benchmarks, demonstrating significant improvements.

Unfortunately, such data is not readily available on the internet like textual or image data, as it
involves complex situational reasoning and multimodal interactivity. Existing approaches typically
rely on human annotation to collect these trajectories (Deng et al., 2023; Rawles et al., 2023; Li
et al., 2024), a process that is both expensive and not scalable.

To address this data scarcity, data synthesis has emerged as a vital approach in AI system devel-
opment. Synthesizing GUI agent trajectories presents significant challenges due to the need for
interwoven natural language instructions, visual observations, and context-specific actions that must
be accurately grounded in the GUI environment. Although there have been some successful applica-
tions of LLMs in data synthesis pipelines (Ye et al., 2022; Peng et al., 2023; Qin et al., 2023), these
complexities still make GUI trajectory synthesis particularly demanding.

In this work, we present AgentTrek, a scalable data synthesis pipeline specifically designed for
training GUI agents. We begin by automatically gathering and filtering tutorial-like text from the
web, which describes GUI tasks and workflows in web environments. These tutorials are then
transformed into agent tasks with high-level objectives and detailed step-by-step instructions. Using
a visual-language model (VLM) agent, we simulate the execution of these tasks, guided by the
synthesized tutorials. An evaluator model is also employed to subsequently verify whether the goal
was successfully achieved. Through this comprehensive pipeline, we efficiently generated a large
volume of high-quality GUI agent trajectories.

Our experimental results demonstrate that training GUI agent models with these synthesized tra-
jectories not only improves their performance but also enables them to surpass the capabilities of
their initial teacher models, which is the replay model GPT-4 in our case. Compared to traditional
human-annotated data pipelines, our method is significantly more cost-effective, emphasizing the
scalability and economic viability of the AgentTrek pipeline.

• We introduce AgentTrek, a novel pipeline that leverages web tutorials to synthesize high-
quality GUI agent trajectory data at scale, effectively bridging the gap between LLM capabilities
and the demanding need for multi-step, context-rich training data for GUI agents.

• Extensive experiments demonstrate that agents trained with our synthesized data outperform
those trained on existing datasets in both grounding and planning capabilities, validating the
effectiveness of AgentTrek.

• Our pipeline significantly reduces the cost and scalability obstacles of human-annotated data
collection, providing a practical approach for large-scale GUI agent training through data syn-
thesis.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of AgentTrek with other trajectory datasets for training. For the calcula-
tion of dataset size and average steps, see Appendix A.1.

Datasets Size Average
Steps HTML AxTree Intermediate

Reasoning Video Matching
Screenshot Website Task Inst.

Level
RUSS 80 5.4 Yes No No No No 22 Low

ScreenAgent 203 4.3 No No Yes No Yes - High & Low
WebLINX 969 18.8 Yes No No No Yes 155 High & Low

MM-Mind2Web 1009 7.3 Yes No No No No 137 High
GUIAct 2482 6.7 No No No No Yes 121 High

AgentTrek (Ours) 4902 12.1 Yes Yes Yes Yes Yes 127 High & Low

2 METHOD

We introduce a pipeline to collect and process GUI tutorials from the internet for training visual
language models (VLMs) in web automation tasks. The method comprises three main steps:

1. Collecting Tutorials: We extract web interaction tutorials from large datasets using key-
word filtering and language models to identify and standardize relevant content.

2. Guided Replay: An agent uses these tutorials to perform tasks in a web environment,
interacting with real websites while we record its actions and thoughts.

3. Model Training: We train a visual agent model that relies on screenshots and standard
GUI actions, enhancing its web navigation capabilities with the collected data.

This approach enables efficient training of VLMs without extensive manual annotation, offering a
scalable solution for automating web tasks.

2.1 AUTOMATIC TUTORIALS COLLECTION FROM INTERNET

We first extract web interaction tutorials from Redpajama dataset (Computer, 2023). A rule-based
heuristic filter is applied to create a preliminary dataset, a subset of which is annotated by an ad-
vanced LLM to generate labeled samples for training a effective FastText classification model (Joulin
et al., 2017), the tutorial classifier. This classifier further enhances the data quality through filter-
ing. Finally, LLMs are employed to tag and paraphrase the raw text of tutorials into a standardized
format, preparing them for the replay phase in Section 2.2.

2.1.1 PREFILTER FUNCTION

Although GUI tutorials are abundant online, they constitute only a small fraction of web content,
making a pre-filter essential for identifying relevant content. Similar patterns often appear in tu-
torials, such as distinctive keywords like ‘click’ and ‘type’, as well as platform-specific terms like
‘macOS’ and ‘Windows’. We compiled a rule-based filter using keyword lists sourced from official
websites and forums. Leveraging RedPajama data with over 20 billion URLs, our pre-filter applies
Keyword Matching in the first 38k words, evaluates samples based on Length, and filters them by
URL Format for relevance.

Validated using 180 positive and 105 negative ground-truth samples, the prefilter achieved a 92.69%
recall rate on positive samples, ensuring both diversity and quantity. After filtering, the dataset size
is reduced from 20.8 billion to 68.8 million entries (Figure 4).

2.1.2 LLM LABELER

While initial rule-based filtering narrows the context, the proportion of true positive tutorial content
remains low. To improve the quality and relevance of selected tutorials, we leverage an advanced
LLM, GPT-4O MINI, for automated labeling, due to its strong ability to comprehend and analyze
complex, information-dense text. Prior to full implementation, we tested GPT-4O MINI on a manu-
ally annotated ground-truth validation set, where it achieved an F1 score nearly 90%. In cases where
human and LLM annotations conflicted, the LLM demonstrated the ability to identify tutorial-related

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Overview of the tutorial filtering and classification pipeline. Starting with Redpajama,
the data is prefiltered, annotated by an advanced LLM, and used to train a tutorial classifier. The
classifier further filters the raw text, which is then paraphrased into structured tutorials with task
descriptions, prerequisites, and step-by-step instructions.

Figure 4: The data flow during the early stages of our pipeline.

content in lengthy texts that humans might overlook. This, along with the validation set result, sug-
gests that GPT-4O MINI may surpass human performance in webpage labeling, enabling efficient
generation of a large labeled dataset for training in the following section.

2.1.3 FASTTEXT FILTER

Table 2: Performance of Filters.

Metric Precision Recall F1
Prefilter 0.69 0.61 0.60
LLM 0.885 0.885 0.89

FastText 0.895 0.895 0.89

Following the automated labeling process, we employed
FastText, an n-gram-based deep learning model, as our
classifier. FastText classifies tutorial text segments as tu-
torial or non-tutorial, with a binary output and a con-
fidence score to enhance the accuracy of tutorial selec-
tion. To train the model, we combined LLM-labeled data
with human-labeled samples, creating a dataset of ap-
proximately 90,000 examples. The train-test split is 95:5,
with the model demonstrating strong classification perfor-
mance. Using this classifier, we further curated the initial
filtered dataset, collecting approximately 18.8 million tutorial-like web text samples.

2.1.4 TAG & PARAPHRASE

After filtering the raw tutorial content using the FastText model, we then tag and paraphrase the
content for further processing, including extracting meta-information and formatting the tutorials
according to a standardized template. To handle the length and noise of the raw tutorial data, we em-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ployed GPT-4O MINI, streamlining the tagging and paraphrasing while ensuring the output aligned
with the comprehensive template and gold-standard examples.

The key components of the template include specifying the Platform and Target (e.g., macOS,
Windows, browser, or app), providing a concise Task Description, listing Prerequisites needed
before starting, outlining Step-by-Step Instructions for completing the task, and detailing the Ex-
pected Outcome. The cost for tagging and paraphrasing 1,000 entries is approximately 0.89 dollars.

2.2 TRAJECTORY DATA COLLECTION VIA GUIDED REPLAY

Figure 5: Overview of Guided Replay data collection and evaluation pipeline. A VLM agent
is provided with the filtered and formatted tutorials, then observes and interacts with the real en-
vironment during execution, while all the actions and intermediate thoughts are recorded as data
trajectory. The final result is evaluated by an advanced VLM to ensure the correctness.

2.2.1 TRAJECTORY DATA DEFINITION

The trajectory data generated by our pipeline is designed to enhance an agent’s web navigation ca-
pabilities by integrating high-level planning, low-level instructions, and grounded operations. Each
data instance includes the following components:

Task Information. Detailed task metadata, including platform, task description, prerequisites, in-
structions, and expected outcomes, which support both planning and execution.

Post-processed Textual Trajectory. Refined after replay, highlighting key elements for model fine-
tuning. This includes Task Metadata, summarizing the task to encourage adaptive decision-making,
Observations to provide visual context, Intermediate Reasoning offering insights into the agent’s
decision-making process, and Action Sequence to capture detailed element information for web
interactions.

Screenshots and Video Recordings. Visual records of the entire process for comprehensive docu-
mentation.

Reproducible Native Trace. Captured via Playwright, including DOM snapshots, HTML, network
flow, and action sequences, allowing full reconstruction and detailed analysis of agent-environment
interactions.

2.2.2 GUIDED REPLAY WITH TUTORIALS

Although we have collected and processed high-quality tutorials, a significant gap remains in ac-
quiring the grounding data crucial for training a more effective agent model. To address this, we
leverage BrowserGym (Drouin et al., 2024a) to enable the model to replay tasks under the guidance
of the generated tutorials.

BrowserGym is a versatile environment for web task automation in the Chromium browser, enabling
Visual Language Model (VLM) agents to execute web-based operations (Drouin et al., 2024b).
Agents are provided with tagged and paraphrased tutorials and a target web url, allowing them to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 6: Guided replay example. This example demonstrates an agent’s execution of finding the
return policy for men’s football apparel, showcasing its actions alongside the corresponding inner
thoughts.

navigate directly to the task scene. Step-by-step instructions guide the agent through the task, with
the expected outcome determining task completion.

The agent’s initial observations include the webpage’s viewport screenshot and accessibility tree
(AXTree), but the HTML file is excluded due to its size and irrelevance to visual agents. Actions
are executed using Playwright (Microsoft, 2023) functions such as click, select option, and clear,
while Playwright also records detailed traces, including target elements, coordinates, screenshots,
and DOM snapshots at the same time, along with agent’s internal thoughts between actions.

Token consumption is about 8,027 per step and 86,114 per task. With GPT-4O-08-06, replaying
1,000 tasks costs approximately 215 dollars. Cost detail see A.3

2.2.3 EVALUATION OF TRAJECTORY

Although a large amount of guided replay data has been recorded, it is crucial to extract the effective
segments that can truly contribute to enhancing the agent’s performance. Recent work by (Pan et al.,
2024) highlights the potential of Visual Language Models (VLMs) in evaluating trajectory data
using recorded images and interaction processes as input. VLMs are highly scalable, capable of
processing large datasets concurrently at a low cost, and provide transparent evaluations. Therefore,
we implemented a VLM Evaluator to further improve our data quality.

VLM Evaluator Design. To ensure trajectory data quality, we define effectiveness based on two
criteria: adherence to task instructions and successful completion of core components. We employ
GPT-4O as the backbone of our VLM evaluator, using a structured prompt to assess recorded trajec-
tories. The evaluator receives the task description d, the agent’s action history a, and inner thoughts
r for each step. The sequential format is: {task description; inner thought 1; action 1; inner thought
2; action 2; ...}, as illustrated in Figure 5. The VLM provides a trajectory-level assessment and
performs stepwise analysis, offering justifications for any ineffective trajectory and identifying the
earliest point of failure.

Table 3: Accuracy Comparison

Trajectory Evaluator Acc.

Web Tutorials VLM Eval 84.0%

WebArena
GPT-4V 80.6%

Cap. + GPT-4 82.1%
Cap. + Mixtral 74.4%

Table 4: Cost Breakdown

Phase Cost/1k ($) Model

T&P 0.89 mini
Replay 215.36 08-06
Eval 3.10 08-06

Total 219.35 –

Validation on Human-Annotated Set. Although the capabilities of Vision Language Models
(VLMs) are well-recognized, validation is essential. To assess the automatic evaluator’s perfor-

6

https://playwright.dev/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

mance, we manually reviewed 1,081 trajectories and created a validation set of 558 samples with
human-annotated justifications.

As shown in the Table 3, despite handling different input formats across various task scenarios,
the evaluator achieved high performance metrics. And according to the observationA.4, evaluator
often applys stricter standards than human evaluators. This demonstrates its robustness in accurately
identifying effective trajectories.

2.3 TRAIN AND FINE-TUNE THE MODEL WITH TRAJECTORY DATA

We chose a purely visual agent model that relies exclusively on screenshot-based observations, rather
than incorporating accessibility trees or textual representations, for several reasons. First, GUIs
are inherently visual, and mapping instructions to visual elements aligns more closely with human
cognitive processes. Second, Textual representations, such as HTML or accessibility trees, are often
verbose, which leads to heavy overhead for computation. Second, Different websites can have
varying structures for their textual representation while image-based representations allow the model
to unify its observations across diverse platforms with varying resolutions, improving generalization.

2.3.1 PURE VISION & GUI ACTION FRAMEWORK

In this work, we propose to unify observation and action space via pure vision and standard pyauto-
gui commands with a pluggable action system.

Using pure vision as input eliminates the need for the model to understand different UI source codes
across platforms, even when visually similar elements are written differently in HTML. Addition-
ally, HTML input typically costs an average of 4,000 tokens per step. In contrast, recent VLMs
with high-resolution multimodal understanding, such as Qwen2-VL, require only 1,200 tokens for
a 720p image. This significantly lowers the computational cost while maintaining sufficient visual
information for the task.

For action, we hoose the widely used standard pyautogui action space with a pluggable action sys-
tem. Most web agent leverage playwright action sapce. But playwright actions incline to interact
with html selector element instead of visual ui element. Therefore, we use pyautogui commands to
unify basic GUI operations on web. Since we collect the data from website by playwright, we need
to map the playwright actions to pyautogui actions as shown in the Figure 8. In addition, we utilize
a pluggable action system to cover specific playwright action like select option.

2.3.2 MODEL ARCHITECTURE AND TRAINING

Unlike agents that rely on structured UI representations like accessibility trees, vision-based ground-
ing requires models to map intents directly to visual observations. For this, we chose Qwen2-VL
(Wang et al., 2024b), which uses NaViT as an image encoder with dynamic resolution support (De-
hghani et al., 2023). By removing absolute position embeddings and incorporating 2D-RoPE (Su et
al., 2024), Qwen2-VL can process images of any resolution, efficiently converting them into vari-
able visual tokens. This makes Qwen2-VL ideal for GUI agents, as it can encode high-resolution
images with fewer token costs, making it well-suited for our tasks.

Our training process, starting with a VLM capable of high-resolution image understanding, consists
of one tunnig stage. We use data from AgentTrek Data to enhance VLM capabilities in grounding
and planning.

3 EXPERIMENTS

AgentTrek automatically collects thousands of trajectories with detailed information, including in-
ner thoughts and precise action coordinates, offering an ideal foundation for fine-tuning VLM into
a reliable visual GUI agent. A successful visual GUI agent requires two key abilities: planning
and grounding. We conducted extensive experiments to validate that AgentTrek data enhances the
agent’s capabilities in both areas.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.1 EXPERIMENTAL SETUP

To validate the effectiveness of our dataset, it is essential to demonstrate its impact on improving
both the grounding and planning capabilities of the model. Therefore, we will evaluate the model’s
performance on benchmarks that assess these abilities.

For grounding ability, we employ the ScreenSpot benchmark (Cheng et al., 2024), which evaluates
the model’s single-step GUI grounding performance across various platforms. To assess planning
ability, we utilize the Multimodal-Mind2Web benchmark (Deng et al., 2023), the multimodal ex-
tension of the web agent benchmark Mind2Web (Deng et al., 2024).

3.2 WEB GROUNDING

ScreenSpot is a GUI visual grounding benchmark comprising 1.2K single-step instructions and tar-
get element bounding boxes. It spans mobile, desktop, and web environments, categorizing elements
into text and icons. Given that our data originates exclusively from the web, we focus solely on web-
based performance.

Fine-tuning with the AgentTrek dataset significantly improved Qwen2-VL’s grounding ability for
both text and icon-based tasks, more than doubling its baseline performance and surpassing sev-
eral models on the ScreenSpot benchmark. This demonstrates the strong impact of AgentTrek in
enhancing the model’s grounding capabilities for web-based GUI tasks.

Table 5: Comparison of grounding performance on ScreenSpot Web Grounding

Model Text Icon/Widget Average
GPT-4 9.2 8.8 9.0
GPT-4o 12.2 7.8 10.1
Qwen2 VL 35.2 25.7 30.7
SeeClick 55.7 32.5 44.7
CogAgent 70.4 28.6 50.7
GPT-4 + OmniParser 81.3 51.0 67.0

Qwen2-VL w/ AgentTrek 81.7 51.5 67.4

3.3 WEB PLANNING

The baseline Qwen2-VL model is excluded due to its poor performance in locating target elements,
a key requirement for web-based tasks. Thus, only the fine-tuned versions are presented in the table.

Fine-tuning with the AgentTrek dataset significantly improved Qwen2-VL’s performance, particu-
larly in the Operation F1 metric, where it outperformed both GPT-3.5 and GPT-4 across all settings.

The combination of AgentTrek and Mind2Web datasets yields the best performance across all met-
rics and settings. Although the model achieve great performance after fine-tunning with mind2web
dataset, it can still benefits from the AgentTrek Data.

These results highlight the complementary nature of the two datasets: AgentTrek provides high-
quality grounded data with precise coordinates, while Mind2Web offers valuable data for handling
complex web-based tasks.

4 ANALYSIS

With our AgentTrek pipeline, we generate large-scale trajectory data that excels in three areas.
First, the dataset offers extensive diversity, covering multiple domains and task types, and benefiting
from internet-sourced tutorials that enhance task execution. Our experiment showed a 230% per-
formance increase when agents followed detailed instructions. Second, the data is gathered from
real-world web environments, avoiding the limitations of simulations. Starting with RedPajama, we
filtered and processed 12,526 tutorials, producing 4,902 successful trajectories from 127 websites.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison across different methods and evaluation settings. ’H’, ’I’, ’AT’,
’M2W’ stand for HTML, Image, AgentTrek, Mind2Web

Obs Model Method Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

HTML GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

H + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

Image

Qwen2-VL
+ AT Vision 45.5 84.9 40.9 40.8 82.8 35.1 48.6 84.1 42.1
+ M2W Vision 54.8 89.5 50.9 52.9 83.9 44.9 51.8 86.8 47.7
+ AT + M2W Vision 60.8 88.9 55.7 57.6 88.1 51.4 56.0 87.5 52.6

Third, the data is comprehensive, capturing high- and low-level task details, including DOM/HTML
structures, AXTree snapshots, video recordings, and screenshots. This rich data improves the agent’s
performance on long-horizon tasks, and with a per-trajectory cost of just $0.551, our pipeline offers
an efficient, scalable solution for data generation.

4.1 IMPORTANCE OF TUTORIALS

Tutorials extracted from the internet play a crucial role in guiding the replay process. First, they
ensure diversity in the generated trajectories. Tutorials often have distinct task goals, and even when
they target the same objective, they may offer different execution methods, enriching the trajectory
data. Second, tutorials significantly improve the agent’s execution. We tested the agent on 400 tasks,
replaying them twice: once with tutorials and once using only high-level goals. The results show
that step-by-step instructions greatly enhanced performance. Without tutorials, only 63 effective
trajectories were generated (15.78% of the total). With tutorials, the agent produced 208 effective
trajectories (52%), marking an increase of over 230%, demonstrating the importance of detailed
instructions in improving reliability and effectiveness. Analysis seeA.2

4.2 DATA COMPOSITION

Figure 7: The distribution of website with domains involved in our dataset

To summarize the data flow through our pipeline: First, we filter tutorial data from the RedPajama
web snapshot. Next, the filtered data is paraphrased for clarity and classification. We then gather
up-to-date data from mainstream websites for replay and, finally, collect effective trajectory data
from the replays.

After filtering RedPajama’s vast dataset, we retained over 18.8 million entries. By applying criteria
such as recency and popularity, 12,526 tutorials were prepared for replay. With a success rate of
39.1%, we generated 4,902 trajectories, covering 127 websites across 11 distinct categories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 COMPARISON WITH EXISTING WORK AND RESEARCH CHALLENGES

AgentTrek generates comprehensive, large-scale trajectory data, excelling in several key areas as
shown in Table 1 (Niu et al., 2024; Lù et al., 2024; Deng et al., 2024; Yao et al., 2022; Song et al.,
2024; Wornow et al., 2024a). First, with nearly 5k verified trajectories and an average of 12.1 steps
per trajectory, our dataset provides a strong foundation for training and evaluating agents on long-
horizon web tasks. Second, it is the most complete dataset to date, incorporating DOM/HTML
structures, AXTree data, intermediate reasoning steps, full video recordings, and corresponding
screenshots for each action.

Moreover, despite full automation without human intervention, our dataset maintains diversity
across 120 websites and 12 distinct task categories. By leveraging modern large language mod-
els (LLMs), we can extract both high-level task objectives and detailed step-by-step instructions,
offering flexibility for future use.

Finally, our pipeline significantly reduces the cost and scalability challenges of human-annotated
data collection. With a success rate factored in, the cost per trajectory is just $0.551, making our
approach both efficient and scalable for large-scale data generation. Cost detail see A.3

5 RELATED WORK

LLM-based Agents. LLM-based agents are autonomous systems that leverage large language mod-
els (Brown et al.) to interact with real-world websites and os environments. These agents can un-
derstand natural language instructions and perform a wide range of complex tasks across various
domains, such as e-commerce, online assistance, and knowledge navigation (Nakano et al., 2021;
Cheng et al., 2024). Recent efforts in this space include models like SeeAct (Zheng et al., 2024a)
and WebVoyager (He et al., 2024), which aim to generalize agent behavior to real-world websites.
While LLM-based agents have shown promise, challenges remain in the need for agent specified
data. Our work extends this line of research by introducing a cost-effective pipeline to generate
comprehensive agent trajectory data, advancing the state-of-the-art in data synthesis for agent-based
applications.

Agent Data. As agents gain increasing popularity, the demand for efficient and scalable data is
becoming both larger and more urgent. However, most existing data primarily serve as supplements
to various benchmarks (Zhou et al., 2023; Li et al., 2023; Deng et al., 2024), with few datasets
specifically designed for agent trajectory analysis. Furthermore, these datasets are often limited by
the need for human annotation, which hampers scalability. In our work, our pipeline managed to
automatically generate comprehensive agent trajectory data in a cost-efficient manner, paving the
way for a new direction in data synthesis within the field of agents.

Automatic Evaluation for Digital Agents. Recently, there has been growing interest in automating
the evaluation of digital agents using Vision-Language Models (VLMs) and Large Language Models
(LLMs). These methods leverage models to assess agent performance in real-world tasks. Research
in this area spans several dimensions: some works focus on trajectory-level success (Pan et al.,
2024), while others evaluate stepwise success based on adherence to instructions (Wornow et al.,
2024b). Additionally, evaluations are conducted across various task environments, such as web-
based platforms and mobile operating systems like Android and iOS (Pan et al., 2024). In our work,
we prompt a VLM, GPT-4o, as an autonomous evaluator, using agent’s interacton process as inputs
to assess whether the agent has successfully completed tasks at the trajectory level.

6 CONCLUSION

In this work, we introduce AgentTrek, an efficient pipeline designed to automatically generate com-
prehensive and cost-effective agent trajectory data. Additionally, we present a large and diverse
dataset generated using this approach, which we validate by training models and evaluating their
performance with promising result.Our research establishes a novel and promising direction for the
future development of LLM agent, particularly in the automatic and low-cost synthesis of trajectory
data. AgentTrek serves as a strong standard for agent data generation, setting the stage for future
advancements in this field.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.
org/abs/2306.06070.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capa-
ble are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642–11662. PMLR, 21–27 Jul 2024a. URL
https://proceedings.mlr.press/v235/drouin24a.html.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam Hadj Laradji, Manuel Del Verme, Tom
Marty, L’eo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge
work tasks? ArXiv, abs/2403.07718, 2024b. URL https://api.semanticscholar.
org/CorpusID:268363855.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. In Proceedings of the 15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2, Short Papers, pp. 427–431. Association for
Computational Linguistics, April 2017.

Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for computer
control with structured reflection. arXiv preprint arXiv:2310.08740, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024. URL https:
//arxiv.org/abs/2406.03679.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue, 2024.

Microsoft. Playwright for python documentation. https://playwright.dev/python/,
2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. 2024.

11

https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://proceedings.mlr.press/v235/drouin24a.html
https://api.semanticscholar.org/CorpusID:268363855
https://api.semanticscholar.org/CorpusID:268363855
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://playwright.dev/python/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
feedback. ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/
CorpusID:246426909.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. ArXiv, abs/2404.06474, 2024. URL https://
api.semanticscholar.org/CorpusID:269009430.

12

https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:269009430
https://api.semanticscholar.org/CorpusID:269009430

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. ArXiv, abs/2304.03277, 2023. URL https://api.semanticscholar.org/
CorpusID:257985497.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. 2024.

Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan S. Khare, Tathagat Verma, Tibor
Thompson, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish
Chawla, Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea
Hudson, Nigam H. Shah, and Christopher Re. Do multimodal foundation models under-
stand enterprise workflows? a benchmark for business process management tasks. arXiv
preprint arXiv:2406.13264, 2024a. URL https://hazyresearch.stanford.edu/
wonderbread-website.

Michael Wornow, Avanika Narayan, Ben T Viggiano, Ishan S. Khare, Tathagat Verma, Tibor
Thompson, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla,
Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea Hudson,
Nigam H. Shah, and Christopher Re. Do multimodal foundation models understand enterprise
workflows? a benchmark for business process management tasks. ArXiv, abs/2406.13264, 2024b.
URL https://api.semanticscholar.org/CorpusID:270620942.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng
Kong. Zerogen: Efficient zero-shot learning via dataset generation. ArXiv, abs/2202.07922, 2022.
URL https://api.semanticscholar.org/CorpusID:246867045.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded, 2024b. URL https://arxiv.org/abs/2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

13

https://api.semanticscholar.org/CorpusID:257985497
https://api.semanticscholar.org/CorpusID:257985497
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://hazyresearch.stanford.edu/wonderbread-website
https://hazyresearch.stanford.edu/wonderbread-website
https://api.semanticscholar.org/CorpusID:270620942
https://api.semanticscholar.org/CorpusID:246867045
https://arxiv.org/abs/2401.01614

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CALCULATION OF OTHER TRAJECTORY DATASETS

• RUSS: Cited based on the data provided in the table from WebLINX (Lù et al., 2024).
• ScreenAgent: Statistics obtained from the dataset available at https://github.com/
niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train.

• WebLINX: Calculated based on the train set information from Table 8 in (Lù et al., 2024)
and data on HuggingFace (excluding the ”say” actions), resulting in a total of 18,249 non-
say actions with 969 demos.

• Mind2Web: Statistics derived from https://huggingface.co/datasets/
osunlp/Mind2Web, specifically from the training subset.

• Webshop (agent-eto): Data statistics sourced from https://huggingface.co/
datasets/agent-eto/eto-sft-trajectory.

• WonderBread: Calculations based on data presented in (Wornow et al., 2024a).

A.2 ANALYSIS OF THE EFFECTIVENESS OF TUTORIALS

Key factors contributing to this improvement include:

1. Direct Access to Target URL: Tutorials provide the target URL, allowing direct access to the
initial task state, reducing errors in locating the correct webpage.

2. Assisted Planning with Human Expertise: Tutorials aid in planning by providing steps in-
formed by human experience, which tend to be reliable, thereby reducing the likelihood of
errors during task execution and bridging the gap in the agent’s knowledge for unknown tasks.

3. Navigating Multi-Level Menus: Tutorials offer clear paths to hidden elements, preventing the
agent from failing due to incorrect navigation through complex menus.

A.3 COST DETAILS

In this part we provide the details of our cost in generating trajectory data with via our pipeline:

Phase Cost per 1,000 Entries (USD) Model Used
Tag and Paraphrase 0.886 gpt-4o-mini
Replay 215.359 gpt-4o-2024-08-06
Evaluator 3.104 gpt-4o-2024-08-06

Table 7: Cost breakdown for each phase in the process

Another two important factors are the ratio of web-related tutorials (0.275) and the Replay Success
Rate (39.9%). Using these, we can calculate the cost per verified effective trajectory as follows:

Cost per trajectory =
Tag and Paraphrase price

Web ratio
+

Replay price + Evaluate price
Replay Success Rate

The cost per 1,000 verified effective trajectories is 550.75 $.

A.4 EVALUATOR ALIGNMENT

In this part, we provide the details of metrics between the human and automatic evaluator.

Trajectory Evaluator Accuracy
Web Tutorials VLM Evaluator 84.0%

Webarena
GPT-4V 80.6%
Captioner + GPT-
4

82.1%

Captioner + Mix-
tral

74.4%

14

https://github.com/niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train
https://github.com/niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train
https://huggingface.co/datasets/osunlp/Mind2Web
https://huggingface.co/datasets/osunlp/Mind2Web
https://huggingface.co/datasets/agent-eto/eto-sft-trajectory
https://huggingface.co/datasets/agent-eto/eto-sft-trajectory

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Confusion Matrix of our VLM evaluator’s performance on the human-annotated validation
set, compared with evaluators across different scenarios.

A.5 ACTION MAPPING

Table 8: Mapping between Playwright and PyAutoGUI Action Spaces.

Category Playwright Action PyAutoGUI Action

Basic Actions

page.click() pyautogui.click()
page.type() pyautogui.write()
page.press() pyautogui.press()
page.hover() pyautogui.moveTo()
page.scroll() pyautogui.scroll()

Advanced Actions

page.fill() pyautogui.write() (clearing)
page.dblclick() pyautogui.doubleClick()
page.dragAndDrop() pyautogui.dragTo()

page.clear() pyautogui.click()
pyautogui.hotkey(ctrl, A)
pyautogui.press(delete)

Plugin playwright.select option() browser.select()

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

System Prompt
You are an expert in evaluating the performance of a web navigation
agent. The agent is designed to help a human user navigate a website
to complete a task. Given the user’s task goal, the agent’s
trajectory, your goal is to decide whether the agent’s execution is
successful or not.

Evaluation Criteria
Whether the agent’s trajectory is effective and corresponding to the
goal

Instructions
1. Review the agent’s actions and reasoning processes step by step.
2. if the agent is stuck in the very first login stage, which means
it fails to log into target website at the beginning, that’s a
failure.
3. Determine if the agent has achieved the task goal based on the
trajectory. A task can be considered successful if most trajectory
is effective.
4. the agent sometimes can’t stop after finishing a task and
continue doing repeated actions. these actions may be some failed
attempt after a series of correct actions. the task should be
regarded as successful if the correct actions are effective and
almost reach the goal.
5. if the agent is stuck in the loop at the early stage of the task,
which means they don’t even get close to the goal before they get
stuck in the loop, that’s a failure. for example, the agent begin to
get stuck before third step.
6. when the task is to change the google account password, it can’t
be regarded as successful when agent finish at trying to click
"manage your account".
7. if there are over 8 correct action in the trajectory, it can be
regard as a successful agent.
8. final saving action is not a must. the task is successful if the
agent does most things right and just forget to save the change at
last.
9. if the original task has 2 subtasks, the agent only complete one
of them, that’s still a success. e.g. the task is to update name
and birthday, but agent only update name, that’s fine.
10. if the task is to post a review, the agent can be considered
successful when it finish writing the review and reach the step to
post it, don’t have to click the post button.
11. Since we don’t have a printer, some printing related task can be
considered successful if the agent reach the step to click print
button.
12. if the task is finished at the initial state and the agent do
nothing because of it, it should also be regarded as successful.

IMPORTANT
1. in the trajectory, an action always follows a corresponding
reasoning, which shows the observation and thought of the agent.
2. your response should be contain:
Thoughts: <your thoughts and reasoning process>
Status: "success" or "failure"

User Prompt
The goal of the task: {task des}
trajectory: {trajectory}

Figure 9: Prompts to query the VLM Autonomous Evaluator.

16

	Introduction
	Method
	Automatic tutorials collection from Internet
	Prefilter Function
	LLM Labeler
	FastText Filter
	Tag & Paraphrase

	Trajectory data collection via guided replay
	Trajectory Data Definition
	Guided Replay with Tutorials
	Evaluation of Trajectory

	Train and Fine-tune the model with trajectory data
	Pure Vision & GUI Action Framework
	Model Architecture and Training

	Experiments
	Experimental Setup
	Web Grounding
	Web Planning

	Analysis
	Importance of Tutorials
	Data Composition
	Comparison with Existing Work and Research Challenges

	Related Work
	Conclusion
	Appendix
	Calculation of Other Trajectory Datasets
	Analysis of the Effectiveness of Tutorials
	Cost Details
	Evaluator Alignment
	Action Mapping

