

000 001 002 003 004 005 006 BACK TO SQUARE ROOTS: AN OPTIMAL BOUND 007 ON THE MATRIX FACTORIZATION ERROR FOR MULTI- 008 EPOCH DIFFERENTIALLY PRIVATE SGD 009 010 011

012 **Anonymous authors**
013 Paper under double-blind review
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024
025 Matrix factorization mechanisms for differentially private training have emerged
026 as a promising approach to improve model utility under privacy constraints. In
027 practical settings, models are typically trained over multiple epochs, requiring
028 matrix factorizations that account for repeated participation. Existing theoretical
029 upper and lower bounds on multi-epoch factorization error leave a significant
030 gap. In this work, we introduce a new explicit factorization method, Banded
031 Inverse Square Root (BISR), which imposes a banded structure on the inverse
032 correlation matrix. This factorization enables us to derive an explicit and tight
033 characterization of the multi-epoch error. We further prove that BISR achieves
034 asymptotically optimal error by matching the upper and lower bounds. Empirically,
035 BISR performs on par with state-of-the-art factorization methods, while being
036 simpler to implement, computationally efficient, and easier to analyze.
037
038

1 INTRODUCTION

039 Private machine learning has become increasingly important as the use of sensitive data in model
040 training continues to grow. Ensuring privacy while maintaining model accuracy presents a critical
041 challenge, particularly in fields like healthcare, finance, and personal data analysis. *Differential*
042 *Privacy* (DP) has emerged as a fundamental framework for formalizing privacy guarantees in machine
043 learning. It provides a mathematically rigorous way to limit the influence of any individual data
044 point on the model’s output, thereby preserving privacy. One effective approach to achieving DP in
045 iterative training is through the use of structured noise mechanisms that balance privacy guarantees
046 with model utility.
047

048 In this work, we focus on the *Matrix Factorization Mechanism* (see Section 2.1 for formal description)
049 for ensuring DP, a method extensively studied in recent years in the context of private learning
050 (Kairouz et al., 2021; Denisov et al., 2022; Fichtenberger et al., 2023; Henzinger et al., 2023;
051 Choquette-Choo et al., 2023b; Andersson & Pagh, 2023; Henzinger et al., 2024; Kalinin & Lampert,
052 2024; Andersson & Pagh, 2025; Henzinger & Upadhyay, 2025; Henzinger et al., 2025a; Pillutla
053 et al., 2025; Henzinger et al., 2025b). The approach has also been adopted in practice; for example,
054 Google has reported its use for training production on-device language models in their 2024 blog
055 post "Advances in private training for production on-device language models" (Xu & Zhang, 2024).
056 The core idea of the MF mechanism is to inject correlated noise into the gradients during training.
057 The correlations are determined by the inverse of a matrix $C \in \mathbb{R}^{n \times n}$, referred to as the *strategy*
058 *matrix*. While C serves as a factor in the matrix factorization that defines the mechanism and used in
059 calculation of the privacy level, its inverse C^{-1} functions as the *correlation matrix*, specifying how
060 the injected noise is correlated across training steps. This structure allows the mechanism to preserve
061 model accuracy while still guaranteeing privacy.
062

063 Intuitively, the mechanism can be seen as follows: at each training step, fresh noise is generated and
064 added, but part of the previous noise is stored in a buffer. In subsequent steps, portions of the stored
065 noise are subtracted in a controlled manner. This cancellation effect reduces the total amount of noise
066 that accumulates in the model, thereby improving utility without weakening privacy guarantees.
067

068 When computing privacy, we must account for *multi-epoch participation*, since in multi-epoch
069 training the same datapoints are used multiple times. The notion of multi-epoch participation in
070

054 the context of matrix factorization was first introduced by Choquette-Choo et al. (2023a), where
 055 it was formulated as an optimization problem over banded matrices. However, a key limitation of
 056 existing methods is the lack of precise theoretical guarantees on the *factorization error* in multi-epoch
 057 participation. While Kalinin & Lampert (2024) established a general lower bound and provided an
 058 upper bound for *Square Root Factorization*, the error bounds for *Banded Square Root Factorization*,
 059 where the correlation matrix C is made p -banded, remained imprecise.

060 In this work, we propose a novel approach to matrix factorization: rather than imposing a banded
 061 structure on the correlation matrix C , we introduce a *banded inverse square root*, enforcing the
 062 banded structure on C^{-1} . This shift¹ offers several key advantages. First, it allows for precise
 063 control over the resulting factorized matrices, enabling us to derive **explicit upper bounds** on the
 064 factorization error with clear dependence on the bandwidth. Second, the method is **computationally**
 065 **efficient**, as it requires one just to convolve the previous noise with a quickly computable fixed
 066 sequence of coefficients, which can be done for instance via Fast Fourier Transform (FFT), making it
 067 suitable for large-scale machine learning tasks. Most importantly, we prove that our method achieves
 068 **asymptotically optimal factorization error**: we establish a **new lower bound** that matches our
 069 upper bound, closing a significant theoretical gap in the literature.

070 By refining the theoretical understanding of banded factorization in multi-epoch settings, our work
 071 provides both theoretical insights and practical benefits for privacy-preserving ML training. Our main
 072 contributions are:

- 073 1. We introduce a new factorization method, the ***Banded Inverse Square Root (BISR)***, which is
 074 scalable, efficient, and agnostic to the underlying training objective.
- 075 2. We prove that BISR is **asymptotically optimal**, by deriving tight upper and lower bounds on the
 076 multi-epoch factorization error, with explicit dependence on bandwidth and workload properties.
- 077 3. We conduct a thorough empirical evaluation, comparing BISR to existing techniques in multi
 078 participation training—including Banded Square Root (BSR) (Kalinin & Lampert, 2024), Buffered
 079 Linear Toeplitz (BLT) (Dvijotham et al., 2024), and Banded Matrix Factorization (Band-MF)
 080 (McKenna, 2025), showing that BISR achieves a higher or comparable accuracy for the large
 081 matrix sizes.
- 082 4. In the low-memory regime, we propose an optimization method, **BandInvMF**, which directly
 083 optimizes the coefficients of the matrix C^{-1} . This approach achieves error rates comparable to
 084 state-of-the-art factorization methods, while being easy and efficient to implement.

086 2 BACKGROUND

088 2.1 MATRIX FACTORIZATION (MF)

089 MF mechanisms provide a promising approach to the private matrix multiplication problem, which has
 090 applications in continual counting and Stochastic Gradient Descent for machine learning. Specifically,
 091 we aim to estimate the product of a public matrix of coefficients $A \in \mathbb{R}^{n \times n}$ and a private matrix
 092 $X \in \mathbb{R}^{n \times d}$. Instead of doing so directly, we adopt a factorization $A = BC$, allowing us to estimate
 093 AX privately as $\widehat{AX} = B(CX + Z) = A(X + C^{-1}Z)$. Here, $Z \sim \mathcal{N}(0, s^2)^{n \times d}$ is appropriately
 094 scaled Gaussian noise, which ensures that $CX + Z \in \mathbb{R}^{n \times d}$ is private; the multiplication by B
 095 preserves the privacy guarantees due to DP’s post-processing property.

096 The choice of factorization $A = BC$ can significantly impact the quality of the private estimation.
 097 We quantify the *approximation quality* by the expected Frobenius error of the estimated product,

$$100 \quad 101 \quad \mathcal{E}(B, C)^2 = \frac{1}{n} \mathbb{E}_Z \|AX - \widehat{AX}\|_F^2, \quad (1)$$

102 where $\|\cdot\|_F$ is the Frobenius norm. An elementary analysis (Li et al., 2015) shows that

$$104 \quad 105 \quad \mathcal{E}(B, C)^2 = \frac{s^2}{n} \|B\|_F^2, \quad (2)$$

106
 107 ¹The inverse correlation matrix has been receiving more attention recently. In the concurrent work McMahan
 & Pillutla (2025), the authors consider the inverse correlation matrix of BLT.

108 and that the required noise strength, s , scales proportionally to the *sensitivity* of the matrix C . Let
 109 $X \sim X'$ indicates that the update vector sequences differ only in entries corresponding to a single
 110 data item. Then sensitivity of the matrix C is defined as

$$111 \quad \text{sens}(C) := \sup_{X \sim X'} \|CX - CX'\|_F \quad (3)$$

114 **Private SGD.** In this work, we consider the task of model training with SGD with (optional)
 115 weight decay and momentum. The corresponding update equations are $\theta_{i+1} = \alpha\theta_i - m_{i+1}$ and
 116 $m_{i+1} = \beta m_i + x_i$, where $\theta_1, \dots, \theta_n \in \mathbb{R}^D$ are the model parameters after each update step,
 117 x_1, \dots, x_n are the gradient vectors computed in each update step, $0 < \alpha \leq 1$ is the weight decay
 118 factor, and $0 \leq \beta < 1$ is the momentum strength².

119 Following Kalinin & Lampert (2024), we rewrite the dynamics in the matrix form as $\Theta = A_{\alpha, \beta}X$,
 120 with $\Theta = (\theta_1, \dots, \theta_n)^\top \in \mathbb{R}^{n \times D}$, $X = (x_1, \dots, x_n)^\top \in \mathbb{R}^{n \times D}$, and $A_{\alpha, \beta}$ is the *SGD workload*
 121 *matrix* defined as follows:

$$122 \quad A_{\alpha, \beta} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \alpha + \beta & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=0}^{n-1} \alpha^k \beta^{n-1-k} & \sum_{k=0}^{n-2} \alpha^k \beta^{n-2-k} & \dots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}. \quad (4)$$

123 Note that, in contrast to the naive MF setting, in the SGD case any input data (gradient) x_i depends
 124 on the previously computed model parameters, θ_{i-1} , that is, we aim for *adaptive privacy*. However,
 125 Denisov et al. (2022) shows that for Gaussian noise, adaptive privacy follows from the non-adaptive
 126 one, i.e., it suffices for us to solve the case in which the X matrix is an arbitrary fixed data matrix.
 127 Consequently, we estimate $A_{\alpha, \beta}X$ privately using the form $\widehat{A_{\alpha, \beta}X} = A_{\alpha, \beta}(X + C^{-1}Z)$. This form
 128 corresponds to running SGD, but each individual gradient update is perturbed by a correlated noise
 129 vector. That has the advantage that we do not need to store any previous gradients, and we can rely
 130 on any existing implementation of the SGD procedure.

131 In multi-epoch SGD, each data sample might contribute to more than one gradient update vector. As
 132 a suitable notion of sensitivity, we adopt the setting of b -min-separated repeated participation (two
 133 participations of any data point occur at least b update steps apart). The resulting sensitivity can be
 134 bounded as Choquette-Choo et al. (2023a):

$$135 \quad \text{sens}_{k, b}(C) \leq \max_{\pi \in \Pi_{k, b}} \sqrt{\sum_{i, j \in \pi} |(C^\top C)_{[i, j]}|} \quad (5)$$

136 where $\Pi_{k, b}$ denotes the collection of index sets drawn from $\{1, \dots, n\}$ that contain at most k elements
 137 and satisfy the condition that any two distinct indices are separated by at least b positions, so that no
 138 two indices in the set lie closer than b apart. This bound becomes an equality in the case where all
 139 entries of $C^\top C$ are non-negative.

140 2.2 PRIVACY GUARANTEES

141 The privacy analysis of our mechanism relies on the well-established Gaussian mechanism, which
 142 allows achieving arbitrary (ε, δ) -differential privacy levels by calibrating the noise variance to the
 143 sensitivity of the underlying query. In particular, Theorem 2.1 of Denisov et al. (2022) states that the
 144 guarantees proved for the nonadaptive continual release model extend to the fully adaptive setting
 145 under a suitable factorization of the query matrix. This ensures that the same differential privacy
 146 guarantees hold even when the input stream is chosen adaptively. A related multi-epoch variant was
 147 studied in Choquette-Choo et al. (2023a), which corresponds to a specific choice of the notion of
 148 neighboring streams.

149 **Theorem 1.** (Denisov et al., 2022, Theorem 2.1) *Let $A \in \mathbb{R}^{n \times n}$ be a lower-triangular full-rank query
 150 matrix, and let $A = BC$ be any factorization with the following property: for any two neighboring*

151 ²For simplicity of exposition, we use an implicit learning rate of 1. Because of the linearity of the operations,
 152 the general case can be recovered by pre-scaling x_1, \dots, x_n accordingly.

162 **Algorithm 1** Differentially Private SGD with Banded Inverse Matrix Factorization

163

164 **Input:** Initialization $\theta_0 \in \mathbb{R}^d$, dataset \mathcal{D} , batch size B , clip norm ζ , learning rate $\eta > 0$, weight

165 decay $0 < \alpha \leq 1$, momentum $0 \leq \beta < 1$, loss $\ell(\theta, d)$, noise multiplier $\sigma_{\epsilon, \delta} > 0$, coefficients of

166 the banded inverse Toeplitz correlation matrix C^{-1} : (c_0, \dots, c_{p-1})

167 1: Initialize $m_0 \leftarrow \mathbf{0} \in \mathbb{R}^d$

168 2: **for** $i = 1$ to n **do**

169 3: Sample a minibatch $S_i = \{d_1, \dots, d_B\} \subseteq \mathcal{D}$

170 4: **for** $j = 1$ to B **do**

171 5: $g_j \leftarrow \nabla_{\theta} \ell(\theta_{i-1}, d_j)$

172 6: $\tilde{g}_j \leftarrow \min\left(1, \frac{\zeta}{\|g_j\|}\right) g_j$ ▷ per-example clipping

173 7: $x_i \leftarrow \sum_{j=1}^B \tilde{g}_j$ ▷ aggregate clipped gradients

174 8: Draw $Z_i \sim \mathcal{N}(0, \sigma_{\epsilon, \delta}^2 \mathbb{I}_d)$

175 9: $\hat{x}_i \leftarrow x_i + \zeta \sum_{t=0}^{\min(p, i)-1} c_t Z_{i-t}$ ▷ BISR noise injection

176 10: $m_i \leftarrow \beta m_{i-1} + \hat{x}_i$ ▷ momentum update

177 11: $\theta_i \leftarrow \alpha \theta_{i-1} - \eta m_i$ ▷ weight decay + step

178 12: **return** θ_n

180

181 streams of vectors $G, H \in \mathbb{R}^{n \times d}$, we have $\|C(G - H)\|_F \leq \kappa$. Let $Z \sim \mathcal{N}(0, \kappa^2 \sigma^2)^{n \times d}$ with σ

182 large enough so that

$$\mathcal{M}(G) = AG + BZ = B(CG + Z)$$

183 satisfies (ϵ, δ) -DP in the nonadaptive continual release model. Then \mathcal{M} satisfies the same DP

184 guarantee (with the same parameters) even when the rows of the input are chosen adaptively.

186 Formally, the privacy guarantee of the Gaussian mechanism itself is characterized by the following

187 analytic condition due to Balle & Wang (2018), which provides the exact relationship between the

188 sensitivity, the privacy parameters, and the variance of the added Gaussian noise:

189 **Theorem 2** (Analytic Gaussian Mechanism (Balle & Wang, 2018)). Let $f : \mathcal{X} \rightarrow \mathbb{R}^d$ be a function

190 with global ℓ_2 sensitivity Δ . For any $\epsilon \geq 0$ and $\delta \in [0, 1]$, the Gaussian output perturbation

191 mechanism $M(x) = f(x) + Z$ with $Z \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_d)$ is (ϵ, δ) -DP if and only if

$$\Phi\left(\frac{\Delta}{2\sigma} - \frac{\epsilon\sigma}{\Delta}\right) - e^{\epsilon} \Phi\left(-\frac{\Delta}{2\sigma} - \frac{\epsilon\sigma}{\Delta}\right) \leq \delta.$$

194 This condition enables tight calibration of the noise level σ for any target privacy parameters (ϵ, δ) .

195 **Optimal factorization.** Better choices of factorization matrices can achieve the same privacy levels

196 with less added noise, potentially leading to higher utility. Therefore, various factorizations have

197 been proposed and studied theoretically as well as empirically.

198 Choquette-Choo et al. (2023a) defines the *optimal factorization* as the one that minimizes the expected

199 approximation error (1), and proposed an optimization problem to (approximately) compute this

200 factorization. A downside of this approach is that the optimization problem is computationally

201 expensive and the numeric solution does not provide theoretical insights, such as the optimal (i.e.

202 lowest) rate of growth of the approximation error.

203 On the other hand, a square root factorization introduced by Henzinger et al. (2024), is an explicit

204 factorization, defined by $A_{\alpha, \beta} = C_{\alpha, \beta}^2$. Kalinin & Lampert (2024) showed that the factorization error

205 of the square root factorization under multi-epoch participation is worse than that of the optimal

206 factorization and they introduced *banded square root* (BSR) factorization, which is defined by making

207 the matrix $C_{\alpha, \beta}$ banded. A limitation of BSR is that its guarantees are implicit in terms of the used

208 bandwidth, which does not allow concluding how they relate to the optimal multi-epoch factorization

209 at a theoretical level.

210

211 3 BANDED INVERSE SQUARE ROOT FACTORIZATION

212

213 In this section, we present our main theoretical results: we prove a new lower bound on the achievable

214 approximation error (Theorem 3), we introduce the BISR factorization (Definition 1), and we prove

215 that BISR achieves this (therefore optimal) rate (Theorem 4).

We first show an improved version of the lower bounds of the approximation error for general factorizations from Kalinin & Lampert (2024).

Theorem 3 (General Multi-Participation Lower Bound). *Let $A_{\alpha,\beta} \in \mathbb{R}^{n \times n}$ be the SGD workload matrix (4). In the multi-participation setting with separation $1 \leq b \leq n$ and $k = \lceil \frac{n}{b} \rceil$, for any factorization $A_{\alpha,\beta} = BC$, it holds*

$$\mathcal{E}(B, C) = \begin{cases} \Omega(\sqrt{k} \log n + k) & \text{if } \alpha = 1, \\ \Omega_\alpha(\sqrt{k}) & \text{if } \alpha < 1. \end{cases} \quad (6)$$

Proof Sketch. We use the probabilistic method in Lemma 6 to obtain the bounds $\Omega_\alpha(\sqrt{k})$ for $\alpha < 1$ and $\mathcal{E}(B, C) = \Omega(\sqrt{k} \log n)$ for $\alpha = 1$. It remains to prove that for $\alpha = 1$, we also have the lower bound $\mathcal{E}(B, C) = \Omega(k)$. For that, we prove a general inequality: given a valid participation vector π , we have $\mathcal{E}(B, C) \geq \frac{1}{n} \|A_{1,\beta}\pi\|_2$. \square

As our second main contribution, we now introduce the BISR factorization for multi-epoch SGD.

Definition 1 (Banded Inverse Square Root (BISR)). *For a given workload matrix A , let C be the matrix square root (i.e. $C^2 = A$) with positive values on the diagonal. Let C^p be the matrix obtained by: i) computing the inverse matrix C^{-1} , ii) imposing a banded structure with p bands by setting all elements below the p -th diagonal to zero, iii) inverting the resulting banded matrix back. Then, we denote by BISR the matrix factorization $A = B^p C^p$, with $B^p = A(C^p)^{-1}$.*

BISR can be seen as an alternative realization of the insights behind the BSR (Banded Square Root) factorization from Kalinin & Lampert (2024). There, the intuition was that making the matrix C p -banded reduces its sensitivity without increasing the Frobenius norm of the subsequent postprocessing matrix too much, thereby resulting in an overall reduction of the approximation error. The authors did not derive exact rates, though, because the dependence on p is not explicit.

For BISR, we instead make the matrix C^{-1} p -banded. This also leads to a reduction of the approximation error compared to the non-banded case, but with two additional advantages. First, the resulting algorithm (see Algorithm 1) is time- and memory-efficient because the product of $(C^p)^{-1}Z$ can be represented as a convolution with p elements. Therefore, the computation can be performed efficiently: in a streaming setting, only p rows of the matrix Z need to be stored at any time, while in an offline setting (which requires more storage), it can be accelerated further using the Fast Fourier Transform. Second, and mainly, it allows us to derive more explicit expressions of the approximation error with respect to the bandwidth p . In particular, we show the following.

Theorem 4 (BISR Approximation Error). *For $1 \leq p \leq n$ and $1 \leq k \leq \frac{n}{b}$ the following upper bound holds for the matrix factorization error of the BISR $A_{\alpha,\beta} = B_{\alpha,\beta}^p C_{\alpha,\beta}^p$ (as in Definition 1):*

$$\mathcal{E}(B_{\alpha,\beta}^p, C_{\alpha,\beta}^p) = \begin{cases} O_\beta \left(\sqrt{k} \log p + \sqrt{\frac{nk}{b}} + \sqrt{\frac{nk \log p}{p}} + \sqrt{\frac{kp \log p}{b}} \right) & \text{for } \alpha = 1, \\ O_{\alpha,\beta}(\sqrt{k}) & \text{for } \alpha < 1. \end{cases} \quad (7)$$

Proof sketch. To prove Theorem 4, we use Lemma 11 to bound the Frobenius norm $\|B_{\alpha,\beta}^p\|_F$. Then, Theorem 2 from Kalinin & Lampert (2024) (see Theorem 5), together with monotonicity of values $C_{\alpha,\beta}^p$ from Lemma 8, provides an explicit way to express the sensitivity $\text{sens}_{k,b}(C_{\alpha,\beta})$. To bound the sensitivity, we apply Lemma 12 to bound individual values. The product of the bounds on $\|B_{\alpha,\beta}^p\|_F$ and $\text{sens}_{k,b}(C_{\alpha,\beta})$ yields the result. The full proof of Theorem 4 can be found in the appendix. \square

For comparison, Kalinin & Lampert (2024) proved a bound $O\left(\sqrt{\frac{nk \log p}{p}}\right) + O_p(\sqrt{k})$ on the approximation error of the BSR in the case $\alpha = 1, \beta = 0$. While the first term also appears in (7), the second is non-informative about the effect of the bandwidth, p . Therefore, it does not allow making a statement about the optimality of the BSR.

In contrast, Theorem 4 is explicit about the role of p . Choosing its value to be $O(b \log b)$, such that the occurring terms in (7) are minimized, we obtain the following corollary.

270 **Corollary 1** (Optimized BISR Approximation Error). *Let $A_{\alpha,\beta} = B_{\alpha,\beta}^p C_{\alpha,\beta}^p$ be the BISR factorization defined of Definition 1. For $1 \leq b \leq n$ let $k = \lceil \frac{n}{b} \rceil$. Then, for $p^* = O(b \log b)$, the matrix factorization error admits the following optimized upper bound:*

$$274 \quad \mathcal{E}(B_{\alpha,\beta}^{p^*}, C_{\alpha,\beta}^{p^*}) = \begin{cases} O_{\beta}(\sqrt{k} \log n + k), & \text{for } \alpha = 1, \\ O_{\alpha,\beta}(\sqrt{k}), & \text{for } \alpha < 1. \end{cases} \quad (8)$$

277 Comparing the upper bound in eq. (8) with the lower bound in eq. (6), we obtain that BISR is an
278 **asymptotically optimal** factorization in the multi-participation setting.

280 To use the BISR factorization, we apply the following lemma, which provides analytic expressions
281 for the elements of the inverse matrix $C_{\alpha,\beta}^{-1}$.

283 **Lemma 1** (Inverse Square Root of the Matrix $A_{\alpha,\beta}$). *For $k \geq 0$, let $\tilde{r}_k = (-1)^k \binom{1/2}{k} = \frac{-r_k}{2k-1} =$
284 $\frac{-1}{2k-1} \left| \binom{-1/2}{k} \right|$. The inverse square root of the matrix $A_{\alpha,\beta}^{-1/2}$ defined in (4), for $0 \leq \beta < \alpha \leq 1$, is*

$$286 \quad C_{\alpha,\beta}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \tilde{c}_1^{\alpha,\beta} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{c}_{n-1}^{\alpha,\beta} & \tilde{c}_{n-2}^{\alpha,\beta} & \dots & 1 \end{pmatrix}, \quad \text{where } \tilde{c}_k^{\alpha,\beta} = \sum_{j=0}^k \tilde{r}_j \beta^j \tilde{r}_{k-j} \alpha^{k-j}. \quad (9)$$

291 The values of the matrix $C_{\alpha,\beta}^{-1}$ can then be computed efficiently via the Fast Fourier Transform (FFT)
292 as a convolution of the sequences $\tilde{r}_j \alpha^j$ and $\tilde{r}_j \beta^j$, where the sequence \tilde{r}_j for $j = 1, \dots, n$ can be
293 computed in linear time using the recursive expression $\tilde{r}_j = \frac{j-3/2}{j} \tilde{r}_{j-1}$.

296 Following the work of Andersson & Yehudayoff (2025), we show that the space complexity of the
297 matrix $(C_{\alpha,\beta}^p)^{-1}$ is equal to p , meaning that exact multiplication with a random real vector z in a
298 streaming setting, performing continuous operations, requires storing p real values (not including the
299 memory needed to store the matrix coefficients). This implies that, for memory-efficient computation,
300 one must either use a small bandwidth p or consider approximate multiplication. We formally state
301 the result in the following lemma:

302 **Lemma 2.** *The space complexity—defined as the minimum buffer size required by a streaming
303 algorithm to correctly process an input—for computing the product of the Toeplitz matrix $(C_{\alpha,\beta}^p)^{-1}$
304 with an arbitrary vector $z \in \mathbb{R}^n$, for $n \geq 2p - 1$, is exactly p , and at least $\frac{n-5}{2}$ for $C_{\alpha,\beta}^{-1}$.*

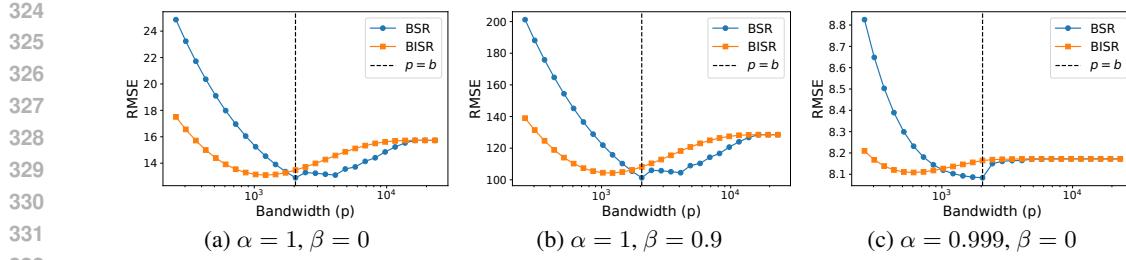
306 4 EXPERIMENTS

308 In this section, we present numerical results from evaluating various factorization methods in the
309 multi-participation regime.

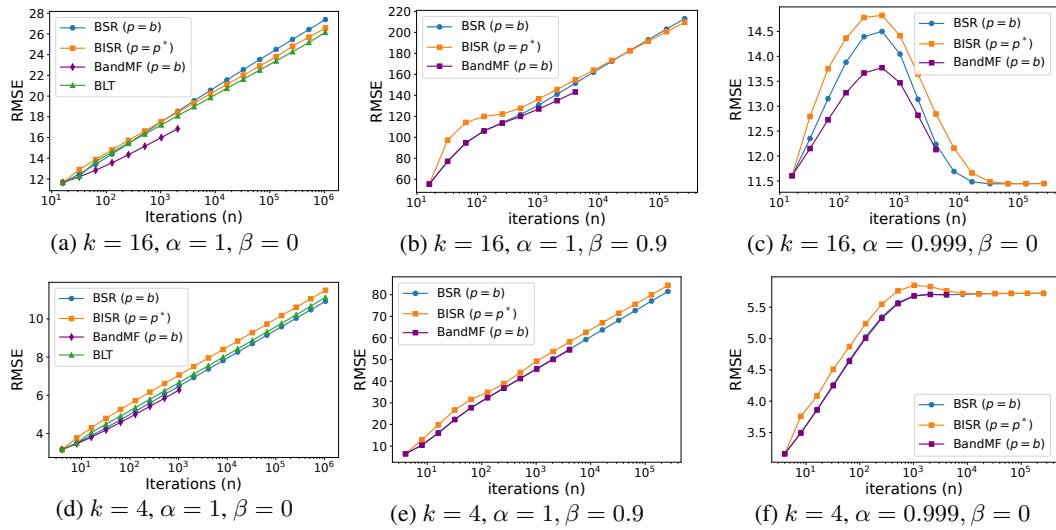
311 We first study the effect of using different bandwidths for BSR and BISR, as shown in Figure 1. We
312 found that, in most settings, the optimal bandwidth for BSR coincides with the separation parameter
313 b , whereas for BISR a smaller bandwidth suffices; therefore, in future comparisons with BISR, we
314 propose optimizing the bandwidth to determine the optimal p^* .

315 We compare BISR with several other methods, including Banded Square Root (BSR), Banded
316 Matrix Factorization (BandMF), introduced by McKenna (2025), and Buffered Linear Toeplitz (BLT),
317 introduced by Dvijotham et al. (2024) and adapted for multi-participation training by McMahan et al.
318 (2024). We use a buffer size of 4, as recommended, and observe that the error saturates quickly as the
319 buffer size increases. We use BandMF with bandwidth equal to b , as we did not observe any benefit
320 from using a larger bandwidth. Moreover, we conjecture that optimal multi-epoch participation can
321 always be achieved on a banded lower triangular matrix with bandwidth b .

322 We emphasize that BLT has only been described, analyzed, and implemented for prefix-sum matrices.
323 Therefore, we do not show BLT results for momentum and weight decay plots. For all methods
324 except BISR, we use efficient implementations from the jax-privacy library (Balle et al., 2025).



333 Figure 1: RMSE comparison for Banded Square Root (BSR) and Banded Inverse Square Root (BISR)
334 methods across varying bandwidths (p). The results are shown for a fixed matrix size of $n = 16384$
335 and a participation number of $k = 8$. For BSR, the choice $p = b$ is numerically optimal, while BISR
336 a smaller bandwidth suffices to achieve an optimal value.



355 Figure 2: RMSE across varying matrix sizes for different factorization methods under multiple
356 optimizer settings and participation levels. We showed that also in practice, BISR performs on par
357 with, or even better than, BSR and BLT. However, methods based on numerical optimization, such as
358 BandMF, may achieve superior performance in certain regimes.

360 Our experiments (Figure 2) show that banded inverse square root factorization consistently matches
361 or exceeds BSR in quality across all regimes and outperforms it in scenarios with a large number
362 of participations. The improvement is particularly pronounced when the participation count is
363 high ($k = 16$). BISR achieves RMSE comparable to that of BLT, but has the advantage of easier
364 implementation for both factorization and training, as it only requires convolving previous noise with
365 a fixed set of coefficients—an “embarrassingly parallel” operation (see McKenna (2025)). While in
366 practice, BandMF achieves slightly better RMSE³ at $k = 16$, it requires solving a computationally
367 expensive optimization problem, making it impractical for matrix sizes beyond $n = 4096$.

5 FROM BISR TO BANDINVMF

371 In the previous sections, we established that BISR has asymptotically optimal rate for large bandwidths
372 $p \sim b \log b$. However, in practice, one might want to work with a smaller value of p to save memory
373 and computational resources. In this section, we showcase a modification to BISR with improved
374 practical properties in this regime. We propose to keep the construction of a banded inverse matrix
375 with Toeplitz structure, but to set its values not by the closed form expressions (9) but by a numeric

376
377 ³This is possible because even though we have shown that BISR provides an asymptotically optimal
378 factorization, that does not imply that it is superior to all other methods for finite problem sizes.

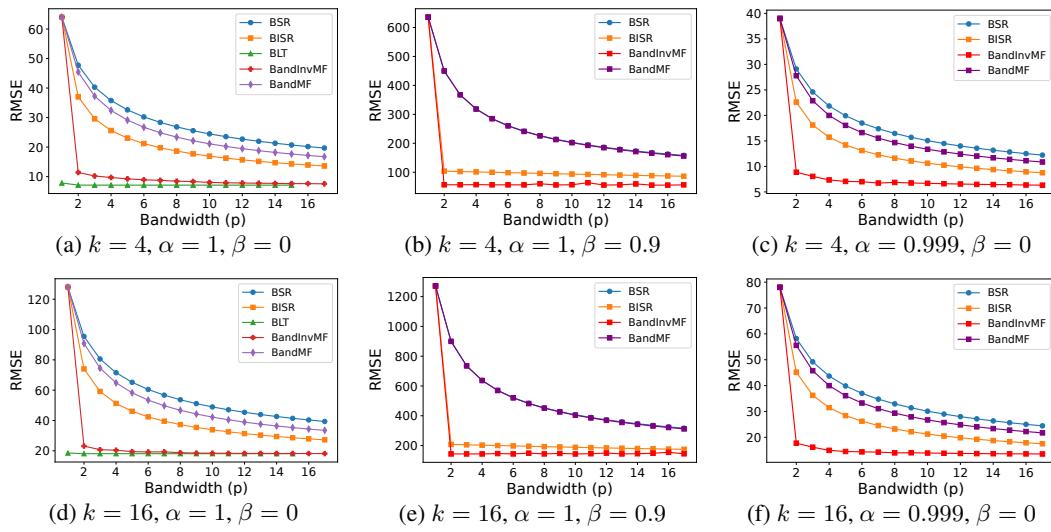


Figure 3: RMSE across different factorizations and optimization parameters α, β , with small bandwidth. The plot shows that BandInvMF and BISR can significantly reduce RMSE for a small bandwidth regime, justifying the use of banded inverse methods instead of banded factorizations.

optimization. Specifically, we optimize an upper bound on b -min separation participation, given by Equation 5.

For the sake of numerical optimization, we assume that the optimum is achieved for indices of the form $i + kb$. This assumption can be justified, as we observed that the resulting solution for matrix C is positive and decreasing, which guarantees optimality. If the sequence is not decreasing, it can be uniformly bounded by a decreasing sequence. Specifically, if the values on the diagonals of C are $C_{j,1}$, then they are upper bounded by $\max_{t \geq j} C_{1,t}$, which is a decreasing sequence by construction. We use banded inverse square root factorization as an initialization for the coefficients. We provide an efficient JAX implementation in the Appendix (see Algorithm 1) as well as the convergence plots in Figure 5.

The numerical results are presented in Figure 3 referred to as BandInvMF. We observe that the error decreases drastically even with the addition of a single band, compared to a trivial factorization. This observation is supported theoretically by the following lemma.

Lemma 3 (Optimal Band Inversion Error). *Let the matrix $C_\lambda^{-1} = \text{LT}(1, -\lambda, 0, \dots, 0)$ be a lower triangular Toeplitz matrix with 1 on the main diagonal and $-\lambda$ on the subdiagonal. Then, for a single participation and the prefix sum matrix $A_{1,0}$, the following bound on the matrix factorization error holds:*

$$\inf_{\lambda \in (0,1)} \mathcal{E}(A_{1,0} C_\lambda^{-1}, C_\lambda) = O(n^{1/4}). \quad (10)$$

Lemma 3 shows that the optimized inverse banded matrix factorization can achieve an asymptotically better bound than a trivial factorization $A \times \mathbb{I}$, which yields an error of $O(\sqrt{n})$. Moreover, from Theorem 4, for small p , the leading term for banded inverse square root factorization remains of order $O(\sqrt{n})$. Therefore, we advocate for optimizing the coefficients when the bandwidth is small.

We compare Band-Inv-MF with other methods for training the 3-Block ConvNet model on CIFAR-10 and the BERT-base model ($\sim 100M$ parameters) on IMDB (see Figure 4), both with and without amplification by subsampling. For a fairer comparison, we use a recently proposed bins-and-balls subsampling mechanism (Chua et al., 2025), which combines the accuracy benefits of Poisson subsampling with improved implementation efficiency. More importantly, it supports the matrix mechanism via the MCMC accountant (Choquette-Choo et al., 2024a;b), even when the matrix C is not banded. Our results indicate that in a low-memory regime, inverse correlation matrix methods BISR and Band-Inv-MF achieve significantly higher accuracy than BSR and Band-MF, and consistently outperform DP-SGD, with and without amplification. Although Band-Inv-MF achieves

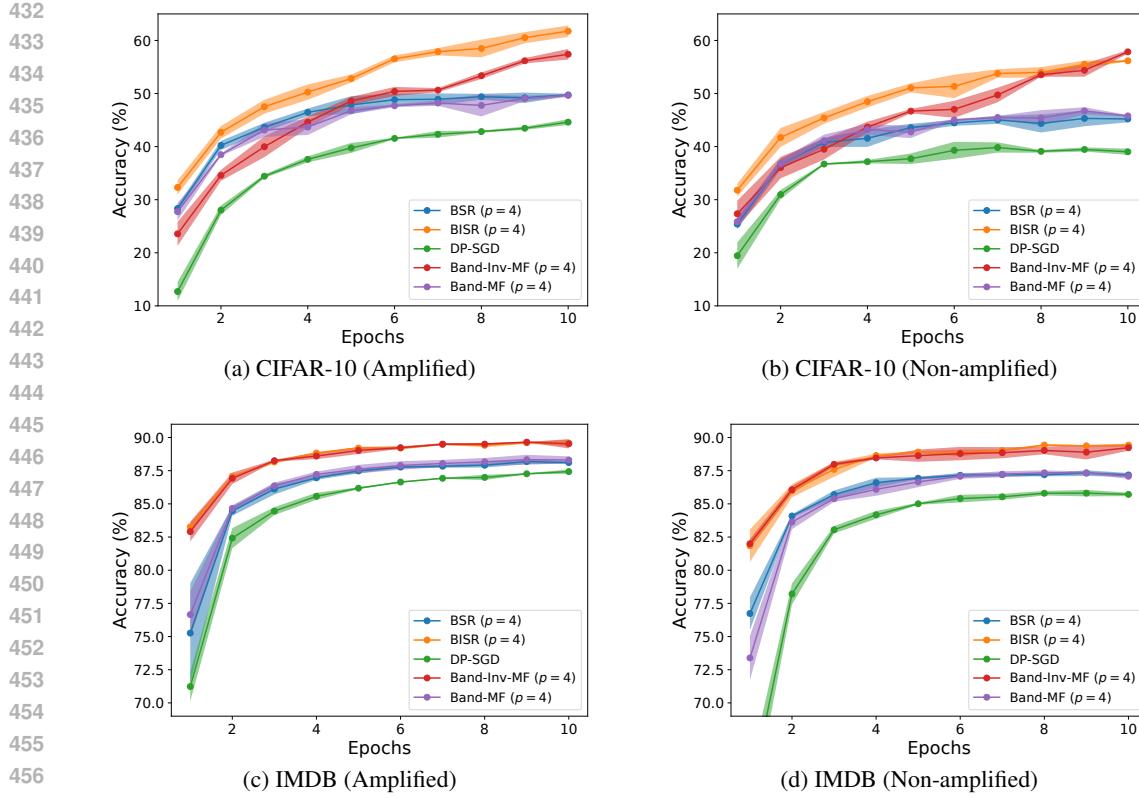


Figure 4: **Accuracy results for CIFAR-10 and IMDB in the small bandwidth (low-memory) regime.** For CIFAR-10, both amplified (left) and non-amplified (right) results show that inverse factorization methods, BISR and Band-Inv-MF, achieve significantly higher accuracy compared to Band-MF. Both plots correspond to $(9, 10^{-5})$ -DP, with training performed using momentum $\beta = 0.9$ and weight decay $\alpha = 0.9999$, which we found to be optimal (see Tables 1 and 2 in the appendix). For IMDB, we report accuracy from fine-tuning under the same low-memory regime, comparing amplified and non-amplified settings, with training performed using momentum $\beta = 0.95$ and weight decay $\alpha = 0.99999$ (see Tables 3 and 4).

lower RMSE than BISR, we did not observe a corresponding gain in accuracy. This indicates that RMSE alone is not a sufficient proxy for model performance in matrix factorization.

6 DISCUSSION

This work demonstrates that imposing a banded structure on the inverse correlation matrix, rather than on the matrix itself, leads to both theoretical and practical benefits for differentially private training across multiple participations. Our Banded Inverse Square Root (BISR) method enables explicit factorization, supporting clean error analysis and efficient implementation.

We prove that BISR achieves asymptotically optimal factorization error by improving upon previously established lower bounds and showing that BISR matches the asymptotics precisely, thereby closing a fundamental gap in the theory. An interesting direction for future work is to close the gap in constant dependence, as numerical optimization methods (e.g., BandMF, BLT), despite their computational cost, may outperform BISR.

In the low-memory regime, we find it beneficial to optimize directly over the coefficients of the inverse correlation matrix. Our Band-Inv-MF method achieves a lower matrix factorization error compared to BISR. However, these improvements do not yet translate to gains in model accuracy when training with the amplification by subsampling. Future research should focus on optimizing the matrix coefficients while explicitly accounting for amplification, in order to bridge this gap.

486 ICLR 2026 REPRODUCIBILITY STATEMENT
487

488 All stated lemmas, theorems, and corollaries are proved in full in Appendix A. Our methodological
489 contribution is described in Section 2. Algorithm 1 contains the details required to implement the
490 proposed differentially private model with matrix factorization. The computation of the factorization
491 for BISR is explained after Lemma 1, while the full runnable JAX implementation of Band-Inv-MF is
492 provided in Appendix 1. Our experimental evaluation is presented in Section 4, with hyperparameter
493 settings summarized in Tables 1 and 3.

494
495 REFERENCES
496

497 Joel Daniel Andersson and Rasmus Pagh. A smooth binary mechanism for efficient private continual
498 observation. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.

499 Joel Daniel Andersson and Rasmus Pagh. Streaming private continual counting via binning. In *IEEE
500 Conference on Secure and Trustworthy Machine Learning (SaTML)*, 2025.

502 Joel Daniel Andersson and Amir Yehudayoff. On the space complexity of online convolution, 2025.
503 arXiv preprint arXiv:2505.00181.

504 Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy:
505 Analytical calibration and optimal denoising. In *International Conference on Machine Learning
(ICML)*, 2018.

508 Borja Balle, Leonard Berrada, Zachary Charles, Christopher A Choquette-Choo, Soham De,
509 Vadym Doroshenko, Dj Dvijotham, Andrew Galen, Arun Ganesh, Sahra Ghalebikesabi, Jamie
510 Hayes, Peter Kairouz, Ryan McKenna, Brendan McMahan, Aneesh Pappu, Natalia Ponomareva,
511 Mikhail Pravilov, Keith Rush, Samuel L Smith, and Robert Stanforth. JAX-Privacy: Algo-
512 rithms for privacy-preserving machine learning in JAX, 2025. URL http://github.com/google-deepmind/jax_privacy.

514 A. Böttcher and S. M. Grudsky. *Toeplitz Matrices, Asymptotic Linear Algebra, and Functional
515 Analysis*. Springer, 2000.

517 C. A. Choquette-Choo, A. Ganesh, R. McKenna, H. B. McMahan, J. K. Rush, A. G. Thakurta, and
518 X. Zheng. (Amplified) banded matrix factorization: A unified approach to private training. In
519 *Conference on Neural Information Processing Systems (NeurIPS)*, 2023a.

520 Christopher A Choquette-Choo, H Brendan McMahan, Keith Rush, and Abhradeep Thakurta. Multi-
521 epoch matrix factorization mechanisms for private machine learning. In *International Conference
522 on Machine Learning (ICML)*, 2023b.

524 Christopher A Choquette-Choo, Arun Ganesh, Saminul Haque, Thomas Steinke, and Abhradeep
525 Thakurta. Near exact privacy amplification for matrix mechanisms. In *International Conference
526 on Learning Representations (ICLR)*, 2024a.

527 Christopher A Choquette-Choo, Arun Ganesh, Thomas Steinke, and Abhradeep Thakurta. Privacy
528 amplification for matrix mechanisms. In *International Conference on Learning Representations
529 (ICLR)*, 2024b.

531 Lynn Chua, Badih Ghazi, Charlie Harrison, Ethan Leeman, Pritish Kamath, Ravi Kumar, Pasin Ma-
532 nurangsi, Amer Sinha, and Chiyuan Zhang. Balls-and-Bins sampling for DP-SGD. In *Conference
533 on Uncertainty in Artificial Intelligence (AISTATS)*, 2025.

534 S. Denisov, H. B. McMahan, J. Rush, A. Smith, and G. A. Thakurta. Improved Differential Privacy for
535 SGD via optimal private linear operators on adaptive streams. In *Conference on Neural Information
536 Processing Systems (NeurIPS)*, 2022.

538 Krishnamurthy Dvijotham, H. Brendan McMahan, Krishna Pillutla, Thomas Steinke, and Abhradeep
539 Thakurta. Efficient and near-optimal noise generation for streaming differential privacy. In
540 *Symposium on Foundations of Computer Science (FOCS)*, 2024.

540 H. Fichtenberger, M. Henzinger, and J. Upadhyay. Constant matters: Fine-grained complexity of
 541 differentially private continual observation using completely bounded norms. In *International
 542 Conference on Machine Learning (ICML)*, 2023.

543

544 M. Henzinger, J. Upadhyay, and S. Upadhyay. A unifying framework for differentially private sums
 545 under continual observation. In *Symposium on Discrete Algorithms (SODA)*, 2024.

546 Monika Henzinger and Jalaj Upadhyay. Improved differentially private continual observation using
 547 group algebra. In *Symposium on Discrete Algorithms (SODA)*, 2025.

548

549 Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. Almost tight error bounds on differen-
 550 tially private continual counting. In *Symposium on Discrete Algorithms (SODA)*, 2023.

551

552 Monika Henzinger, Nikita P. Kalinin, and Jalaj Upadhyay. Binned group algebra factorization for
 553 differentially private continual counting, 2025a. arXiv:2504.04398.

554

555 Monika Henzinger, Nikita P. Kalinin, and Jalaj Upadhyay. Normalized square root: Sharper ma-
 556 trix factorization bounds for differentially private continual counting, 2025b. arXiv preprint
 arXiv:2509.14334.

557

558 P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu. Practical and private (deep)
 559 learning without sampling or shuffling. In *International Conference on Machine Learning (ICML)*,
 2021.

560

561 N. Kalinin and C. H. Lampert. Banded square root matrix factorization for differentially private
 562 model training. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

563

564 C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi. The matrix mechanism: Optimizing linear
 565 counting queries under Differential Privacy. *International Conference on Very Large Data Bases
 566 (VLDB)*, 2015.

567

568 R. McKenna. Scaling up the banded matrix factorization mechanism for differentially private ML. In
 569 *International Conference on Learning Representations (ICLR)*, 2025.

570

571 H. B. McMahan, Z. Xu, and Y. Zhang. A hassle-free algorithm for private learning in practice:
 572 Don't use tree aggregation, use BLTs. In *Conference on Empirical Methods on Natural Language
 573 Processing (EMNLP)*, 2024.

574

575 H Brendan McMahan and Krishna Pillutla. An inversion theorem for Buffered Linear Toeplitz (BLT)
 576 matrices and applications to streaming differential privacy, 2025. arXiv preprint arXiv:2504.21413.

577

578 Krishna Pillutla, Jalaj Upadhyay, Christopher A Choquette-Choo, Krishnamurthy Dvijotham, Arun
 579 Ganesh, Monika Henzinger, Jonathan Katz, Ryan McKenna, H Brendan McMahan, Keith Rush,
 580 et al. Correlated noise mechanisms for differentially private learning, 2025. arXiv preprint
 arXiv:2506.08201.

581

582 Gilbert Strang. A proposal for Toeplitz matrix calculations. *Studies in Applied Mathematics*, 1986.

583

584 Zheng Xu and Yanxiang Zhang. Advances in private training for production on-device language
 585 models, 2024. Goolge Research Blog.

586

587

588

589

590

591

592

593

594
595
KEY INEQUALITIES AND RELATIONSHIPS596
597
This section compiles the fundamental inequalities and key relationships employed throughout this
598
study. Each entry is presented with a concise explanation of its origin or the context in which it arises.

- 599 1. $r_k = \left| \binom{-1/2}{k} \right| = \frac{1}{4^k} \binom{2k}{k}$ *Henzinger et al. (2024)*
- 600 2. $\frac{1}{\sqrt{\pi(k+1)}} \leq r_k \leq \frac{1}{\sqrt{\pi k}}$ *Lemma 2.1 from Dvijotham et al. (2024)*
- 601 3. $\sum_{k=0}^{p-1} r_k \leq 1 + \frac{1}{\sqrt{\pi}} \sum_{k=1}^{p-1} \frac{1}{\sqrt{k}} \leq 1 + \frac{2\sqrt{p}}{\sqrt{\pi}}$ *Integral inequality.*
- 602 4. $\sum_{k=0}^{p-1} r_k^2 \leq 1 + \log p$ *Lemma 5*
- 603 5. $c_k^{\alpha,\beta} = \sum_{j=0}^k \alpha^j \beta^{k-j} r_j r_{k-j}$ *Theorem 1 from Kalinin & Lampert (2024)*
- 604 6. $c_k^{1,\beta} \leq c_{k-1}^{1,\beta} \left[1 - \frac{(1-\beta)^2}{2k} \right]$ for $k \geq 1$. *Lemma 10*
- 605 7. $\sum_{j=0}^k c_j^{1,\beta} = \sum_{j=0}^k r_j \beta^j \tilde{r}_{k-j}$ *In the proof of Lemma 9*
- 606 8. $\sum_{j=0}^k c_j^{1,\beta} \beta^{k-j} = \sum_{j=0}^k r_j^\beta \tilde{r}_{k-j}$ *In the proof of Lemma 9*
- 607 9. $\sum_{j=0}^k \frac{\tilde{c}_j^{1,\beta} (1 - \beta^{k-j+1})}{1 - \beta} = c_k^{1,\beta}$ *In the proof of Lemma 9*
- 608 10. $r_k(1 - \beta) \leq \sum_{j=0}^k \tilde{c}_j^{1,\beta} \leq c_k^{1,\beta}(1 - \beta)$ *Lemma 9*
- 609 11. $\frac{\log(k+1)}{4} \leq \sum_{j=0}^{k-1} (c_j^{1,\beta})^2 \leq \frac{1 + \log k}{(1 - \beta)^2}$ *Lemma 5*
- 610 12. $\frac{\alpha^j}{2\sqrt{j+1}} \leq c_j^{\alpha,\beta} \leq \frac{\alpha^j}{(1 - \beta/\alpha)\sqrt{j+1}}$ *Lemma 5*
- 611 13. $1 \leq \sum_{j=0}^{k-1} (c_j^{\alpha,\beta})^2 \leq \frac{1}{(\alpha - \beta)^2} \log \left(\frac{1}{1 - \alpha^2} \right)$ *Lemma 5*
- 612 14. $\tilde{r}_k = (-1)^k \binom{1/2}{k} = \frac{-1}{2k-1} r_k$ *Lemma 1*
- 613 15. $\tilde{c}_k^{\alpha,\beta} = \sum_{j=0}^k \tilde{r}_j \beta^j \tilde{r}_{k-j} \alpha^{k-j}$ *Lemma 1*
- 614 16. $\tilde{r}_k(1 + \beta) \leq \tilde{c}_k^{1,\beta} \leq 0$ *Lemma 7*

648 **A PROOFS**
649

650 We start by stating some auxiliary results that will be extensively used throughout the proofs.
651

652 **Lemma 4** (Theorem 1 in Kalinin & Lampert (2024) – Square Root of the Matrix $A_{\alpha,\beta}$). *For $k \geq 0$,
653 let $r_k = \left| \binom{-1/2}{k} \right|$. For $0 \leq \beta < \alpha \leq 1$, the square root matrix $C_{\alpha,\beta} = A_{\alpha,\beta}^{1/2}$ has the following
654 explicit form:*

$$655 \quad C_{\alpha,\beta} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 656 \quad c_1^{\alpha,\beta} & 1 & \cdots & 0 \\ 657 \quad \vdots & \vdots & \ddots & \vdots \\ 658 \quad c_{n-1}^{\alpha,\beta} & c_{n-2}^{\alpha,\beta} & \cdots & 1 \end{pmatrix}, \quad \text{where } c_k^{\alpha,\beta} = \sum_{j=0}^k \alpha^j \beta^{k-j} r_j r_{k-j}, \quad (11)$$

660 **Theorem 5** (Theorem 2 from Kalinin & Lampert (2024)). *Let M be a lower triangular Toeplitz
661 matrix with decreasing non-negative entries $m_0 \geq m_1 \geq m_2 \geq \dots m_{n-1} \geq 0$ on the diagonals.
662 Then the sensitivity of M in the setting of b -min-separation is*

$$664 \quad \text{sens}_{k,b}(M) = \left\| \sum_{j=0}^{k-1} M_{[:,1+jb]} \right\|_2 \quad (12)$$

667 where $M_{[:,1+jb]}$ denotes the $(1+jb)$ -th column of M .
668

669 **Lemma 5** (Lemma 7 from Kalinin & Lampert (2024)). *For $k \in \{1, \dots, n\}$ it holds for $c_i^{\alpha,\beta}$ as
670 defined in equation (11):*

$$671 \quad \frac{\log(k+1)}{4} \leq \sum_{i=0}^{k-1} (c_i^{\alpha,\beta})^2 \leq \frac{1 + \log k}{(1-\beta)^2} \quad (13)$$

673 for $\alpha = 1$, and otherwise

$$675 \quad 1 \leq \sum_{i=0}^{k-1} (c_i^{\alpha,\beta})^2 \leq \frac{1}{(\alpha-\beta)^2} \log \left(\frac{1}{1-\alpha^2} \right). \quad (14)$$

678 **Lemma 2.** *The space complexity—defined as the minimum buffer size required by a streaming
679 algorithm to correctly process an input—for computing the product of the Toeplitz matrix $(C_{\alpha,\beta}^p)^{-1}$
680 with an arbitrary vector $z \in \mathbb{R}^n$, for $n \geq 2p-1$, is exactly p , and at least $\frac{n-5}{2}$ for $C_{\alpha,\beta}^{-1}$.*

682 *Proof of Lemma 2.* Throughout this proof, we use only results from Andersson & Yehudayoff (2025),
683 and thus any reference to a theorem or lemma should be understood as coming from that work. We
684 use their Lemma 7, which lower-bounds the space complexity of a Toeplitz matrix using the rank
685 of a corresponding Hankel matrix of its coefficients. The matrix $C_{\alpha,\beta}^{-1}$ has a generating function
686 $f = \sqrt{(1-\alpha x)(1-\beta x)}$. The proof of their Corollary 16 implies that the Hankel matrix $H[f]$ has
687 corank at most 3. Thus, Lemma 7 implies that $C_{\alpha,\beta}^{-1}$ has space complexity at least $\frac{n+1}{2} - 3$. For the
688 matrix $(C_{\alpha,\beta}^p)^{-1}$, the generating function is a rational function of degree p ; therefore, for $n \geq 2p-1$,
689 their Theorem 2 implies that the space complexity is exactly p , concluding the proof. \square

690 **Theorem 3** (General Multi-Participation Lower Bound). *Let $A_{\alpha,\beta} \in \mathbb{R}^{n \times n}$ be the SGD workload
691 matrix (4). In the multi-participation setting with separation $1 \leq b \leq n$ and $k = \lceil \frac{n}{b} \rceil$, for any
692 factorization $A_{\alpha,\beta} = BC$, it holds*

$$694 \quad \mathcal{E}(B, C) = \begin{cases} \Omega(\sqrt{k} \log n + k) & \text{if } \alpha = 1, \\ 695 \quad \Omega_\alpha(\sqrt{k}) & \text{if } \alpha < 1. \end{cases} \quad (6)$$

697 *Proof of Theorem 3.* We use the probabilistic method in Lemma 6 to obtain the bounds $\Omega_\alpha(\sqrt{k})$ for
698 $\alpha < 1$ and $\mathcal{E}(B, C) = \Omega(\sqrt{k} \log n)$ for $\alpha = 1$. It remains to prove that for $\alpha = 1$, we also have the
699 lower bound $\mathcal{E}(B, C) = \Omega(k)$.
700

701 We begin with the following observation: given a matrix C , we can compute an optimal participation
702 scheme represented by a vector with ones at positions corresponding to participating columns,

denoted by π_C^* . As a lower bound, we consider a specific participation vector π_1 , with ones in columns indexed by $1 + ib$ for $i \in [0, k - 1]$, such that $|\pi_1| = k$. By construction, we have $\text{sens}_{k,b}(C) := \|C\pi_C^*\|_2 \geq \|C\pi_1\|_2$. Therefore, the error can be bounded as follows:

$$\mathcal{E}(B, C) = \frac{1}{\sqrt{n}} \|B\|_F \text{sens}_{k,b}(C) \geq \frac{1}{\sqrt{n}} \|B\|_F \|C\pi_1\|_2 \geq \frac{1}{\sqrt{n}} \|BC\pi_1\|_2 = \frac{1}{\sqrt{n}} \|A_{1,\beta}\pi_1\|_2. \quad (15)$$

As a lower bound, we consider $\beta = 0$ as $\|A_{1,\beta}\pi_1\|_2 \geq \|A_{1,0}\pi_1\|_2$. The elements of the matrix $A_{1,0}$ are positive and non-increasing. Therefore, by Theorem 5, the (k, b) -sensitivity of $A_{1,0}$ is exactly $\|A_{1,0}\pi_1\|_2$. By Theorem 9 from Kalinin & Lampert (2024), this sensitivity is at least $\frac{k\sqrt{n}}{\sqrt{3}}$, resulting in the lower bound:

$$\mathcal{E}(B, C) \geq \frac{k}{\sqrt{3}} = \Omega(k), \quad (16)$$

which concludes the proof. \square

Lemma 6. *Let $A_{\alpha,\beta} \in \mathbb{R}^{n \times n}$ be the SGD workload matrix (4). In the multi-participation setting with separation $1 \leq b \leq n$ and $k = \lceil \frac{n}{b} \rceil$, for any factorization $A_{\alpha,\beta} = BC$, it holds that*

$$\mathcal{E}(B, C) = \begin{cases} \Omega(\sqrt{k} \log n), & \alpha = 1 \\ \Omega(\sqrt{k}), & \alpha < 1 \end{cases} \quad (17)$$

Proof. Here, we refine Theorem 8 from Kalinin & Lampert (2024) by removing the assumption that the scalar products between the columns of the matrix C are non-negative, i.e., $C^\top C \geq 0$. We first prove that

$$\text{sens}_{k,b}(C)^2 \geq \frac{1}{4b} \|C\|_F^2. \quad (18)$$

To do so, we lower bound the b -min separation participation by the (k, b) -participation, where we have a fixed b separation between vectors but are allowed to include only a subset of them. This splits the set of all column indices into b disjoint subsets \mathcal{S}_j for $j \in [1, b]$ with $|\mathcal{S}_j| \leq k$. Then, the following inequality holds:

$$\text{sens}_{k,b}(C)^2 \geq \max_{j \in [1, b]} \sup_{S \subseteq \mathcal{S}_j} \left\| \sum_{i \in S} C_{[:,i]} \right\|_2^2, \quad (19)$$

where $C_{[:,i]}$ denotes the i -th column of the matrix C .

To prove a lower bound, we use the probabilistic method. Consider i.i.d. random variables $\epsilon_i \sim \text{Bernoulli}(\frac{1}{2})$. Then:

$$\begin{aligned} \sup_{S \subseteq \mathcal{S}_j} \left\| \sum_{i \in S} C_{[:,i]} \right\|_2^2 &\geq \mathbb{E} \left\| \sum_{i \in \mathcal{S}_j} C_{[:,i]} \epsilon_i \right\|_2^2 = \frac{1}{2} \sum_{i \in \mathcal{S}_j} \|C_{[:,i]}\|_2^2 + \frac{1}{4} \sum_{\substack{i \neq i' \\ i, i' \in \mathcal{S}_j}} \langle C_{[:,i]}, C_{[:,i']} \rangle \\ &= \frac{1}{4} \sum_{i \in \mathcal{S}_j} \|C_{[:,i]}\|_2^2 + \frac{1}{4} \left\| \sum_{i \in \mathcal{S}_j} C_{[:,i]} \right\|_2^2 \geq \frac{1}{4} \sum_{i \in \mathcal{S}_j} \|C_{[:,i]}\|_2^2. \end{aligned} \quad (20)$$

Thus,

$$\text{sens}_{k,b}(C)^2 \geq \max_{j \in [1, b]} \frac{1}{4} \sum_{i \in \mathcal{S}_j} \|C_{[:,i]}\|_2^2 \geq \frac{1}{4b} \sum_{i=1}^n \|C_{[:,i]}\|_2^2 = \frac{1}{4b} \|C\|_F^2. \quad (21)$$

Therefore,

$$\mathcal{E}(B, C) = \frac{1}{\sqrt{n}} \|B\|_F \text{sens}_{k,b}(C) \geq \frac{1}{2\sqrt{nb}} \|B\|_F \|C\|_F \geq \frac{1}{2\sqrt{nb}} \|BC\|_* = \frac{1}{2\sqrt{nb}} \|A_{\alpha,\beta}\|_*. \quad (22)$$

The nuclear norm of the matrix $A_{\alpha,\beta}$ has been lower bounded in Lemma 8 of Kalinin & Lampert (2024) by $\Omega(n \log n)$ for $\alpha = 1$, and by $\Omega(n)$ for $\alpha < 1$. Substituting $k = \lceil \frac{n}{b} \rceil$ concludes the proof. \square

756 **Lemma 1** (Inverse Square Root of the Matrix $A_{\alpha,\beta}$). *For $k \geq 0$, let $\tilde{r}_k = (-1)^k \binom{1/2}{k} = \frac{-r_k}{2k-1} =$
 757 $\frac{-1}{2k-1} \left| \binom{-1/2}{k} \right|$. The inverse square root of the matrix $A_{\alpha,\beta}^{-1/2}$ defined in (4), for $0 \leq \beta < \alpha \leq 1$, is
 758*

759
$$C_{\alpha,\beta}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \tilde{c}_1^{\alpha,\beta} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{c}_{n-1}^{\alpha,\beta} & \tilde{c}_{n-2}^{\alpha,\beta} & \cdots & 1 \end{pmatrix}, \quad \text{where } \tilde{c}_k^{\alpha,\beta} = \sum_{j=0}^k \tilde{r}_j \beta^j \tilde{r}_{k-j} \alpha^{k-j}. \quad (9)$$

 760
 761
 762
 763
 764

765 *Proof.* The matrix for the momentum matrix is given by:
 766

767
$$A_{\alpha,\beta} = A_{\alpha,0} \times A_{\beta,0} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \alpha & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{n-1} & \alpha^{n-2} & \cdots & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \beta & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \beta^{n-1} & \beta^{n-2} & \cdots & 1 \end{pmatrix}. \quad (23)$$

 768
 769
 770
 771

772 The inverse square root then takes the form:
 773

774
$$C_{\alpha,\beta}^{-1} = C_{\alpha,0}^{-1} \times C_{\beta,0}^{-1}, \quad (24)$$

775 since all lower triangular Toeplitz (LTT) matrices commute (see Strang (1986) or Böttcher & Grudsky
 776 (2000)). Therefore, it suffices to prove that the inverse square root of the matrix $C_{\alpha,0}^{-1}$ is a lower
 777 triangular Toeplitz matrix with elements $\tilde{r}_i \alpha^i$, which would imply the stated formula for $\tilde{c}_k^{\alpha,\beta}$, since
 778 the product of LTT matrices is given by the convolution of their elements.

779 The proof for the matrix $C_{\alpha,0}^{-1}$ is based on the identities of the generating functions of the sequences
 780 r_k and \tilde{r}_k , derived simultaneously using the binomial formula:
 781

782
$$(1 - \alpha x)^{-1/2} = \sum_{k=0}^{\infty} \binom{-1/2}{k} (-1)^k \alpha^k x^k = \sum_{k=0}^{\infty} r_k \alpha^k x^k,$$

 783
 784
$$(1 - \alpha x)^{1/2} = \sum_{k=0}^{\infty} \binom{1/2}{k} (-1)^k \alpha^k x^k = \sum_{k=0}^{\infty} \tilde{r}_k \alpha^k x^k. \quad (25)$$

 785
 786

787 Then the generating function of the product of the matrices C_{α} and the proposed C_{α}^{-1} is given by:
 788

789
$$\sum_{n=0}^{\infty} x^n \left[\sum_{k=0}^n r_k \alpha^k \tilde{r}_{n-k} \alpha^{n-k} \right] = (1 - \alpha x)^{1/2} \times (1 - \alpha x)^{-1/2} = 1, \quad (26)$$

 790
 791

792 implying that $\tilde{r}_i \alpha^i$ are indeed the coefficients of C_{α}^{-1} , which concludes the proof. \square
 793

794 **Lemma 7** (Bounds on diagonal entries of $C_{1,\beta}^{-1}$). *The diagonal elements of the inverse square root
 795 of the momentum matrix $C_{1,\beta}^{-1}$ defined in equation (9) with parameter $0 \leq \beta < 1$, denoted as
 796 $(1, \tilde{c}_1^{1,\beta}, \tilde{c}_2^{1,\beta}, \dots, \tilde{c}_{n-1}^{1,\beta})$, satisfy the following inequality:*
 797

798
$$\tilde{r}_k (1 + \beta) \leq \tilde{c}_k^{1,\beta} \leq 0, \quad \text{for } k \geq 1. \quad (27)$$

 799

800 *Proof.* The values $\tilde{c}_k^{1,\beta}$ are given by the convolution of \tilde{r}_k and $\beta^k \tilde{r}_k$:
 801

802
$$\tilde{c}_k^{1,\beta} = \sum_{j=0}^k \tilde{r}_j \tilde{r}_{k-j} \beta^j = (1 + \beta^k) \tilde{r}_k + \sum_{j=1}^{k-1} \tilde{r}_j \tilde{r}_{k-j} \beta^j. \quad (28)$$

 803
 804

805 Since \tilde{r}_j is negative for $j \geq 1$, the summation term is positive. Furthermore, $1 + \beta^k \leq 1 + \beta$, and
 806 since \tilde{r}_k is negative, we obtain the lower bound:
 807

808
$$\tilde{c}_k^{1,\beta} \geq \tilde{r}_k (1 + \beta). \quad (29)$$

 809

This bound is tight for $k = 1$ as $\tilde{c}_1^{1,\beta} = -\frac{1+\beta}{2}$.

810 For the upper bound, we first consider the special cases. When $\beta = 0$, we have $\tilde{c}_k^{1,0} = \tilde{r}_k < 0$. For
 811 $\beta = 1$, we formally obtain:
 812

$$813 \quad \tilde{c}_k^{1,1} = \sum_{j=0}^k \tilde{r}_j \tilde{r}_{k-j} = \begin{cases} 1, & k = 0, \\ -1, & k = 1, \\ 0, & \text{otherwise.} \end{cases} \quad (30)$$

817 This follows from the observation that $C_1^{-1} \times C_1^{-1} = A_1^{-1}$, which has the structure described in the
 818 equation.

819 Since the inequality holds for $k = 1$, we now consider $k \geq 2$, where $\tilde{c}_k^1 = 0$. We show the following,
 820 which establishes the upper bound:
 821

822 **Proposition 1** (Monotonicity of diagonal elements of $C_{1,\beta}^{-1}$). *Let $\tilde{c}_k^{1,\beta}$ be the diagonal elements of
 823 $C_{1,\beta}^{-1}$ defined in equation (9). Then $\tilde{c}_k^{1,\beta}$ is an increasing function of β , varying from \tilde{r}_k at $\beta = 0$ to 0
 824 at $\beta = 1$.*
 825

826 *Proof.* To do so, we differentiate $\tilde{c}_k^{1,\beta}$ with respect to β :
 827

$$828 \quad \frac{d\tilde{c}_k^{1,\beta}}{d\beta} = k\tilde{r}_k\beta^{k-1} + \sum_{j=1}^{k-1} \tilde{r}_j \tilde{r}_{k-j} j \beta^{j-1} = \beta^{k-1} \left(k\tilde{r}_k + \sum_{j=1}^{k-1} \tilde{r}_j \tilde{r}_{k-j} j \beta^{j-k} \right). \quad (31)$$

832 To prove that this expression is positive, we analyze the term in brackets. As $\beta \rightarrow 0$, the term tends
 833 to positive infinity since $\tilde{r}_j \tilde{r}_{k-j}$ are positive and $j - k$ is negative. Moreover, this term is decreasing
 834 as $\beta \rightarrow 1$, so it suffices to check its non-negativity at $\beta = 1$, i.e.,
 835

$$836 \quad \frac{d\tilde{c}_k^{1,\beta}}{d\beta} \Big|_{\beta=1} \geq 0 \quad (32)$$

839 Setting $\beta = 1$ in equation (31), we have
 840

$$841 \quad \frac{d\tilde{c}_k^{1,\beta}}{d\beta} \Big|_{\beta=1} = k\tilde{r}_k + \sum_{j=1}^{k-1} \tilde{r}_j \tilde{r}_{k-j} j. \quad (33)$$

844 To show this, we use an auxiliary identity for the values $\tilde{r}_j j$:
 845

$$846 \quad \tilde{r}_j j = -\frac{r_j j}{2j-1} = \frac{-1}{2} \left(r_j + \frac{r_j}{2j-1} \right) = \frac{-r_j}{2} + \frac{\tilde{r}_j}{2}. \quad (34)$$

849 Using the identity (34) in equation (33), we obtain:
 850

$$851 \quad \frac{d(\tilde{c}_k^{1,\beta})}{d\beta} \Big|_{\beta=1} = \frac{1}{2} \tilde{r}_k - \frac{1}{2} r_k + \frac{1}{2} \sum_{j=1}^{k-1} \tilde{r}_j \tilde{r}_{k-j} - \frac{1}{2} \sum_{j=1}^{k-1} r_j \tilde{r}_{k-j} \\ 852 \quad = \frac{1}{2} \sum_{j=0}^k \tilde{r}_j \tilde{r}_{k-j} - \frac{1}{2} \sum_{j=0}^k r_j \tilde{r}_{k-j} = 0. \quad (35)$$

858 Since both sums vanish for $k \geq 2$, this concludes the proof of Proposition 1. \square
 859

860 This completes the proof of the lemma. \square
 861

862 **Lemma 8** (Decresing values). *The values $(1, c_1^{\alpha,\beta}, \dots, c_{p-1}^{\alpha,\beta}, g_p^{\alpha,\beta}, \dots, g_{n-1}^{\alpha,\beta})$ of matrix $C_{\alpha,\beta}^p$ as
 863 defined in Lemma 12 are decreasing.*

864 *Proof.* The first p values are decreasing, as shown in Kalinin & Lampert (2024). For the remaining
 865 values, we prove that

$$867 \quad g_{p+k}^{\alpha,\beta} - g_{p+k+1}^{\alpha,\beta} = \sum_{j=1}^{p-1} (-\tilde{c}_j^{\alpha,\beta})(g_{p+k-j}^{\alpha,\beta} - g_{p+k+1-j}^{\alpha,\beta}) \geq 0. \quad (36)$$

870 In Lemma 7, we prove that $(-\tilde{c}_j^{\alpha,\beta}) \geq 0$, so each term in the summation is non-negative. Since
 871 the differences $(g_i^{\alpha,\beta} - g_{i+1}^{\alpha,\beta})$ are also non-negative by the induction step, the inequality follows,
 872 completing the proof. \square

873 **Lemma 9** (Bound on the matrix diagonal sum of $C_{1,\beta}^{-1}$). *The diagonal elements of the inverse square
 874 root of the momentum matrix $C_{1,\beta}^{-1}$ defined in equation (9) with parameter $0 \leq \beta < 1$, denoted as
 875 $(1, \tilde{c}_1^{1,\beta}, \tilde{c}_2^{1,\beta}, \dots, \tilde{c}_{n-1}^{1,\beta})$, satisfy the following inequality:*

$$878 \quad r_k(1-\beta) \leq \sum_{j=0}^k \tilde{c}_j^{1,\beta} \leq c_k^{1,\beta}(1-\beta), \quad \text{for } k \geq 1. \quad (37)$$

881 Here $\tilde{c}_i^{1,\beta}$ is as defined by equation (9).

883 *Proof.* We first state several properties of the sums of $\tilde{c}_j^{1,\beta}$:

$$886 \quad (1) \quad \sum_{j=0}^k \tilde{c}_j^{1,\beta} = \sum_{j=0}^k \tilde{r}_j \beta^j r_{k-j},$$

$$889 \quad (2) \quad \sum_{j=0}^k \tilde{c}_j^{1,\beta} \beta^{k-j} = \sum_{j=0}^k r_j \beta^j \tilde{r}_{k-j}, \quad (38)$$

$$892 \quad (3) \quad \sum_{j=0}^k \frac{\tilde{c}_j^{1,\beta} (1 - \beta^{k-j+1})}{1 - \beta} = c_k^{1,\beta}$$

895 which can be derived from equating the coefficients of the following generating function identities,
 896 respectively:

$$898 \quad (1) \quad \left[\sqrt{1-x} \sqrt{1-\beta x} \right] \times \frac{1}{1-x} = \frac{\sqrt{1-\beta x}}{\sqrt{1-x}}$$

$$900 \quad (2) \quad \left[\sqrt{1-x} \sqrt{1-\beta x} \right] \times \frac{1}{1-\beta x} = \frac{\sqrt{1-x}}{\sqrt{1-\beta x}} \quad (39)$$

$$903 \quad (3) \quad \left[\sqrt{1-x} \sqrt{1-\beta x} \right] \times \left[\frac{1}{1-\beta x} \frac{1}{1-x} \right] = \frac{1}{\sqrt{1-x} \sqrt{1-\beta x}}$$

905 **Upper Bound.** First, we rewrite the expression as follows by multiplying and dividing by $1 - \beta$
 906 the terms $\tilde{c}_j^{1,\beta}$:

$$908 \quad \sum_{j=0}^k \tilde{c}_j^{1,\beta} - c_k^{1,\beta}(1-\beta) = (1-\beta) \sum_{j=0}^k \frac{\tilde{c}_j^{1,\beta} (1 - \beta^{k-j+1} + \beta^{k-j+1})}{1 - \beta} - c_k^{1,\beta}(1-\beta) \quad (40)$$

$$911 \quad = \beta \sum_{j=0}^k \tilde{c}_j^{1,\beta} \beta^{k-j} = \beta \sum_{j=0}^k r_j \beta^j \tilde{r}_{k-j} = \beta^{k+1} \sum_{j=0}^k \tilde{r}_j \beta^{-j} r_{k-j},$$

914 where the third equality follows from equation 38 (2). For $\beta = 0$, the expression is identically 0. So,
 915 now consider when $\beta > 0$. We want to show that

$$916 \quad \sum_{j=0}^k \tilde{r}_j \beta^{-j} r_{k-j} \geq 0 \quad (41)$$

918 for all $\beta \in (0, 1]$.
 919

920 As β increases from 0 to 1, the sum is clearly increasing, since the only positive term does not have
 921 a β multiplier. For $\beta = 1$, the sum equals zero, as the sequences \tilde{r}_j and r_j have inverse generating
 922 functions. Therefore, the sum remains negative, concluding the proof of the upper bound.

923 **Lower Bound.** For the lower bound, using equation (38) and the recurrence relation of \tilde{r}_j stated in
 924 Lemma 1, we get

$$\begin{aligned} 925 \quad \sum_{j=0}^k \tilde{c}_j^{1,\beta} - r_k(1-\beta) &= \sum_{j=0}^k \tilde{r}_j \beta^j r_{k-j} - r_k(1-\beta) = \sum_{j=1}^k \tilde{r}_j \beta^j r_{k-j} + \beta r_k \\ 926 \quad &= \beta \left[r_k - \sum_{j=1}^k \frac{r_j}{2j-1} r_{k-j} \beta^{j-1} \right] \geq \beta \left[r_k - \sum_{j=1}^k \frac{r_j}{2j-1} r_{k-j} \right] \quad (42) \\ 927 \quad &\geq \beta \sum_{j=0}^k \tilde{r}_j r_{k-j} = 0, \end{aligned}$$

928 concluding the proof. In the above, the first inequality follows from the fact that $0 < \beta \leq 1$. The fact
 929 is trivially true for $\beta = 0$. \square
 930

931 **Lemma 10** (Bound on diagonal values of the matrix $C_{1,\beta}$). *The diagonal values of the matrix $C_{1,\beta}$
 932 (see equation (11)) with parameter $0 \leq \beta < 1$, denoted as $(1, c_1^{1,\beta}, c_2^{1,\beta}, \dots, c_{n-1}^{1,\beta})$, satisfy the
 933 inequality:*

$$934 \quad c_k^{1,\beta} \leq c_{k-1}^{1,\beta} \left[1 - \frac{(1-\beta)^2}{2k} \right] \quad \text{for } k \geq 1. \quad (43)$$

935 *Proof.* We first prove that

$$936 \quad c_{k-1}^{1,\beta} - c_k^{1,\beta} \geq (r_{k-1} - r_k)(1-\beta). \quad (44)$$

937 Using the expression of $c_k^{1,\beta}$, we have

$$\begin{aligned} 938 \quad c_{k-1}^{1,\beta} - c_k^{1,\beta} - (r_{k-1} - r_k)(1-\beta) &= \sum_{j=0}^{k-1} r_j r_{k-1-j} \beta^j - \sum_{j=0}^k r_j r_{k-j} \beta^j - (r_{k-1} - r_k)(1-\beta) \\ 939 \quad &= \beta(r_{k-1} - r_k) + \sum_{j=1}^{k-1} r_j (r_{k-j-1} - r_{k-j}) \beta^j - r_k \beta^k \\ 940 \quad &= \beta^k \left[\beta^{1-k} (r_{k-1} - r_k) + \sum_{j=1}^{k-1} r_j (r_{k-j-1} - r_{k-j}) \beta^{j-k} - r_k \right] \end{aligned}$$

941 We note that r_k is a decreasing sequence; therefore, the first two terms inside the brackets are positive,
 942 and the powers of β in front of them are non-positive. Therefore, as a lower bound, we can substitute
 943 $\beta = 1$ inside the sum:

$$\begin{aligned} 944 \quad c_{k-1}^{1,\beta} - c_k^{1,\beta} - (r_{k-1} - r_k)(1-\beta) &\geq \beta^k \left[r_{k-1} - r_k + \sum_{j=1}^{k-1} r_j (r_{k-j-1} - r_{k-j}) - r_k \right] \quad (45) \\ 945 \quad &= \beta^k [r_{k-1} - 2r_k + (1 - r_{k-1}) - (1 - 2r_k)] = 0 \end{aligned}$$

946 Using this inequality, we obtain:

$$\begin{aligned} 947 \quad \frac{c_k^{1,\beta}}{c_{k-1}^{1,\beta}} &= \frac{c_{k-1}^{1,\beta} - (c_{k-1}^{1,\beta} - c_k^{1,\beta})}{c_{k-1}^{1,\beta}} \leq 1 - \frac{r_{k-1} - r_k}{c_{k-1}^{1,\beta}} (1-\beta) \\ 948 \quad &= 1 - \frac{r_{k-1}}{2k} \cdot \frac{1-\beta}{c_{k-1}^{1,\beta}} \leq 1 - \frac{(1-\beta)^2}{2k}, \end{aligned} \quad (46)$$

949 concluding the proof. \square
 950

972 **Lemma 11** (Bounds on diagonals of $B_{\alpha,\beta}^p$). *The matrix $B_{\alpha,\beta}^p$ in the BISR factorization is a lower*
 973 *triangular Toeplitz matrix. The values on its diagonals are*
 974

$$975 \quad (1, c_1^{\alpha,\beta}, c_2^{\alpha,\beta}, \dots, c_{p-1}^{\alpha,\beta}, b_p^{\alpha,\beta}, \dots, b_{n-1}^{\alpha,\beta}) \quad \text{where } 0 \leq b_i^{\alpha,\beta} \leq \alpha^i c_{p-1}^{1,\beta/\alpha} \quad \text{for } i \geq p \quad (47)$$

976 where $c_i^{1,\beta/\alpha}$ for $1 \leq i \leq p-1$ is as defined in equation (11).

979 *Proof.* The first p values are identical to the square root factorization $c_i^{\alpha,\beta}$ due to the uniqueness of
 980 the inverse. The remaining values satisfy the following recurrence:

$$981 \quad b_i^{\alpha,\beta} = \sum_{j=0}^{p-1} \tilde{c}_j^{\alpha,\beta} \frac{\alpha^{i-j+1} - \beta^{i-j+1}}{\alpha - \beta} = \alpha^i \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta/\alpha} \frac{1 - \beta^{i-j+1}}{1 - \beta/\alpha} = \alpha^i b_i^{1,\beta/\alpha}. \quad (48)$$

985 Therefore, it suffices to prove that $b_i^{1,\beta} \leq c_{p-1}^{1,\beta}$, since we can then substitute β with β/α .

$$986 \quad b_i^{1,\beta} = \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} \frac{1 - \beta^{i-j+1}}{1 - \beta} = \frac{1}{1 - \beta} \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} - \beta^{i+1-p} \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} \frac{\beta^{p-j}}{1 - \beta} \\ 987 \quad = \frac{1}{1 - \beta} \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} + \beta^{i+1-p} \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} \frac{(-\beta^{p-j} + 1 - 1)}{1 - \beta} \\ 988 \quad = \frac{1 - \beta^{i+1-p}}{1 - \beta} \sum_{j=0}^{p-1} \tilde{c}_j^{1,\beta} + c_{p-1}^{1,\beta} \beta^{i+1-p}. \quad (49)$$

996 We now use Lemma 9 to first show that $b_i^{1,\beta} \geq 0$, since the sum of $\tilde{c}_j^{1,\beta}$ is non-negative and all other
 997 terms are positive. Second, we establish that:

$$999 \quad b_i^{1,\beta} \leq \frac{1 - \beta^{i+1-p}}{1 - \beta} (1 - \beta) c_{p-1}^{1,\beta} + c_{p-1}^{1,\beta} \beta^{i+1-p} = c_{p-1}^{1,\beta}, \quad (50)$$

1002 which completes the proof. \square

1004 **Lemma 12** (Bounds on diagonals of $C_{\alpha,\beta}^p$). *The matrix $C_{\alpha,\beta}^p$ in the BISR factorization is a lower*
 1005 *triangular Toeplitz matrix. The values on its diagonals are $(1, c_1^{\alpha,\beta}, c_2^{\alpha,\beta}, \dots, c_{p-1}^{\alpha,\beta}, g_p^{\alpha,\beta}, \dots, g_{n-1}^{\alpha,\beta})$,*
 1006 *where $c_i^{1,\beta/\alpha}$ (for $1 \leq i \leq p-1$) is as defined in equation (11) and*

$$1008 \quad 0 \leq g_i^{\alpha,\beta} \leq \alpha^i \min(c_i^{1,\beta/\alpha}, c_p^{1,\beta/\alpha} \gamma_{\beta/\alpha}^{i-p}) \quad \text{for } \gamma_{\beta/\alpha} = \left(1 + \frac{(1 - \beta/\alpha)^2}{4p(1 + \beta/\alpha)}\right)^{-1} \quad \text{and } i \geq p. \quad (51)$$

1012 *Proof.* The first p values of $C_{\alpha,\beta}^p$ are the same as those of $C_{\alpha,\beta}$ since the matrix is Lower Triangular
 1013 Toeplitz (LT). For the subsequent values, we first prove the following inequality by induction:

$$1015 \quad g_i^{\alpha,\beta} = \sum_{j=1}^{p-1} (-\tilde{c}_j^{\alpha,\beta}) g_{i-j}^{\alpha,\beta} \leq \sum_{j=1}^{p-1} (-\tilde{c}_j^{\alpha,\beta}) c_{i-j}^{\alpha,\beta} \leq \sum_{j=1}^i (-\tilde{c}_j^{\alpha,\beta}) c_{i-j}^{\alpha,\beta} = c_i^{\alpha,\beta} = \alpha^i c_i^{1,\beta/\alpha}. \quad (52)$$

1019 We observe that for all sequences $c_i^{\alpha,\beta}$, $\tilde{c}_i^{\alpha,\beta}$, and $g_i^{\alpha,\beta}$, we can factor out α^i by replacing β with β/α .
 1020 Therefore, it suffices to prove the inequality $g_i^{1,\beta} \leq c_p^{1,\beta} \gamma_{\beta}^{i-p}$, after which we may substitute β with
 1021 β/α . For the subsequent p values, we establish the stated bound $g_i^{1,\beta} \leq c_p^{1,\beta} \gamma_{\beta}^{i-p}$ using Lemma 10.

$$1024 \quad \frac{g_{p+k}^{1,\beta}}{c_p^{1,\beta} \gamma_{\beta}^k} \leq \frac{c_{p+k}^{1,\beta}}{c_p^{1,\beta}} \left(1 + \frac{(1 - \beta)^2}{4p(1 + \beta)}\right)^k = \prod_{j=1}^k \left(1 - \frac{(1 - \beta)^2}{2(p+j)}\right) \left(1 + \frac{(1 - \beta)^2}{4p(1 + \beta)}\right) \leq 1. \quad (53)$$

1026 Since each term in the product is less than 1 for $2p + 2j \leq 4p$, the inequality holds. For the induction
1027 step, we show:

$$1029 \frac{g_{p+k}^{1,\beta}}{c_p^{1,\beta} \gamma_\beta^k} = \frac{1}{c_p^{1,\beta} \gamma_\beta^k} \sum_{j=1}^{p-1} (-\tilde{c}_j^{1,\beta}) g_{p+k-j}^{1,\beta} \leq \sum_{j=1}^{p-1} (-\tilde{c}_j^{1,\beta}) \gamma_\beta^{-j} = \sum_{j=1}^{p-1} (-\tilde{c}_j^{1,\beta}) \left(1 + \frac{(1-\beta)^2}{4p(1+\beta)}\right)^j. \quad (54)$$

1033 For convenience, we denote $\phi_\beta = \frac{(1-\beta)^2}{1+\beta} < 1$. To proceed, we use the following auxiliary inequality
1034 for $j \leq p-1$:

$$1035 \left(1 + \frac{\phi_\beta}{4p}\right)^j \leq e^{\frac{j\phi_\beta}{4p}} \leq 1 + \frac{5j\phi_\beta}{16p}, \quad (55)$$

1038 since $e^x \leq 1 + 1.25x$ for $x \leq \frac{1}{4}$. Combining this inequality with Lemma 9, we obtain:

$$1040 \frac{g_{p+k}^{1,\beta}}{c_p^{1,\beta} \gamma_\beta^k} \leq \sum_{j=1}^{p-1} (-\tilde{c}_j^{1,\beta}) \left(1 + \frac{5j\phi_\beta}{16p}\right) \leq 1 - r_{p-1}(1-\beta) + \frac{5\phi_\beta}{16p} \sum_{j=1}^{p-1} (-\tilde{c}_j^{1,\beta}) j. \quad (56)$$

1043 By Lemma 7, we can upper bound:

$$1046 (-\tilde{c}_j^{1,\beta}) j \leq (-\tilde{r}_j) j (1+\beta) = \frac{j r_j}{2j-1} (1+\beta) \leq r_j (1+\beta). \quad (57)$$

1048 Using the known bounds $\frac{1}{\sqrt{\pi(j+1)}} \leq r_j \leq \frac{1}{\sqrt{\pi j}}$, we conclude:

$$1051 \frac{g_{p+k}^{1,\beta}}{c_p^{1,\beta} \gamma_\beta^k} \leq 1 - \frac{1-\beta}{\sqrt{\pi p}} + \frac{5(1-\beta)^2}{16p\sqrt{\pi}} \sum_{j=1}^{p-1} \frac{1}{\sqrt{j}} \leq 1 - \frac{1-\beta}{\sqrt{\pi p}} + \frac{5(1-\beta)^2}{16p\sqrt{\pi}} \cdot 2\sqrt{p} \quad (58)$$

$$1054 \leq 1 - \frac{1-\beta}{\sqrt{\pi p}} \left(1 - \frac{5}{8}(1-\beta)\right) < 1,$$

1057 where for the second inequality we used the integral estimate $\sum_{j=1}^{k-1} j^{-1/2} \leq \int_0^k x^{-1/2} dx = 2\sqrt{k}$.

1058 Thus, we have shown that $\frac{g_{p+k}^{1,\beta}}{c_p^{1,\beta} \gamma_\beta^k} \leq 1$ for all k , which completes the proof. \square

1061 **Theorem 4** (BISR Approximation Error). *For $1 \leq p \leq n$ and $1 \leq k \leq \frac{n}{b}$ the following upper bound
1062 holds for the matrix factorization error of the BISR $A_{\alpha,\beta} = B_{\alpha,\beta}^p C_{\alpha,\beta}^p$ (as in Definition 1):*

$$1064 \mathcal{E}(B_{\alpha,\beta}^p, C_{\alpha,\beta}^p) = \begin{cases} O_\beta \left(\sqrt{k} \log p + \sqrt{\frac{nk}{b}} + \sqrt{\frac{nk \log p}{p}} + \sqrt{\frac{kp \log p}{b}} \right) & \text{for } \alpha = 1, \\ O_{\alpha,\beta}(\sqrt{k}) & \text{for } \alpha < 1. \end{cases} \quad (7)$$

1068 *Proof.* We begin with the case $\alpha < 1$. To analyze this, we first consider the Frobenius norm:

$$1070 \frac{\|B_{\alpha,\beta}^p\|_{\text{Fr}}^2}{n} \leq \sum_{i=0}^{p-1} (c_i^{\alpha,\beta})^2 + \sum_{i=p}^{n-1} (b_i^{\alpha,\beta})^2 \leq \sum_{i=0}^{p-1} (c_i^{\alpha,\beta})^2 + (c_{p-1}^{1,\beta/\alpha})^2 \sum_{i=p}^{n-1} \alpha^{2i} \quad (59)$$

$$1073 \leq \frac{1}{(\alpha-\beta)^2} \log \left(\frac{1}{1-\alpha^2} \right) + \frac{\alpha^{2p}}{1-\alpha^2} = O_{\alpha,\beta}(1),$$

1075 where for the second inequality we used Lemma 11, and for the third inequality Lemma 7 from
1076 Kalinin & Lampert (2024).

1078 For the (k, b) -sensitivity of the matrix $C_{\alpha,\beta}^p$, we use the fact that it is element-wise bounded by the
1079 full matrix $C_{\alpha,\beta}$ (see Lemma 12). For $C_{\alpha,\beta}$, we apply a bound from Theorem 7 of Kalinin & Lampert
(2024), yielding $\text{sens}_{k,b}(C_{\alpha,\beta}) = O_{\alpha,\beta}(\sqrt{k})$, which concludes the case $\alpha < 1$.

For $\alpha = 1$, we use Lemma 11 to get:

$$\begin{aligned}
& \frac{\|B_{1,\beta}^p\|_{\text{Fr}}^2}{n} \leq \sum_{i=0}^{n-1} (b_i^{1,\beta})^2 = \sum_{i=0}^{p-1} (c_i^{1,\beta})^2 + \sum_{i=p}^{n-1} (c_{p-1}^{1,\beta})^2 = \frac{1}{(1-\beta)^2} \sum_{i=0}^{p-1} r_i^2 + \frac{1}{(1-\beta)^2} \sum_{i=p}^{n-1} r_{p-1}^2 \\
& \leq \frac{1}{(1-\beta)^2} \left[1 + \log p + \frac{n-p}{p\pi} \right] = O_\beta \left(\log p + \frac{n}{p} \right).
\end{aligned} \tag{60}$$

Next, we bound the sensitivity under k, b participation. Using Theorem 5, combined with Lemma 8 we obtain:

$$\text{sens}_{k,b}^2(C_{1,\beta}^p) = \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \langle (C_{1,\beta}^p)_{:,ib}, (C_{1,\beta}^p)_{:,jb} \rangle. \quad (61)$$

We split the sum into the following four terms:

$$\text{sens}_{k,b}^2(C_{1,\beta}^p) = \underbrace{\sum_{i=0}^{k-1} \sum_{j \neq i} \sum_{t=0}^{\min(p+ib,n)-1-jb} c_t^{1,\beta} c_{jb-ib+t}^{1,\beta}}_{\mathcal{S}_1} + \underbrace{\sum_{i=0}^{k-1} \sum_{j \neq i} \sum_{t=0}^{\min(p-1,n-1-jb)} c_t^{1,\beta} g_{jb-ib+t}^{1,\beta}}_{\mathcal{S}_2} \\ + \underbrace{\sum_{i=0}^{k-1} \sum_{j \neq i} \sum_{t=p}^{n-1-ib} g_t^{1,\beta} g_{jb-ib+t}^{1,\beta}}_{\mathcal{S}_3} + \underbrace{\sum_{i=0}^{k-1} \left[\sum_{t=0}^{\min(p-1,n-1-ib)} (c_t^{1,\beta})^2 + \sum_{t=p}^{n-1-ib} (g_t^{1,\beta})^2 \right]}_{\mathcal{S}_4} \quad (62)$$

Step 1 (S_1 Bound) We note that the case $b < p < n$ has not been considered in Kalinin & Lampert (2024) and is technically more challenging. Consider the half of the sum where $j > i$. The sum requires $jb - ib \leq p - 1$; otherwise, the upper limit would be negative. We bound the sum as follows:

$$\begin{aligned}
& \sum_{t=0}^{\min(p+ib,n)-1-jb} c_t^{1,\beta} c_{jb-ib+t}^{1,\beta} \leq \frac{r_{jb-ib}}{1-\beta} + \frac{1}{\pi(1-\beta)^2} \sum_{t=1}^{p-1+ib-jb} \frac{1}{\sqrt{t(jb-ib+t)}} \\
& \leq \frac{1}{(1-\beta)^2} \left[1 + \frac{1}{\pi} \int_0^{p-1+ib-jb} \frac{dx}{\sqrt{x(jb-ib+x)}} \right] \\
& = \frac{1}{(1-\beta)^2} \left[1 + \frac{1}{\pi} f \left(\frac{jb-ib}{p-1+ib-jb} \right) \right], \tag{63}
\end{aligned}$$

where $f(a) = 2 \log \left(\sqrt{\frac{1}{a} + 1} + \sqrt{\frac{1}{a}} \right)$. We then use the following auxiliary inequality for the function $f(a)$:

$$f(a) = \log\left(\frac{1}{a} + 1\right) + 2\log\left(1 + \frac{1}{\sqrt{a+1}}\right) \leq \log\left(\frac{1}{a} + 1\right) + 2\log 2. \quad (64)$$

This results in the following inequality:

$$\sum_{t=0}^{\min(p+ib,n)-1-jb} c_t^{1,\beta} c_{jb-ib+t}^{1,\beta} \leq \frac{1}{(1-\beta)^2} \left[1 + \frac{2\log 2}{\pi} + \frac{1}{\pi} \log \left(\frac{p-1+ib-jb}{jb-ib} \right) \right] \mathbb{1}_{jb-ib \leq p-1}. \quad (65)$$

We can now upper bound the double sum:

$$\sum_{i=0}^{k-1} \sum_{j \neq i}^{k-1} \sum_{t=0}^{\min(p+ib, n)-1-jb} c_t^{1,\beta} c_{jb-ib+t}^{1,\beta} \leq \frac{2}{(1-\beta)^2} \sum_{i=0}^{k-1} \sum_{j=i+1}^{\min(k-1, i+\lfloor \frac{p-1}{b} \rfloor)} \left[\frac{3}{2} + \frac{1}{\pi} \log \left(\frac{p-1}{jb-ib} \right) \right]. \quad (66)$$

1134 The first term gives us:
 1135

$$1136 \quad \frac{2}{(1-\beta)^2} \sum_{i=0}^{k-1} \sum_{j=i+1}^{\min(k-1, i + \lfloor \frac{p-1}{b} \rfloor)} \frac{3}{2} \leq \frac{3k}{(1-\beta)^2} \left\lfloor \frac{p-1}{b} \right\rfloor. \quad (67)$$

1139 The second term is more involved. First, we upper bound the upper limit of the sum $\min(k-1, i +$
 1140 $\lfloor \frac{p-1}{b} \rfloor)$ by $i + \lfloor \frac{p-1}{b} \rfloor$, since the summands are positive. We can then upper bound the expression by:
 1141

$$1142 \quad \sum_{i=0}^{k-1} \sum_{j=i+1}^{i + \lfloor \frac{p-1}{b} \rfloor} \log \left(\frac{\frac{p-1}{b}}{j-i} \right) = \log \prod_{i=0}^{k-1} \frac{\left(\frac{p-1}{b} \right)^{\lfloor \frac{p-1}{b} \rfloor}}{\left(\lfloor \frac{p-1}{b} \rfloor \right)!} = k \log \frac{\left(\frac{p-1}{b} \right)^{\lfloor \frac{p-1}{b} \rfloor}}{\left(\lfloor \frac{p-1}{b} \rfloor \right)!}. \quad (68)$$

1146 Using the auxiliary inequality $k! \geq (\frac{k}{e})^k$, we show that:
 1147

$$1148 \quad \log \frac{\left(\frac{p-1}{b} \right)^{\lfloor \frac{p-1}{b} \rfloor}}{\left(\lfloor \frac{p-1}{b} \rfloor \right)!} \leq \left\lfloor \frac{p-1}{b} \right\rfloor \log \frac{p-1}{b} - \left\lfloor \frac{p-1}{b} \right\rfloor \log \left\lfloor \frac{p-1}{b} \right\rfloor + \left\lfloor \frac{p-1}{b} \right\rfloor \quad (69)$$

$$1151 \quad = \left\lfloor \frac{p-1}{b} \right\rfloor \log \left\{ \frac{p-1}{b} \right\} + \left\lfloor \frac{p-1}{b} \right\rfloor \leq \left\lfloor \frac{p-1}{b} \right\rfloor.$$

1153 Resulting in:
 1154

$$1155 \quad \sum_{i=0}^{k-1} \sum_{j \neq i}^{k-1} \sum_{t=0}^{\min(p+ib, n)-1-jb} c_t^{1,\beta} c_{jb-ib+t}^{1,\beta} \leq \frac{1}{(1-\beta)^2} \left(3k \left\lfloor \frac{p-1}{b} \right\rfloor + \frac{2}{\pi} k \left\lfloor \frac{p-1}{b} \right\rfloor \right) \quad (70)$$

$$1158 \quad \leq \frac{4k}{(1-\beta)^2} \left\lfloor \frac{p-1}{b} \right\rfloor,$$

1160 which concludes this part of the calculations.
 1161

1162 **Step 2 (Bound \mathcal{S}_2).** We can bound the inner sum as follows, assuming that $jb - ib \geq p$:

$$1163 \quad \sum_{t=0}^{\min(p-1, n-1-jb)} c_t^{1,\beta} g_{jb-ib+t}^{1,\beta} \leq c_p^{1,\beta} \sum_{t=0}^{p-1} c_t^{1,\beta} \gamma_{\beta}^{jb-ib+t-p} = c_p^{1,\beta} \gamma_{\beta}^{jb-ib-p} \sum_{t=0}^{p-1} c_t^{1,\beta} \gamma_{\beta}^t \quad (71)$$

$$1167 \quad \leq c_p^{1,\beta} \gamma_{\beta}^{jb-ib-p} \sum_{t=0}^{p-1} c_t^{1,\beta} \leq \frac{r_p \gamma_{\beta}^{jb-ib-p}}{(1-\beta)^2} \left(1 + \frac{1}{\sqrt{\pi}} \sum_{t=1}^{p-1} \frac{1}{\sqrt{t}} \right)$$

$$1170 \quad \leq \frac{r_p \gamma_{\beta}^{jb-ib-p}}{(1-\beta)^2} \left(1 + \frac{2\sqrt{p}}{\sqrt{\pi}} \right) \leq \frac{3\gamma_{\beta}^{jb-ib-p}}{(1-\beta)^2}$$

1172 For our specific choice of $\gamma_{\beta} = 1 - \frac{\phi_{\beta}}{4p+\phi_{\beta}} = \left(1 + \frac{\phi_{\beta}}{4p} \right)^{-1}$, where $\phi_{\beta} = \frac{(1-\beta)^2}{1+\beta}$. We rewrite the
 1173 bound using the following auxiliary inequality:
 1174

$$1176 \quad \gamma_{\beta}^{-p} = \left(1 + \frac{\phi_{\beta}}{4p} \right)^p \leq e^{\phi_{\beta}/4} \leq e^{1/4} \leq \frac{4}{3}, \quad (72)$$

1179 This yields the upper bound for the whole sum:
 1180

$$1181 \quad \sum_{i=0}^{k-1} \sum_{j \neq i}^{k-1} \sum_{t=0}^{\min(p-1, n-1-jb)} c_t^{1,\beta} g_{jb-ib+t}^{1,\beta} \leq \frac{8}{(1-\beta)^2} \sum_{i=0}^{k-1} \sum_{j=i+1}^{k-1} \gamma_{\beta}^{jb-ib} \leq \frac{8k\gamma_{\beta}^b}{(1-\beta)^2(1-\gamma_{\beta}^b)} \quad (73)$$

1184 We bound γ_{β}^b in the following way:
 1185

$$1186 \quad \gamma_{\beta}^b = \left(1 - \frac{\phi_{\beta}}{4p+\phi_{\beta}} \right)^b \leq e^{-\frac{b\phi_{\beta}}{4p+\phi_{\beta}}} = e^{-\frac{b\phi_{\beta}}{p} \frac{p}{4p+1}} \leq e^{-\frac{b\phi_{\beta}}{5p}} \quad (74)$$

1188 Thus,

$$\begin{aligned}
 1189 \quad & \sum_{i=0}^{k-1} \sum_{j \neq i}^{k-1} \sum_{t=0}^{\min(p-1, n-1-jb)} c_t^{1,\beta} g_{jb-ib+t}^{1,\beta} \leq \frac{8k}{(1-\beta)^2(\gamma_\beta^{-b} - 1)} \\
 1190 \quad & \leq \frac{8k}{(1-\beta)^2(e^{\frac{b\phi_\beta}{5p}} - 1)} \leq \frac{40kp(1+\beta)}{b(1-\beta)^4}.
 \end{aligned} \tag{75}$$

1193 **Step 3 (Bound \mathcal{S}_3)** We first bound the inner sum, assuming $j > i$:

$$\begin{aligned}
 1197 \quad & \sum_{t=p}^{n-1-jb} g_t^{1,\beta} g_{jb-ib+t}^{1,\beta} \leq (c_p^{1,\beta})^2 \sum_{t=p}^{n-1-jb} \gamma_\beta^{t-p} \gamma_\beta^{jb-ib+t-p} \\
 1198 \quad & \leq \frac{(c_p^{1,\beta})^2 \gamma_\beta^{jb-ib}}{1 - \gamma_\beta^2} \leq \frac{(c_p^{1,\beta})^2 \gamma_\beta^{jb-ib} (4p + \phi_\beta)}{2\phi_\beta} \\
 1200 \quad & \leq \frac{r_p^2 (4p + 1) \gamma_\beta^{jb-ib}}{2\phi_\beta (1-\beta)^2} \leq \frac{5r_p^2 \gamma_\beta^{jb-ib} p}{2\phi_\beta (1-\beta)^2} \\
 1201 \quad & \leq \frac{5\gamma_\beta^{jb-ib}}{2\pi\phi_\beta (1-\beta)^2} \leq \frac{\gamma_\beta^{jb-ib} (1+\beta)}{(1-\beta)^4}.
 \end{aligned} \tag{76}$$

1208 This yields the upper bound:

$$\sum_{i=0}^{k-1} \sum_{j \neq i}^{k-1} \sum_{t=p}^{n-1-jb} g_t^{1,\beta} g_{jb-ib+t}^{1,\beta} \leq \frac{2(1+\beta)}{(1-\beta)^4} \sum_{i=0}^{k-1} \sum_{j=i+1}^{k-1} \gamma_\beta^{jb-ib} \leq \frac{10kp(1+\beta)^2}{b(1-\beta)^6}. \tag{77}$$

1214 analogously to the previous step.

1215 **Step 4 (Bound \mathcal{S}_4)** We bound the sum of squared column norms as follows:

$$\begin{aligned}
 1217 \quad & \sum_{i=0}^{k-1} \left[\sum_{t=0}^{\min(p-1, n-1-ib)} (c_t^{1,\beta})^2 + \sum_{t=p}^{n-1-ib} (g_t^{1,\beta})^2 \right] \leq \frac{k}{(1-\beta)^2} \left[\sum_{t=0}^{p-1} r_t^2 + \frac{r_p^2}{1 - \gamma_\beta^2} \right] \\
 1218 \quad & \leq \frac{k}{(1-\beta)^2} \left[1 + \log p + \frac{5(1+\beta)}{2\pi(1-\beta)^2} \right].
 \end{aligned} \tag{78}$$

1222 **Step 5 (Combination)** Combining all steps together, we bound the k, b sensitivity as follows:

$$\begin{aligned}
 1224 \quad & \text{sens}_{k,b}^2(C_{1,\beta}^p) = \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \langle (C_{1,\beta}^p)_{:,ib}, (C_{1,\beta}^p)_{:,jb} \rangle \\
 1225 \quad & \leq \frac{k}{(1-\beta)^2} \left(1 + \log p + \frac{5(1+\beta)}{2\pi} + 10 \frac{p(1+\beta)}{b(1-\beta)^2} \left(4 + \frac{1+\beta}{(1-\beta)^2} \right) + 4 \left\lfloor \frac{p-1}{b} \right\rfloor \right) \\
 1226 \quad & \leq \frac{k(1+\beta)^2}{(1-\beta)^6} \left(2 + \log p + 54 \frac{p}{b} \right)
 \end{aligned} \tag{79}$$

1232 Thus,

$$\mathcal{E}(B_{1,\beta}^p, C_{1,\beta}^p)^2 \leq \frac{k(1+\beta)^2}{(1-\beta)^8} \left(1 + \log p + \frac{n-p}{p\pi} \right) \left(2 + \log p + 54 \frac{p}{b} \right) \tag{80}$$

1237 And

$$\mathcal{E}(B_{1,\beta}^p, C_{1,\beta}^p) = O_\beta \left(\sqrt{k \log p} + \sqrt{\frac{nk}{b}} + \sqrt{\frac{nk \log p}{p}} + \sqrt{\frac{kp \log p}{b}} \right). \tag{81}$$

□

1242 **Lemma 3** (Optimal Band Inversion Error). *Let the matrix $C_\lambda^{-1} = \text{LTT}(1, -\lambda, 0, \dots, 0)$ be a lower
1243 triangular Toeplitz matrix with 1 on the main diagonal and $-\lambda$ on the subdiagonal. Then, for a single
1244 participation and the prefix sum matrix $A_{1,0}$, the following bound on the matrix factorization error
1245 holds:*

$$1246 \quad \inf_{\lambda \in (0,1)} \mathcal{E}(A_{1,0}C_\lambda^{-1}, C_\lambda) = O(n^{1/4}). \quad (10)$$

1248 *Proof.* If the matrix C_λ^{-1} is given by $\text{LTT}(1, -\lambda, 0, \dots, 0)$, then its inverse is $C_\lambda =$
1249 $\text{LTT}(1, \lambda, \lambda^2, \dots, \lambda^{n-1})$. The product $A_{1,0}C_\lambda^{-1} = \text{LTT}(1, 1 - \lambda, \dots, 1 - \lambda)$, which leads to the
1250 following error:
1251

$$1252 \quad \mathcal{E}(A_{1,0}C_\lambda^{-1}, C_\lambda)^2 = \frac{1}{n} (1 + (1 - \lambda)^2(n - 1)) \sum_{k=0}^{n-1} \lambda^{2k} = \frac{(1 + (1 - \lambda)^2(n - 1))(1 - \lambda^{2n})}{n(1 - \lambda^2)}. \quad (82)$$

1255 Therefore,

$$1256 \quad \inf_{\lambda \in (0,1)} \mathcal{E}(A_{1,0}C_\lambda^{-1}, C_\lambda)^2 \leq \frac{\left(2 - \frac{1}{n}\right) \left(1 - \left(1 - \frac{1}{\sqrt{n}}\right)^n\right)}{\sqrt{n}} \leq \frac{2}{\sqrt{n}}, \quad (83)$$

1259 when $\lambda = \sqrt{1 - \frac{1}{\sqrt{n}}}$ as $1 - \lambda \leq 1 - (1 - \frac{1}{\sqrt{n}}) = \frac{1}{\sqrt{n}}$. The bound follows. \square
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

B ADDITIONAL MATERIALS

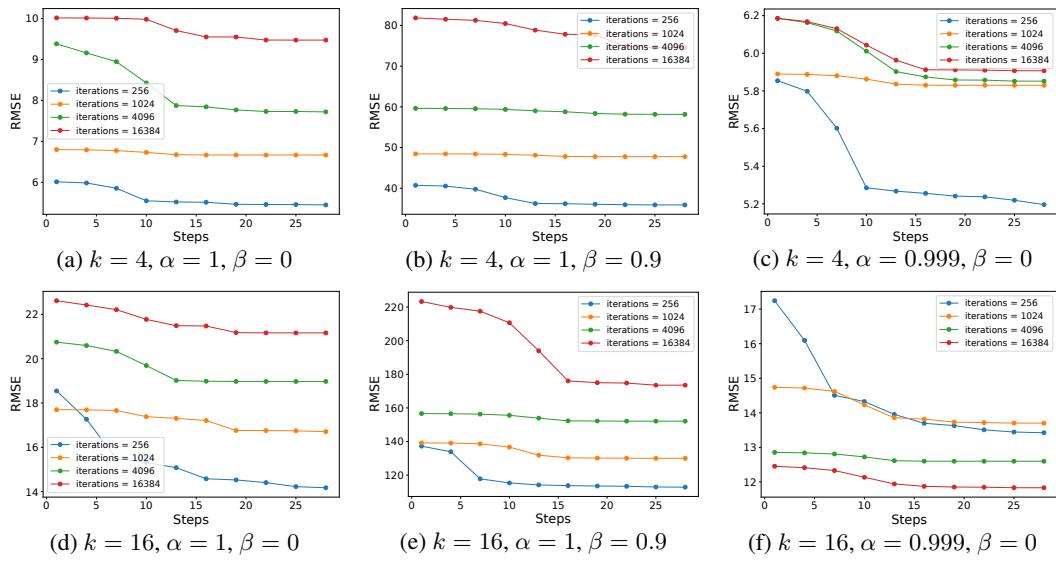


Figure 5: Convergence of Band-Inv-MF under different settings: for participation numbers $k = 4, 16$, with and without momentum (β) and weight decay (α), across various matrix sizes (iterations). In general, we observe that 20 steps are sufficient for the procedure to converge.

Table 1: Hyperparameters for CIFAR-10 Experiments. We train all methods with and without amplification to achieve $(9, 10^{-5})$ -differential privacy. Training uses a weight decay of 0.9999, momentum of 0.9, and batch size 512. Noise multipliers are computed via an MCMC accountant for the amplified case, and as $\sigma_{\epsilon, \delta} \times \text{sens}_{k, b}(C)$ for the non-amplified case, assuming 10 training epochs.

	Method	Noise Multiplier	Learning Rate	bandwidth	Clip Norm
Amplified	DP-SGD	1.2	0.1	1	10
	BSR	2.3	0.3	4	10
	BISR	4.4	0.7	4	10
	Band-MF	2.4	0.3	4	10
	Band-Inv-MF	8.2	0.4	4	10
Non-amplified	DP-SGD	1.8	0.1	1	10
	BSR	3.3	0.2	4	10
	BISR	5.8	0.7	4	10
	Band-MF	3.5	0.2	4	10
	Band-Inv-MF	9.1	0.5	4	10

Table 2: CIFAR-10 experiments with and without amplification, for $\epsilon = 9, \delta = 10^{-5}$ showing test accuracy (%) over 10 epochs. Mean \pm standard error computed over 3 runs.

	Method	Epoch 1	Epoch 2	Epoch 3	Epoch 4	Epoch 5	Epoch 6	Epoch 7	Epoch 8	Epoch 9	Epoch 10
Amp.	DP-SGD	12.7 \pm 2.2	28.0 \pm 1.1	34.4 \pm 0.4	37.6 \pm 0.7	39.8 \pm 1.2	41.6 \pm 0.2	42.3 \pm 0.8	42.8 \pm 0.3	43.5 \pm 0.4	44.6 \pm 0.7
	BSR	28.3 \pm 0.7	40.2 \pm 1.1	43.6 \pm 1.1	46.5 \pm 0.9	48.0 \pm 2.0	48.8 \pm 1.4	48.9 \pm 1.4	49.4 \pm 0.7	49.2 \pm 1.2	49.8 \pm 0.3
	BISR	32.3 \pm 0.7	42.7 \pm 1.1	47.5 \pm 1.1	50.3 \pm 0.9	52.8 \pm 2.0	56.5 \pm 1.4	57.9 \pm 1.4	58.5 \pm 0.7	60.5 \pm 1.2	61.8 \pm 0.3
	Band-MF	27.7 \pm 2.0	38.5 \pm 0.3	43.1 \pm 1.6	43.7 \pm 1.8	46.8 \pm 0.8	47.7 \pm 0.3	48.2 \pm 0.6	47.8 \pm 2.6	49.1 \pm 0.6	50.0 \pm 0.4
	Band-Inv-MF	23.6 \pm 2.8	34.6 \pm 1.3	40.0 \pm 2.4	44.6 \pm 1.3	48.6 \pm 1.0	50.4 \pm 1.0	50.6 \pm 0.5	53.4 \pm 0.8	56.2 \pm 0.6	57.4 \pm 1.2
Non-Amp.	DP-SGD	19.5 \pm 3.0	31.0 \pm 1.1	36.7 \pm 0.2	37.2 \pm 0.4	37.7 \pm 1.2	39.3 \pm 2.0	39.8 \pm 1.2	39.1 \pm 0.3	39.5 \pm 0.5	39.0 \pm 0.7
	BSR	25.4 \pm 1.2	36.7 \pm 1.2	40.8 \pm 1.1	41.6 \pm 2.0	43.6 \pm 0.9	44.5 \pm 0.7	45.0 \pm 0.9	44.4 \pm 2.1	45.3 \pm 1.8	45.2 \pm 0.8
	BISR	31.8 \pm 1.5	41.7 \pm 2.2	45.4 \pm 1.4	48.5 \pm 1.3	51.1 \pm 1.0	51.4 \pm 2.7	53.8 \pm 1.0	54.0 \pm 1.2	55.5 \pm 0.8	56.2 \pm 0.2
	Band-MF	25.9 \pm 1.5	36.7 \pm 0.9	41.1 \pm 1.4	43.2 \pm 1.3	42.8 \pm 1.4	45.0 \pm 0.2	45.5 \pm 0.4	45.4 \pm 1.8	46.7 \pm 0.9	45.8 \pm 0.2
	Band-Inv-MF	27.4 \pm 3.0	36.0 \pm 2.5	39.5 \pm 2.4	43.7 \pm 1.2	46.7 \pm 0.5	47.0 \pm 2.0	49.7 \pm 1.7	53.5 \pm 0.5	54.4 \pm 1.5	57.9 \pm 0.4

1350
1351
1352
1353
1354
1355
13561357 Table 3: Hyperparameters for IMDB Sentiment Analysis Experiments with BERT-base. We train all
1358 methods with and without amplification to achieve $(9, 10^{-5})$ -differential privacy. Training uses a
1359 weight decay of 0.99999, momentum of 0.95, and batch size 512. Noise multipliers are computed
1360 via an MCMC accountant for the amplified case, and as $\sigma_{\epsilon, \delta} \times \text{sens}_{k, b}(C)$ for the non-amplified case,
1361 assuming 10 training epochs.1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

	Method	Noise Multiplier	Learning Rate	Bandwidth	Clip Norm
Amplified	DP-SGD	1.2	0.02	1	10
	BSR	2.3	0.02	4	10
	BISR	4.4	0.15	4	10
	Band-MF	2.4	0.02	4	10
	Band-Inv-MF	8.2	0.1	4	10
Non-amplified	DP-SGD	1.8	0.02	1	10
	BSR	3.3	0.02	4	10
	BISR	5.8	0.15	4	10
	Band-MF	3.5	0.02	4	10
	Band-Inv-MF	9.1	0.1	4	10

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
13881389 Table 4: IMDB sentiment analysis (BERT-base) with and without amplification, for $\epsilon = 9$, $\delta = 10^{-5}$
1390 showing test accuracy (%) over 10 epochs. Mean \pm standard error computed over 3 runs.1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

	Method	Epoch 1	Epoch 2	Epoch 3	Epoch 4	Epoch 5	Epoch 6	Epoch 7	Epoch 8	Epoch 9	Epoch 10
Amp.	DP-SGD	71.23 \pm 0.79	82.42 \pm 0.54	84.45 \pm 0.21	85.57 \pm 0.19	86.18 \pm 0.05	86.64 \pm 0.03	86.93 \pm 0.03	86.99 \pm 0.14	87.26 \pm 0.03	87.43 \pm 0.12
	BSR	75.26 \pm 2.67	84.46 \pm 0.25	86.11 \pm 0.29	86.96 \pm 0.11	87.48 \pm 0.13	87.77 \pm 0.07	87.84 \pm 0.08	87.91 \pm 0.13	88.19 \pm 0.14	88.11 \pm 0.06
	BISR	83.27 \pm 0.21	87.08 \pm 0.05	88.16 \pm 0.09	88.83 \pm 0.06	89.20 \pm 0.05	89.21 \pm 0.09	89.49 \pm 0.03	89.41 \pm 0.11	89.60 \pm 0.05	89.58 \pm 0.17
	Band-MF	76.66 \pm 1.24	84.66 \pm 0.17	86.36 \pm 0.17	87.22 \pm 0.15	87.62 \pm 0.40	87.89 \pm 0.23	88.04 \pm 0.19	88.16 \pm 0.21	88.33 \pm 0.26	88.31 \pm 0.19
	Band-Inv-MF	82.91 \pm 0.53	86.92 \pm 0.31	88.25 \pm 0.05	88.60 \pm 0.17	89.02 \pm 0.19	89.23 \pm 0.08	89.50 \pm 0.06	89.65 \pm 0.00	89.53 \pm 0.25	
Non-Amp.	DP-SGD	62.94 \pm 1.47	78.21 \pm 0.56	83.05 \pm 0.19	84.17 \pm 0.20	85.01 \pm 0.06	85.40 \pm 0.20	85.53 \pm 0.17	85.80 \pm 0.13	85.81 \pm 0.17	85.71 \pm 0.09
	BSR	76.74 \pm 1.04	84.09 \pm 0.09	85.70 \pm 0.22	86.59 \pm 0.26	86.93 \pm 0.03	87.15 \pm 0.13	87.20 \pm 0.11	87.19 \pm 0.09	87.31 \pm 0.15	87.18 \pm 0.10
	BISR	81.85 \pm 0.86	86.65 \pm 0.33	87.60 \pm 0.39	88.64 \pm 0.10	88.90 \pm 0.05	88.83 \pm 0.18	89.02 \pm 0.09	89.43 \pm 0.07	89.37 \pm 0.00	89.42 \pm 0.15
	Band-MF	73.39 \pm 1.39	83.63 \pm 0.38	85.39 \pm 0.16	86.09 \pm 0.29	86.99 \pm 0.06	87.08 \pm 0.13	87.23 \pm 0.16	87.34 \pm 0.14	87.34 \pm 0.07	87.08 \pm 0.14
	Band-Inv-MF	81.99 \pm 0.23	86.06 \pm 0.19	87.98 \pm 0.11	88.46 \pm 0.12	88.63 \pm 0.03	88.79 \pm 0.32	88.85 \pm 0.29	89.02 \pm 0.21	88.89 \pm 0.37	89.23 \pm 0.16

```

1404
1405 1 import jax_privacy
1406 2 from jax_privacy.maxtrix_factorization import toeplitz
1407 3 import jax.numpy as jnp
1408 4 import functools
1409 5 import numpy as np
1410 6
1411 7 def expected_mean_error(inv_coef, n, k, workload_coef) -> float:
1412 8     inv_coef = jnp.pad(inv_coef, (0, n - inv_coef.size))
1413 9     B_norm_squared = toeplitz.mean_error(noising_coef=inv_coef, n=n,
1414 workload_coef=workload_coef, skip_checks=True)
1415 10
1416 11     coef = toeplitz.inverse_coef(inv_coef)
1417 12     min_sep = n // k # assume divisible
1418 13
1419 14     sensitivity_squared = toeplitz.minsep_sensitivity_squared(coef,
1420 min_sep, k, n, skip_checks=True)
1421 15
1422 16     return sensitivity_squared * B_norm_squared
1423 17
1424 18 def compute_square_root(x, n) -> np.ndarray:
1425 19     y = np.zeros(n)
1426 20     y[0] = np.sqrt(x[0])
1427 21     for k in range(1, n):
1428 22         y[k] = (x[k] - np.dot(y[1:k], y[1:k][::-1])) / (2 * y[0])
1429 23     return y
1430 24
1431 25 def init(n, p, alpha = 1.0, beta = 0.0) -> jnp.ndarray:
1432 26     x = jnp.array([1, -alpha - beta, alpha * beta] + [0]*(n-3))
1433 27     return jnp.array(compute_square_root(x, n) [:p])
1434 28
1435 29 def Band_Inv_MF(n, b, k, p, alpha, beta, steps = 20):
1436 30     # compute workload matrix
1437 31     M = jnp.array([(alpha ** (k + 1) - beta ** (k + 1)) / (beta - alpha)
1438 for k in range(n)])
1439 32
1440 33     # initialize with BISR coefficients
1441 34     C_inv_init = init(n, p, alpha, beta)
1442 35
1443 36     # optimize!
1444 37     C_inv_opt = toeplitz.optimize_banded_toeplitz(
1445 38         n=n,
1446 39         bands=p,
1447 40         strategy_coef=C_inv_init,
1448 41         loss_fn=functools.partial(expected_mean_error, k=k, workload_coef=M
1449 42     ),
1450 43         max_optimizer_steps=steps,
1451 44     )
1452     return C_inv_opt

```

Listing 1: Python code for Band-Inv-MF factorization. The function "Band_Inv_MF" takes the matrix size (n), the minimum separation (b), the number of participations (k), the bandwidth (p), the weight decay (α), the momentum (β), and the number of optimization steps.