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Abstract
Self-attention has been widely used in various
machine learning models, such as vision trans-
formers. The standard dot-product self-attention
is arguably the most popular structure, and there
is a growing interest in understanding the mathe-
matical properties of such attention mechanisms.
This paper presents a fine-grained local sensi-
tivity analysis of the standard dot-product self-
attention, leading to new non-vacuous certified
robustness results for vision transformers. De-
spite the well-known fact that dot-product self-
attention is not (globally) Lipschitz, we develop
new theoretical analysis of Local Fine-grained
Attention Sensitivity (LoFAST) quantifying the
effect of input feature perturbations on the atten-
tion output. Our analysis reveals that the local
sensitivity of dot-product self-attention to ℓ2 per-
turbations can actually be controlled by several
key quantities associated with the attention weight
matrices and the unperturbed input. We empiri-
cally validate our theoretical findings by comput-
ing non-vacuous certified ℓ2-robustness for vision
transformers on CIFAR-10 and SVHN datasets.
The code for LoFAST is available at https:
//github.com/AaronHavens/LoFAST.

1. Introduction
The self-attention mechanism (Bahdanau et al., 2014;
Vaswani et al., 2017) has become a major building block
in many modern deep learning-based systems, achieving
state-of-the-art performance in various applications such as
vision and natural language processing. In particular, dot-
product self-attention (Vaswani et al., 2017) is one of the
most popular architectures used by many best-performing
networks such as the well-known Transformer architecture
and its variants, and has enabled successful applications
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such as large language models (LLM) (Brown et al., 2020;
Bubeck et al., 2023) and vision transformers (ViT) (Doso-
vitskiy et al., 2021; Radford et al., 2021). However, unlike
traditional neural network building blocks such as convo-
lutional layers, whose structures and behaviors are well
understood, the self-attention mechanism has more involved
mathematical properties. For example, for a simple con-
volutional layer, it is well known that its operator norm is
bounded (Sedghi et al., 2019), and convolution is a Lips-
chitz operation that always produces bounded outputs given
bounded inputs (Delattre et al., 2023). However, for the pop-
ular dot-product self-attention mechanism, existing work
has shown that they are surprisingly, not (globally) Lips-
chitz (Kim et al., 2021). The lack of Lipschitzness indicates
that dot-product self-attention can theoretically be very sen-
sitive to its input, which can impede stable learning (Qi
et al., 2023) and lead to poor robustness (Zhou et al., 2022;
Cisse et al., 2017). Although several architectures have been
proposed to amend the popular dot-product attention mecha-
nism to achieve Lipschitzness and bounded sensitivity (Kim
et al., 2021; Dasoulas et al., 2021; Qi et al., 2023), none
of them are popular in large-scale networks deployed in
production, and it is still an open challenge to understand
why the non-Lipschitz dot-product attention mechanism can
work well in practice.

In this work, instead of amending the network structure to
achieve bounded sensitivity, we aim to analyze the local
sensitivity of the unmodified dot-product attention mecha-
nism directly. Despite being non-Lipschitz, local sensitiv-
ity of the unmodified self-attention mechanism is actually
sufficient for inducing certified robustness (Proposition 1).
Built upon this observation, we derived novel analytical
bounds for the local sensitivity of dot-product self-attention
using tools from optimization and matrix theory. Our key
result (Theorem 1) deciphers a few key quantities associ-
ated with the sensitivity of the dot-product self-attention
operation, related to the attention weight matrix and their
inputs. Our theorem can be easily interpreted, and gives us
insights on how to control the local sensitivity of a Trans-
former. In particular, we found that the local sensitivity
of the self-attention layer is directly related to the norm
of its input, thus theoretically explaining the necessity of
using layer normalization (Ba et al., 2016) in the popular
Transformer architecture (Xiong et al., 2020). In addition,
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it allows us to utilize the recent progress of 1-Lipschitz
feedforward neural network layers, such as orthogonal lay-
ers (Trockman & Kolter, 2021; Prach & Lampert, 2022) and
the SDP-based Lipschitz Layers (Araujo et al., 2023), to
control the local sensitivity of Transformers. Note that since
the self-attention layer is non-Lipschitz, naively applying
1-Lipschitz layers could not provide any guarantees without
our new local results.

We confirm our theoretical findings on a few practical vision
transformers by quantifying their local sensitivity and certi-
fied ℓ2-robustness. Our experiments show that our derived
local sensitivity bounds are practical for vision transformers
and significantly improve against a naive approach for sen-
sitivity analysis. In addition, we also use gradient ascent to
find the maximum sensitivity empirically, and demonstrate
that our theoretical bounds and empirical measurements are
well-aligned. By varying the design parameters of the vision
transformers (e.g., number of attention heads and number of
tokens), our theory predicts the observed changes in local
sensitivity. As a direct application of our bounds, we also
give non-vacuous (certified) adversarial robustness guar-
antees for vision transformers with standard dot-product
self-attention mechanisms on CIFAR and SVHN datasets.
Our main contributions are summarized as follows.

• We are the first to consider a fine-grained theoretical anal-
ysis of local sensitivity bounds of unmodified dot-product
self-attention mechanism, contributing to the mathemati-
cal understanding of this popular network structure. De-
spite the non-Lipschitzness of dot-product self-attention,
our local bounds are non-trivial and can lead to non-
vacuous certified robustness for practical transformers.

• Our results give interpretable bounds that offer practi-
cal design insights into achieving low sensitivity on dot-
product self-attention-based transformers. It enables us to
borrow the recently developed algebraic tricks for training
globally 1-Lipschitz feedforward networks to provably
improve the local sensitivity of Transformers.

• Our theoretical results are validated through the empir-
ical evaluation of a large range of Transformers trained
with different design parameters. In addition, our tight
analytical bounds allow us to achieve fast scalable compu-
tation of non-trivial deterministic certified ℓ2-robustness
guarantees for vision transformers without modifying the
dot-product self-attention mechanism.

2. Related Work
Lipschitz Aspects and Regularity of Self-Attention. Since
the first Lispchitz analysis of dot-product self-attention
by (Kim et al., 2021), which showed that the standard dot-
product self-attention is not (globally) Lipschitz, a large
number of works have tried to propose variants of the origi-
nal dot-product self-attention to enforce this property (Kim

et al., 2021; Qi et al., 2023; Fei et al., 2022; Dasoulas et al.,
2021; Ye et al., 2023). For example, (Qi et al., 2023) pro-
posed scaled cosine similarity attention instead of dot prod-
uct attention and demonstrated the Lispchitz properties of
this new layer. Other works (Vuckovic et al., 2021; Castin
et al., 2023) have studied the regularity of attention under
a mathematical framework that uses measure theory and
integral operators to model attention. Under this new frame-
work, they show that the attention mechanism is regular
(under some specific assumptions) with respect to the 1-
Wasserstein distance. While this work generalizes the work
of (Kim et al., 2021), the regularity over the 1-Wasserstein
distance is not commonly used in practice.

Neural Networks with Prescribed Lipschitz Constant.
Recently, researchers have designed neural networks with
prescribed Lipschitz constant in order to better control the
stability (Miyato et al., 2018), robustness (Zhang et al.,
2021; Prach & Lampert, 2022; Meunier et al., 2022; Zhang
et al., 2022; Araujo et al., 2023; Wang & Manchester, 2023;
Li et al., 2019; Trockman & Kolter, 2021; Singla & Feizi,
2021; Yu et al., 2022; Xu et al., 2022; Havens et al., 2023;
Fazlyab et al., 2023; Barbara et al., 2024), and generaliza-
tion (Bartlett et al., 2017) of the network. However, most of
these techniques come with important design choices with
respect to the architecture that are not common in networks
with state-of-the-art performance.

Robustness of Transformer Networks. Randomized
smoothing (Cohen et al., 2019) has been used to obtain prob-
abilistic certified robustness of dot-product attention (Carlini
et al., 2023; Wu et al., 2023). However, randomized smooth-
ing suffers from high computational cost. General-purpose
certification tools such as CROWN (Zhang et al., 2018;
Wang et al., 2021) and zonotope abstractions have also been
tailored for robustness certification of dot-product attention
(Shi et al., 2020; Bonaert et al., 2021). However, these
prior approaches face severe scalability issues when applied
to large transformers on practical datasets such as CIFAR.
In this work, our analytical local sensitivity bounds can
be used to provide fast scalable computation of non-trivial
(deterministic) ℓ2 certified robust accuracy for dot-product
self-attention in ViT for image classification tasks such as
CIFAR-10 and SVHN. In our experiments, we provide a
comparison study looking at the trade-offs in terms of tight-
ness and scalability of CROWN, and show that our approach
LoFAST can complement existing deterministic verifiers
via providing enhanced scalability.

3. Preliminaries and Problem Formulation
Notation We denote the spectral norm and the Frobe-
nius norm as ∥·∥ and ∥·∥F , respectively. Two useful facts
are ∥AB∥F ≤ ∥A∥∥B∥F , and ∥A∥ = ∥AT∥. Given two
matrices A and B, their Kronecker product is denoted as
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A ⊗ B. We denote the vectorization operation as vec.
Let ei denote an n-dimensional vector whose i-th entry
is 1 and all other entries are 0. The n × n identity ma-
trix is denoted by In. The softmax mapping on matrices
with the temperature being 1 is denoted as softmax. We
know that softmax is 1-Lipschitz (Gao & Pavel, 2017), i.e.
∥softmax(A)− softmax(B)∥F ≤ ∥A−B∥F for any two
matrices A and B that have the same dimension.

Dot-Product Self-Attention. Let x1, x2, . . . , xn be a se-
quence of n vectors, where xi ∈ Rd. For vision tasks, each
xi is a patch. This sequence is represented as a matrix X .
The dot-product multi-head self-attention maps Rn×d to
Rn×d. With h heads, the l-th head maps Rn×d to Rn×d/h

as:

X =

− xT
1 −
...

− xT
n −

 ∈ Rn×d (1)

and

Yl = softmax

(
XWQ

l (XWK
l )T√

d/h

)
XWV

l (2)

where WQ
l ,WK

l ,WV
l ∈ Rd×d/h denote the weight matri-

ces for the l-th head, and the softmax operation is applied
in a row-wise manner. Finally, the outputs of all heads are
concatenated as

f(X) = [Y1, . . . , Yh]W
O =

h∑
l=1

YlW
O
l , (3)

where WO = [(WO
1 )T, . . . , (WO

h )T]T ∈ Rd/h×d gives the
weight for the linear combination of the outputs from all the
heads. For simplicity, we introduce the notation Pl(X) as

Pl(X) = softmax

(
XWQ

l (XWK
l )T√

d/h

)
. (4)

Hence the dot-product self-attention can be rewritten as:

f(X) =

h∑
l=1

Pl(X)XWV
l WO

l (5)

Residual Structure. Dot-product self-attention is typically
used in a residual form. In this case, the output is defined as
f(X) = X +

∑h
l=1 Pl(X)XWV

l WO
l .

Problem Statement. It is well-known that (5) is not glob-
ally Lipschitz (Kim et al., 2021). We are interested in an-
alyzing the local sensitivity of dot-product self-attention.
We consider the following model which unifies (5) and its
residual variant with H ∈ Rn×n:

F (X) = HX +

h∑
l=1

Pl(X)XWV
l WO

l . (6)

If H = 0, then (6) recovers the standard dot-product self-
attention (5). If H = I , then (6) reduces to the residual
setting. Given a local input point X and some small positive
scalar ϵ, we want to prove a bound in the following form:

∥F (X ′)− F (X)∥F ≤ δ(X, ϵ) (7)

for X ′ satisfying ∥X ′ −X∥F ≤ ϵ where the mapping F (·)
is defined by (6). We denote this set of ϵ-bounded perturba-
tions centered at X as Ω(X, ϵ) := {X ′ : ∥X ′ −X∥F ≤ ϵ}.
In principle, the tightest choice of δ(X, ϵ) is given by the
solution to the following constrained optimization problem

max
X′∈Ω(X,ϵ)

∥F (X ′)− F (X)∥F . (8)

One can use the projected gradient ascent method to search
solutions for (8). However, there are no polynomial-time
guarantees in solving the above problem globally. In ad-
dition, the bound (8) does not bring any insights for how
to control the local sensitivity via network structure design.
The goal of this paper is to develop a spectrum of choices
for δ(X, ϵ) that can capture the trade-off between tightness,
tractability, and interpretability.

Once we figure out an efficient way to compute δ(X, ϵ) for
the above problem, we can immediately apply the analysis in
a recursive manner to solve the local sensitivity analysis of
multi-layer networks consisting of various dot-product self-
attention layers. Specifically, consider a N -layer network:

F (X) = fN ◦ fN−1 ◦ · · · ◦ f0(X) (9)

where fk is either a dot-product self-attention layer (6) or
a globally 1-Lipschitz operation. Applying the local sen-
sitivity analysis in a recursive manner, we will be able to
compute δ(X, ϵ) for bounding the end-to-end local sensitiv-
ity of (9) as described by (7). Such a bound can be used to
prove the certified robustness of F on the data point X sub-
ject to adversarially chosen ℓ2 perturbations. Specifically,
the following result connects the local sensitivity bound
δ(X, ϵ) to certified ℓ2-robustness in a rigorous manner.
Proposition 1. Suppose F is a classifier that maps any
input X to the output as defined by (9). The j-th entry of
F (X) is denoted as [F (X)]j , which gives the logits value
for the j-th label class. The predicted label for X is given
by argmaxj [F (X)]j . Given an input X with the true label
y satisfying y = argmaxj [F (x)]j , if we have

Mf (X) := [F (X)]y −max
j ̸=y

[F (X)]j >
√
2δ(X, ϵ),

then for every τ satisfying ∥τ∥F ≤ ϵ, we must have
argmaxj [F (X + τ)]j = y.

The proof for the above result is almost identical to Tsuzuku
et al. (2018, Proposition 1), and hence deferred to the ap-
pendix. The above proposition provides a way to compute
the certified robust accuracy of dot-product self-attention
using our local sensitivity analysis.
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Distinction from Local-Lipschitz Bounds. We empha-
size that the local bound δ(X, ϵ) is not the same as a local-
Lipschitz bound. As a matter of fact, the local Lipschitz
approach can be unnecessarily conservative. Specifically,
the local Lipschitz bound applies for any two arbitrary points
in the ϵ-neighborhood of the original input X . In contrast,
our local sensitivity analysis is weaker in the sense that the
bound can only tell us the deviation of F (X ′) from a fixed
F (X). However, that is still sufficient for computing cer-
tified robustness as in Proposition 1. In Appendix A, we
will show explicitly how the existing local Lipschitz analy-
sis (Xixu, 2023) can only give vacuous certified robustness
results on CIFAR-10.

4. Fine-Grained Local Sensitivity Analysis
In this section, we perform the local sensitivity analysis for
the dot-product self-attention where F is defined by (6). We
have F (X) = HX +

∑h
l=1 Pl(X)XWV

l WO
l for either

H = 0 or H = I . First, the following bound based on the
splitting trick is standard:

∥F (X ′)− F (X)∥F

≤
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F

+
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

Next, we will bound the two terms on the right side. We use
the following notation

∆1(X,X ′) =
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F

(10)

∆2(X,X ′) =
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

(11)

If we can derive bounds in the form of:

∆1(X,X ′) ≤ δ1(X, ϵ), ∆2(X,X ′) ≤ δ2(X, ϵ)

which hold for all X ′ satisfying ∥X −X ′∥F ≤ ϵ, then we
can immediately set δ(X, ϵ) := δ1(X, ϵ) + δ2(X, ϵ), and
obtain the following bound for the self-attention map which
can be computed given a point X and perturbation radius ϵ.

max
X′∈Ω(X,ϵ)

∥F (X ′)− F (X)∥F ≤ δ1(X, ϵ) + δ2(X, ϵ)

Our fine-grained analysis addresses how to reduce the con-
servatism in deriving δ1(X, ϵ) and δ2(X, ϵ).

Reducing Conservatism in Deriving δ1(X, ϵ): Based on
the property of matrix norms, one can obtain the following

naive upper bound for maxX′∈Ω(X,ϵ) ∆1(X,X ′) (see the
appendix for a detailed derivation):

δ
(naive)
1 (X, ϵ) =

(
∥H∥+

h∑
l=1

∥WV
l WO

l ∥∥Pl(X)∥

)
ϵ.

(12)

The above bound is informative in showing that one can
potentially control ∆1(X,X ′) by constraining the spectral
norm of {WV

l ,WO
l }hl=1. However, the above bound can be

loose quantitatively. In contrast, the best possible bound for
δ1(X, ϵ) can be obtained via solving the following problem

maximize
X′∈Ω(X,ϵ)

∆1(X,X ′) (13)

It turns out that this problem actually has an analytical
solution. This leads to our first result stated as follows.
Lemma 1 (Key Sensitivity Metric). The exact solution to
the optimization problem (13) is given by

δ1(X, ϵ) := max
X′∈Ω(X,ϵ)

∆1(X,X ′) = ζ(X)ϵ (14)

where ζ(X) is defined as

ζ(X) =
∥∥H ⊗ In +

h∑
l=1

(Pl(X)⊗ (WV
l WO

l )T)
∥∥. (15)

Consequently, we have ∆1(X,X ′) ≤ δ1(X, ϵ) = ζ(X)ϵ,
for all X ′ satisfying ∥X ′ −X∥F ≤ ϵ.

A detailed proof for Lemma 1 is presented in the appendix.
The main proof idea is based on the following key identity:

vec

(
h∑

l=1

(Pl(X)(X ′ −X)WV
l WO

l )T
)

=

(
h∑

l=1

(Pl(X)⊗ (WV
l WO

l )T)

)
vec((X ′ −X)T)

which enables us to solve (13) exactly via viewing it as a
largest singular value problem. The quantity ζ(X) is termed
as the key sensitivity metric which quantifies the local sen-
sitivity of the self-attention around the data point X due
to the error ∆1. The computation of this metric is reason-
ably scalable so that one can efficiently compute this metric
for ViT image classifiers for datasets like CIFAR-10 and
SVHN. Later, we will show that this term is the dominating
term in the bound ∆1 +∆2, and hence one should calculate
this term exactly when fine-grained sensitivity analysis is
needed.

Reducing Conservatism in Deriving δ2(X, ϵ) The best
possible bound for ∆2(X,X ′) is the solution to the follow-
ing constrained maximization problem:

maximize
X′∈Ω(X,ϵ)

∆2(X,X ′) (16)

4



Fine-grained Local Sensitivity Analysis of Standard Dot-Product Self-Attention

One can apply the projected gradient ascent method to the
above problem. However, there are no guarantees that the
resultant solution is global due to the form of the cost func-
tion. The solution from the gradient ascent method only
provides lower bound for (16). To obtain a more tractable
upper bound, it is straightforward to apply the triangle in-
equality to show that (16) can be bounded by the following
term:

h∑
l=1

(
max

X′∈Ω(X,ϵ)

∥∥(Pl(X
′)− Pl(X))

∥∥
F

· max
X′∈Ω(X,ϵ)

∥X ′WV
l WO

l ∥
) , (17)

which involve two maximization problems. Now we discuss
these two problems separately.

To address the term maxX′∈Ω(X,ϵ)∥X ′WV
l WO

l ∥, we can
apply the triangle inequality and obtain the following
tractable upper bound:

max
X′∈Ω(X,ϵ)

∥X ′WV
l WO

l ∥ ≤ ∥XWV
l WO

l ∥+ ∥WV
l WO

l ∥ϵ

(18)

The above upper bound can be efficiently calculated via
power iteration, and is less conservative than the naive
bound ∥WV

l WO
l ∥(∥X∥+ ϵ). Later, we will show that the

above upper bound is reasonable for the purpose of upper
bounding ∆1+∆2, since replacing it with the lower bounds
obtained by the projected gradient ascent method does not
affect the final overall bound value significantly.

Next, we discuss how to address

max
X′∈Ω(X,ϵ)

∥∥Pl(X
′)− Pl(X)

∥∥
F

(19)

Again, one can apply the projected gradient ascent method to
search for lower bounds for the above quantity. We are more
interested in obtaining less conservative upper bounds that
are computationally tractable. Since softmax is 1-Lipschitz,
we can show the following holds for any X:

∥Pl(X
′)− Pl(X)∥F

≤ 1√
d/h

∥X ′WQ
l (WK

l )T(X ′)T −XWQ
l (WK

l )TXT∥F

(20)

Denoting Γ = X ′ −X . If ∥X ′ −X∥F ≤ ϵ, then we have
∥Γ∥F ≤ ϵ. We immediately have

∥Pl(X
′)− Pl(X)∥F

≤ 1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT

+ ΓWQ
l (WK

l )TΓT∥F (21)

which leads to the following bound for (19):

1√
d/h

max
Γ:∥Γ∥F≤ϵ

∥ΓWQ
l (WK

l )TXT

+XWQ
l (WK

l )TΓT + ΓWQ
l (WK

l )TΓT∥F
(22)

The above problem can be searched using the projected
ascent method. However, there are no polynomial-time
guarantees in maximizing a fourth-order polynomial subject
to a quadratic norm constraint. Fortunately, when ϵ is rea-
sonably small, the following bound is not loose due to the
negligible effects of the higher-order term. We can obtain
the following bound:

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT∥F

+ max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TΓT∥F

We can easily bound the second term as

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TΓT∥F (23)

≤ ϵ2√
d/h

∥WQ
l (WK

l )T∥. (24)

In addition, the exact value of the first term can be calculated
using the following lemma.
Lemma 2. The following relation holds

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT∥F

=
1√
d/h

∥Ml(X)∥ϵ,

where Ml(X) is given by the following specific matrix

Ml(X) =In ⊗

x
T
1W

K
l (WQ

l )T

...
xT
nW

K
l (WQ

l )T


+

n∑
i=1

(ei ⊗ In)⊗ (xT
i W

Q
l (WK

l )T).

(25)

The dimension of Ml(X) can be quite high. A bound that
can be quickly computed is given by

∥Ml(X)∥ ≤ ξl(X) :=
(
∥WQ

l (WK
l )TXT∥+ ∥XWQ

l (WK
l )T∥

)
.

(26)

With this we can now state two different bound for
∆2(X,X ′). Using Equation (25), we can state the following
bound

δ
(1)
2 (X, ϵ) =

h∑
l=1

ϵ√
d/h

(
∥Ml(X)∥+ ϵ∥WQ

l (WK
l )T∥

)
·
(∥∥XWV

l WO
l

∥∥+ ϵ
∥∥WV

l WO
l

∥∥) .
(27)
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Using the relaxation of Ml(X) and Equation (26), we can
state a looser, but more tractable bound given by:

δ
(2)
2 (X, ϵ) =

h∑
l=1

ϵ√
d/h

(
ξl(X) + ϵ

∥∥WQ
l (WK

l )T
∥∥)

·
(∥∥XWV

l WO
l

∥∥+ ϵ
∥∥WV

l WO
l

∥∥) .
(28)

Obviously, we have δ
(1)
2 (X, ϵ) ≤ δ

(2)
2 (X, ϵ). Putting to-

gether all the bounds that we have obtained, we can state
the following local sensitivity result, which we will refer to
as Local Fine-grained Attention SensiTivity (LoFAST).
Theorem 1 (LoFAST). Consider the dot-product self-
attention model (6). Suppose an input point X is given.
For any X ′ satisfying ∥X ′ −X∥F ≤ ϵ, we have

∥F (X ′)− F (X)∥F ≤ ζ(X)ϵ+ δ
(1)
2 (X, ϵ)

≤ ζ(X)ϵ+ δ
(2)
2 (X, ϵ),

where ζ(X) is given by Equation (15), δ(1)2 (X, ϵ) is given
by Equation (27), and δ

(2)
2 (X, ϵ) is given by Equation (28).

The above bounds can be used to provide a competitive
method for fast scalable computation of non-trivial deter-
ministic ℓ2 certified robustness result of dot-product self-
attention on CIFAR-10 and SVHN datasets. We will show
this in the numerical result section.

Insights for Network Design. Based on the simple analyti-
cal forms of (15), (27), and (28), our bounds are highly inter-
pretable. Our theory should not suggest that weight matrices
and data with small magnitude are necessarily better for net-
work design. The right interpretation is that our bound can
be used to quantify the robustness/performance trade-off for
dot-product self-attention and achieve non-vacuous certified
robust accuracy. Importantly, Proposition 1 states that one
needs to simultaneously make the prediction margin Mf (X)
large and the local sensitivity δ(X, ϵ) small for inducing cer-
tified robustness. Based on Theorem 1, if we make ∥WQ

l ∥,
∥WK

l ∥, ∥WV
l ∥, ∥WO

l ∥, and ∥X∥ small, then our local sen-
sitivity bound is guaranteed to be small. However, using
very small matrix norm can also make the prediction margin
Mf (X) small (or even vacuous) for many data points. This
leads to a fundamental trade-off: we want to control the
matrix norms such that the local sensitivity in Theorem 1 is
not too high, while we also cannot overly reduce the matrix
norms (otherwise we sacrifice clean performance and the
prediction margin in Proposition 1 will become too small).
From this insight, it is possible to borrow the recent advance-
ments on how to constrain weight norms from the Lipschitz
network literature to design dot-product self-attention layers
with weight norm being controlled. In addition, the insight
on the need of controlling ∥X∥ further justifies the use of
layer normalization in training such attention layers.

5. Experiments
In this section, we will perform numerical experiments to
study the conservatism introduced in our fine-grained analy-
sis and how to use these local bounds in a scalable manner.
Furthermore, we will study how our analysis can be used
to inform the design of robust self-attention blocks when
applied to ViT on CIFAR-10 and SVHN datasets and ex-
plore the trade-offs between performance and robustness of
our regularized ViT. For concreteness, our experiments are
performed under the standard residual setting, i.e. H = I .

5.1. Studying Conservatism in the Local Bound

In our fine-grained local sensitivity analysis of multi-head
self-attention, each derivation step used to upper-bound
the output introduces conservatism. Of course, these steps
are important for making the local upper-bound computa-
tionally tractable and scalable. We aim to show that the
conservatism introduced by these choices does not signif-
icantly degrade the effectiveness of our approach and that
our key sensitivity metric in Lemma 1 is quite informative
for quantifying the robustness for small values of the ℓ2
input perturbation level ϵ. Recall that for the multi-head
self-attention block F , our analysis considers two major
terms, ∆1 and ∆2, in upper-bounding the local perturbed
output at an input X with respect to the Frobenius norm.
For the first term ∆1, we have already established a tight
upper-bound δ1(X, ϵ) = ζ(X)ϵ using the key sensitivity
metric, which can be readily computed by power-iterations.
Now we focus on the term ∆2.

Single-head Case: Bounding ∆2. To upper bound ∆2 in
the single-head case, we need to compute bounds for the
following two multiplicative terms.

∆2(X,X ′) ≤
∥∥P (X ′)− P (X)

∥∥
F︸ ︷︷ ︸

:=∆2,1(X,X′)

·
∥∥X ′WV WO

∥∥︸ ︷︷ ︸
:=∆2,2(X,X′)

For bounding ∆2,1, LoFAST (Theorem 1) offers us the
following two upper bounds from our fine-grained analysis:

δ
(1)
2,1 =

ϵ√
d/h

(
∥M(X)∥+ ϵ∥WQ(WK)T∥

)
δ
(2)
2,1 =

ϵ√
d/h

(
ξ(X) + ϵ

∥∥WQ(WK)T
∥∥)

where M(X) is given in (25), and ξ(X) is defined in (26).
Clearly δ

(1)
2,2 is tighter than δ

(2)
2,1 , but more expensive to com-

pute. For ∆2,2, we compare two possible bounds for the
problem defined in Equation (18); δ(1)2,2 from LoFAST, and a

more conservative naive bound δ
(2)
2,2 .

δ
(1)
2,2(X, ϵ) =

∥∥XWV WO
∥∥+ ϵ

∥∥WV WO
∥∥,

δ
(2)
2,2(X, ϵ) =

∥∥WV WO
∥∥(∥X∥+ ϵ).
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Figure 1. We compare the proposed single-head bounds for ∆2,1, ∆2,2 and the end-to-end multi-head attention bound ∥F (X ′)− F (X)∥F
across the input perturbation bound ϵ. The PGD lower bound is given by directly optimizing ∆2,1(X,X ′), ∆2,2(X,X ′) and
∥F (X ′)− F (X)∥F over X ′ ∈ Ω(X, ϵ).

To better understand the tightness of our bounds, we com-
pare these bounds against their respective lower-bound given
by directly performing PGD on maxX′∈Ω(X,ϵ) ∆2,1 and
maxX′∈Ω(X,ϵ) ∆2,2. These results can be seen in Figure 1.
It is important to note that for ∆2,1, although there seems
to be a significant gap in the PGD lower bound and our
upper bounds, the relative scale of these terms is small com-
pared to the input perturbation for small values of ϵ (the
bounds are quadratic in ϵ). For this reason, there may not
be much improvement from using the tighter bound δ

(1)
2,1 in

most cases.

Multi-head Case: End-to-End Tightness. To further
validate that ∆1 dominates the sensitivity for controlled
inputs, we compare our upper bound to the PGD lower
bound of the entire multi-head attention layer with h = 8
heads. Through our previous study, summing over the heads,
we can justify the following practical upper bound which
coincides with LoFAST.

∥F (X ′)− F (X)∥F ≤ δ(X, ϵ)

= ζ(X)ϵ+

h∑
l=1

δ
(2)
2,1,l(X, ϵ) · δ(1)2,2,l(X, ϵ).

This multi-head bound is also evaluated in Figure 1,
alongside the single-head components. To emphasize
how crucial our key sensitivity metric is for tightness,
we also compare the above multi-head bound with the
naive sensitivity bound in Equation (12). As a lower
bound, we compare against PGD which directly maximizes
maxX′∈Ω(X,ϵ)∥F (X ′)− F (X)∥F . It becomes clear that
when the spectral norm of the input X is controlled and ϵ is
small, our upper bound is tight. That is because the contribu-
tion of ∆2 is small and our bound on ∆1 is tight. However,
when the input norm of X is large, the conservative terms of
δ2,1(X, ϵ), which depend on X begin to drive the estimate
upwards and loosen our bound. We will use these insights

to design a more robust ViT to achieve non-trivial certified
accuracy on CIFAR-10 and SVHN.

5.2. Applications to Certified Robust Accuracy

Now we will apply our local analysis of the dot-product
attention unit to obtain an end-to-end local sensitivity bound
of ViT. With this local bound and the margin argument
given in Proposition 1, we can obtain non-trivial certified
robust accuracy to ℓ2-bounded attacks. Informed by our
upper bound, we can make fine-grained design choices of
ViT that trade-off performance and robustness. Here we
focus primarily on ViT image-classifiers, but broader data
modalities such as language tasks are possible. See Ap-
pendix D for an illustrative example of certified robustness
of word-embeddings for language sentiment analysis.

To achieve non-vacuous certified robustness, we need to
control local sensitivity of ViT during training. Although our
theory supports the standard dot-product self-attention unit
commonly used in ViT, the bound needs to be propagated
through other modules such as feed-forward layers and layer
normalization. We use a standard ViT architecture with
residual attention and feed-forward blocks and a patch-size
of 16. Based on our local upper bound, we can tailor the
network design to improve robustness as discussed below.

Layer Projection. Modules such as LayerNorm are
not globally Lipschitz, but can be crucial to the perfor-
mance of ViT. We instead replace LayerNorm units with
LayerProject defined by:

LayerProject(x,R) =

{
x

∥x∥2
·R if ∥x∥2 > R

x otherwise
,

(29)

where R =
√
d is set to mimic the behavior of LayerNorm.

Because projection to a closed convex set is 1-Lipschitz, we
can seamlessly propagate our upper bound and maintain

7



Fine-grained Local Sensitivity Analysis of Standard Dot-Product Self-Attention

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
A

cc
ur

ac
y

CIFAR-10

||WO
l ||, ||WV

l || 0.75

vit-16, layers=3, heads=4
vit-16, layers=3, heads=8
vit-16, layers=6, heads=4
vit-16, layers=6, heads=8

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8
||WO

l ||, ||WV
l || 0.5

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8
||WO

l ||, ||WV
l || 0.25

0.00 0.02 0.04 0.06 0.08 0.10
ε (ratio of 255)

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
A

cc
ur

ac
y

SVHN

vit-16, layers=3, heads=4
vit-16, layers=3, heads=8
vit-16, layers=6, heads=4
vit-16, layers=6, heads=8

0.00 0.02 0.04 0.06 0.08 0.10
ε (ratio of 255)

0.0

0.2

0.4

0.6

0.8

0.00 0.02 0.04 0.06 0.08 0.10
ε (ratio of 255)

0.0

0.2

0.4

0.6

0.8

Figure 2. Certified robust accuracy on CIFAR-10 and SVHN tasks using our local sensitivity bounds under many combinations of ViT
architecture parameters (number of layers, heads, and norm of weight matrices). All networks use a hidden feature dimension of 384.

the desired input scale. Additionally, LayerProject
with R = 1, is applied before each attention head so that
the spectral norm of the entire input ∥X∥ is controlled.
Consequently, our upper bound also remains controlled at
each attention unit.

Lipschitz Constrained Layers. LoFAST will depend di-
rectly on the spectral norm of the attention weight matrices
(WQ

l ,WK
l ,WV

l ,WO
l ). In order to keep the expansion of

our upper-bound through each layer low, we constrain the
norms of these weights through SDP-based Lipschitz Layer
(SLL)1 parameterizations (Araujo et al., 2023). We also
constrain all feed-forward modules and patch embedding
units to be 1-Lipshitz so that we can easily propagate our
upper bound with unit expansion through ViT. Such parame-
terizations are not uncommon. For instance, previous works
on orthogonal-ViT (Fei et al., 2022) leverage orthogonal
1-Lipschitz layers in the attention unit to improve general-
ization on smaller data sets.

ℓ2 Certified Robust Accuracy on CIFAR-10 and SVHN.
We now apply our end-to-end local upper bound using Lo-
FAST to obtain certified robust accuracy for ViT trained on
CIFAR-10 and SVHN image datasets, both being 10-class

1Semidefinite programming (SDP) has been widely used to
address the Lipschitz constant of deep learning models (Fazlyab
et al., 2019; Pauli et al., 2021; Wang et al., 2022; Wang & Manch-
ester, 2023; Pauli et al., 2024; Wang et al., 2024). SLL is one of
most scalable Lipschitz structures derived from SDP methods.

image classification tasks. We study the effect of different
ViT architecture parameters such as the number of attention
heads, number of layers, and Lipschitz constant constraint
of the attention weights. Our certified robustness results
are presented in Figure 2. In addition to 1-Lipschitz feed-
forward layers, we found it crucial to additionally constrain
the Lipschitz constant of the weights WV and WO to be a
fraction of 1. This directly affects the key sensitivity metric,
which is the largest contributing factor for our local sen-
sitivity bound on ViT. The results also show that many of
these architectural factors will introduce a trade-off between
clean accuracy and certified robustness. This is to be ex-
pected since, for example, the number of layers will cause
our upper bound to compound, but having sufficient depth
is crucial for improving clean performance.

In the extreme case of ||WO
l ||, ||WV

l || ≤ 0.25, our experi-
ment makes the point that although using a smaller norm
will decrease the sensitivity bound, it is not necessarily
preferable since such a strict regularization will cause a
loss of expressivity and sacrifice clean accuracy. It is well-
known in the certified-robustness literature (Singla et al.,
2022; Trockman & Kolter, 2021; Meunier et al., 2022; Prach
& Lampert, 2022; Araujo et al., 2023; Wang & Manchester,
2023) that there is a trade-off between deterministic ℓ2 cer-
tified robustness and the clean performance for standard
feed-forward networks or residual networks. Therefore, it
is not surprising to see a similar trade-off for ViT (notice
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Model α, β-CROWN LoFAST (Theorem 1)
ϵ = 0.02 ϵ = 0.05 ϵ = 0.1 sec/sample ϵ = 0.02 ϵ = 0.05 ϵ = 0.1 sec/sample

ViT 3-Layer 41.2 14.1 - 6.7 29.1 16.0 3.0 0.055
ViT 4-Layer 42.9 - - 13.3 28.9 11.9 0.8 0.077
ViT 5-Layer 44.7 - - 20.4 27.6 8.3 0.0 0.094

Table 1: Certified robust accuracy results and average run-time for our local bound LoFAST compared to the verifier
α, β-CROWN (Zhang et al., 2018; Wang et al., 2021) on CIFAR-10. In order to accommodate CROWN, we consider smaller
ViTs with 128-dimensional features and only verify a subset of 1000 samples from the CIFAR-10 test set.

Dataset Verifier ϵ= 0.02 ϵ= 0.05
certified acc. (%) (sec/sample) certified acc. (%) (sec/sample)

CIFAR-10 CROWN 41.99 4.33 14.35 6.06
CROWN+LoFAST 41.99 1.71 20.03 4.17

SVHN CROWN 43.73 5.68 27.45 8.60
CROWN+LoFAST 43.73 1.44 29.51 3.64

Table 2: Certified robust accuracy results and average run-time using our local bound LoFAST as a first past and then using
α, β-CROWN (Zhang et al., 2018; Wang et al., 2021) on CIFAR-10 and SVHN. We observed a significant speed up and
even increased certified accuracy for ϵ = 0.05, since there are some points which LoFAST can verify that CROWN can not
and vice-versa. In this sense, LoFAST and CROWN can be truly complementary. In order to accommodate CROWN, we
consider a smaller 3-layer ViT with 128-dimensional features and only verify a subset of 1000 samples.

that dot-product self-attention has not been covered in these
previous works). We emphasize that our certified robustness
results heavily rely on directly exploiting the residual struc-
ture in the key sensitivity metric of Lemma 1 (instead of the
naive bound) as well as using Lipschitz controlled weights.

Comparison to General Purpose Verifier α, β-CROWN.
Verifiers such as CROWN and its variants (Zhang et al.,
2018; Wang et al., 2021) have been developed and inte-
grated into the general-purpose automatic verification soft-
ware AutoLiRPA (Xu et al., 2020). AutoLiRPA supports
ℓ2 perturbation models and has in the past been used for
robustness certification of dot-product attention (Shi et al.,
2020). However, this certification tool can be computation-
ally expensive and has not been successfully scaled to large
datasets such as CIFAR. Our analysis can serve as a com-
plementary tool due to its enhanced scalability. To better
understand how LoFAST compares to AutoLiRPA in tight-
ness, scalability and speed, we analyze a set of smaller ViT
models with 128-dim. features on a subset of the CIFAR-10
dataset (compared to 384-dim features on the entire CIFAR-
10 dataset in our previous experiments). For these ViT
models trained on CIFAR-10 with layers l ∈ {3, 4, 5}, we
examine the certified robust accuracy for ℓ2 perturbation
sizes ϵ ∈ {0.02, 0.05, 0.1} and the average wall-clock time
in seconds per sample on our local machine. These results
are reported in Table 1. Due to memory limitations, we
were not able to run AutoLiRPA on ViT with 6-layers or
more. Although CROWN was able to provide tighter results
for ϵ = 0.02, we encountered overflow-related failures for

some larger perturbation values (in Table 1, these failure
entries are denoted by ‘-’). In addition, AutoLiRPA took
considerably longer time to verify samples as the number of
layers increased.

Combining LoFAST and α,β-CROWN It is possible to
combine LoFAST with AutoLiRPA to achieve the best of
both worlds. For example, we can always first apply Lo-
FAST for fast verification, and then only apply AutoLiRPA
to those samples that cannot be verified by LoFAST. The
result of this approach for Lipschitz regularized 3-layer ViT
applied to CIFAR-10 and SVHN can be found in Table 2
for perturbation sizes ϵ ∈ {0.02, 0.05}. We observed a
significant speed up (up to a 3× speed up for smaller pertur-
bations) and even increased certified accuracy for ϵ = 0.05.
This is because there are some points which LoFAST can
verify that CROWN can not and vice-versa. In this sense,
LoFAST and CROWN can be truly complementary.

6. Conclusion
This work has provided a fine-grained local sensitivity anal-
ysis of the standard dot-product self-attention mechanism.
Our local sensitivity bound is analytical and highly inter-
pretable, shedding light on design and sensitivity control of
transformers. The theoretical results presented in this paper
have been empirically validated through a comprehensive
set of experiments. These findings provide a deeper under-
standing of the sensitivity/robustness issues of the standard
dot-product self-attention models.
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Training robust neural networks using Lipschitz bounds.
IEEE Control Systems Letters, 6:121–126, 2021.

Pauli, P., Havens, A. J., Araujo, A., Garg, S., Khorrami, F.,
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A. Local sensitivity analysis vs. local Lipschitz analysis
Local Lipschitz analysis aims at showing that for any two points (X ′, X ′′) in the ϵ-ball around X , the following bound holds

∥F (X ′)− F (X ′′)∥F ≤ L∥X ′ −X ′′∥F ,

where L is the local Lipschitz constant. This is a stronger condition than our local sensitivity analysis, and may be too strong
for establishing non-trivial certified robustness results of dot-product self-attention. If one can show that the above local
Lipschitz bound holds, then clearly one can choose δ(X, ϵ) = Lϵ to obtain a local sensitivity bound. However, given our
local sensitivity bound (7), one cannot guarantee local Lipschitzness. Specifically, the local Lipschitz bound applies for
any two arbitrary points in the ϵ-neighborhood of the original input X . In contrast, our local sensitivity analysis is weaker
in the sense that the bound can only tell us the deviation of F (X ′) from a fixed F (X). However, that is still sufficient for
computing certified robustness as stated in Proposition 1. Below we show explicitly how local-Lipscshitz-based approaches
can be too conservative for computing non-trivial/practical certified robustness results.

Comparison to Existing Local-Lipschitz-based Bound in Xixu (2023). For a concrete comparison, let us examine the
local Lipschitz bound from SpecFormer (Xixu, 2023), a recent work that computes the local Lipschitz bound by bounding
the gradient of the self-attention unit. In Table 3, we compare the SpecFormer local-Lipschitz-based bound from (Xixu,
2023) (Theorem 4.3) and LoFAST to bound the error maxX′∈Ω(X,ϵ)∥F (X ′)− F (X)∥F . We can see that LoFAST is better
by an order of magnitude and very close to the PGD lower-bound. As a consequence, SpecFormer is too conservative to
achieve non-vacuous certified robust accuracy on CIFAR-10. Our key sensitivity metric (Lemma 1) is novel and crucial for
obtaining non-vacuous certified robustness results on CIFAR-10 and SVHN.

Method ϵ = 0.01 ϵ = 0.03 ϵ = 0.05 ϵ = 0.07 ϵ = 0.09 ϵ = 0.10
PGD Lower-bound 0.0286 0.0860 0.1427 0.2008 0.2582 0.2860

LoFAST Upper-bound (ours) 0.0291 0.0875 0.1462 0.2052 0.2646 0.2943
SpecFormer Upper-bound (Xixu, 2023) 16.901 52.515 90.600 131.219 174.436 197.036

Table 3: We compare our approach LoFAST against the SpecFormer method based on a local-Lipschitz bound (Xixu, 2023).
We report the upper-bound maxX′∈Ω(X,ϵ)∥F (X ′)− F (X)∥F for a single residual multi-head attention layer.

B. Detailed Derivations and Proofs
B.1. Proof of Proposition 1

Let X be an input and suppose that the margin of the classifier F at X satisfies Mf (X) >
√
2δ(X, ϵ). Then for any

∥τ∥2 ≤ ϵ we have:

Mf (X + τ) =[F (X + τ)]y −max
j ̸=y

[F (X + τ)]j

=[F (X)]y −max
j ̸=y

[F (X)]j − ([F (X)]y − [F (X + τ)]y) + (max
j ̸=y

[F (X)]j −max
j ̸=y

[F (X + τ)]j)

=[F (X)]y −max
j ̸=y

[F (X)]k −
[
1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

]
≥[F (X)]y −max

j ̸=y
[F (X)]j −

∣∣∣ [ 1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

] ∣∣∣
≥[F (X)]y −max

j ̸=y
[F (X)]j −

∥∥∥ [ 1
−1

] ∥∥∥
2
∥F (X)− F (X + τ)∥2

≥Mf (X)−
√
2δ(X, ϵ) > 0

Therefore, argmaxj [F (X + τ)]j = y for all τ such that ∥τ∥2 ≤ ϵ. This completes the proof.
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B.2. A Detailed Derivation of (12)

By the triangle inequality, we have

∆1 ≤ ∥H∥+
h∑

l=1

∥Pl(X)(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥X ′ −X∥F ∥WV
l WO

l ∥,

which gives the stated bound.

B.3. Proof of Lemma 1

First, we observe that

∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F
=
∥∥(X ′ −X)THT +

h∑
l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T
∥∥
F

Since (A⊗B) vec(V ) = vec(BV AT), we must have

vec

(
(X ′ −X)THT +

h∑
l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T

)

=

(
(H ⊗ In) +

h∑
l=1

Pl(X)⊗ (WV
l WO

l )T

)
vec((X ′ −X)T).

Therefore, we are minimizing the ℓ2 norm of the right side of the above equation subject to an ℓ2 norm constraint
on vec((X ′ − X)T). Therefore, the maximum value is achieved by the product of the largest singular value of(
(H ⊗ In) +

∑h
l=1 Pl(X)⊗ (WV

l WO
l )T

)
and ϵ.

B.4. Proof of Lemma 2

To prove this lemma, we denote Γi = x′
i − xi ∈ Rd. Set βij = ΓT

i W
Q(WK)Txj + xT

i W
Q(WK)TΓj . We can augment

{βij} as the following big vector:

Λ =



β11

β12

...
β1n

β21

β22

...
βn1

...
βnn



= M(X)


Γ1

Γ2

...
Γn
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where M(X) is given by the following specific matrix

M(x)

=



xT
1 (W

K(WQ)T +WQ(WK)T) 0 0 · · · 0
xT
2W

K(WQ)T xT
1W

Q(WK)T 0 · · · 0
xT
3W

K(WQ)T 0 xT
1W

Q(WK)T · · · 0
...

...
...

...
...

xT
nW

K(WQ)T 0 0 · · · xT
1W

Q(WK)T

...
...

...
...

...


=In ⊗

x
T
1W

K(WQ)T

...
xT
nW

K(WQ)T

+

n∑
i=1

(ei ⊗ In)⊗ (xT
i W

Q(WK)T).

Based on the above largest singular value interpretation, we can obtain the desired conclusion.

B.5. Proof of Theorem 1

We can combine Lemma 1, the bound (17), the bound (23), and Lemma 2 together, and the resultant bound is the desired
one stated in this theorem.

C. Additional Experiments on Image Classification Tasks
Ablation Study of Attention Weights. In this section, we study more closely the effects of each parameter in the
multi-head attention map on our bound in Theorem 1. To do this, we consider the weights (WQ,WK ,WV ,WO) from the
first layer of a ViT trained on CIFAR-10 and a normalized input X (as the input undergoes projection prior to each attention
layer in our architecture). We then perturb each element while keeping the others fixed, observing how our upper bound
in Theorem 1 is affected with increasing parameter perturbation size. For the experiment, we fix ε = 0.1. A total of 10
samples are taken for each weight and each perturbation size. The results are presented in Figure 3. Based on this study, we
can observe that the weights WV , WO and X account for much of the sensitivity of our bound, therefore, controlling the
norm of these weights and the input is crucial to control our bound.
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Figure 3. We perform an ablation on the weight and input and its effect on the derived local upper-bound of Theorem 1. Perturbations are
applied to a trained set of self-attention weights and input (WQ,WK ,WV ,WO, X), perturbing one element of the tuple at a time. A
total of 10 samples are taken for each parameter and each weight/input perturbation size. We set ε = 0.1 for all samples.

Input Norm and Tightness of Our Bounds. To study the effect of the input norm size and how it affects the tightness of
our bound, we perform an extended study similar to the one in Figure 1 for several input norm scales. In this study, we are
looking at the first residual self-attention layer of a pretrained ViT with 8 heads and evaluating all proposed bounds discussed
in section 5.1. Our results are presented in Figure 4. We find that the bounds suggested in our paper remain tight as long as
the input norm is not too large. For large inputs values, our bound eventually loses some effectiveness. This further justifies
why we should perform pre-layer projection if one desires to maintain non-trivial robustness using our proposed bound.
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Figure 4. We repeat the conservatism study of our bound in Figure 1 with different input norms, to study the how this affects the tightness
of our bound for a single multi-head attention layer.
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D. Applications to Sentiment Analysis: Word Embedding Robustness
In order to broaden the application domains of our theory, we also apply our local sensitivity bounds to a sentiment analysis
task, where Transformer architectures are commonly utilized (Kenton & Toutanova, 2019). In this section, we provide a
robustness study on the Stanford Sentiment Tree-bank (SST) dataset (Socher et al., 2013) using transformers based on the
BERT architecture (Kenton & Toutanova, 2019). We are using the version of SST that classifies sentences into two classes
which indicate a positive or negative sentiment.

As in previous works (Wang et al., 2020; Zhu et al., 2019; Li & Qiu, 2020; Xu et al., 2023), we reason about ℓ2 bounded
adversarially perturbations on the word embedding space, as it is not easy to formulate perturbations on the tokens
themselves using ℓ2 perturbations. We must point out that this is a common limitation of applying sensitivity analysis to
NLP benchmarks, as already noted in other works (Hou et al., 2022). The certified robustness radii we obtained measured in
the ℓ2 norm are similar to those in prior work without using dot-product attention (Xu et al., 2023). The results show that our
sensitivity analysis bounds are indeed non-vacuous. Future study is needed to address the perturbations on the token space.

Experiment Setup for SST Sentiment Data-set Similarly to Section 5.2, we will examine the certified robust accuracy
of several architectures and choices of weight norm restrictions. As mentioned before, we consider perturbations applied
directly to word embeddings. In this case, ϵ describes the radius of the raw perturbation, rather a ratio of the pixel value in
our vision task. The self-attention architecture designs are identical to the ones used for ViT, except we consider a embedding
dimension of d = 64 and 32 tokens per input (i.e. X ∈ R32×64). We consider combinations of self-attention units with
layers in {3, 6} and number of heads in {4, 8}. Additionally, we train each architecture constraining the output attention
weights {WV ,WO} to have spectral norm in {0.25, 0.5, 0.75} using the same SLL layer. The results are presented below
in Figure 5. In this case, we see that adding regularity does not necessarily decrease clean accuracy because the task is rather
simple. By controlling the bound sufficiently, we can even sustain good robust accuracy while applying more layers (see the
right-most panel in Figure 5).
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Figure 5. Certified robust accuracy on the SST using our local sensitivity bounds under many combinations of small BERT architecture
parameters (number of layers, heads, and norm of weight matrices).
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