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ABSTRACT

Sparse autoencoders (SAEs) are a cornerstone of interpretability for large lan-
guage models (LLMs), aiming to decompose hidden states into meaningful se-
mantic features. While several SAE variants have been proposed, there remains
no principled framework to derive SAEs from the original dictionary learning for-
mulation. In this work, we introduce such a framework by unrolling the proxi-
mal gradient method for sparse coding. We show that a single-step update nat-
urally recovers common SAE variants, including ReLU, JumpReLU, and TopK.
Through this lens, we reveal a fundamental limitation of existing SAEs: their
sparsity-inducing regularizers enforce non-negativity, preventing a single feature
from representing bidirectional concepts (e.g., male vs. female). This structural
constraint fragments semantic axes into separate, redundant features, limiting rep-
resentational completeness. To address this issue, we propose AbsTopK SAE, a
new variant derived from the ℓ0 sparsity constraint that applies hard thresholding
over the largest-magnitude activations. By preserving both positive and negative
activations, AbsTopK uncovers richer, bidirectional conceptual representations.
Comprehensive experiments across four LLMs and seven probing and steering
tasks show that AbsTopK improves reconstruction fidelity, enhances interpretabil-
ity, and enables single features to encode contrasting concepts. Remarkably, Ab-
sTopK matches or even surpasses the Difference-in-Mean method—a supervised
approach that requires labeled data for each concept and has been shown in prior
work to outperform SAEs.

1 INTRODUCTION

The pursuit of interpretability has become a central objective in modern machine learning, as it is
essential for the assurance, debugging, and fine-grained control of large language models (LLMs)
(Marks et al., 2025; Park et al., 2023; Luo et al., 2024; Arora et al., 2018). Within this domain,
sparse dictionary learning methods (Poggio & Serre, 2006; Fel et al., 2023), and specifically sparse
autoencoders (SAEs), have re-emerged as a prominent methodology for systematically enumerating
the latent concepts a model may employ in its predictions (Hindupur et al., 2025; Bussmann et al.,
2024; Rajamanoharan et al., 2025; Gao et al., 2025).

An SAE decomposes a model’s hidden representations into an overcomplete basis of latent features
(Elhage et al., 2022; Thasarathan et al., 2025), which ideally correspond to abstract, data-driven
concepts whose linear superposition reconstructs the original activation vector (Higgins et al., 2017;
Fel, 2025). Empirical evidence indicates that SAE latents capture semantically coherent features
across diverse domains. In LLMs, these features exhibit selectivity for specific entities (e.g., Golden
Gate Bridge), linguistic behaviors (e.g., sycophantic phrasing), and symbolic systems (e.g., Hebrew
script) (Templeton et al., 2024; Csordás et al., 2024; Durmus et al., 2024). Similarly, in vision
models, they respond to distinct objects (e.g., barbers, dog shadows) and complex scene properties
(e.g., foreground-background separation, facial detection in crowds) (Fel, 2024; Thasarathan et al.,
2025). In protein models, they have been shown to correlate with functional elements such as
binding sites and structural motifs (Garcia & Ansuini, 2025; Adams et al., 2025).

The discovery of such interpretable, semantically grounded features suggests a natural avenue for
steering models: by amplifying, suppressing, or combining specific latents, one can intervene to
modulate downstream behavior, which is a principal motivation for research into SAEs (Gao et al.,
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SAE feature 15741: Positive activation on man

The man  who had traveled across ...

Despite the storm outside , the man  remained calm and

focused on her work ...

In the bustling market , a man  stood by the flower stall ...

SAE feature 15741: Negative activation on woman

The woman  who had traveled across ...

Despite the storm outside , the woman  remained calm and

focused on her work ...

In the bustling market , a woman  stood by the flower stall

...

Figure 1: AbsTopK enables single latent features to encode opposing concepts by leveraging
both positive and negative activations. To test this, we generated controlled sentence pairs with
only one differing token (man vs. woman). The shown feature activates positively for man and
negatively for woman, demonstrating bidirectional encoding. Unlike conventional SAEs, which are
restricted by a non-negativity constraint, AbsTopK more compactly captures opposing semantics
within a single dimension, yielding richer and more coherent representations.

2025; Bricken et al., 2023; Kantamneni et al., 2025). This control is predicated on the assump-
tion that the concepts identified by SAEs faithfully correspond to the features underlying a model’s
predictions (Arditi et al., 2024; Uppaal et al., 2024; Engels et al., 2025). While recent studies sug-
gest that simpler techniques such as Difference-in-Means (DiM) can outperform SAEs on practical
steering benchmarks and tasks (Arditi et al., 2024; Wu et al., 2025), they are limited to extracting a
single vector for a pre-specified, labeled concept, which restricts their flexibility compared to SAEs,
especially in exploratory or interpretability contexts. However, these findings introduce uncertainty
regarding the degree to which SAEs recover a model’s internal features. The comparatively simpler
baselines that can rival or outperform SAEs on downstream control tasks suggest that the features
extracted by SAEs only partially align with the model’s internal decision-making processes, thereby
raising concerns about their fidelity as faithful representations.

We posit that one source of this misalignment lies in a structural limitation of conventional SAEs:
their systematic neglect of negative activations, despite evidence that many meaningful directions in
representation space are inherently bidirectional (Mao et al., 2022). The linear representation hy-
pothesis (Mikolov et al., 2013) suggests that a model’s internal states can be approximated as linear
combinations of semantic vectors, where conceptual transformations correspond to both positive and
negative displacements along these vector axes (Arora et al., 2018; Uppaal et al., 2024; Luo et al.,
2024). Classic word analogies, such as the vector operation vking − vman + vwoman ≈ vqueen (Pen-
nington et al., 2014), illustrate how semantic differences are encoded as generalizable vector offsets.
Nevertheless, by enforcing non-negativity or retaining only the topk signed activations (Bussmann
et al., 2024; Gao et al., 2025), conventional SAEs either fragment such contrastive concepts into sep-
arate, unidirectional bases (e.g., ”male” and ”female”) or discard one direction of the semantic axis
entirely. This practice not only compromises the representational faithfulness of the learned features
but also diminishes their utility for controlled interventions, for which bidirectional traversal of a
semantic axis is often essential.

To address this limitation at a foundational level, we analyze the SAE framework from a proximal
operator perspective. This reveals that the neglect of negative activations is an inherent property of
common nonlinearities, which can be interpreted as the proximal map for a specific regularizer. Mo-
tivated by this insight, we use the hard-thresholding as the proximal operator and propose AbsTopK,
a principled modification that selects features based on activation magnitude. By preserving both
positive and negative activations, the AbsTopK method enables a single feature to represent oppos-
ing concepts, as illustrated in Figure 1. This mechanism directly counteracts the fragmentation of
contrastive ideas into separate, unrelated features.

Contributions. Our contributions are threefold:

• A Unified Framework for Designing SAEs. We introduce a principled framework for designing
SAEs by unrolling the proximal gradient method for sparse coding with sparsity-inducing regular-
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izers. A single-step update naturally induces common SAE variants, including ReLU, JumpReLU,
and TopK (Templeton et al., 2024; Gao et al., 2025; Rajamanoharan et al., 2025). This framework
provides a rigorous tool for analyzing their implicit regularizers and identifying shared limitations.

• Absolute TopK (AbsTopK) for Learning Bidirectional Features Building on this framework,
we propose a new SAE variant derived from the vanilla sparsity constraint (ℓ0 norm) without
a non-negative constraint, which results in a hard-thresholding operator that selects the largest-
magnitude activations. By preserving both positive and negative activations, AbsTopK SAE un-
covers richer, bidirectional conceptual representations.

• Comprehensive Empirical Validation. We conducted a comprehensive empirical evaluation
across four LLMs, comparing the proposed AbsTopK SAE with TopK and JumpReLU SAEs
on a suite of seven probing and steering tasks, along with three unsupervised metrics. The results
demonstrate that AbsTopK outperforms TopK and JumpReLU SAEs, producing representations
with higher fidelity and interpretability. Additionally, a case study illustrates that AbsTopK can
encode a bidirectional semantic axis within a single latent feature, effectively capturing contrast-
ing concepts. Notably, AbsTopK achieves performance comparable to—or even exceeding—the
Difference-in-Mean method, which relies on labeled data and has been shown in prior work to
outperform SAEs.

2 FROM PROXIMAL INTERPRETATIONS OF SAES TO ABSTOPK

2.1 PRELIMINARIES

We denote vectors by lowercase bold letters (e.g., x) and matrices by uppercase bold letters (e.g.,
X). With an input sequence of N tokens, X = {x1, . . . ,xN}, where each xj denotes the embed-
ding of the j-th token, the LLM can be viewed as a function f : Rd×N → RV×N , where V is the
vocabulary size and f(X) gives the output logits for all tokens in the sequence. For our purposes,
we abstract away the internal details of f and instead study the representations in the hidden layers.
Consider interventions at layer ℓ in the residual stream. Supposing that that the model comprises L
layers, then f can be decomposed as

f(X) = ϕℓ+1:L

(
ϕ1:ℓ(X)

)
, (1)

where ϕ1:ℓ(X) denotes the representation after the first ℓ layers and ϕℓ+1:L represents the remaining
computation from layer ℓ to L. We denote by x

(ℓ)
j the embedding of the residual stream at the ℓ-

th layer corresponding to the j-th token of the input sequence X . In the following presentation,
when the context is clear, we omit the superscript (ℓ) and the subscript (token index j) for notational
simplicity, and denote the hidden embedding of a token in a given layer by x.

The linear representation hypothesis (Park et al., 2023) assumes that the hidden representation x can
be expressed as a linear superposition of latent concepts:

x =

P∑
p=1

αphp + context (noise), (2)

where {hp}Pp=1 are referred to as concept directions or feature vectors, such as gender or sentiment,
and αi are activation coefficients. Since a particular token—although it encodes information from
previous tokens in the context—typically contains only a small subset of concepts or features, its
representation is expected to be sparse; that is, most of the coefficients αp are zero, resulting in a
sparse linear representation, often simply referred to as sparse representation.

To find these concept directions or feature vectors, supervised approaches such as the Difference-in-
Mean (DiM) method construct labeled datasets for each target attribute. While effective for isolating
specific concepts, these methods are inherently limited to predefined features and do not scale to the
large number of latent dimensions present in LLM representations. In contrast, dictionary learning
provides an unsupervised and scalable alternative: it can simultaneously recover a more complete
dictionary that approximates the underlying concept directions, uncovering a richer and more com-
prehensive set of latent features than DiM, which is typically restricted to a single concept vector.
Consequently, while DiM may achieve stronger control on a specific concept (Wu et al., 2025),
dictionary-learning methods have gained popularity due to their ability to uncover a richer, more
comprehensive set of latent features.
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2.2 DICTIONARY LEARNING AND THE PROXIMAL PERSPECTIVE ON SPARSE
AUTOENCODERS

In a nutshell, dictionary learning (Olshausen & Field, 1996) seeks to construct a dictionary D con-
sisting of basis vectors {d1, . . . ,dP }, which are also called as atoms, such that it can (approxi-
mately) provide sparse linear combination for all token embeddings x from the same layer. Since
the total number of concept vectors P ′ is unknown, P is typically set to a relatively large value to
ensure that as many concepts as possible can be learned. This typically requires solving a training
problem of form (Mairal et al., 2011)

min
D∈Rd×P ,b∈Rd

Ex

min
z∈Rs

1

2
∥x− (Dz + b)∥22︸ ︷︷ ︸

g(z)

+λR(z)

 , (3)

where R(z) is a sparsity-inducing regularizer, λ > 0 controls the trade-off between reconstruction
fidelity and sparsity, b is an additional bias vector. In classical dictionary learning, the data is often
preprocessed to have zero global mean, so the bias term is not used. Alternatively, the bias term can

be incorporated into the dictionary as Dz + b = [D b]

[
z
1

]
. In this work, however, we explicitly

include b to align with the structure of commonly used SAEs which will be described later.

The main challenge in solving the problem (3) lies in jointly estimating both the dictionary (D, b)
and the sparse coefficients z. When one of these variables is fixed, optimizing over the other be-
comes relatively easier,1 though still nontrivial in practice. In particular, given a dictionary D and
bias b, the problem reduces to finding a sparse approximation of x, a step commonly referred to
as sparse coding. An efficient method for solving this problem is the proximal gradient method
(Parikh et al., 2014; Silva & Rodriguez, 2020), which is especially suitable when the regularizer
R(z) is non-differentiable, such as the ℓ1 norm used in Lasso (Tibshirani, 1996) or ℓ0 norm that
directly enforce sparsity (Foucart, 2011; Bao et al., 2014; Rajamanoharan et al., 2025).

Proximal gradient methods induce encoders For a function r : Rd → R, its proximal operator
is defined by (Parikh et al., 2014)

proxr(u) = arg min
v∈Rd

1

2
∥v − u∥2 + r(v).

Now starting from an initialization z(0), the proximal gradient method for optimizing z in (3) per-
forms iterative updates of the form

z(t+1) = proxµλR

(
z(t) − µ∇g(z(t))

)
= proxµλR

(
z(t) − µD⊤(Dz + b− x

)
)
)
, (4)

where µ > 0 is the step size. This perspective naturally leads to unrolled networks (Gregor &
LeCun, 2010; Chen et al., 2022), where each proximal gradient step can be interpreted as a layer in
a neural network that iteratively refines the latent code z while enforcing sparsity (Daubechies et al.,
2004). In particular, with z(0) = 0 and µ = 1, the first update becomes

z(1) = proxλR
(
D⊤x−D⊤b

)
. (5)

Inspired by prior work on unrolled networks (Gregor & LeCun, 2010; Chen et al., 2022), we relax
the fixed parameters D, b in the above update by learnable counterparts: replacing D with a train-
able weight matrix W , and −D⊤b with a learnable bias vector be, in order to further accelerate
convergence. Then the update (5) becomes

z(1) = proxλR
(
W⊤x+ be

)
, (6)

which resembles an encoder. The following result shows that certain regularizers give rise to proxi-
mal operators commonly used in SAEs.

1This observation has motivated alternating minimization methods such as MOD (Cai et al., 2016) and
K-SVD (Aharon et al., 2006).
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Lemma 1. Denote by ReLUλ, JumpReLUθ,TopKk as the following operators:

(ReLUλ(u))i = max{ui − λ, 0}, (JumpReLUθ(u))i =

{
0, ui < θ,

ui, ui ≥ θ,
,

(TopKk(u))i =

{
max{ui, 0}, i ∈ Tk(u),
0, i /∈ Tk(u),

(7)

where Tk(u) denotes the set of indices corresponding to the k largest entries2 of u. Here λ, θ and
k are hyper-parameters subject to design choices. They can be induced by the following choices of
sparse regularizers:

• Case I: R(z) = ∥z∥1 + ι{z≥0}(z), then proxλR = ReLUλ;

• Case II: R(z) = ∥z∥0 + ι{z≥0}(z), then proxλR = JumpReLU√
2λ;

• Case III: R(z) = ι{∥z∥0≤k,z≥0}(z), then proxλR(u) = TopKk(u).

Here ιA is the indicator function of set A, i.e., ιA(z) = 0 if z ∈ A and ιA(z) = +∞ if z /∈ A, and
z ≥ 0 means zi ≥ 0 for all i.

A detailed proof is provided in the Appendix C. Note that ReLUλ reduces to the standard ReLU
when λ → 0. The operators ReLUλ and JumpReLUθ are commonly referred to as soft thresh-
olding and hard thresholding (except restricted to the nonnegative orthant), respectively, in signal
and image processing, where they are used to enforce sparsity (Foucart, 2011; Acuña et al., 2020).
The TopK operator in (7) follows the original formulation in Gao et al. (2025), which includes an
additional ReLU to ensure nonnegative activations. Nevertheless, if u has at least k nonnegative
entries—which is typically the case since k is much smaller than the ambient dimension s—then the
ReLU inside TopK is redundant, and the operator simply retains the largest k entries while setting
the rest to zero. This phenomenon is also observed in Gao et al. (2025), where the training curves
were found to be indistinguishable. In a nutshell, Lemma 1 establishes that several prevalent non-
linearities in SAEs, including ReLU, JumpReLU, and TopK, are precisely the proximal operators of
sparse-enforcing regularizers.

One-step proximal gradient method leads to Sparse Autoencoders. With Lemma 1, applying a
one-step proximal gradient method to the sparse coding problem naturally leads to SAEs. Specifi-
cally, (6) defines a mapping from an input representation x to a sparse code z, which is then decoded
to reconstruct the original representation, formally given by

encoder: z = proxλR
(
W⊤x+ be

)
, decoder: x̂ = Dz + b. (8)

Choosing different regularizers R as in Lemma 1 yields different variants of SAEs, including the
vanilla version with ReLU (Cunningham et al., 2023), a version with JumpReLU (Rajamanoharan
et al., 2025), and one with TopK (Gao et al., 2025). For simplicity, we refer to these as ReLU SAE,
JumpReLU SAE, and TopK SAE, respectively. This observation situates diverse SAE architectures
within a unified proximal framework, where each activation function is interpreted as the proximal
map for a specific regularizer R. Consequently, design choices for SAEs correspond directly to
the selection of an implicit sparsity-inducing penalty, which in turn provides a principled basis for
comparing and extending these models. For instance, our analysis in Lemma 1 shows that ReLU
SAE corresponds to the ℓ1 norm regularizer (a convex relaxation of sparsity) with weight λ → 0,
whereas JumpReLU and TopK correspond directly to the sparsity-inducing ℓ0 norm regularizers
with a non-vanishing λ, thereby enforcing stronger sparsity. This provides a principled explanation
for the improved performance of JumpReLU and TopK over ReLU observed in (Rajamanoharan
et al., 2025; Gao et al., 2025).

Substituting (6) into (3) yields the training objective for SAEs (Cunningham et al., 2023; Raja-
manoharan et al., 2025; Gao et al., 2025):

min
D,W∈Rd×P

b∈Rd,be∈RP

Ex

[
1

2

∥∥x− (Dz + b)
∥∥2
2
+ λR(z), where z = proxλR

(
W⊤x+ be

)]
. (9)

2In case k largest components are not uniquely defined, one can choose among them—for example, by
selecting the components with the smallest indices—to ensure exactly k entries are kept.
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In practice, the two instances of λ in (9) may be decoupled to provide additional flexibility for
hyper-parameter tuning.

The use of a parameterized encoder is a key design choice that circumvents the challenging non-
convex optimization in the original dictionary learning formulation (3), which requires simultaneous
optimization over the sparse codes z and the dictionary parameters D and b. By decoupling this
joint optimization, SAEs yield a more tractable training procedure. The encoder arises as a single
proximal gradient step, augmented with uncoupled, learnable parameters for the dictionary and
bias to reduce the approximation error relative to exact sparse coding. Consequently, the training
problem (9) can be efficiently solved via stochastic gradient descent, and SAEs can be implemented
efficiently at inference time, making them attractive for interpretability research.

This perspective also provides a principled foundation for developing SAE variants with improved
performance. For example, by incurring additional computational cost, one may extend (6) to multi-
step variants, yielding multi-layer encoders (Tolooshams & Ba, 2022) that produce more accurate
sparse codes and potentially capture finer-grained structure in the representation space. We leave
this direction to future work. In the next subsection, we turn to SAEs induced by alternative sparsity
regularizers.

2.3 BEYOND NON-NEGATIVITY: SPARSE AUTOENCODERS WITH ABSTOPK

The proximal perspective developed above suggests that design choices for SAEs can be interpreted
as the selection of the sparsity-inducing penalty. While this view explains their sparsity-inducing
effect, it also reveals a fundamental limitation of current SAEs in Equation (7): they prompt sparsity
but also enforce non-negativity, discarding half of the representation space. As many semantic axes
are naturally bidirectional (e.g., male v.s. female, positive v.s. negative sentiment), restricting sparse
codes to be nonnegative fragments these concepts into two separate directions or collapses one side
entirely.

Fragmentation of Conventional SAE To formalize this, consider a single semantic concept di-
rection h in (2) represented by a dictionary atom d ∈ Rd. An ideal sparse code would represent
concepts along this axis as αd, where the sign of the scalar α encodes directionality. However, under
the non-negativity constraint z ≥ 0, this is impossible. Instead, a standard SAE must allocate two
distinct dictionary atoms, di and dj , oriented in opposite directions, with nonnegative activations
zi ≥ 0 and zj ≥ 0 respectively. Each atom is activated only for one direction, leading to a frag-
mented representation that arises directly from the non-negativity constraint. This fragmentation is
a direct consequence of the non-negativity constraint.

Removing non-negativeness as a remedy. To address this issue, we propose using a sparse reg-
ularizer without the non-negativity constraint. Different variants of sparse regularizers can be con-
sidered, with representative examples discussed in Lemma 1. In this work, we adopt the ℓ0 norm
due to its simplicity and its direct connection to sparsity. Specifically, in the dictionary learning for-
mulation (3), we use the regularizer R(z) = ι{∥z∥0≤k} which removes the non-negativity constraint
present in the TopK-inducing regularizer. The corresponding proximal operator is

proxλR(u) = arg min
z∈Rd

1
2∥u− z∥22 s.t. ∥z∥0 ≤ k, (10)

whose closed-form solution is further given by

(
proxR(u)

)
i
= (AbsTopKk(u))i =

{
ui, i ∈ Hk(u),

0, i /∈ Hk(u),
(11)

where Hk denotes the indices of the k largest (in modulus) components3. In words, this operator
preserves the k largest-magnitude components of a vector and sets all others to zero. In the com-
pressive sensing literature, it is referred to as the hard thresholding operator (Foucart, 2011). Here,
we refer to it as Absolute TopK (AbsTopK) to distinguish it from the TopK operator commonly used
in SAE.

3Similarly, if the k largest components are not uniquely defined, one can, for instance, select those with the
smallest indices to ensure exactly k entries are retained.
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This principle of hard thresholding can also be applied to JumpReLU, introducing a threshold on
both positive and negative activations. This achieves a similar effect by eliminating small-magnitude
features and enforcing sparsity. However, to isolate and directly test our core hypothesis, the value
of representing concepts along a bipolar axis, this work focuses on AbsTopK, as it provides the most
direct implementation of a global k-sparsity constraint. We remain JumpReLU variants for future
investigation.

AbsTopK SAE. Following the derivation in the previous section, we integrate the AbsTopK non-
linearity operator into the framework (9) to obtain a new SAE architecture, which we term AbsTopK
SAE:

z = AbsTopK(W⊤x+ be), x̂ = Dz + b. (12)
The overall training problem becomes

min
D,W∈Rd×P

b∈Rd,be∈RP

Ex

[
1

2

∥∥x− (Dz + b)
∥∥2
2
, where z = AbsTopK(W⊤x+ be)

]
. (13)

By design, AbsTopK preserves both positive and negative activations, enabling a single feature to
capture contrastive concepts along a unified semantic axis. This simple modification circumvents the
fragmentation induced by non-negativity constraints, and yields features that more faithfully reflect
the bidirectional structure of semantic representations.

3 EXPERIMENTS: EMPIRICAL VALIDATION OF SAE BEHAVIOR

To empirically validate our theoretical claims and demonstrate the practical advantages of the Ab-
sTopK operator, we perform a suite of experiments which involve training JumpReLU, TopK, and
AbsTopK SAEs on monology/pile-uncopyrighted (Gao et al., 2020) across the GPT2-
SMALL, Pythia-70M, Gemma2-2B, and Qwen3-4B models (Radford et al., 2019; Biderman et al.,
2023; Team, 2024; Yang et al., 2025). To compare the different SAEs, we evaluate their performance
along several dimensions: (i) reconstruction quality on base datasets, (ii) effectiveness on a range
of steering tasks, and (iii) impact on general capabilities of the models. For further experimental
details and extended results, we refer the reader to Appendix B.
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Figure 2: Performance comparison of JumpReLU, TopK, and AbsTopK SAEs on Qwen3 4B
Layer 20, showing (a) MSE Training Loss, (b) Normalized MSE, and (c) Loss Recovered. Addi-
tional results across models and layers are provided in Appendix D.

3.1 UNSUPERVISED METRICS

This section presents a comparative evaluation of SAE architectures, utilizing a suite of comple-
mentary metrics engineered to assess distinct facets of model performance. The investigation en-
compasses three primary analyses: (a) an examination of the training mean squared error (MSE)
to evaluate optimization stability and convergence rates; (b) the measurement of normalized recon-
struction error as a function of feature sparsity to ascertain representational fidelity; and (c) a relative
cross-entropy loss recovered score to determine the preservation of language modeling performance.
For Topk and AbsTopK, sparsity is explicitly controlled by directly specifying the number of active
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Figure 3: Performance comparison of SAE variants (TopK, AbsTopK, and JumpReLU) across
tasks on Qwen3-4B Layer 18. For all tasks, higher scores indicate better performance; the Unlearn-
ing and Absorption scores have been transformed as 1−original score to maintain this consistency.
For more details, see Appendix E.

features k; in contrast, for JumpReLU, sparsity is varied by manually adjusting the threshold param-
eter θ, thereby simulating different sparsity levels.

The normalized reconstruction error in (b) is defined as nMSE(x, x̂) = ∥x− x̂∥22/∥x∥22 (Gao et al.,
2025), thereby controlling for scale differences across representations. The Loss Recovered score
in (c) measures how well SAE reconstructions preserve predictive performance (Karvonen et al.,
2025), defined as (H∗ −H0)/(Horig −H0), where Horig is the cross-entropy of the original model,
H∗ that after substitution, and H0 under zero-ablation, with values closer to one indicating better
preservation.

The empirical results of this evaluation delineate a distinct performance hierarchy among the three
architectures under consideration. The AbsTopK architecture demonstrates the most favorable per-
formance characteristics. Specifically, the AbsTopK model consistently yields lower reconstruction
errors across most tested sparsity levels and manifests minimal cross-entropy degradation. This
demonstrates its superior capacity for preserving the integrity of the language model’s performance
under conditions of representational compression.

The observed disparities in performance can be attributed to the relative expressiveness of the con-
straints inherent to each architectural formulation. The TopK and JumpReLU architectures both im-
pose a non-negativity constraint on activations. This imposition results in a conical decomposition
of the feature space, which has the effect of fragmenting concepts that are inherently bidirectional in
nature. In contrast, the AbsTopK architecture accommodates both positive and negative activation
values, a flexibility that facilitates a more faithful linear decomposition of the model’s latent states.
This capacity for bidirectionality furnishes a more compact and interpretable representational ba-
sis, as it permits a single feature to encode oppositional concepts through its algebraic sign. As
will be further substantiated in subsequent qualitative analyses, this fundamental property enables
the AbsTopK model to acquire dictionary atoms that exhibit a closer alignment with the underlying
conceptual structures embedded within the model’s representations.

3.2 RESULTS ON PROBE AND STEERING TASKS

To assess the utility of learned SAE features for model control, a comprehensive benchmarking
evaluation was conducted across a diverse suite of steering and probing tasks. These tasks were
specifically designed to probe various dimensions of feature quality, from basic concept representa-
tion to the capacity for precise interventional control. A detailed methodological overview for each
metric is provided in the Appendix E.
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Table 1: Performance comparison on MMLU (↑) and HarmBench (↑) across steering methods.
The best result among all methods for each metric is highlighted in bold. For details of the steering
methods, see Appendix F.

Model Layer Metric Original JumpReLU SAE TopK SAE AbsTopK SAE DiM

Qwen3-4B
18 MMLU 77.3 75.0 75.2 75.9 75.8

HarmBench 17.0 79.1 78.2 81.3 80.6

20 MMLU 77.3 75.7 75.0 76.4 76.4
HarmBench 17.0 78.5 77.0 79.0 80.0

Gemma2-2B
12 MMLU 52.2 48.8 49.1 51.3 51.0

HarmBench 19.0 69.5 69.8 70.2 70.8

16 MMLU 52.2 48.2 48.5 51.0 50.8
HarmBench 19.0 69.8 70.2 71.7 72.0

The empirical results, as shown in Table 3, demonstrate the superiority of the AbsTopK method-
ology. Across the entire suite of evaluated tasks, AbsTopK SAE outperforms both the TopK SAE
and JumpReLU SAE baselines. This performance advantage is especially conspicuous in bidirec-
tional steering metrics, such as SCR, which directly quantify the reliability of interventions. In these
critical evaluations, AbsTopK shows marked improvements over the alternatives.

We posit that this consistent outperformance is directly attributable to the core mechanism of the
AbsTopK methodology: the retention of both positive and negative feature activations. Unlike TopK
approaches, which enforce a hard sparsity constraint that discards all but the most prominent positive
activations, AbsTopK preserves a richer, more complete semantic representation. This retention is
critical for interventions that require nuanced and bidirectional control. By encoding not only the
presence of a concept but also its negation or semantic opposition, AbsTopK features provide a more
robust and granular basis for manipulation.

3.3 EMPIRICAL RESULTS ON STEERING VS. UTILITY

Model steering confronts a fundamental tradeoff: enhancing specific behaviors often degrades gen-
eral capabilities. It has often been assumed in prior literature that DiM interventions are more
effective for specific concept manipulation than SAEs despite their reliance on labeled data and
limitation to extracting only a single concept vector (Arditi et al., 2024; Wu et al., 2025; Zhu et al.,
2025). To systematically evaluate this trade-off, we conducted an empirical study measuring general
capability preservation via the MMLU benchmark (Hendrycks et al., 2021) and safety alignment us-
ing HarmBench (Mazeika et al., 2024). For this evaluation, we focus on Qwen and Gemma models,
as smaller models, Pythia-70M and GPT-2 Small, only have very low score on MMLU benchmark.

As shown in Table 1, the empirical results indicate that conventional SAE steering methods success-
fully improve safety metrics but at a detriment to general performance. In contrast, the proposed
AbsTopK methodology achieves a more optimal balance between these competing objectives. It
facilitates substantial enhancements in safety alignment on HarmBench while simultaneously mit-
igating the degradation of MMLU scores. Compared to DiM, AbsTopK is competitive on safety,
sometimes slightly lower, but consistently retains more general ability. This pattern highlights that
carefully designed SAE steering can rival and, in some cases, surpass intervention strategies that
rely on labeled data.

4 CONCLUSION

This work identifies the non-negativity constraint in SAEs as a core cause of semantic feature frag-
mentation. In response, we introduce the AbsTopK operator, which replaces this constraint with
direct k-sparsity enforced via an ℓ0 proximal operator. This modification enables single features to
capture bipolar semantics, and our empirical results confirm that AbsTopK yields reconstructions
of superior compactness and fidelity. Our work pioneers a shift towards bipolar sparse representa-
tions and suggests future research into more efficient, neurally-plausible approximations of the ℓ0
operator for large-scale models.
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REPRODUCIBILITY STATEMENT

We provide all implementation details, including hyperparameters and algorithms, in Appendix B.
Our code is also submitted as part of the supplementary material to ensure full reproducibility.

ETHICS STATEMENT

This work investigates sparse autoencoders in the context of large language models, including their
potential to improve model steerability and harmlessness. While such techniques may contribute to
safer and more interpretable systems, they could also be misused to influence model behavior in un-
intended ways. We therefore encourage responsible application of these methods and acknowledge
the broader ethical implications associated with controllability in LLMs.

USE OF LLMS

We used LLMs to assist in the preparation of this paper, mainly for polishing the presentation,
clarifying the wording of technical content, and checking grammar. All research ideas, experimental
designs, implementations, and analyses were developed by the authors.
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David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Isaac Bloom. A
is for absorption: Studying feature splitting and absorption in sparse autoencoders, 2025. URL
https://openreview.net/forum?id=LC2KxRwC3n.

Niladri S. Chatterji and Peter L. Bartlett. Alternating minimization for dictionary learning with
random initialization. In Neural Information Processing Systems, 2017. URL https://api.
semanticscholar.org/CorpusID:1528126.

Maheep Chaudhary and Atticus Geiger. Evaluating open-source sparse autoencoders on disentan-
gling factual knowledge in gpt-2 small, 2024.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022.

Julien Colin, Lore Goetschalckx, Thomas FEL, Victor Boutin, Jay R Gopal, Thomas Serre, and
Nuria M Oliver. Local vs distributed representations: What is the right basis for interpretability?,
2025. URL https://openreview.net/forum?id=fmWVPbRGC4.
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A RELATED WORKS

Sparse Dictionary Learning

The convergence of classical dictionary learning is well-studied (Bao et al., 2014; Hastie et al., 2015;
Bao et al., 2016), with theoretical guarantees for exact recovery via factorization (Spielman et al.,
2012) and semidefinite programming (Barak et al., 2015), alongside popular algorithms like K-SVD
(Elad & Aharon, 2006; Aharon et al., 2006) and alternating minimization (Chatterji & Bartlett, 2017;
Gu et al., 2024).

Subsequent inquiries have explored gradient-based methods (Beck & Teboulle, 2009; Bauschke
& Combettes, 2011; Arora et al., 2015), but analyses of deep, unrolled networks such as LISTA
(Gregor & LeCun, 2010; Tang et al., 2020; Massoli et al., 2024) have predominantly focused on
encoder convergence speed under the assumption of a fixed dictionary (Suo et al., 2014; Moreau &
Bruna, 2017). While some studies address gradient stability (Gilboa et al., 2018; Tolooshams & Ba,
2022; Malézieux et al., 2022), their scope remains limited to local error characterization.

Diverging from this focus on encoder convergence, the present research re-examines SAEs’ non-
linearities through the lens of proximal theory. This perspective reveals a direct correspondence
between activation functions and the proximal mappings of sparse regularizers, thereby situating
SAEs within the broader framework of dictionary learning. Building upon this connection, a novel
operator, AbsTopK, is introduced. By abrogating the non-negativity constraint common in prior
work, AbsTopK capacitates a single dictionary feature to encode bidirectional semantic axes. The
principal contribution is therefore the formal alignment of SAE architectural design with the intrinsic
geometry of semantic representation, distinct from classical theories centered on signal recovery.

Mechanistic interpretability

Sparse autoencoders (SAEs) have emerged as a central tool in mechanistic interpretability, serving
as a dictionary learning approach for concept-level explainability (Kim et al., 2018). A variety
of architectures have been proposed, including ReLU SAEs (Bricken et al., 2023), TopK SAEs
(Gao et al., 2025), JumpReLU SAEs (Rajamanoharan et al., 2025), gated SAEs (Rajamanoharan
et al., 2024), Batch TopK SAEs (Bussmann et al., 2024), and ProLU SAEs (O’Neill et al., 2025),
among others. Indeed, these models have demonstrated a remarkable ability to capture a diverse
spectrum of interpretable concepts within their latent representations, ranging from abstract notions
like refusal, gender, and writing script (Bricken et al., 2023; Templeton et al., 2024; Hegde, 2024),
to visual elements such as foreground/background separation (Thasarathan et al., 2025), and even
the fundamental structures of proteins (Simon & Zou, 2024).

Despite these successes, a growing body of work has highlighted limitations of the SAE paradigm.
Simple prompting baselines have been shown to outperform SAE interventions in model control
(Wu et al., 2025; Bhalla et al., 2025), with similar conclusions reported in formal language settings
(Menon et al., 2024). Other critiques question the linear representation hypothesis underlying clas-
sical SAE design, showing that features can be multidimensional or nonlinear (Engels et al., 2024;
2025; Peng et al., 2025; Wang et al., 2025). Moreover, multiple studies demonstrate severe algo-
rithmic instability: two SAEs trained on the same data but with different random seeds may yield
divergent feature dictionaries, leading to inconsistent interpretations (Ayonrinde et al., 2024; Kissane
et al., 2024; Colin et al., 2025). These observations suggest that, while SAEs provide a promising
path toward interpretability, their current formulation suffers from fragility and non-canonical rep-
resentations.

Our work responds to this need by placing SAE nonlinearities in the broader dictionary learning
framework, using a proximal perspective. This unifying view clarifies the connection between pop-
ular activation functions and sparse regularizers and motivates our proposed AbsTopK, which enables
bidirectional semantic representation.

B EXPERIMENTAL SETUP

In this appendix, we describe the architecture and training setup of our SAEs. For all experiments,
we trained on the monology/pile-uncopyrighted (Gao et al., 2020) dataset.
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Architecturally, the SAEs are comprised of a single, overcomplete hidden layer which incorporates
a sparsifying nonlinearity. The encoder component projects residual activations into a latent space
of higher dimensionality, while the decoder component reconstructs the original residual dimension
from these latent representations. A fixed expansion factor of 16 was uniformly applied across all
models.

For comparative analysis, three distinct variants of the SAE were trained: TopK, AbsTopK, and
JumpReLU. In the TopK and AbsTopK configurations, exact k-sparsity was enforced upon the latent
representation, with the sparsity hyperparameter, k, and the specific layers targeted for intervention
being systematically selected for each foundational model:

• EleutherAI/pythia-70m (Biderman et al., 2023): k = 51, layers: 3, 4.
• google/gemma-2-2b (Team, 2024): k = 230, layers: 12, 16.
• Qwen/Qwen3-4B (Yang et al., 2025): k = 256, layers: 18, 20.
• openai-community/gpt2 (Radford et al., 2019): k = 76, layers: 6, 8.

Here, k was set to approximately one-tenth of the hidden dimension for each model, and the inter-
vention layers were selected from the middle of the network to capture representative latent features
(Arditi et al., 2024). In contrast, the JumpReLU models adopted the same configuration as in prior
work (Rajamanoharan et al., 2025; Bussmann et al., 2024).

The optimization for all models was performed using the Adam algorithm over a duration of 30,000
training steps, with a consistent batch size of 4096. A learning rate of 3e-4 was configured, com-
plemented by Adam’s momentum parameters, β1 = 0.9, and β2 = 0.99. And we used a bandwidth
parameter of 0.001 across all experiments.

C PROOF OF LEMMA1

Proof. We prove the result by deriving the proximal operator corresponding to each regularizer
separately.

Case I: ReLU. Note that R(z) is separable as

R(z) = ∥z∥1 + ι{z≥0}(z) =
∑
i

(
|zi|+ ι{zi≥0}(zi)

)
,

which implies that the proximal operator is also separable, i.e., (proxλR(u))i is equivalent to the
following scalar proximal problem

proxλR(u) = argmin
z∈R

1

2
(z − u)2 + λ|z|+ ι{z≥0}(z)

= argmin
z≥0

1

2
(z − u)2 + λz

= max{u− λ, 0}.

Therefore, the proximal operator induces the ReLU operator, with a shift by λ:

(proxλR(u)) = max{u− λ, 0},

which reduces to the standard ReLU when λ → 0. In this case, however, the operator no longer
encourages sparsity. When λ > 0, the effect is equivalent to introducing a bias term that suppresses
small activations and thereby promotes sparsity. In practice, this restriction can be relaxed: during
training, gradient descent can learn a separate bias parameter for each entry.

Case II: JumpReLU. Similarly, R(z) is also separable as

R(z) = ∥z∥0 + ιz≥0(z) =
∑
i

(
1(zi ̸= 0) + ι{zi≥0}(zi)

)
.
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where 1(zi ̸= 0) =

{
1, zi ̸= 0,

0, zi = 0.
Thus, it suffices to first consider the following scalar proximal

operator

proxλR(u) = argmin
z∈R

1

2
(z − u)2 + λ1(z ̸= 0) + ι{z≥0}(z)

= argmin
z≥0

1

2
(z − u)2 + λ1(z ̸= 0)︸ ︷︷ ︸

ξ(z)

.

Note that within the region z ≥ 0, ξ achieve its minimum at either 0 or u. Setting ξ(u) = λ =

ξ(0) = 1
2u

2 yields u =
√
2λ. One can verify that ξ achives its minimum at u when u ≥

√
2λ, and

at 0 otherwise. Hence, the proximal operator induces the JumReLU with parameter
√
2λ:

(proxλR(u))i =

{
u, u ≥

√
2λ,

0, u <
√
2λ.

Case III: TopK. For this case, the corresponding proximal operator reduces to a Euclidean pro-
jection onto the feasible set:

proxλR(u) = arg min
z∈Rd

1
2∥u− z∥22 s.t. ∥z∥0 ≤ k, z ≥ 0. (14)

Given the quadratic objective and the non-negativity constraint, the optimal choice on any candidate
support S with |S| ≤ k is

zi =

{
max{ui, 0}, i ∈ S,

0, i /∈ S.
(15)

Thus, the minimization problem reduces to selecting the index set S that captures the k largest
nonnegative entries of u. Formally, letting Tk(z) denote the set of indices corresponding to the k
largest entries of z, the proximal operator becomes

[proxλR(u)]i =

{
max{ui, 0}, i ∈ Tk(z),
0, i /∈ Tk(z).

(16)

D UNSUPERVISED METRICS ON ALL MODELS

This section presents the unsupervised metrics from our model evaluations. We tested each model
with a specific set of k values. For the Pythia model, we used k-values of 10, 20, 30, 40, and 50.
The evaluation of the Gemma model involved k values of 30, 50, 100, 200, and 230. For the GPT
model, the k values were 10, 30, 50, 60, and 76. Lastly, the Qwen model was tested with k values of
30, 50, 100, 200, and 256.

As shown in Figure 4, across the majority of evaluated models, we observe that AbsTopK achieves
lower training MSE, reduced normalized reconstruction error, and better preservation of language
modeling performance relative to both TopK and JumpReLU. This consistent advantage across these
metrics provides evidence for the effectiveness and robustness of the AbsTopK method.. In partic-
ular, while TopK and JumpReLU sometimes exhibit competitive performance in isolated settings,
AbsTopK maintains robustness across architectures and layers, thereby demonstrating the superior-
ity of our proposed formulation.

E STEERING AND PROBE TASK ON ALL MODELS

E.1 TASK DESCRIPTION

We provide an overview of the tasks employed in the SAEBench evaluation for SAEs. We do
not utilize the Automated Interpretability (AutoInterp) evaluation, as its reliability has been ques-
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Table 2: Performance comparison of SAE variants across tasks on all other models and layers.
For all tasks, higher scores indicate better performance; the Unlearning and Absorption scores have
been transformed as 1−original score to maintain this consistency.

Model Method Unlearning Absorption SCR TPP RAVEL Sparse Probing

Gemma2-2B L12
AbsTopK 0.93 0.73 0.27 0.34 0.73 0.76
TopK 0.88 0.76 0.20 0.29 0.70 0.71
JumpReLU 0.90 0.75 0.22 0.30 0.71 0.73

Gemma2-2B L14
AbsTopK 0.91 0.70 0.27 0.42 0.71 0.70
TopK 0.89 0.68 0.21 0.36 0.74 0.67
JumpReLU 0.94 0.69 0.23 0.39 0.72 0.69

Pythia-70M L3
AbsTopK 0.75 0.54 0.20 0.22 0.64 0.66
TopK 0.71 0.47 0.15 0.14 0.62 0.60
JumpReLU 0.73 0.50 0.17 0.21 0.63 0.61

Pythia-70M L4
AbsTopK 0.79 0.53 0.21 0.23 0.68 0.57
TopK 0.72 0.50 0.16 0.21 0.69 0.61
JumpReLU 0.77 0.51 0.17 0.20 0.61 0.62

GPT2-small L6
AbsTopK 0.74 0.66 0.18 0.22 0.60 0.54
TopK 0.80 0.63 0.14 0.19 0.57 0.50
JumpReLU 0.77 0.65 0.15 0.20 0.58 0.52

GPT2-small L8
AbsTopK 0.75 0.67 0.23 0.28 0.51 0.59
TopK 0.71 0.67 0.15 0.20 0.48 0.55
JumpReLU 0.73 0.67 0.18 0.23 0.49 0.57

Qwen3-4B L18
AbsTopK 0.95 0.79 0.35 0.36 0.81 0.83
TopK 0.91 0.77 0.26 0.31 0.79 0.82
JumpReLU 0.93 0.78 0.28 0.30 0.80 0.78

Qwen3-4B L20
AbsTopK 0.95 0.80 0.32 0.45 0.85 0.81
TopK 0.92 0.77 0.27 0.36 0.76 0.84
JumpReLU 0.93 0.78 0.29 0.39 0.81 0.83

tioned (Heap et al., 2025). For detalied methodology, we refer readers to the original SAEBench
paper (Karvonen et al., 2025).

E.1.1 FEATURE ABSORPTION

Sparsity incentives can cause a SAE to engage in feature absorption, a phenomenon where correlated
features are merged into a single latent representation. This process arises when a direct implication
exists between two concepts, such that concept A always implies concept B. To reduce the number
of active latents, the SAE might absorb the feature for A into the latent for B. For example, a feature
for ”starts with S” could be absorbed into a more general latent for ”short.” While this merging im-
proves computational efficiency, it compromises interpretability by creating gerrymandered features
that represent multiple, distinct concepts.

To quantify feature absorption, we employ a first-letter classification task, following the methodol-
ogy of previous studies (Chanin et al., 2025). First, a supervised logistic regression probe is trained
on tokens containing only English letters to establish ground-truth feature directions. Next, K-sparse
probing is applied to the SAE’s latents to identify the primary latent corresponding to each feature,
using a threshold of τfs = 0.03 to account for potential feature splits. For test set tokens where
main latents fail but the probe succeeds, additional SAE latents are included if they satisfy cosine
similarity with the probe of at least τps = 0.025 and a projection fraction of at least τpa = 0.4.
All parameter values are chosen following the original SAEBench settings (Karvonen et al., 2025).
To make the results more interpretable and such that higher values indicate stronger unlearning, we
present the final scores as 1− original value.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.1.2 UNLEARNING

SAEs are evaluated on their ability to selectively remove knowledge while maintaining performance
on unrelated tasks (Farrell et al., 2025). We use the WMDP-bio dataset (Li et al., 2024) for unlearn-
ing and MMLU (Hendrycks et al., 2021) to assess general abilities.

The intervention methodology involves clamping selected WMDP-bio SAE feature activations to
negative values whenever the corresponding features activate during inference. To evaluate broader
model effects, we also measure performance on the MMLU benchmark (Hendrycks et al., 2021).
The final evaluation reports the highest unlearning effectiveness on WMDP-bio while ensuring
MMLU accuracy remains above 0.99, thereby quantifying optimal unlearning performance under
constrained side effects. To make the results more interpretable and such that higher values indicate
stronger unlearning, we present the final scores as 1− original value.

E.1.3 SPURIOUS CORRELATION REMOVAL (SCR)

SCR (Karvonen et al., 2024) evaluates the ability of SAEs to disentangle latents corresponding to
distinct concepts. We conduct experiments on datasets known for spurious correlations, such as Bias
in Bios (De-Arteaga et al., 2019) and Amazon Reviews (Hou et al., 2024), which contain two binary
gender labels. For each dataset, we create a balanced set containing all combinations of profession
(professor/nurse) and gender (male/female), as well as a biased set including only male+professor
and female+nurse combinations. A biased classifier C is first trained on the biased set and then
debiased by ablating selected SAE latents.

We quantify SCR using the normalized evaluation score:

SSHIFT =
Aabl −Abase

Aoracle −Abase
, (17)

where Aabl is the probe accuracy after SAE feature ablation, Abase is the baseline accuracy before
ablation, and Aoracle is the skyline accuracy obtained by a probe trained directly on the desired con-
cept. Higher SSHIFT values indicate more effective removal of spurious correlations. This score
represents the proportion of improvement achieved through ablation relative to the maximum possi-
ble improvement, enabling fair comparison across classes and models.

E.1.4 TARGETED PROBE PERTURBATION (TPP)

TPP (Marks et al., 2025) extends the SHIFT methodology to multiclass natural language processing
datasets. For each class ci in a dataset, we select the most relevant SAE latents Li. We then evaluate
the causal effect of ablating Li on linear probes Cj trained to classify each class cj .

Let Aj denote the accuracy of probe Cj before ablation, and Aj\i the accuracy after ablating Li. We
define the accuracy change as

∆Aj\i = Aj\i −Aj . (18)

The TPP score is then
STPP = Ei=j

[
∆Aj\i

]
− Ei̸=j

[
Aj\i

]
, (19)

which measures the extent to which ablating latents for class i selectively degrades the corresponding
probe while leaving other probes unaffected. A high TPP score thus indicates effective disentangle-
ment of SAE latents.

E.1.5 RAVEL

RAVEL (Chaudhary & Geiger, 2024) evaluates the ability of SAEs to disentangle features by testing
whether individual latents correspond to distinct factual attributes. The dataset spans five entity types
(cities, Nobel laureates, verbs, physical objects, and occupations), each with 400–800 instances
and 4–6 attributes (e.g., cities have country, continent, and language), probed with 30–90 natural
language and JSON prompt templates.

Evaluation proceeds in three stages: (i) filtering entity and attribute pairs that the model predicts
reliably, (ii) identifying attribute and specific features using probes trained on latent representations,
and (iii) computing a disentanglement score that averages cause and isolation metrics. The cause
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score measures whether intervening on a feature for attribute A (e.g., setting Paris’s country to Japan)
correctly changes the prediction of A, while the isolation score verifies that other attributes B (e.g.,
language = French) remain unaffected. A higher final score indicates stronger disentanglement of
features.

E.1.6 PROBING EVALUATION

We assess whether SAEs capture interpretable features through targeted probing tasks across five
domains: profession classification, sentiment and product categorization , language identification,
programming language classification, and topic categorization. Each dataset is partitioned into mul-
tiple binary classification tasks, yielding a total of 35 evaluation tasks.

For each task, we encode inputs with the SAE, apply mean pooling over non-padding tokens, and
select the topk latents via maximum mean difference. A logistic regression probe is then trained
on these representations and evaluated on held-out test data. To ensure comparability across tasks,
we sample 4,000 training and 1,000 test examples per task, truncate inputs to 128 tokens, and, for
GitHub, exclude the first 150 characters following Gurnee et al. (2023). We also compare mean
and max pooling, finding mean pooling slightly superior. Datasets with more than two classes are
subsampled into balanced binary subsets while maintaining a positive class ratio of at least 0.2.

E.2 TASK PERFORMANCE

As shown in Table 2, we find that the AbsTopK methodology exhibits a superior level of performance
relative to the comparative TopK and JumpReLU techniques across the evaluated models and layers.

In particular, the AbsTopK operator performs best on the majority of the evaluation metrics. While
its performance is more competitive in a few areas, its dominant strength in the other key areas
makes it a robust and highly effective sparsity operator according to these results. The method’s
strength appears to be model-agnostic, showcasing its general applicability.

F STEERING METHODS FOR DIM AND SAES

In this section, we present methods for controlling specific concepts in model representations. For
DiM, we introduce two intervention strategies: activation addition, to amplify a concept’s effect, and
directional ablation, to remove it from intermediate activations. For the HarmBench experiments,
we specifically employ the activation addition method. Following this, we describe how similar
steering can be achieved in SAEs through latent feature manipulation and ablation.

Activation addition. Given a concept vector d(l) extracted from layer l, we can modulate the
corresponding feature via a simple linear intervention. Concretely, for a specific input, we add the
vector to the layer activations with the strength α to shift them toward the concept activation, thereby
inducing the given concept:

x(l)′ ← αd(l) + x(l). (20)

This intervention is applied only at layer l and across all token positions.

Directional ablation. To study the role of a particular direction d in the model’s computation,
we can remove it from the representations using directional ablation. Specifically, we zero out the
component along d for every residual stream activation x:

x(l)′ ← x(l) − αdd⊤x(l). (21)

This operation is applied to every activation x(l), across all layers l, effectively preventing the model
from encoding this direction in its residual stream.
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SAE Latent feature clamping. For a target latent feature zi in the SAE feature vector z, we can
modulate its influence on model behavior by clamping it to a constant c ∈ R. Denote a feature
vector z, and let zi,c be the modified vector with zi replaced by c.

Define the clamping function Ci,c as

[Ci,c(z)]k =

{
zk if k ̸= i,

c if k = i,
(22)

so that Ci,c(z) = zi,c.

In conventional SAEs, this clamping strategy can be interpreted as a directional control: setting
c to a negative value suppresses the corresponding concept, while a positive c encourages it. We
adopt a similar approach to perform steering in our framework, using clamping to directly modulate
individual latent features and thereby control the presence or absence of specific semantic concepts
in the reconstructed representation.
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Figure 4: Performance comparison of JumpReLU, TopK, and AbsTopK SAEs on all other
models and layers, showing (a) MSE Training Loss, (b) Normalized MSE, and (c) Loss Recovered.
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