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ABSTRACT

Graphical User Interface (GUI) agents hold great potential for automating com-
plex tasks across diverse digital environments, from web applications to desktop
software. However, the development of such agents is hindered by the lack of
high-quality, multi-step trajectory data required for effective training. Existing ap-
proaches rely on expensive and labor-intensive human annotation, making them
unsustainable at scale. To address this challenge, we propose AgentTrek, a
scalable data synthesis pipeline that generates high-quality GUI agent trajectories
by leveraging web tutorials. Our method automatically gathers tutorial-like texts
from the internet, transforms them into task goals with step-by-step instructions,
and employs a visual-language model (VLM) agent to simulate their execution
in a real digital environment. A VLM-based evaluator ensures the correctness of
the generated trajectories. We demonstrate that training GUI agents with these
synthesized trajectories significantly improves their grounding and planning per-
formance over the current models. Moreover, our approach is more cost-efficient
compared to traditional human annotation methods. This work underscores the
potential of guided replay with web tutorials as a viable strategy for large-scale
GUI agent training, paving the way for more capable and autonomous digital
agents.

1 INTRODUCTION

Figure 1: Expected GUI agent trajectories

Graphical User Interfaces (GUIs) are a fundamental
medium for human-computer interaction, enabling
users to perform tasks across various digital plat-
forms. Automating GUI operations through agentic
automation has the potential to significantly enhance
productivity by enabling autonomous task comple-
tion using human-centric tools. Additionally, this
approach can foster the development of advanced AI
systems capable of learning from rich digital envi-
ronments.

Recent advancements in large language models
(LLMs) have endowed the models with powerful
abilities in understanding, reasoning, and decision-
making, which are essential for the evolution of GUI
agents in diverse contexts such as web (Zheng et al.,
2024b), desktop (Xie et al., 2024), and mobile applications (Zhang et al., 2023). Despite these ad-
vancements, the performance of GUI agents remains suboptimal. Contemporary Large Language
Models (LLMs) are primarily engineered and trained on datasets optimized for generating informa-
tive responses (Ouyang et al., 2022; OpenAI et al., 2024). Their architecture and training paradigms
are not inherently designed to make complex, sequential action decisions that require long-term ob-
servation and historical context. Consequently, training GUI agents with multi-step trajectory data
is crucial to improving their capabilities.

High-quality GUI agent trajectories contain several key components: a high-level goal, a sequence of
interleaved observations, natural language reasoning, and grounded actions (as shown in Figure 1).
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Figure 2: Overview of the AgentTrek Pipeline: (1) Automatic Tutorial Collection from the In-
ternet: Tutorial-related data is extracted and filtered from internet sources using heuristic methods
and a FastText model. An LLM processes the filtered textual data, transforming it into structured
tutorials. (2) Trajectory data collection via guided replay: A VLM agent interacts with the real
digital environment guided by tutorials, while high-quality trajectory data, including observations,
actions, and reasoning, is collected. Another VLM evaluator acts as a judger to further improve the
effectiveness of the synthetic dataset. (3) Training and fine-tuning with replay data: The collected
trajectory data is used to train and fine-tune GUI agent models, which are evaluated on standard
agent benchmarks, demonstrating significant improvements.

Unfortunately, such data is not readily available on the internet like textual or image data, as it
involves complex situational reasoning and multimodal interactivity. Existing approaches typically
rely on human annotation to collect these trajectories (Deng et al., 2023; Rawles et al., 2023; Li
et al., 2024), a process that is both expensive and not scalable.

To address this data scarcity, data synthesis has emerged as a vital approach in AI system devel-
opment. Synthesizing GUI agent trajectories presents significant challenges due to the need for
interwoven natural language instructions, visual observations, and context-specific actions that must
be accurately grounded in the GUI environment. Although there have been some successful applica-
tions of LLMs in data synthesis pipelines (Ye et al., 2022; Peng et al., 2023; Qin et al., 2023), these
complexities still make GUI trajectory synthesis particularly demanding.

In this work, we present AgentTrek, a scalable data synthesis pipeline specifically designed for
training GUI agents. We begin by automatically gathering and filtering tutorial-like text from the
web, which describes GUI tasks and workflows in web environments. These tutorials are then
transformed into agent tasks with high-level objectives and detailed step-by-step instructions. Using
a visual-language model (VLM) agent, we simulate the execution of these tasks, guided by the
synthesized tutorials. An evaluator model is also employed to subsequently verify whether the goal
was successfully achieved. Through this comprehensive pipeline, we efficiently generated a large
volume of high-quality GUI agent trajectories.

Our experimental results demonstrate that training GUI agent models with these synthesized tra-
jectories not only improves their performance but also enables them to surpass the capabilities of
their initial teacher models, which is the replay model GPT-4 in our case. Compared to traditional
human-annotated data pipelines, our method is significantly more cost-effective, emphasizing the
scalability and economic viability of the AgentTrek pipeline.

• We introduce AgentTrek, a novel pipeline that leverages web tutorials to synthesize high-
quality GUI agent trajectory data at scale, effectively bridging the gap between LLM capabilities
and the demanding need for multi-step, context-rich training data for GUI agents.

• Extensive experiments demonstrate that agents trained with our synthesized data outperform
those trained on existing datasets in both grounding and planning capabilities, validating the
effectiveness of AgentTrek.

• Our pipeline significantly reduces the cost and scalability obstacles of human-annotated data
collection, providing a practical approach for large-scale GUI agent training through data syn-
thesis.
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Table 1: Comparison of AgentTrek with other trajectory datasets for training. For the calcula-
tion of dataset size and average steps, see Appendix A.1.

Datasets Size Average
Steps HTML AxTree Intermediate

Reasoning Video Matching
Screenshot Website Task Inst.

Level
RUSS 80 5.4 Yes No No No No 22 Low

ScreenAgent 203 4.3 No No Yes No Yes - High & Low
WebLINX 969 18.8 Yes No No No Yes 155 High & Low

MM-Mind2Web 1009 7.3 Yes No No No No 137 High
GUIAct 2482 6.7 No No No No Yes 121 High

AgentTrek (Ours) 4902 12.1 Yes Yes Yes Yes Yes 127 High & Low

2 METHOD

We introduce a pipeline to collect and process GUI tutorials from the internet for training visual
language models (VLMs) in web automation tasks. The method comprises three main steps:

1. Collecting Tutorials: We extract web interaction tutorials from large datasets using key-
word filtering and language models to identify and standardize relevant content.

2. Guided Replay: An agent uses these tutorials to perform tasks in a web environment,
interacting with real websites while we record its actions and thoughts.

3. Model Training: We train a visual agent model that relies on screenshots and standard
GUI actions, enhancing its web navigation capabilities with the collected data.

This approach enables efficient training of VLMs without extensive manual annotation, offering a
scalable solution for automating web tasks.

2.1 AUTOMATIC TUTORIALS COLLECTION FROM INTERNET

We first extract web interaction tutorials from Redpajama dataset (Computer, 2023). A rule-based
heuristic filter is applied to create a preliminary dataset, a subset of which is annotated by an ad-
vanced LLM to generate labeled samples for training a effective FastText classification model (Joulin
et al., 2017), the tutorial classifier. This classifier further enhances the data quality through filter-
ing. Finally, LLMs are employed to tag and paraphrase the raw text of tutorials into a standardized
format, preparing them for the replay phase in Section 2.2.

2.1.1 PREFILTER FUNCTION

Although GUI tutorials are abundant online, they constitute only a small fraction of web content,
making a pre-filter essential for identifying relevant content. Similar patterns often appear in tu-
torials, such as distinctive keywords like ‘click’ and ‘type’, as well as platform-specific terms like
‘macOS’ and ‘Windows’. We compiled a rule-based filter using keyword lists sourced from official
websites and forums. Leveraging RedPajama data with over 20 billion URLs, our pre-filter applies
Keyword Matching in the first 38k words, evaluates samples based on Length, and filters them by
URL Format for relevance.

Validated using 180 positive and 105 negative ground-truth samples, the prefilter achieved a 92.69%
recall rate on positive samples, ensuring both diversity and quantity. After filtering, the dataset size
is reduced from 20.8 billion to 68.8 million entries (Figure 4).

2.1.2 LLM LABELER

While initial rule-based filtering narrows the context, the proportion of true positive tutorial content
remains low. To improve the quality and relevance of selected tutorials, we leverage an advanced
LLM, GPT-4O MINI, for automated labeling, due to its strong ability to comprehend and analyze
complex, information-dense text. Prior to full implementation, we tested GPT-4O MINI on a manu-
ally annotated ground-truth validation set, where it achieved an F1 score nearly 90%. In cases where
human and LLM annotations conflicted, the LLM demonstrated the ability to identify tutorial-related
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Figure 3: Overview of the tutorial filtering and classification pipeline. Starting with Redpajama,
the data is prefiltered, annotated by an advanced LLM, and used to train a tutorial classifier. The
classifier further filters the raw text, which is then paraphrased into structured tutorials with task
descriptions, prerequisites, and step-by-step instructions.

Figure 4: The data flow during the early stages of our pipeline.

content in lengthy texts that humans might overlook. This, along with the validation set result, sug-
gests that GPT-4O MINI may surpass human performance in webpage labeling, enabling efficient
generation of a large labeled dataset for training in the following section.

2.1.3 FASTTEXT FILTER

Table 2: Performance of Filters.

Metric Precision Recall F1
Prefilter 0.69 0.61 0.60
LLM 0.885 0.885 0.89

FastText 0.895 0.895 0.89

Following the automated labeling process, we employed
FastText, an n-gram-based deep learning model, as our
classifier. FastText classifies tutorial text segments as tu-
torial or non-tutorial, with a binary output and a con-
fidence score to enhance the accuracy of tutorial selec-
tion. To train the model, we combined LLM-labeled data
with human-labeled samples, creating a dataset of ap-
proximately 90,000 examples. The train-test split is 95:5,
with the model demonstrating strong classification perfor-
mance. Using this classifier, we further curated the initial
filtered dataset, collecting approximately 18.8 million tutorial-like web text samples.

2.1.4 TAG & PARAPHRASE

After filtering the raw tutorial content using the FastText model, we then tag and paraphrase the
content for further processing, including extracting meta-information and formatting the tutorials
according to a standardized template. To handle the length and noise of the raw tutorial data, we em-
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ployed GPT-4O MINI, streamlining the tagging and paraphrasing while ensuring the output aligned
with the comprehensive template and gold-standard examples.

The key components of the template include specifying the Platform and Target (e.g., macOS,
Windows, browser, or app), providing a concise Task Description, listing Prerequisites needed
before starting, outlining Step-by-Step Instructions for completing the task, and detailing the Ex-
pected Outcome. The cost for tagging and paraphrasing 1,000 entries is approximately 0.89 dollars.

2.2 TRAJECTORY DATA COLLECTION VIA GUIDED REPLAY

Figure 5: Overview of Guided Replay data collection and evaluation pipeline. A VLM agent
is provided with the filtered and formatted tutorials, then observes and interacts with the real en-
vironment during execution, while all the actions and intermediate thoughts are recorded as data
trajectory. The final result is evaluated by an advanced VLM to ensure the correctness.

2.2.1 TRAJECTORY DATA DEFINITION

The trajectory data generated by our pipeline is designed to enhance an agent’s web navigation ca-
pabilities by integrating high-level planning, low-level instructions, and grounded operations. Each
data instance includes the following components:

Task Information. Detailed task metadata, including platform, task description, prerequisites, in-
structions, and expected outcomes, which support both planning and execution.

Post-processed Textual Trajectory. Refined after replay, highlighting key elements for model fine-
tuning. This includes Task Metadata, summarizing the task to encourage adaptive decision-making,
Observations to provide visual context, Intermediate Reasoning offering insights into the agent’s
decision-making process, and Action Sequence to capture detailed element information for web
interactions.

Screenshots and Video Recordings. Visual records of the entire process for comprehensive docu-
mentation.

Reproducible Native Trace. Captured via Playwright, including DOM snapshots, HTML, network
flow, and action sequences, allowing full reconstruction and detailed analysis of agent-environment
interactions.

2.2.2 GUIDED REPLAY WITH TUTORIALS

Although we have collected and processed high-quality tutorials, a significant gap remains in ac-
quiring the grounding data crucial for training a more effective agent model. To address this, we
leverage BrowserGym (Drouin et al., 2024a) to enable the model to replay tasks under the guidance
of the generated tutorials.

BrowserGym is a versatile environment for web task automation in the Chromium browser, enabling
Visual Language Model (VLM) agents to execute web-based operations (Drouin et al., 2024b).
Agents are provided with tagged and paraphrased tutorials and a target web url, allowing them to
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Figure 6: Guided replay example. This example demonstrates an agent’s execution of finding the
return policy for men’s football apparel, showcasing its actions alongside the corresponding inner
thoughts.

navigate directly to the task scene. Step-by-step instructions guide the agent through the task, with
the expected outcome determining task completion.

The agent’s initial observations include the webpage’s viewport screenshot and accessibility tree
(AXTree), but the HTML file is excluded due to its size and irrelevance to visual agents. Actions
are executed using Playwright (Microsoft, 2023) functions such as click, select option, and clear,
while Playwright also records detailed traces, including target elements, coordinates, screenshots,
and DOM snapshots at the same time, along with agent’s internal thoughts between actions.

Token consumption is about 8,027 per step and 86,114 per task. With GPT-4O-08-06, replaying
1,000 tasks costs approximately 215 dollars. Cost detail see A.3

2.2.3 EVALUATION OF TRAJECTORY

Although a large amount of guided replay data has been recorded, it is crucial to extract the effective
segments that can truly contribute to enhancing the agent’s performance. Recent work by (Pan et al.,
2024) highlights the potential of Visual Language Models (VLMs) in evaluating trajectory data
using recorded images and interaction processes as input. VLMs are highly scalable, capable of
processing large datasets concurrently at a low cost, and provide transparent evaluations. Therefore,
we implemented a VLM Evaluator to further improve our data quality.

VLM Evaluator Design. To ensure trajectory data quality, we define effectiveness based on two
criteria: adherence to task instructions and successful completion of core components. We employ
GPT-4O as the backbone of our VLM evaluator, using a structured prompt to assess recorded trajec-
tories. The evaluator receives the task description d, the agent’s action history a, and inner thoughts
r for each step. The sequential format is: {task description; inner thought 1; action 1; inner thought
2; action 2; ...}, as illustrated in Figure 5. The VLM provides a trajectory-level assessment and
performs stepwise analysis, offering justifications for any ineffective trajectory and identifying the
earliest point of failure.

Table 3: Accuracy Comparison

Trajectory Evaluator Acc.

Web Tutorials VLM Eval 84.0%

WebArena
GPT-4V 80.6%

Cap. + GPT-4 82.1%
Cap. + Mixtral 74.4%

Table 4: Cost Breakdown

Phase Cost/1k ($) Model

T&P 0.89 mini
Replay 215.36 08-06
Eval 3.10 08-06

Total 219.35 –

Validation on Human-Annotated Set. Although the capabilities of Vision Language Models
(VLMs) are well-recognized, validation is essential. To assess the automatic evaluator’s perfor-

6
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mance, we manually reviewed 1,081 trajectories and created a validation set of 558 samples with
human-annotated justifications.

As shown in the Table 3, despite handling different input formats across various task scenarios,
the evaluator achieved high performance metrics. And according to the observationA.4, evaluator
often applys stricter standards than human evaluators. This demonstrates its robustness in accurately
identifying effective trajectories.

2.3 TRAIN AND FINE-TUNE THE MODEL WITH TRAJECTORY DATA

We chose a purely visual agent model that relies exclusively on screenshot-based observations, rather
than incorporating accessibility trees or textual representations, for several reasons. First, GUIs
are inherently visual, and mapping instructions to visual elements aligns more closely with human
cognitive processes. Second, Textual representations, such as HTML or accessibility trees, are often
verbose, which leads to heavy overhead for computation. Second, Different websites can have
varying structures for their textual representation while image-based representations allow the model
to unify its observations across diverse platforms with varying resolutions, improving generalization.

2.3.1 PURE VISION & GUI ACTION FRAMEWORK

In this work, we propose to unify observation and action space via pure vision and standard pyauto-
gui commands with a pluggable action system.

Using pure vision as input eliminates the need for the model to understand different UI source codes
across platforms, even when visually similar elements are written differently in HTML. Addition-
ally, HTML input typically costs an average of 4,000 tokens per step. In contrast, recent VLMs
with high-resolution multimodal understanding, such as Qwen2-VL, require only 1,200 tokens for
a 720p image. This significantly lowers the computational cost while maintaining sufficient visual
information for the task.

For action, we hoose the widely used standard pyautogui action space with a pluggable action sys-
tem. Most web agent leverage playwright action sapce. But playwright actions incline to interact
with html selector element instead of visual ui element. Therefore, we use pyautogui commands to
unify basic GUI operations on web. Since we collect the data from website by playwright, we need
to map the playwright actions to pyautogui actions as shown in the Figure 8. In addition, we utilize
a pluggable action system to cover specific playwright action like select option.

2.3.2 MODEL ARCHITECTURE AND TRAINING

Unlike agents that rely on structured UI representations like accessibility trees, vision-based ground-
ing requires models to map intents directly to visual observations. For this, we chose Qwen2-VL
(Wang et al., 2024b), which uses NaViT as an image encoder with dynamic resolution support (De-
hghani et al., 2023). By removing absolute position embeddings and incorporating 2D-RoPE (Su et
al., 2024), Qwen2-VL can process images of any resolution, efficiently converting them into vari-
able visual tokens. This makes Qwen2-VL ideal for GUI agents, as it can encode high-resolution
images with fewer token costs, making it well-suited for our tasks.

Our training process, starting with a VLM capable of high-resolution image understanding, consists
of one tunnig stage. We use data from AgentTrek Data to enhance VLM capabilities in grounding
and planning.

3 EXPERIMENTS

AgentTrek automatically collects thousands of trajectories with detailed information, including in-
ner thoughts and precise action coordinates, offering an ideal foundation for fine-tuning VLM into
a reliable visual GUI agent. A successful visual GUI agent requires two key abilities: planning
and grounding. We conducted extensive experiments to validate that AgentTrek data enhances the
agent’s capabilities in both areas.
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3.1 EXPERIMENTAL SETUP

To validate the effectiveness of our dataset, it is essential to demonstrate its impact on improving
both the grounding and planning capabilities of the model. Therefore, we will evaluate the model’s
performance on benchmarks that assess these abilities.

For grounding ability, we employ the ScreenSpot benchmark (Cheng et al., 2024), which evaluates
the model’s single-step GUI grounding performance across various platforms. To assess planning
ability, we utilize the Multimodal-Mind2Web benchmark (Deng et al., 2023), the multimodal ex-
tension of the web agent benchmark Mind2Web (Deng et al., 2024).

3.2 WEB GROUNDING

ScreenSpot is a GUI visual grounding benchmark comprising 1.2K single-step instructions and tar-
get element bounding boxes. It spans mobile, desktop, and web environments, categorizing elements
into text and icons. Given that our data originates exclusively from the web, we focus solely on web-
based performance.

Fine-tuning with the AgentTrek dataset significantly improved Qwen2-VL’s grounding ability for
both text and icon-based tasks, more than doubling its baseline performance and surpassing sev-
eral models on the ScreenSpot benchmark. This demonstrates the strong impact of AgentTrek in
enhancing the model’s grounding capabilities for web-based GUI tasks.

Table 5: Comparison of grounding performance on ScreenSpot Web Grounding

Model Text Icon/Widget Average
GPT-4 9.2 8.8 9.0
GPT-4o 12.2 7.8 10.1
Qwen2 VL 35.2 25.7 30.7
SeeClick 55.7 32.5 44.7
CogAgent 70.4 28.6 50.7
GPT-4 + OmniParser 81.3 51.0 67.0

Qwen2-VL w/ AgentTrek 81.7 51.5 67.4

3.3 WEB PLANNING

The baseline Qwen2-VL model is excluded due to its poor performance in locating target elements,
a key requirement for web-based tasks. Thus, only the fine-tuned versions are presented in the table.

Fine-tuning with the AgentTrek dataset significantly improved Qwen2-VL’s performance, particu-
larly in the Operation F1 metric, where it outperformed both GPT-3.5 and GPT-4 across all settings.

The combination of AgentTrek and Mind2Web datasets yields the best performance across all met-
rics and settings. Although the model achieve great performance after fine-tunning with mind2web
dataset, it can still benefits from the AgentTrek Data.

These results highlight the complementary nature of the two datasets: AgentTrek provides high-
quality grounded data with precise coordinates, while Mind2Web offers valuable data for handling
complex web-based tasks.

4 ANALYSIS

With our AgentTrek pipeline, we generate large-scale trajectory data that excels in three areas.
First, the dataset offers extensive diversity, covering multiple domains and task types, and benefiting
from internet-sourced tutorials that enhance task execution. Our experiment showed a 230% per-
formance increase when agents followed detailed instructions. Second, the data is gathered from
real-world web environments, avoiding the limitations of simulations. Starting with RedPajama, we
filtered and processed 12,526 tutorials, producing 4,902 successful trajectories from 127 websites.

8
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Table 6: Performance comparison across different methods and evaluation settings. ’H’, ’I’, ’AT’,
’M2W’ stand for HTML, Image, AgentTrek, Mind2Web

Obs Model Method Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

HTML GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

H + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

Image

Qwen2-VL
+ AT Vision 45.5 84.9 40.9 40.8 82.8 35.1 48.6 84.1 42.1
+ M2W Vision 54.8 89.5 50.9 52.9 83.9 44.9 51.8 86.8 47.7
+ AT + M2W Vision 60.8 88.9 55.7 57.6 88.1 51.4 56.0 87.5 52.6

Third, the data is comprehensive, capturing high- and low-level task details, including DOM/HTML
structures, AXTree snapshots, video recordings, and screenshots. This rich data improves the agent’s
performance on long-horizon tasks, and with a per-trajectory cost of just $0.551, our pipeline offers
an efficient, scalable solution for data generation.

4.1 IMPORTANCE OF TUTORIALS

Tutorials extracted from the internet play a crucial role in guiding the replay process. First, they
ensure diversity in the generated trajectories. Tutorials often have distinct task goals, and even when
they target the same objective, they may offer different execution methods, enriching the trajectory
data. Second, tutorials significantly improve the agent’s execution. We tested the agent on 400 tasks,
replaying them twice: once with tutorials and once using only high-level goals. The results show
that step-by-step instructions greatly enhanced performance. Without tutorials, only 63 effective
trajectories were generated (15.78% of the total). With tutorials, the agent produced 208 effective
trajectories (52%), marking an increase of over 230%, demonstrating the importance of detailed
instructions in improving reliability and effectiveness. Analysis seeA.2

4.2 DATA COMPOSITION

Figure 7: The distribution of website with domains involved in our dataset

To summarize the data flow through our pipeline: First, we filter tutorial data from the RedPajama
web snapshot. Next, the filtered data is paraphrased for clarity and classification. We then gather
up-to-date data from mainstream websites for replay and, finally, collect effective trajectory data
from the replays.

After filtering RedPajama’s vast dataset, we retained over 18.8 million entries. By applying criteria
such as recency and popularity, 12,526 tutorials were prepared for replay. With a success rate of
39.1%, we generated 4,902 trajectories, covering 127 websites across 11 distinct categories.
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4.3 COMPARISON WITH EXISTING WORK AND RESEARCH CHALLENGES

AgentTrek generates comprehensive, large-scale trajectory data, excelling in several key areas as
shown in Table 1 (Niu et al., 2024; Lù et al., 2024; Deng et al., 2024; Yao et al., 2022; Song et al.,
2024; Wornow et al., 2024a). First, with nearly 5k verified trajectories and an average of 12.1 steps
per trajectory, our dataset provides a strong foundation for training and evaluating agents on long-
horizon web tasks. Second, it is the most complete dataset to date, incorporating DOM/HTML
structures, AXTree data, intermediate reasoning steps, full video recordings, and corresponding
screenshots for each action.

Moreover, despite full automation without human intervention, our dataset maintains diversity
across 120 websites and 12 distinct task categories. By leveraging modern large language mod-
els (LLMs), we can extract both high-level task objectives and detailed step-by-step instructions,
offering flexibility for future use.

Finally, our pipeline significantly reduces the cost and scalability challenges of human-annotated
data collection. With a success rate factored in, the cost per trajectory is just $0.551, making our
approach both efficient and scalable for large-scale data generation. Cost detail see A.3

5 RELATED WORK

LLM-based Agents. LLM-based agents are autonomous systems that leverage large language mod-
els (Brown et al.) to interact with real-world websites and os environments. These agents can un-
derstand natural language instructions and perform a wide range of complex tasks across various
domains, such as e-commerce, online assistance, and knowledge navigation (Nakano et al., 2021;
Cheng et al., 2024). Recent efforts in this space include models like SeeAct (Zheng et al., 2024a)
and WebVoyager (He et al., 2024), which aim to generalize agent behavior to real-world websites.
While LLM-based agents have shown promise, challenges remain in the need for agent specified
data. Our work extends this line of research by introducing a cost-effective pipeline to generate
comprehensive agent trajectory data, advancing the state-of-the-art in data synthesis for agent-based
applications.

Agent Data. As agents gain increasing popularity, the demand for efficient and scalable data is
becoming both larger and more urgent. However, most existing data primarily serve as supplements
to various benchmarks (Zhou et al., 2023; Li et al., 2023; Deng et al., 2024), with few datasets
specifically designed for agent trajectory analysis. Furthermore, these datasets are often limited by
the need for human annotation, which hampers scalability. In our work, our pipeline managed to
automatically generate comprehensive agent trajectory data in a cost-efficient manner, paving the
way for a new direction in data synthesis within the field of agents.

Automatic Evaluation for Digital Agents. Recently, there has been growing interest in automating
the evaluation of digital agents using Vision-Language Models (VLMs) and Large Language Models
(LLMs). These methods leverage models to assess agent performance in real-world tasks. Research
in this area spans several dimensions: some works focus on trajectory-level success (Pan et al.,
2024), while others evaluate stepwise success based on adherence to instructions (Wornow et al.,
2024b). Additionally, evaluations are conducted across various task environments, such as web-
based platforms and mobile operating systems like Android and iOS (Pan et al., 2024). In our work,
we prompt a VLM, GPT-4o, as an autonomous evaluator, using agent’s interacton process as inputs
to assess whether the agent has successfully completed tasks at the trajectory level.

6 CONCLUSION

In this work, we introduce AgentTrek, an efficient pipeline designed to automatically generate com-
prehensive and cost-effective agent trajectory data. Additionally, we present a large and diverse
dataset generated using this approach, which we validate by training models and evaluating their
performance with promising result.Our research establishes a novel and promising direction for the
future development of LLM agent, particularly in the automatic and low-cost synthesis of trajectory
data. AgentTrek serves as a strong standard for agent data generation, setting the stage for future
advancements in this field.
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A APPENDIX

A.1 CALCULATION OF OTHER TRAJECTORY DATASETS

• RUSS: Cited based on the data provided in the table from WebLINX (Lù et al., 2024).
• ScreenAgent: Statistics obtained from the dataset available at https://github.com/
niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train.

• WebLINX: Calculated based on the train set information from Table 8 in (Lù et al., 2024)
and data on HuggingFace (excluding the ”say” actions), resulting in a total of 18,249 non-
say actions with 969 demos.

• Mind2Web: Statistics derived from https://huggingface.co/datasets/
osunlp/Mind2Web, specifically from the training subset.

• Webshop (agent-eto): Data statistics sourced from https://huggingface.co/
datasets/agent-eto/eto-sft-trajectory.

• WonderBread: Calculations based on data presented in (Wornow et al., 2024a).

A.2 ANALYSIS OF THE EFFECTIVENESS OF TUTORIALS

Key factors contributing to this improvement include:

1. Direct Access to Target URL: Tutorials provide the target URL, allowing direct access to the
initial task state, reducing errors in locating the correct webpage.

2. Assisted Planning with Human Expertise: Tutorials aid in planning by providing steps in-
formed by human experience, which tend to be reliable, thereby reducing the likelihood of
errors during task execution and bridging the gap in the agent’s knowledge for unknown tasks.

3. Navigating Multi-Level Menus: Tutorials offer clear paths to hidden elements, preventing the
agent from failing due to incorrect navigation through complex menus.

A.3 COST DETAILS

In this part we provide the details of our cost in generating trajectory data with via our pipeline:

Phase Cost per 1,000 Entries (USD) Model Used
Tag and Paraphrase 0.886 gpt-4o-mini
Replay 215.359 gpt-4o-2024-08-06
Evaluator 3.104 gpt-4o-2024-08-06

Table 7: Cost breakdown for each phase in the process

Another two important factors are the ratio of web-related tutorials (0.275) and the Replay Success
Rate (39.9%). Using these, we can calculate the cost per verified effective trajectory as follows:

Cost per trajectory =
Tag and Paraphrase price

Web ratio
+

Replay price + Evaluate price
Replay Success Rate

The cost per 1,000 verified effective trajectories is 550.75 $.

A.4 EVALUATOR ALIGNMENT

In this part, we provide the details of metrics between the human and automatic evaluator.

Trajectory Evaluator Accuracy
Web Tutorials VLM Evaluator 84.0%

Webarena
GPT-4V 80.6%
Captioner + GPT-
4

82.1%

Captioner + Mix-
tral

74.4%
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Figure 8: Confusion Matrix of our VLM evaluator’s performance on the human-annotated validation
set, compared with evaluators across different scenarios.

A.5 ACTION MAPPING

Table 8: Mapping between Playwright and PyAutoGUI Action Spaces.

Category Playwright Action PyAutoGUI Action

Basic Actions

page.click() pyautogui.click()
page.type() pyautogui.write()
page.press() pyautogui.press()
page.hover() pyautogui.moveTo()
page.scroll() pyautogui.scroll()

Advanced Actions

page.fill() pyautogui.write() (clearing)
page.dblclick() pyautogui.doubleClick()
page.dragAndDrop() pyautogui.dragTo()

page.clear() pyautogui.click()
pyautogui.hotkey(ctrl, A)
pyautogui.press(delete)

Plugin playwright.select option() browser.select()
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System Prompt
You are an expert in evaluating the performance of a web navigation
agent. The agent is designed to help a human user navigate a website
to complete a task. Given the user’s task goal, the agent’s
trajectory, your goal is to decide whether the agent’s execution is
successful or not.

*Evaluation Criteria*
Whether the agent’s trajectory is effective and corresponding to the
goal

*Instructions*
1. Review the agent’s actions and reasoning processes step by step.
2. if the agent is stuck in the very first login stage, which means
it fails to log into target website at the beginning, that’s a
failure.
3. Determine if the agent has achieved the task goal based on the
trajectory. A task can be considered successful if most trajectory
is effective.
4. the agent sometimes can’t stop after finishing a task and
continue doing repeated actions. these actions may be some failed
attempt after a series of correct actions. the task should be
regarded as successful if the correct actions are effective and
almost reach the goal.
5. if the agent is stuck in the loop at the early stage of the task,
which means they don’t even get close to the goal before they get
stuck in the loop, that’s a failure. for example, the agent begin to
get stuck before third step.
6. when the task is to change the google account password, it can’t
be regarded as successful when agent finish at trying to click
"manage your account".
7. if there are over 8 correct action in the trajectory, it can be
regard as a successful agent.
8. final saving action is not a must. the task is successful if the
agent does most things right and just forget to save the change at
last.
9. if the original task has 2 subtasks, the agent only complete one
of them, that’s still a success. e.g. the task is to update name
and birthday, but agent only update name, that’s fine.
10. if the task is to post a review, the agent can be considered
successful when it finish writing the review and reach the step to
post it, don’t have to click the post button.
11. Since we don’t have a printer, some printing related task can be
considered successful if the agent reach the step to click print
button.
12. if the task is finished at the initial state and the agent do
nothing because of it, it should also be regarded as successful.

*IMPORTANT*
1. in the trajectory, an action always follows a corresponding
reasoning, which shows the observation and thought of the agent.
2. your response should be contain:
Thoughts: <your thoughts and reasoning process>
Status: "success" or "failure"

User Prompt
The goal of the task: {task des}
trajectory: {trajectory}

Figure 9: Prompts to query the VLM Autonomous Evaluator.
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