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ABSTRACT

Diffusion guidance pertains to the use of conditional diffusion under specific con-
straints, such as class labels or textual inputs. There are primarily two method-
ologies: Classifier Guidance leverages a pre-trained classifier to guide generation
towards the condition, while Classifier-Free Guidance achieves implicit guidance
without any classifier but by entering the condition during training. Both ap-
proaches employ a weighting parameter ! that determines the trade-off between
sample fidelity (unconditional diffusion) and conditional adherence. In this paper,
we posit that such conflict between image quality and condition arises, in part, due
to misclassification and conflicted gradients from the explicit or implicit classifier,
especially when the noise is high i.e., at the first stages of generation. To address
this, we introduce a progressive weighting scheme, called Progressive-Guidance,
where we make the weight of the guidance term dependent on the timestep. We
propose two-time dependent weighting schemes: a simple heuristic, and a more
precise gradient-norm-based method. Progressive-Guidance can be implemented
without retraining the model and with only a few additional lines of code. We re-
port enhanced performance in benchmark metrics on three tasks: class-conditional
image generation, text-to-image generation, and text-to-motion generation.

Figure 1: Our proposed progressive guidance schedules improve the sampling of diffusion models.
(left) When sampling with a constant scheduler, the resulting images are similar (low diversity).
On the contrary, when we adopt either (middle) a heuristic cosine scheduler guidance or (right) a
grad-norm based once, we observe diversity in style, colors and backgrounds. Prompt: “A colorful
cartoon of William Shakespeare philosophically looking at a jack-o-lantern in his hand”.

1 INTRODUCTION

Diffusion models are a large family of generative models, demonstrating prominent generative capa-
bilities in terms of output quality and conditioning flexibility. They are trained to transform a simple
distribution, typically Gaussian, to a complex data distribution through the progressive removal of
noise, leading to impressive generations across various domains e.g. images Ho & Salimans (2022),
videos Luo et al. (2023), acoustic signals Kang et al. (2022), or even 3D avatars Chen et al. (2023).
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Conditional generation (e.g. text-conditioned image generation) with diffusion models has been
explored in numerous works (Saharia et al., 2022; Ruiz et al., 2023; Balaji et al., 2022), and is
achieved in its simplest form by adding an extra input to the model, typically with residual con-
nections as in Nichol & Dhariwal (2021). To enforce condition reliance of the model, classifier
guidance (Dhariwal & Nichol, 2021) was proposed where the gradients of a separately trained,
noise-dependent image classifier are linearly combined with those of a diffusion model. Alterna-
tively, Ho & Salimans (2021) introduce a discrepancy mechanism between the conditional and the
unconditional output of a previously trained diffusion model to better highlight the reliance on the
condition, without the need for an external classifier. In both cases, a weighting parameter ! is intro-
duced to control the weight of the generative term versus the guidance term and is directly applied
to all timesteps via scalar multiplication. Varying ! is a trade-off between fidelity and condition
reliance, as an increase in condition reliance often results in a decline in fidelity and also diversity.

In practice, combining such weighting mechanisms with the diffusion objective leads to some flaws
during generation. For instance, (Dinh et al., 2023) highlight the presence of conflicting gradients
between generation and guidance terms, especially during the early inference stages, and introduce
a gradient correction approach to counteract this. From the perspective of diffusion for classifica-
tion, Li et al. (2023) reveal a timestep discrepancy with respect to performance, i.e. using initial
timesteps for classification results in a lower accuracy compared to intermediary timesteps. Choi
et al. (2022) propose an empirically parameterized curve to allocate a higher training loss weight
at certain timesteps to achieve more appealing results. Chang et al. (2023) notice that increasing
the guidance scale linearly and replacing the unconditional term with a Negative Prompt enhances
diversity. Yet, their changes were empirical without deep exploration or thorough evaluation. With a
similar observation, Gao et al. (2023) create a parameterized power-cosine-like curve and optimize
a dedicated parameter for their own dataset and method.

Despite the empirical solutions, no work provides a thorough or systematic investigation of the dif-
fusion guidance behaviour at different timesteps. To bridge this gap, in this paper we delve into
diffusion guidance behaviour and systematically examine how the condition influences the gener-
ation process. Our findings suggest that the influence of the condition is not uniformly distributed
across all timesteps. Rather, certain timesteps are more critical in shaping the diffusion guidance.

We hypothesize that the influence of the condition at different timesteps represents the conflict be-
tween generation and guidance terms (Dinh et al., 2023). By addressing this, we can improve the
well-known balance between diversity, fidelity, and condition reliance. Specifically, we introduce
a progressive guidance mechanism where the values of ! are dependent on the timestep, and pro-
pose two solutions: heuristics-based guidance (cosine and linear) and computational, gradient-based
guidance. We examine their impact on various tasks, including class-conditioned image, text-to-
image, and text-to-motion generation. Our results corroborate our hypothesis (see Figure 1) and
show that our proposed progressive weighting schemes consistently outperform the static baseline
in terms of fidelity, diversity, and condition adherence. Since the proposed methods are low-cost and
do not require training, they can be easily integrated into various diffusion guidance applications.

2 BACKGROUND

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) are a family
of generative models that aim to convert noise into a target data distribution. Following DDPM (Ho
et al., 2020), diffusion consists in training a network ✏✓ to denoise a noisy input to recover the
original data at different noise levels, driven by a noise scheduler. The goal is to recover x0, the
original datapoint from xt=

p
�(t)x0+

p
1��(t)✏, where �(t)2[0, 1] is a monotonically decreasing

noise scheduler function of the timestep t and applied to a standard Gaussian noise ✏ ⇠ N (0, 1).
In practice, Ho et al. (2020) observed that predicting the added noise instead of x0 yielded better
performance. ✏✓ is then trained with the following loss based on the target data distribution pdata:

Lsimple = Ex0⇠pdata,✏⇠N (0,1),t⇠U [0,1] [k✏✓(xt)� ✏k] . (1)

Once the network is trained, we can sample from pdata by setting xT=✏ ⇠ N (0, 1) (with �(T )=0),
and gradually denoising to reach the data point x0⇠pdata with different types of samplers e.g.,
DDPM (Ho et al., 2020) or DDIM (Song et al., 2020a).
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Figure 2: Two-Gaussians Example. We employ DDPM with CFG to fit two Gaussian distributions,
a bright one (red) and a darker one (blue). The middle panel showcases samples of generation tra-
jectories at different guidance scales !, using PCA visualization. Increasing guidance scale ! raises
two issues: repeated trajectory: when !=50 the generation diverges from its expected direction
before converging again, and shaky motion: when !=100 some trajectories wander aimlessly.

The diffusion task can also be seen from a score-matching perspective as the noise is proportional to
the score of the perturbed data distribution (Song et al., 2020b) ✏✓(xt)/rxt log p(xt). To leverage
the condition c and sample instead from p(xt|c), Dhariwal & Nichol (2021) use a pretrained clas-
sifier pµ(c|xt), forming rxt log p(xt|c) = rxt log p(xt)+rxt log p(c|xt) according to Bayes rule,
with a scalar !>0, which allows to control the amount of guidance added to the sampling. This
yields the classifier guidance equation:

✏̂✓(xt, c) = ✏✓(xt) + (! + 1)rxt log pµ(c|xt) . (2)
However, this requires training a classifier on noisy versions of the data, which can be cumber-
some and impractical for novel classes. For this reason, with an implicit classifier from Bayes
rulerxt log p(c|xt)=rxt log p(xt, c)�rxt log p(xt), Ho & Salimans (2022) propose to train a dif-
fusion network on the joint distribution of data and condition by replacing ✏✓(xt) with ✏✓(xt, c)
in Eq. 1. By dropping the condition during training, they employ a single network for both
rxt log p(xt, c) and rxt log p(xt). This gives the classifier-free guidance, also controlled by !:

✏̂✓(xt, c) = ✏✓(xt, c) + ! (✏✓(xt, c)� ✏✓(xt)) . (3)
We can reformulate the above two equations into two terms: a generation term
✏✓(xt)/rxt log p(xt) and a guidance termrxt log p(c|xt). The guidance term can be derived either
from a pre-trained classifier or an implicit one, with ! balancing between generation and guidance.

3 GUIDANCE: PITFALLS AND CONCERNS

Here, we investigate the process of diffusion guidance. To this end, we first train a diffusion model
on a synthetic dataset of 50, 000 images (32 ⇥ 32) from two distinct Gaussian distributions: one
sampled with low values of intensity (dark noisy images in the bottom-left of Figure 2), and the other
with high-intensities (bright noisy images). The left-top of Figure 2 shows the PCA (Kambhatla &
Leen, 1997)-visualised distribution of the two sets, and the left-bottom part shows some ground-truth
images. To fit these two labeled distributions, we employ DDPM (Ho et al., 2020) with classifier-free
guidance (Ho & Salimans, 2022) conditioned on intensity labels.

Upon completion of the training, we can adjust the guidance scale ! to balance between the sample
fidelity and condition adherence, illustrated in the right part of Figure 2. The first row depicts the
variations in generated distributions on different ! (from 0 to 100), visualized by the same PCA
parameters. The second row shows the entire diffusion trajectory for sampled data points (same
seeds across different !): progressing from a random sample (i.e., standard Gaussian) when t = T
to the generated data (blue or red in Figure 2) when t = 0.

Emerging issues and explainable factors. As the guidance scale increases, the resulting distribu-
tions of the two labels increasingly diverge. This is expected due to the increasing guidance term
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in Eq. 3 dragging the generation away from the different labels. This separation often comes at the
cost of fidelity, leading to distortions in the shape of the generated results (see Figure 2 first row).
Additionally, as depicted in the second row of Figure 2, two main issues arise here: (i) repeated tra-
jectories that initially diverge from their expected convergence path before redirecting towards the
correct direction (see Figure 2 when w = 50); and (ii) highly shaky motions that wander aimlessly
along the trajectory, which is more pronounced at scale 100.

These two issues can be attributed to two possible factors: (1) incorrect classification prediction, and
(2) an initial gradient direction received from the guidance term that may conflict with the generation
term, i.e., the force that brings the process towards the two Gaussian distributions.

Addressing the former factor (optimal guidance generation) requires a flawless classifier, whether ex-
plicit as in guided diffusion, or implicit as in classifier-free guidance. However, discerning between
two highly noisy data, e.g. when the timestep approaches T , is a very challenging classification task
unlikely to perform perfectly. Consequently, incorrect classification will inevitably steer the gener-
ation towards the wrong direction, thus generating shaky trajectories (see ! = 100 in Figure 2). A
similar observation is reported by Li et al. (2023), where the implicit classifier within the classifier-
free guidance diffusion framework is analyzed. One of their findings reveals that relying solely on
single steps for label prediction yields low accuracy at larger timesteps (i.e., noisier images).

Regarding the latter factor (conflicting gradients), Figure 2 provides a visual clue by comparing the
scale between 50 and 0. The trajectories exhibit translational moves at the initial stage due to the
strong force of the classifier, which wishes to increase the distance between different classes, as
a discriminative model does. Consequently, this trajectory inversely progresses in a U-turn before
gravitating towards the convergence region (repeated trajectory in Figure 2). We argue that these
anomalies arise from the conflict between the guidance term and the generation term in Eq. 3. This
is in line with (Dinh et al., 2023), which also reports similar gradient direction conflicts within the
classifier guidance paradigm between the classification term and other terms.

Both issues point to the same flaw in diffusion guidance: in the initial stages of the generation, the
guidance term does not necessarily steer the generation optimally, and may even impede genera-
tion performance. Our hypothesis is that such erratic behavior could be a contributing factor to the
well-known performance dichotomy between fidelity and condition adherence for diffusion guid-
ance (Ho & Salimans, 2022; Dhariwal & Nichol, 2021). Specifically, misdirected trajectories might
culminate in regions of the uncharted area during training, thereby affecting generation performance.

4 PROGRESSIVE WEIGHTING SCHEMES

In this work, we introduce Progressive-Guidance, a simple yet efficient method to address the two
aforementioned issues during guidance, where the generation may suffer a longer and noisier tra-
jectory. A direct and intuitive remedy is to adopt a progressive guidance scale !(t), as opposed
to the original static one ! (Ho & Salimans, 2022; Dhariwal & Nichol, 2021). This progres-
sive scale is moderated during generation, when t ! T , and progressively amplified as t ap-
proaches 0. Therefore, the generation process of classifier-free guidance becomes: ✏̂✓(xt, c) =
✏✓(xt, c) + !(t) (✏✓(xt, c)� ✏✓(xt)). To achieve !(t), we propose two strategies: a heuristic one
(Section 4.1) and a computational gradient-based one (Section 4.2).

4.1 HEURISTIC APPROACH

Our goal is to design a guidance weighting scheme that attenuates the influence of guidance in the
initial stages to avoid repeated trajectories and shaky motions, and amplifies it in the later stages
when the guidance term is more trustworthy. To this end, we get inspired by the parameterized
power-cosine-like curve introduced in (Gao et al., 2023)1 and instead propose a more generic, simple
and systematic form. Specifically, we introduce two heuristic functions for progressive weighting:
linear !(t)=(1�t/T ) and cosine !(t)=cos(⇡t/T )+1, where T is the maximum diffusion timestep.

To integrate !(t) into the generation at a given static guidance scale value, we standardize !(t) to
conserve the overall energy of the progressive weights, making it equal to the static scale ! in Eq. 3:

1For comparison against (Gao et al., 2023) see Appendix A.7.
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Figure 3: Proof of Concept. Our proposed linear and gradient-based progressive weighting scheme
effectively minimize the aforementioned issues during the generation and reduce the repeated trajec-
tories and temper the shaky motion. Zoomed comparison at left panel shows two single generation
trajectories. The progressive curves are illustrated at right panel.

R T
0 !(t)dt=!T . This standardization ensures that static and progressive guidance scales yield sim-

ilar condition controls during generation, and lower the influence from the shape of the curve. With
the linear function, the standardized guidance scale is: !(t)=2(1�t/T )!, where ! retains similar
significance as in the static guidance; with cosine, it remains the same as

R T
0 cos(⇡t/T )+1dt=T .

4.2 COMPUTATIONAL APPROACH

Computing the optimal weighting curve could be cast as an optimization problem, seeking for the
best curve shape that maximizes metrics such as FID or Inception Score. This, however, is in-
tractable because it would require simultaneous optimization over all steps and for a large set of
images. Alternatively, we introduce a novel perspective that exploits gradient information. We dis-
cover that the gradient response of the condition offers insights for crafting an efficient progressive
weighting curve. This gradient-driven method demands less computation than full optimization; yet
it excels over heuristic approaches and adapts to varying architectures and datasets.

Gradient norm on condition. Let us look at the norm of the gradient from Eq. 2:
rc✏̂✓ (xt, c) = rcrxt log p(c|xt) = rc✏✓ (xt, c) . (4)

The norm of this gradient g(t, c) = krc✏✓ (xt, c)k illustrates the influence of the condition c on
the generation of ✏ (xt, c) at timestep t. If the value of ✏ (xt, c) remains consistent across c values
(i.e., the gradient is zero), it might indicate that the condition does not significantly influences the
generation process at this timestep, thus implying a less reliable classifier p (c | xt). Importantly,
g(t, c) is readily derivable from the L1 training loss by its expectation:

g(t, c) = Et[krc k✏ (xt, c)� ✏k1k] . (5)

Cumulative gradient norm. Given the sequential nature of the diffusion generation process (Ho
et al., 2020), we opt to accumulate the independently measured presence g(t) of each condition’s in-
formation from the beginning to the end, resulting in its cumulative function G(t, c) =

PT
i=t g(i, c).

From this viewpoint, the linear heuristic curve can be interpreted as a naive assumption that the con-
dition is uniformly influential across all timesteps, and the cosine corresponds to a sine shape curve
centered at the mid-point of the timestep. We hence leverage our gradient-based computational
progressive weighting G(t, c) as a direct substitute for !(t). Unlike the heuristic functions, this
progressive weighting not only improves the fidelity and diversity (Section 5) but also eases appli-
cability across diverse diffusion methods, datasets, and even schedulers. In practice, G(t, c) can be
measured by the gradient norm of the condition variable w.r.t. the L1 loss during a training-like
stage, named probing, which can be executed during or post-training in only a few epochs.

Class-dependent weighting. During probing, we can compute the class-dependent weighting
G(t, c), recording the gradnorm with class label or the class-independent weighting by averaging
classes G(t) =

P
c(G(t, c))/C where C is the number of labels. Note that the class-dependent one

may not be tractable for some tasks (e.g., text-to-image generation), due to the embedding form of
the condition being not countable, or in datasets such as CIN-256 which contain 1000 labels, where
probing the gradient on each label would require prohibitively expensive computational time.
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Figure 4: Standardized gradient on condition g(t) and its cumulative function G(t) curves computed
from CIFAR10-DDPM (Ho et al., 2020), CIN256-LDM (Rombach et al., 2022) and SDv1.5 (Rom-
bach et al., 2022), Wuerstchen (Pernias et al., 2023), and MLD (Chen et al., 2023) architectures
separately (before and after smoothing), compared with linear, cosine and static weighting schemes.

Proof of concept. We assess our progressive methods using the two-Gaussians example in Figure 3.
Relative to static weighting, the linear and gradient-based approaches notably diminish repeated
trajectories and stabilize the motion. The left image in Figure 3 compares two deterministic samples
from each label, with the gradient-based method producing the smoothest trajectories.

On the right panel, we show the standardized gradient-based curve G(t) compared to linear and
static ones. We clearly observe that the proposed gradient-based method focuses more on the later
stage. Additionally, we evaluate all methods on several datasets and tasks (see Section 5 for dataset
details) and illustrate their standardized gradient on g(t) in Figure 4. We observe that the influence
of the condition is weak at the initial stage (t!T ) due to the high level of noise, and then it gradually
increases, peaking around the intermediary stages. Notably, the peak varies for different datasets and
architectures. When t!0, the influence of the condition reduces as the data’s principal information
has been reconstructed. The final denoising steps offer refinement and clean-up, as also observed
in P2-Weighting (Choi et al., 2022) and min-SNR (Hang et al., 2023). Ablations on all progressive
weighting, including a negative perturbation experiment, can be found in Appendix A.1.

5 EXPERIMENTS

We experiment on three tasks: (i) class-conditioned generation (Section 5.1); (ii) text-conditional
image generation (Section 5.2); and text-to-motion generation (Section 5.3). (Ablation in Ap-
pendix A.1). We compare the baseline (static) weighting scheme against the proposed Progressive-
Guidance methods: heuristics linear and cosine, and gradient-based gn and gn-all. Specifically, gn
averages the gradient norm of all labels to create G(t), while gn-all is label-dependent (G(t,c)), i.e.
the weighting is applied separately for each label. We illustrate each method with a color: blue for
baseline, orange for linear, green for cosine, red for gn and purple for gn-all.

5.1 CLASS-CONDITIONAL IMAGE GENERATION

Datasets and Metrics. Two datasets are involved: CIFAR-10 (Krizhevsky, 2009) comprises 60, 000
images, each of resolution 32⇥ 32, distributed across 10 classes; ImageNet (CIN)-256 (Deng et al.,
2009) comprises 1.2M images of resolution 256⇥ 256 with 1, 000 labels.
For evaluation, we compute the FID (Fréchet inception distance) vs. IS (Inception Score) for a
generated sample set of 50, 000 images, contrasting against the validation set of each dataset.

Models. For CIFAR-10, we employ the DDPM (Ho et al., 2020) framework, which denoises di-
rectly in the image domain. Inference employs the DDIM (Song et al., 2020a) framework with 200
timesteps. For CIN-256, we use the Latent Diffusion Model (LDM) (Rombach et al., 2022), where
diffusion is conducted within a pre-trained VAE space. Inference leverages a 50-step DDIM process
with a public checkpoint of official implementation reporting FID of 3.62.

Results and analysis. Figure 5a and Figure 5c depicts the FID vs. IS curves for both datasets (de-
tailed results in Tables 2-3 in Appendix). We make the following observations: (1) All progressive

2https://github.com/CompVis/latent-diffusion
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Figure 5: Trade-offs observed in (a) CIFAR10, (b) SDv1.5, (c) CIN256, (d) Wuerstchen, and (e)
Motion Latent Diffusion (MLD). We observe that our progressive weighting schemes (linear, cosine,
and gradient-based methods gn and gn-all) consistently outperform the baseline static weighting
scheme (blue) across all experimental setups in terms of FID, especially when the guidance scale is
strong. In terms of diversity, as demonstrated in (b) with SD-v1.5, all progressive methods showcase
enhanced diversity corresponding to a particular guidance level (as indicated by the CLIP-Score).

methods outperform the baseline on both codebases (DDPM or LDM) and datasets. (2) Among
progressive methods, gradient-based methods result in the best performance, followed by the cosine
and then the linear one. (3) The gain from using information from all labels (i.e., gn-all) is relatively
marginal against averaged gn (see Table 2, FID 2.774 vs. 2.764). (4) Due to our standardization
process (see Section 4.2), the optimal guidance scale remains close to the baseline across different
shapes of progressive weighting curve, indicating a similar semantic meaning to the static one.

5.2 TEXT-TO-IMAGE GENERATION

Dataset and Metrics. The training dataset is LAION (Schuhmann et al., 2022), which contains 5B
high-quality images with paired textual descriptions. For evaluation, we use the smaller COCO (Lin
et al., 2014) validation dataset, which contains 30, 000 text-image paired data.

We use three metrics: (i) FID to examine the fidelity of generated images; (ii) CLIP-Score (CS) (Rad-
ford et al., 2021) to assess the alignments between the generated images and their corresponding text
prompts; (iii) Diversity (Div) to measure the model’s capacity to yield varied content. For this, we
compute the standard deviation of image embeddings via Dino-v2 (Oquab et al., 2023) from multi-
ple generations of the same prompt (Discussion for DINO-v2, CLIP embeddings in Appendix A.3).
We compute FID and CS for a sample set of 10, 000 images against the COCO dataset in a zero-shot
fashion (Rombach et al., 2022; Saharia et al., 2022). For diversity, we resort to two text description
subsets from COCO: one with the 1000 longest captions and another with the 1000 shortest captions
(labelled as -L and -S in Figure 5b). These represent varying descriptiveness levels; longer captions
inherently provide more specific conditions than shorter ones, presumably leading to less diversity.
We produce 10 images for each prompt using varied sampling noise.

Model. We use the following models: (1) Stable Diffusion (SD) (Rombach et al., 2022), which uses
the CLIP (Radford et al., 2021) text encoder to transform textual inputs into embeddings. We use the
public checkpoint of SD v1.5 3 and employ DDIM sampler with 50 steps. (2) Wuerstchen (Pernias

3https://huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 6: Qualitative Results. Comparison of generated results with SD and Wuerstchen.

et al., 2023), which trains text-conditional models by compressing the text-conditional stage into a
latent space, achieving comparable results to SD with cheaper computational cost 4.

Results and analysis. We display the FID vs. CS curves in Figure 5b for Stable Diffusion, and
Figure 5d for Wuerstchen (see Appendix A.4 for a full detailed table). Here, we expect an optimal
balance between a high CS and a low FID (right-down corner of the graph). Left panel in Figure 5b
shows the results of SD, and we can see that all proposed methods (heuristics and gradient-based)
perform overall similarly, and lead to better performance than the baseline. However, gradient-based
gn presents marginally superior results than the linear and cosine heuristics, whereas linear recorded
lower FID than the rest. The baseline regresses FID fast when CS is high, but generates the best FID
when CS is low, i.e., low condition level. Figure 5d shows results for Wuerstchen. We observe that
with progressive guidance, both gradient-based and linear methods can reach higher CLIP scores
on Wuerstchen than the baseline static guidance, while not compromising too much on FID. This is
not the case for the baseline method, which retraces CLIP score and results in much worse FID.
The results of Div vs. CS on different guidance scales for Stable Diffusion are illustrated in the
right panel of Figure 5b. Our findings reveal that: (i) as hypothesized, longer captions indeed
exhibit reduced diversity compared to shorter ones; (ii) for a given CS, the gradient-based and cosine
methods consistently lead to superior diversity than the linear one. Finally, all proposed Progressive-
Guidance methods outperform the baseline across both subsets and different guidance scales.

Qualitative results. Figure 6 depicts two sets of generations from SDv1.5 and Wuerstchen with
!=10 for all images. We observe that progressive weighting enhances the diversity of outputs
in terms of composition, color palette, style and image quality by refining shades and enriching
textures. Notably, some baseline samples overlook textual cues, e.g., in front of a bottle for SD1.5,
while our methods capture these nuances correctly. We observe that the heuristic and gradient-
based methods perform visually similarly, where the latter generates more photorealistic images
with emphasis on fine-grained details, such as the shading of crowds, the background of the vase
and the petals of flowers. (More results in Appendix A.5)

User study. To perceptually verify the effectiveness of our methods, we performed a user study. We
present users with a pair of mosaics of 9 generated images each and ask them to vote for the best
in terms of realism, diversity and text-image alignment. Each pair compares baseline generations
against either linear, cosine or gradient-based ones. For Stable Diffusion, as shown in Figure 9, our
results reveal that over 60% of users consider our generated images more realistic and better aligned

4In our experiments, we use the public checkpoint https://github.com/dome272/Wuerstchen
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with the text prompt, while approximately 80% find our generations more diverse. Similarly for the
Wuerstchen model (Figure 10), more than 60% of users favored the realism and congruence with
the text of our generated images. Nevertheless, an equal proportion of users expressed a preference
for the text alignment presented by the baseline model. We postulate that this divergence in opinion
may arise from our results being overly diverse and inconsistent, potentially obscuring the inherent
semantic nuances embedded within the images. This corroborates our findings that static weighting
is perceptually inferior to progressive weightings. More details in Appendix A.4.1.

5.3 TEXT-TO-MOTION GENERATION

Dataset and Metrics. We use data from the widely-adopted HumanML3D (Guo et al., 2022), which
assigns 44,970 textual descriptions to a subset of 14,616 motions from the AMASS (Mahmood et al.,
2019) dataset. We use three metrics: (i) FID to measure the fidelity of generations; (ii) Multi-Modal
Distance (MMDist) to assess the alignment between the text and motion; (iii) MultiModality to
assess the ability to generate varied motions under the same conditioning signal. The goal is to
achieve low FID and MMdist, and high MultiModality.

Model. We use the diffusion-based Motion-Latent-Diffusion model (MLD) 5 trained with CFG as
the base model. MLD operates on the latent space of a motion VAE.

Results and analysis. Similar to Section 5.1 and following generative animation works (Zhang
et al., 2023; Tevet et al., 2023), we compare in Figure 5e MMDist with FID and generation diver-
sity (MultiModality in animation). W.r.t. MMDist vs. FID, we observe that the proposed methods
outperform the baseline by reaching closer to the down-right optimal region. Notably, the baseline
obtains the lowest value for MMDist, yet sacrifices on FID. We also note that the cosine heuristic
marginally outperforms all proposed methods. For MMDist vs. MultiModality, all approaches per-
form similarly, probably because of the dataset’s small size and limited motion diversity relative to
image variety. The similarities in diversity across all methods can be attributed to the small size and
limited variation inherent in the animation dataset. Overall, our findings suggest that our progressive
weighting methods enhance the balance between FID and MMDist without requiring retraining.

6 DISCUSSION

In this work, we delved into the effect of classifier-free guidance throughout the denoising process
and found that using a constant guidance weight leads to conflicting trajectories. To solve this,
we proposed general, low-cost and effective progressive weighting schemes to mitigate the conflict
among generation quality, condition adherence, and diversity. We showed that the heuristic weight-
ing schemes (cosine and linear) result in improved overall performance for fidelity, image quality
and diversity compared to a static weighting scheme. These heuristics serve as ready-to-integrate
modules complementing the diffusion generation process for a wide range of diffusion models and
are directly applicable even after a model is trained. Additionally, we introduced a computational
approach based on the condition gradient norm g(t) and showed that it also leads to performance
gains. This indicates that g(t) provides informative insights on the reliance on the condition dur-
ing denoising timestep t. Thus, we hypothesize that it can serve as a tool for downstream tasks of
conditional DDPMs (see Textual Inversion in Appendix A.2).

Limitations. Throughout our experiments, we observed two artifacts of applying progressive
weighting: (i) overly-contrasted images, due to overshooting weights at the final stage of gener-
ation (where the texture is formed); and (ii) excessive muting during the initial stage which can
sometimes disrupt structural integrity, particularly salient in areas like human or animal faces. How-
ever, given that our method is low-cost and does not require any re-training, the progressive curve
can be fine-tuned for a specific content to achieve a balance between these artifacts and diversity.
Finally, we acknowledge the absence of a formal proof of optimality of the gradient-based curves;
we leave this as direction for future work.

5Public checkpoint at https://github.com/ChenFengYe/motion-latent-diffusion
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A APPENDIX

In the appendix, we demonstrate ablation studies, more experiments, some detailed results comple-
mentary to the main paper, and more qualitative demonstrations.

A.1 ABLATIONS

In this section, we show some ablations of our proposed methods on the following aspects: DDIM
steps; different heuristic curve shape. We also report a negative perturbation test.

Different curves. We compare multiple primitive curves on the CIFAR10-DDPM setup for FID
and IS metrics including cosine, sine and linear with inverted linear on timestep with different
guidance scales. The results are showed in Figure 7a. We notice that all the increasing-trended
(T : 1000 ! 0) curves perform better than the baseline (static), which is significantly better than
the decreasing-trended curves. The observation adheres to our principal idea of compressing the
weights at the initial stage of the diffusion process.

Different DDIM steps. DDIM sampler allows for accelerated sampling (e.g., 50 steps as opposed
to 1000) with only a marginal compromise in generation performance. In this ablation study, we
evaluate the effectiveness of our progressive weighting schemes across different sampling steps. We
use the CIN256-LDM codebase, with the same configuration as our prior experiments in Section 5.1.
We conduct tests with 50, 100, and 200 steps, for baseline, two heuristics (linear and cosine) and
our computational gradient-based method, all operating at their optimal guidance scale in Tab 3.
The results, FID vs. IS for each sampling step, are presented in Tab. 1. We observe that the perfor-
mance of heuristic and gradient-based progressive weighting schemes remains stable across different
timesteps with the gradient-based method achieving the best FID vs. IS performance.

Negative Perturbation. In this ablation study, we analyse the importance of different intervals on
timesteps by independently setting the guidance scale to zero over different intervals, each spanning
50 timesteps, while retaining the default guidance scale of 0.15 in other intervals throughout the
entire generation process, resulting in 20 independent intervals. For this, we use the CIFAR-10-
DDPM dataset and adopt the same codebase as in previous experiments.

By recording the FID as the results of each interval perturbed weighting scheme, we aim to measure
the importance and contribution of each interval on the overall generation quality. As illustrated in
Figure 7b, perturbing the intervals at initial stages, such as [800, 850) or [850, 900), yields improved
FID metrics compared to other intervals. The most significant FID regression is observed just before
the ending stages, with a general increase trend as we move from T = 1000 to T = 0. This
observation aligns with our main argument that classifier issues mainly arise at the initial stages, and
a progressively increasing weighting scheme can ameliorate the performance of diffusion guidance.

A.2 TEXTUAL INVERSION

Prompted by the intuition that the conditional information is not uniformly important across
timesteps, we further explore our findings in akin applications, such as the task of textual inver-
sion (Gal et al., 2022). Given a few example images, the goal is to learn a new word which can
be incorporated in the text condition and guide the generation towards novel instances that retain
characteristics of the examples. The word is learnt using a reconstruction objective, i.e., given a
random diffusion step and the condition signal the goal is to produce images that are visually similar
to the examples by optimizing the condition embedding. In the original formulation, the diffusion
timesteps are uniformly sampled across the timestep scale, e.g., from 0 to 1000.

Table 1: Ablation on sampling steps DDIM. Experiment on CIN-256 and Latent Diffusion Model

baseline (static) linear cosine gn
steps FID# IS" FID# IS" FID# IS" FID# IS"

50 3.393 220.6 3.090 225.0 2.985 252.4 2.888 250.5
100 3.216 229.8 2.817 225.2 2.818 255.3 2.750 252.6
200 3.222 229.5 2.791 223.2 2.801 254.3 2.714 251.3
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Table 2: Experiment on CIFAR-10 DDPM. We evaluate the FID and IS results for the baseline,
two heuristic methods (linear and cosine), and the gradient-based methods, both with and without
condition-dependent information. Best FID and IS are highlighted.

baseline (static) linear cos gn gn-all
guidance FID# IS" FID# IS" FID# IS" FID# IS" FID# IS"

0.10 2.966 9.564 2.893 9.595 2.875 9.606 2.862 9.609 2.862 9.609
0.15 2.947 9.645 2.853 9.666 2.824 9.670 2.795 9.664 2.806 9.659
0.20 2.971 9.690 2.854 9.729 2.813 9.726 2.774 9.723 2.763 9.723
0.25 3.025 9.733 2.897 9.799 2.850 9.794 2.807 9.776 2.803 9.781
0.30 3.111 9.764 2.968 9.833 2.933 9.838 2.858 9.833 2.856 9.839
0.35 3.233 9.787 3.062 9.872 3.026 9.882 2.915 9.878 2.920 9.882

Our observations suggest that the influence exerted by the given condition varies across different
timesteps. To further demonstrate this argument, we conducted a qualitative experiment, selectively
optimizing the condition embedding across specific timestep ranges. As depicted by the model’s gra-
dient response g(t) in Figure 11, conducting textual inversion at distinct timesteps produces vastly
disparate results. Specifically, when sampling from low influence regions, for instance, t=(0,100) or
t=(900,1000) (Figure 11, red and purple area), the generated images show low resemblance to the
ground truth reference. Conversely, sampling around high influence intervals, i.e., t = (350, 450),
yields images high similarity to the ground truth, akin to those generated by sampling across all
timesteps (t = (0, 1000)). More interestingly, by focusing on a singular timestep, t = 400, which
represents the g(t) peak and thus indicates maximal influence (Figure 11, orange line at top), the
derived image captures the essence of the ground truth and stands in contrast to those generated from
low influence regions.

A.3 DISCUSSION ON DIVERSITY

Diversity plays a pivotal role in textual-based generation tasks. Given similar text-image matching
levels (usually indicated by CLIP-score), higher diversity gives users more choices of generated con-
tent. Most applications require higher diversity to prevent the undesirable phenomenon of content
collapsing, where multiple samplings of the same prompt yield nearly identical or very similar re-
sults. We utilize the standard deviation within the image embedding space as a measure of diversity.
This metric can be derived using models such as Dino-v2 (Oquab et al., 2023) or CLIP (Radford
et al., 2021). Figure 8 provides a side-by-side comparison of diversities computed using both Dino-
v2 and CLIP, numerical results are also reported in Table. 5. It is evident that Dino-v2 yields more
discriminative results compared to the CLIP embedding. While both embeddings exhibit similar
trends, we notice that CLIP occasionally produces a narrower gap between long captions (-L) and
short captions (-S). In some instances, as depicted in Figure 8, CLIP even reverses the order, an
observation not apparent with the Dino-v2 model. However, our methods are consistently outper-
forming the baseline on both metrics.

A.4 DETAILED TABLE OF EXPERIMENTS

In this section, we show detailed table of experiments: CIFAR-10-DDPM (Table 2), CIN256-LDM
(Table 3), Wuerstchen (Table 4) and Stable Diffusion (Table 5)

A.4.1 USER STUDY

In this section, we elaborate on the specifics of our user study setup and present the corresponding
results.

For the evaluation, each participant was presented with a total of 10 image sets. Each set comprised
9 images. Within each set, three pairwise comparisons were made: baseline vs. gradient-based,
baseline vs. linear, and baseline vs. cosine. Throughout the study, two distinct image sets (equivalent
to 20 images for each method) were utilized. We carried out two tests for results generated with
stable diffusion and Wuerstchen respectively.
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Table 3: Experiment on CIN-256 LDM., we present similar metrics to Tab. 2. The FID vs. IS
values for the baseline, heuristic linear and cosine, and gradient-based method gn are showed. We
notice a consistent observation: the gradient-basedgn method outperforms other in terms of FID-IS
balance, with cosine trails closely behind. The linear heuristic performs worse than previous two,
but all progressive methods are far superior to the baseline.

baseline: static prog: linear prog: cosine prog: gn
guidance w FID# IS" FID# IS" FID# IS" FID# IS"

0.4 4.117 181.2 4.136 178.3 4.311 175.4 4.394 174.0
0.6 3.393 225.0 3.090 220.6 3.083 216.2 3.068 215.4
0.8 3.940 260.8 3.143 257.5 2.985 252.4 2.888 250.5
1.0 5.072 291.4 3.858 288.9 3.459 283.3 3.308 282.0
1.2 6.404 315.8 4.888 315.1 4.256 310.1 4.041 306.7
1.4 8.950 335.9 6.032 336.5 5.215 331.2 4.934 328.4

Table 4: Experiment on Wuerstchen., The FID vs. CLIPScore(CS) values for the baseline, heuris-
tic linear and cosine, and gradient-based method gn are showed.

baseline: static prog: linear prog: cosine prog: gn
guidance w FID# CS" FID# CS" FID# CS" FID# CS"

2 21.7 0.251 - - - - - -
5 26.4 0.260 24.8 0.250 - - 24.4 0.250
7 27.5 0.261 24.8 0.254 - - 24.64 0.254
9 28.2 0.263 25.3 0.257 30.1 0.247 25.0 0.257

11 28.4 0.263 25.7 0.258 28.9 0.250 26.4 0.261
15 28.8 0.263 26.4 0.261 28.6 0.253 26.4 0.261
20 30.4 0.261 26.8 0.262 28.3 0.256 26.8 0.263
25 34.6 0.259 27.0 0.263 28.8 0.258 27.2 0.26
40 49.6 0.253 28.7 0.264 31.8 0.260 28.7 0.264
60 62.3 0.248 35.8 0.264 42.1 0.259 35.5 0.264
80 69.8 0.244 49.0 0.261 57.9 0.257 48.22 0.261

Table 5: Experiment on Stable Diffusion v1.5., we present FID vs. CLIP-Score (CS) and di-
veristy generated from Dino-v2 and CLIP embeddings separately. Including methods of the baseline,
heuristic linear and cosine, and gradient-based methods are showed. We notice that the gradient-
based method outperforms other in terms of FID-CS and diversity balance, with cosine reaching
good diversity but slightly worst FID vs. CS. The linear heuristic performs worse than previous two,
but all progressive methods are far superior to the baseline when CS is high. The baseline keeps the
best FID of 10.741 at guidance 3 but regresses rapidly when CLIP-Score is bigger.

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 20 25

baseline

clip-score 0.2593 0.2679 0.2719 0.2743 0.2757 0.2767 0.2775 0.2784 0.2790 0.2792 0.2796 0.2800 0.2803 0.2805 0.2813 0.2817
FID 11.745 10.741 11.887 13.328 14.639 15.832 16.777 17.682 18.419 19.031 19.528 20.058 20.462 20.818 22.463 23.810

Div-CLIP-L 0.315 0.300 0.289 0.281 0.275 0.271 0.267 0.263 0.260 0.259 0.257 0.255 0.254 0.253 0.250 0.251
Div-Dinov2-L 1.188 1.122 1.083 1.053 1.033 1.018 1.007 0.996 0.987 0.982 0.976 0.971 0.967 0.962 0.951 0.948
Div-CLIP-S 0.317 0.300 0.288 0.280 0.273 0.268 0.263 0.260 0.256 0.254 0.252 0.251 0.249 0.248 0.246 0.246

Div-Dinov2-S 1.241 1.173 1.131 1.103 1.082 1.065 1.051 1.042 1.031 1.024 1.019 1.013 1.006 1.003 0.992 0.986

linear

clip-score 0.2565 0.2656 0.2697 0.2721 0.2741 0.2754 0.2763 0.2772 0.2780 0.2784 0.2788 0.2794 0.2799 0.2802 0.2817 0.2826
FID 14.649 11.718 11.260 11.581 12.056 12.596 13.147 13.670 14.179 14.651 15.032 15.270 15.663 15.969 17.478 18.718

Div-CLIP-L 0.320 0.308 0.300 0.294 0.289 0.285 0.281 0.278 0.275 0.273 0.271 0.270 0.268 0.267 0.262 0.259
Div-Dinov2-L 1.209 1.153 1.119 1.094 1.076 1.060 1.048 1.039 1.030 1.024 1.016 1.011 1.006 1.002 0.986 0.979
Div-CLIP-S 0.324 0.311 0.302 0.296 0.291 0.287 0.282 0.280 0.277 0.273 0.271 0.271 0.270 0.269 0.263 0.261

Div-Dinov2-S 1.262 1.210 1.172 1.147 1.129 1.113 1.099 1.091 1.082 1.069 1.060 1.060 1.057 1.053 1.038 1.027

cosine

clip-score 0.2553 0.2643 0.2686 0.2712 0.2728 0.2741 0.2751 0.2762 0.2770 0.2778 0.2782 0.2789 0.2793 0.2797 0.2812 0.2821
FID 15.725 12.587 11.846 11.810 12.009 12.400 12.796 13.197 13.629 13.968 14.282 14.717 15.058 15.366 16.901 18.448

Div-CLIP-L 0.322 0.311 0.304 0.298 0.293 0.290 0.287 0.284 0.282 0.280 0.278 0.276 0.275 0.273 0.268 0.265
Div-Dinov2-L 1.215 1.165 1.134 1.111 1.092 1.078 1.068 1.059 1.051 1.044 1.039 1.034 1.030 1.025 1.008 1.001
Div-CLIP-S 0.326 0.314 0.307 0.301 0.296 0.293 0.290 0.287 0.285 0.283 0.282 0.279 0.278 0.277 0.272 0.269

Div-Dinov2-S 1.266 1.217 1.186 1.163 1.145 1.132 1.120 1.110 1.104 1.097 1.093 1.088 1.081 1.078 1.063 1.054

gradient

clip-score 0.2546 0.2637 0.2682 0.2708 0.2726 0.2741 0.2751 0.2759 0.2769 0.2775 0.2782 0.2788 0.2793 0.2798 0.2812 0.2822
FID 16.242 12.911 11.942 11.771 11.915 12.202 12.522 12.875 13.290 13.571 13.888 14.294 14.692 14.923 16.392 17.870

Div-CLIP-L 0.323 0.311 0.304 0.298 0.294 0.290 0.287 0.285 0.283 0.280 0.278 0.277 0.275 0.274 0.268 0.265
Div-Dinov2-L 1.218 1.168 1.137 1.112 1.095 1.081 1.070 1.062 1.053 1.045 1.039 1.034 1.029 1.026 1.009 1.000
Div-CLIP-S 0.327 0.315 0.308 0.302 0.297 0.294 0.290 0.288 0.286 0.284 0.282 0.280 0.279 0.277 0.272 0.269

Div-Dinov2-S 1.269 1.220 1.187 1.165 1.147 1.134 1.121 1.111 1.104 1.097 1.091 1.086 1.082 1.076 1.061 1.050
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Table 6: Experiment on Motion Latent Diffusion, we present MMdist, FID and MultiModal-
ity, for (a) baseline, (b) heuristic linear, (c) cosine, and (d) gradient-based. We observe that the
gradient-based method outperforms other in terms of FID-MMDist and diversity balance, with co-
sine reaching marginally worse FID vs. MMDist. and diversity performance. The linear method
achieves a better trade-off than the baseline, however, worse than the cosine and gradient-based.

w 1 2 4 6 8 9 14 19

baseline
MMDist 3.781 3.503 3.327 3.284 3.283 3.293 3.391 3.526

FID 0.343 0.353 0.389 0.415 0.440 0.453 0.559 0.743
MultiModality 3.731 3.208 2.789 2.616 2.544 2.537 2.592 2.704

linear
MMDist 4.350 3.743 3.502 3.411 3.380 3.375 3.392 3.284

FID 0.406 0.299 0.306 0.336 0.382 0.408 0.358 0.412
MultiModality 4.599 3.685 3.214 2.994 2.879 2.843 2.926 2.802

cosine
MMDist 4.443 4.181 3.874 3.708 3.610 3.575 3.479 3.450

FID 0.424 0.355 0.295 0.280 0.282 0.287 0.326 0.392
MultiModality 4.730 4.367 3.910 3.632 3.434 3.361 3.129 3.009

gradient
MMDist 4.309 4.008 3.706 3.563 3.484 3.456 3.397 3.393

FID 0.392 0.325 0.288 0.289 0.299 0.307 0.372 0.459
MultiModality 4.543 4.114 3.624 3.342 3.173 3.109 2.910 2.832

Subsequently, participants were prompted with three questions for each comparison:

1. Which set of images is more realistic or visually appealing?
2. Which set of images is more diverse?
3. Which set of images aligns better with the provided text description?

In total, each participant responded to 90 questions. We analyzed the results by examining responses
to each question individually, summarizing the collective feedback.

The feedback from 52 participants (27 for Stable Diffusion and 25 for Wuerstchen) is summarized
in Figure 9 and Figure 10. Evidently, users have a clear preference for our progressive weighting
methods over the static weighting scheme across the dimensions of realism and diversity. For the
text-alignment, users prefer progressive weightings text alignment capacity in stable diffusion than
baseline, whereas preferred baseline for Wuerstchen.

More specifically, for the study on Stable Diffusion: regarding realism, both gradient-based (gn)
and cosine-based methods garnered over 70% of the preference votes. When assessing text align-
ment, the gradient-based method stood out, receiving over 60% score, the highest among the three
methods. As for diversity, the cosine method clearly led the test, capturing more than 90% of the
participant’s preference over the baseline method.

Regarding the Wuerstchen study: given the similarity in curve shape between the gradient-based and
linear methods, user feedback for both was similar too. Approximately 60% of users favored the
realism of images generated using our method over the baseline. In terms of diversity, all our meth-
ods were favored, recording a preference rate of 70%. Nonetheless, when evaluating text alignment,
users perceived all our proposed methods as inferior to the baseline. We attribute this to over-diverse
results that obfuscate the semantic significance inherited in the image.

A.5 QUALITATIVE RESULTS

Stable Diffusion v1.5. In this section, we show some qualitative results: in Figure 13 and Fig-
ure 14 showed qualitative results of using our methods: linear, cosine and gradient-based pro-
gressive weighting compared against baseline. It sees clearly that the proposed method generates
more diversity which the baseline suffers from collapsing problem, i.e., different sampling of same
prompt seems only generate similar results. In some figures, e.g., Figure 13 with prompt: ”Two birds
fighting high in the sky with bad weather.” we can see that the baseline ignores the rainy weather
condition given by input and our methods can correctly retrieve this information and illustrate in the
generated images. Another example can be found in the prompt: ”A flower sitting in a vase in front
of a bottle.”, that only our methods are able to depict both the vase and the bottle with much richer
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diversity and image composition. However some negative examples can also be found in Figure 14,
in particular the facial area of the teddy bear and feet of horse in the prompt: person riding a horse
while the sun sets. We posit the reason of these artefacts are due the overmuting of the initial stage
and overshooting the final stage during the generation (more discussion in Section 6).

Wuerstchen. We further illustrate qualitative results using the Wuerstchen model (Pernias et al.,
2023) in Figure 15 and Figure 16. It is evident that the proposed progressive weighting yields
enhanced diversity and detail in the generated images. However, as highlighted in the limitations
section 6, over-attenuating the initial stages might introduce structural anomalies. These are partic-
ularly visible in the results generated using the cosine method. This phenomenon can be attributed
to the fact that the initial stages of the Wuerstchen model inherently encapsulate more condition-
related information than the Stable Diffusion models (as evidenced by the g(t) plot in Figure 4).
This observation also provides insight into the superior performance of the linear heuristic over the
cosine one, since the former closely resembles the profile of the probed G(t).

Artefacts and Limitations.

A.6 PSEUDO CODE TO COMPUTE GRADIENT-BASED PROGRESSIVE WEIGHTING

Algorithm 1 Computing the Gradient-based Weighting Curve
repeat

t U(0, 1000) . uniform sampling t for timestep
g(t, c)[s] krc k✏✓ (xt, c)� ✏k1k2 . computing L2 norm of gradient of condition to

sample on L1 loss

until K steps . total steps of probing
g(t, c) 

PS
s=0 g(t, c)[s]/S . average over S samples for smoothing reason

G(t, c) 
PT

i=t g(i, c) . inverse cumulative
G(t) 

PC
c=0 G(t, c)/C . average over C condition labels

w(t) G(t)/Ḡ(t) . standardize by dividing the average

In this section, we present the pseudo-code detailing the computation of our gradient-based progres-
sive weighting. Initially, we gather the L2 norm of the gradient with respect to the condition, which
is derived from the L1 loss during the training. This step is executed over K iterations for better
alleviate the stochasticity and cover all timesteps. Subsequently, we calculate the expectation and
employ an inverse cumulative distribution function based on the collected gradnorm data, before the
final standardization process.

A.7 COMPARISON WITH PARAMETERIZED POWER-COSINE-4

We test our results with those of Gao et al. (2023), which employs an empirically parameterized
function based on power-cosine. While they optimized this function specifically for their dataset
and method (CIN256 Deng et al. (2009)), adopting the parameter value of 4 as reported in their
paper, Figure 17b (tagged pcs4) indicates that their dedicated optimization process yields superior
results on their target dataset: CIN256. However, when this meticulously optimized curve is applied
to Stable Diffusion, it significantly underperforms, as evident in Figure 17b, with both FID and
CLIPScore seeing marked degradation. This phenomenon underlines our argument that the optimal
curve can vary across datasets and methods. Our gradient-based approach offers valuable insights
in this regard, pointing towards a more versatile solution, even if it is not the optimal.
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Figure 7: Ablations Studies. (a) Various heuristic (standardized) vs a gradient-based gn curves with
their corresponding FID vs. IS performances. (b) Negative perturbation by setting the guidance scale
to 0 across distinct intervals while preserving the default static guidance scale to the rest. A marked
elevation in FID around the t=100 interval underscores its pivotal role in high image quality, as
removing this interval leads to a worse FID compared to the baseline. By eliminating the weight at
the initial stage, the FID experiences an enhancement.
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Figure 9: User Study on Stable Diffusion. The user study reveals that images generated with
the proposed progressive weighting schemes are consistently preferred to ones from the baseline in
terms of realism (⇠ 70%), text alignment (⇠ 60%), and especially for diversity (over 80%).
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Figure 10: User Study on Wuerstchen. The user study reveals that images generated with the
proposed progressive weighting schemes are consistently preferred to ones from the baseline in
terms of realism (⇠ 60%), diversity (over 70%) but reported lower text-image alignment (⇠ 60%),
especially for cosine heuristic.

Figure 11: Textual Inversion at Different Timesteps: we show that by sampling on different
timesteps ranges, the generated results are highly relevant to the gradient of condition response g(t)
showcased at the top of the figure. This supports the main argument that the condition information’s
influence is different across all generation process and the gradient of condition response g(t) can
be served as an effective measure to this information.
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Figure 12: Another example of doing textual inversion by sampling all timesteps or ranged timesteps
at different stage, it sees clear that by only using the timestep around the peak of the gradient infor-
mation showed in Figure 12, the computed results shows more perceptual similarity to the ground
truth (left-top panel) than using the timestep range with lower gradient norm area.
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Figure 13: Qualitative evaluations of our proposed methods (linear, cosine, and gradient-based)
against the baseline from Stable-Diffusion v1.5. For each textual prompt displayed beneath images,
nine images are generated.
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Figure 14: Qualitative evaluations of our proposed methods (linear, cosine, and gradient-based)
against the baseline from Stable-Diffusion v1.5. For each textual prompt displayed beneath images,
nine images are generated.
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Figure 15: Qualitative evaluations of our proposed methods (linear, cosine, and gradient-based)
against the baseline from Wusrtschen. For each textual prompt displayed beneath images, nine
images are generated.
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Figure 16: Qualitative evaluations of our proposed methods (linear, cosine, and gradient-based)
against the baseline from Wusrtschen. For each textual prompt displayed beneath images, nine
images are generated.
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