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Abstract

Large language models (LLMs) have become001
the backbone of modern natural language pro-002
cessing but pose privacy concerns about leaking003
sensitive training data. Membership inference004
attacks (MIAs), which aim to infer whether a005
sample is included in a model’s training dataset,006
can serve as a foundation for broader privacy007
threats. Existing defenses designed for tradi-008
tional classification models do not account for009
the sequential nature of text data. As a result,010
they either require significant computational re-011
sources or fail to effectively mitigate privacy012
risks in LLMs. In this work, we propose a013
lightweight yet effective empirical privacy de-014
fense for protecting training data of language015
modeling by leveraging the token-specific char-016
acteristics. By analyzing token dynamics dur-017
ing training, we propose a token selection strat-018
egy that categorizes tokens into hard tokens for019
learning and memorized tokens for unlearning.020
Subsequently, our training-phase defense op-021
timizes a novel dual-purpose token-level loss022
to achieve a Pareto-optimal balance between023
utility and privacy. Extensive experiments024
demonstrate that our approach not only pro-025
vides strong protection against MIAs but also026
improves language modeling performance by027
around 10% across various LLM architectures028
and datasets compared to the baselines.029

1 Introduction030

Large language models (LLMs) have become the031

foundation of modern natural language process-032

ing with a wide range of applications in various033

domains (Chang et al., 2024). The rapidly increas-034

ing deployment of LLMs raises serious concerns035

about the data privacy (Yao et al., 2024). LLMs036

have been shown to memorize the training data037

which can be later extracted by adversaries (Car-038

lini et al., 2023). Membership inference attacks039

(MIAs) (Shokri et al., 2017; Li et al., 2024a) aim040

to infer whether a sample is included in a model’s041

training data, serving as the foundation of broader 042

privacy threats (Carlini et al., 2021b). 043

Due to the importance of understanding and mit- 044

igating MIAs, a significant amount of research has 045

been conducted to design MIA defenses (Hu et al., 046

2022b). However, most defenses focus on general 047

machine learning models for classification tasks 048

and do not account for the sequential nature of 049

text data, while advanced MIAs for LLMs have 050

leveraged such property. For example, the series of 051

Min-K works (Zhang et al., 2025; Shi et al., 2024) 052

use the token-level loss on outlier tokens and sig- 053

nificantly enhance MIAs for LLMs. Thus, conven- 054

tional data sanitization or regularization techniques 055

have limited defense effectiveness (Kandpal et al., 056

2022; Liu et al., 2024b). And even the classic dif- 057

ferentially private (DP) training algorithm (Abadi 058

et al., 2016) provides a strong defense, this ap- 059

proach comes at the inevitable cost of increased 060

computation and reduced utility (Li et al., 2022a; 061

Bu et al., 2023b), which may not be desirable when 062

the model trainer serves as the defender. 063

In this paper, we propose a defense mecha- 064

nism for membership inference attacks on LLMs – 065

DuoLearn. A recent study (Lin et al., 2024) reveals 066

that using a carefully selected subset of tokens dur- 067

ing training can match or even surpass the perfor- 068

mance of using all tokens in language modeling. In 069

the meantime, MIAs mainly exploit loss-based sig- 070

nals associated with a sample (Mattern et al., 2023; 071

Carlini et al., 2021a). We observe that during train- 072

ing, some tokens carry stronger MIA signals and 073

make the sample more vulnerable to MIAs. Thus, 074

we leverage such token sequence nature of LLMs 075

and propose a dynamic token selection strategy dur- 076

ing training to proactively identify and categorize 077

tokens into hard tokens (those with high losses) 078

and memorized tokens (those with strong signals 079

for MIA risks). Accordingly, we design a dual- 080

objective loss function that performs learning via 081

gradient descent on the hard tokens and unlearning 082
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via gradient ascent on the memorized tokens simul-083

taneously in one backward pass, which makes the084

model learn useful information but not memorize085

specific training samples. Our contributions can be086

summarized as follows:087

• We propose a dynamic token selection strategy088

that identifies hard tokens and memorized to-089

kens during training, which provides insights090

for investigating language modeling and mem-091

orization.092

• We propose a simple but effective dual-093

objective training to perform learning over094

hard tokens and unlearning over memorized095

tokens, for mitigating privacy risk while main-096

taining model utility with small computing097

cost.098

• We empirically demonstrate the effectiveness099

of the proposed defense mechanism across100

various LLM architectures and datasets. Our101

results show that our defense mechanism102

can provide robust privacy protection against103

MIAs with minimal degradation on language104

modeling performance.105

2 Related Works106

2.1 MIAs on LLMs107

Membership inference attacks are a crucial privacy108

threat to machine learning models. There are a sig-109

nificant number of MIAs proposed for traditional110

classification models (Hu et al., 2022b). Shokri111

et al. (2017) introduce membership inference at-112

tacks via analyzing the prediction probability dif-113

ference between the training and testing samples.114

Yeom et al. (2018) connects MIAs to the overfitting115

phenomenon and proposes to use cross entropy116

loss as an MIA signal. However, due to the sig-117

nificant differences between LLMs and traditional118

classification models, some of these attacks are not119

applicable to LLMs, while others, though feasi-120

ble, do not yield high attack performance. There-121

fore, there are non-trivial efforts to design suitable122

MIAs for LLMs. Carlini et al. (2021a) calibrate123

the sample loss with zlib entropy and reference124

models. Mattern et al. (2023) generate synthetic125

neighboring samples for each target sample then126

calculate the loss difference between them as the127

MIA signal. Shi et al. (2024) consider only top128

K lowest token losses for the MIA signal, while129

Zhang et al. (2025) perform z-score normalization130

for token losses, using the token vocabulary’s mean 131

and standard deviation, then select top K z-scores. 132

Fu et al. (2024) prompts the target LLM to generate 133

a dataset which is used to train a reference attack 134

model. Duan et al. (2024); Puerto et al. (2025) 135

conduct systematic evaluations of MIAs on the pre- 136

trained LLMs. Liu et al. (2024b) design a privacy 137

backdoor that can increase the membership infer- 138

ence risks. 139

2.2 LLM Memorization 140

The billion-parameter scale enhances LLM capa- 141

bilities but also magnifies the privacy concerns. 142

Carlini et al. (2021a, 2023) demonstrate that LLMs 143

can memorize parts of their training data. There 144

is potential leakages of LLMs generating the train- 145

ing data when prompted appropriately. These are 146

known as exact memorization which can be uti- 147

lized by the adversaries to extract the exact training 148

data. Nasr et al. (2025) demonstrated that the LLM 149

safety alignment fails to mitigate the privacy risks. 150

It is feasible to undo the safety alignment via fine 151

tuning and the adversaries can prompt the LLM to 152

generate its training data. 153

2.3 Defenses Against MIAs 154

Overfitting is the root of membership inference 155

risks (Shokri et al., 2017). There are several works 156

that proposed regularization techniques for tra- 157

ditional classification models such as weight de- 158

cay and dropout (Srivastava et al., 2014). While 159

these regularization methods effectively reduces 160

the membership inference risks in the traditional 161

classification models (Song and Mittal, 2021), 162

they are not sufficient to prevent memorization 163

in LLMs (Tirumala et al., 2022; Lee et al., 2022). 164

Nasr et al. (2018) employ adversarial training. Tang 165

et al. (2022) propose an ensemble architecture of 166

models. These approaches are not practical for 167

LLMs due to the expensive computing cost. 168

Generally, in the context of LLMs, there are still 169

limited number of works on defense mechanisms 170

against MIAs and memorization. There are two 171

main approaches: sanitize training data and differ- 172

ential privacy (DP). Pilán et al. (2022) propose a 173

practical method to protect Personally Identifiable 174

Information (PII) by detecting and replacing PII 175

with anonymized tokens. Shi et al. (2022) sani- 176

tize the PII tokens and pretrain on the sanitized 177

data before conducting DP based fine-tuning on the 178

original data. Lukas et al. (2023) demonstrates the 179

effectiveness of sentence-level DP in mitigating the 180
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risks of leaking PII. These PII protection methods181

are effective but may not be sufficient to protect182

against MIAs because for each sample, the number183

of PII tokens is usually small (Li et al., 2024b).184

Liu et al. (2024a) propose a method to perturb the185

training texts by leveraging memorization triggers186

that can effectively protect a small fraction of the187

training data against MIAs. Deduplicating the train-188

ing corpus can reduce the risks of MIAs but not189

entirely eliminate them (Kandpal et al., 2022).190

The second popular approach conducts191

training/fine-tuning with Differentially-Private192

Stochastic Gradient Descent (DPSGD). Li et al.193

(2022b); Yu et al. (2022) show LLMs are strong194

differentially private learners. There are also a195

few works that aim to improve the DP training196

efficiency such as memory (Bu et al., 2023b)197

and distributed training (Bu et al., 2023a). DP198

training/fine-tuning usually offers strong privacy199

protection for LLMs. Lowy et al. (2024) theoret-200

ically prove DP with a loose privacy budget can201

defend against MIAs. Despite efforts to improve202

the computing efficiency of DPSGD, differential203

privacy inherently introduces computational204

overhead, architectural constraints, and significant205

utility trade-off at scale (Bu et al., 2024). To206

address the computational overhead and utility207

tradeoff of using DP on LLMs, Hans et al. (2024)208

proposes a non-DP practical masking mechanism,209

called Goldfish, that performs pseudo-random210

token masking for loss calculation to prevent211

memorization.212

3 How Do Tokens Contribute to213

Membership Inference Risks?214

Compared to conventional classification problems,215

membership inference attacks in language model-216

ing have significant differences. In particular, each217

query in traditional classification models requires218

only one prediction. On the other hand, each query219

to language models involves multiple token predic-220

tions due to the sequential nature of text. This dif-221

ference yields a question that how tokens contribute222

to overall sample-level membership inference risks.223

To answer this question, we perform a token-level224

analysis of membership inference risks. We calcu-225

late the MIA signal for each token as its prediction226

loss calibrated by a reference model (Carlini et al.,227

2021a). A smaller signal value indicates that the228

model has a significantly higher confidence than229

other reference model on predicting the token.230
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Figure 1: Token-level MIA signal analysis. The left
figure presents the histogram of the MIA signals across
tokens at the end of training, while the right figure illus-
trates the MIA signal ranking of tokens during training.

Figure 1 (left) illustrates the histogram of MIA 231

signal values of tokens of a sample (see Figure 8 in 232

Appendix B for additional histograms). The non- 233

member sample distribution centers around zero, 234

while the member sample skews to the negative 235

side. Consequently, the average aggregated MIA 236

signal is below zero for members but around zero 237

for non-members, leading to membership inference 238

risks. Moreover, the MIA signal values vary for 239

different tokens, so some tokens contribute more to 240

the membership inference risks than the others. Fig- 241

ure 1 (right) illustrates the MIA signal ranking of 242

tokens of a member sample over training steps (see 243

Figure 9 in Appendix B for additional samples). 244

There is a complex changing dynamic in ranking 245

between tokens before it becomes more stable at 246

the end when the training converges. Overall, the 247

analysis suggests that the sample-level membership 248

inference risk in language modeling stem from the 249

cumulative effect of many tokens. This poses chal- 250

lenges for defense methods that need token-level 251

granularity to isolate and mitigate specific sources 252

of leakage. Additionally, it is non-trivial to develop 253

a defense method that widely affects a large num- 254

ber of tokens without disrupting the complex token 255

dependencies essential for model utility. 256

4 Proposed Methodology – DuoLearn 257

Motivated by the analysis, we propose DuoLearn– 258

a training framework that dynamically identifies 259

hard tokens (those with higher calibrated losses) for 260

learning and memorized tokens (those with strong 261

MIA signals) for unlearning simultaneously. This 262

way, the model learns useful information without 263

memorizing specific training samples. 264

Overview. We assume the model trainer is the 265

defender and the goal is to mitigate the privacy 266

risk of the training data in the trained model. We 267

further assume the trainer can get access to an aux- 268

iliary dataset for better calibrating the MIA signals, 269
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Figure 2: DuoLearn overview. First, the tokens are passed through the training LLM and reference LLM. They
are then categorized into hard tokens (in green) and memorized tokens (in red). At the end, a dual-purpose loss is
applied which achieves two targets: learning on the hard tokens while unlearning for the memorized tokens.

which can be a disjoint subset drawn from the same270

distribution of the training data. The general train-271

ing process is illustrated in Figure 2. First, we272

train a reference model with the auxiliary dataset,273

which is feasible for the trainer based on previous274

works (Lin et al., 2024; Mindermann et al., 2022;275

Xie et al., 2023). Then, during training of the tar-276

get model, we use the token losses of the current277

training model calibrated by the reference model to278

dynamically identify hard tokens and memorized279

tokens in each training iteration. A dual-purpose280

loss function is used to keep the model simulta-281

neously learning on hard and necessary tokens to282

enhance model utiilty while unlearning on memo-283

rized tokens to mitigate MIA risks.284

Reference Modeling. Reference model (θref )285

shares an identical architecture with the training286

model (θ). We fine-tune a reference model on a287

small portion of the original dataset (denoted as288

Taux) that can reflect the desired data distribution289

by standard causal language modeling (CLM), i.e.,290

implementing next-token-prediction cross entropy291

loss (LCE):292

LCE(θref ; Taux) = − 1
|Taux|

∑
ti∈Taux

logP (ti|t<i; θref ).293

Token Selection. As shown in the previous analy-294

sis on LLM generalization by Lin et al. (2024) and295

ours on membership inference risks, tokens con- 296

tribute differently. Considering all tokens equally 297

as the standard causal language modeling is not 298

optimal since it can lead to memorization on some 299

tokens and amplify the memorization over train- 300

ing epochs. DuoLearn defines two sets of tokens: 301

hard tokens (Th) and memorized tokens (Tm). Hard 302

tokens are the tokens that the current training mod- 303

els (θ) have difficulty predicting, while memorized 304

tokens are the tokens that the model has already 305

memorized. To identify these two sets of tokens, 306

we propose a token selection mechanism based on 307

the prediction loss of each token calibrated by the 308

reference model. We implement the score s(ti) for 309

each token ti which is the difference between the 310

cross-entropy loss of the training model and the 311

reference model, as used in previous works (Lin 312

et al., 2024; Mindermann et al., 2022): 313

s(ti) = logP (ti|t<i; θref )− logP (ti|t<i; θ). 314

The tokens with the highest scores are consid- 315

ered hard tokens Th (highest calibrated loss), while 316

the tokens with the lowest scores are considered 317

memorized tokens Tm (lowest calibrated loss and 318

strongest MIA signals). Let T be the set of all to- 319

kens in a batch. We select top Kh hard tokens and 320

bottom Km memorized tokens to form Th and Tm, 321
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respectively. Additionally, we introduce a thresh-322

old τ to filter out neutral tokens from Tm which323

have scores close to zero or greater than zero, as324

these are not considered memorized. The token325

selection process is formulated as follows:326

Th = argmax
S,|S|=Kh

{s(ti)|ti ∈ T }327

328
Tm = argmin

S,|S|≤Km

{s(ti)|ti ∈ T , s(ti) ≤ τ}329

Dual-Purpose Loss. We introduce a dual-purpose330

loss function designed to improve model perfor-331

mance on hard tokens while mitigating overfitting332

on memorized tokens. This loss function combines333

two components: the learning loss and the unlearn-334

ing loss. The learning loss is the standard causal335

language modeling (CLM) loss applied to the hard336

tokens Th. The unlearning loss, in contrast, is the337

negative CLM loss applied to the memorized to-338

kens Tm, effectively performing gradient ascent.339

The dual-purpose loss is defined as follows, where340

α > 0 is a hyper-parameter that balances the learn-341

ing and unlearning losses:342

Ldual(θ) = LCE(θ; Th)− α · LCE(θ; Tm).343

5 Experiments and Results344

5.1 Experiment Settings345

Datasets. We conduct experiments on two datasets:346

CC-news1 and Wikipedia2. CC-news is a large col-347

lection of news articles which includes diverse top-348

ics and reflects real-world temporal events. Mean-349

while, Wikipedia covers general knowledge across350

a wide range of disciplines, such as history, science,351

arts, and popular culture.352

LLMs: We experiment on three models in-353

cluding GPT-2 (124M) (Radford et al., 2019),354

Pythia (1.4B) (Biderman et al., 2023), and355

Llama-2 (7B) (Touvron and et al., 2023). This356

selection of models ensures a wide range of model357

sizes from small to large that allows us to analyze358

scaling effects and generalizability across different359

capacities.360

Evaluation Metrics. For evaluating language mod-361

eling performance, we measure perplexity (PPL),362

as it reflects the overall effectiveness of the model363

and is often correlated with improvements in other364

downstream tasks (Kaplan et al., 2020; OpenAI,365

2020). For defense effectiveness, we consider the366

1Huggingface: vblagoje/cc_news
2Huggingface: legacy-datasets/Wikipedia

attack area under the curve (AUC) value and True 367

Positive Rate (TPR) at low False Positive Rate 368

(FPR). In total, we perform 4 MIAs with differ- 369

ent MIA signals. Given the sample x, the MIA 370

signal function f is formulated as follows: 371

• Loss (Yeom et al., 2018) utilizes the negative 372

cross entropy loss as the MIA signal. 373

fLoss(x) = LCE(θ;x) 374

• Ref-Loss (Carlini et al., 2021a) considers the loss 375

differences between the target model and the attack 376

reference model. To enhance the generality, our 377

experiments ensure there is no data contamination 378

between the training data of the target, reference, 379

and attack models. 380

fRef(x) = LCE(θ;x)− LCE(θattack;x) 381

• Min-K (Shi et al., 2024) leverages top K tokens 382

that have the lowest loss values. 383

fmin-K(x) =
1

|min-K(x)|
∑

ti∈min-K(x)

− log(P (ti|t<i; θ) 384

• Zlib (Carlini et al., 2021a) calibrates the loss 385

signal with the zlib compression size. 386

fzlib(x) = LCE(θ;x)/zlib(x) 387

Baselines. We present the results of four base- 388

lines. Base refers to the pretrained LLM without 389

fine tuning. FT represents the standard causal lan- 390

guage modeling without protection. Goldfish (Hans 391

et al., 2024) implements a masking mechanism. 392

DPSGD (Abadi et al., 2016; Yu et al., 2022) ap- 393

plies gradient clipping and injects noise to achieve 394

sample-level differential privacy. 395

Implementation. We conduct full fine-tuning 396

for GPT-2 and Pythia. For computing efficiency, 397

Llama-2 fine-tuning is implemented using Low- 398

Rank Adaptation (LoRA) (Hu et al., 2022a) which 399

leads to ~4.2M trainable parameters. Addition- 400

ally, we use subsets of 3K samples to fine-tune the 401

LLMs. We present other implementation details in 402

Appendix C.1. 403

5.2 Overall Evaluation 404

Table 1 provides the overall evaluation compared 405

to several baselines across large language model ar- 406

chitectures and datasets. Among these two datasets, 407

CCNews is more challenging, which leads to higher 408

perplexity for all LLMs and fine-tuning methods. 409
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LLM Method
Wikipedia CC-news

PPL Loss Ref Min-k Zlib PPL Loss Ref Min-k Zlib

GPT2

Base 34.429 0.473 0.513 0.446 0.497 29.442 0.505 0.498 0.520 0.500

124M

FT 12.729 0.577 0.967 0.489 0.544 21.861 0.607 0.855 0.549 0.569
Goldfish 12.853 0.565 0.954 0.486 0.537 21.902 0.608 0.855 0.547 0.570
DPSGD 18.523 0.463 0.536 0.448 0.491 26.022 0.507 0.513 0.521 0.502
DuoLearn 13.628 0.454 0.463 0.470 0.485 23.733 0.502 0.495 0.529 0.499

Pythia

Base 10.287 0.466 0.503 0.464 0.489 13.973 0.507 0.512 0.528 0.501

1.4B

FT 6.439 0.578 0.985 0.484 0.557 11.922 0.602 0.857 0.541 0.574
Goldfish 6.465 0.564 0.981 0.482 0.546 11.903 0.609 0.862 0.543 0.579
DPSGD 7.751 0.469 0.524 0.462 0.488 13.286 0.512 0.531 0.528 0.503
DuoLearn 6.553 0.468 0.485 0.472 0.485 12.670 0.501 0.460 0.524 0.499

Llama-2

Base 7.014 0.458 0.491 0.476 0.488 9.364 0.505 0.495 0.516 0.503

7B

FT 3.830 0.524 0.936 0.494 0.530 6.261 0.559 0.798 0.536 0.548
Goldfish 3.839 0.518 0.929 0.492 0.525 6.280 0.552 0.780 0.533 0.541
DPSGD 4.490 0.466 0.516 0.470 0.487 6.777 0.509 0.538 0.523 0.504
DuoLearn 4.006 0.458 0.440 0.473 0.480 6.395 0.507 0.482 0.518 0.500

Table 1: Overall Evaluation: Perplexity (PPL) and AUC scores of the MIAs with different signals (Loss/Ref/Min-
k/Zlib). For all metrics, the lower the value, the better the result. Base in the method column indicates the pretrained
LLMs without fine-tuning, thus it indicates lower bound for both utility and privacy risk.

Additionally, the reference-model-based attack per-410

forms the best and demonstrates high privacy risks411

with attack AUC on the conventional fine-tuned412

models at 0.95 and 0.85 for Wikipedia and CC-413

News, respectively. Goldfish achieves similar PPL414

to the conventional FT method but fails to defend415

against MIAs. This aligns with the reported results416

by Hans et al. (2024) that Goldfish resists exact417

match attacks but only marginally affects MIAs.418

DPSGD provides a very strong protection in all set-419

tings (AUC < 0.55) but with a significant PPL trade-420

off. Our proposed DuoLearn guarantees a robust421

protection, even slightly better than DPSGD, but422

with a notably smaller tradeoff on language model-423

ing performance. For example, on the Wikipedia424

dataset, DuoLearn delivers perplexity reduction by425

15% to 27%. Moreover, Table 4 (Appendix D)426

provides the TPR at 1% FPR. Both DPSGD and427

DuoLearn successfully reduce the TPR to ∼0.02428

for all LLMs and datasets. Overall, across multiple429

LLM architectures and datasets, DuoLearn con-430

sistently offers ideal privacy protection with little431

trade-off in language modeling performance.432

Privacy-Utility Trade-off. To investigate the433

privacy-utility trade-off of the methods, we vary the434

hyper-parameters of the fine-tuning methods. Par-435

ticularly, for DPSGD, we adjust the privacy budget436

ϵ from (8, 1e-5)-DP to (100, 1e-5)-DP. We mod-437

ify the masking percentage of Goldfish from 25%438

to 50%. Additionally, we vary the loss weight α439

from 0.2 to 0.8 for DuoLearn. Figure 3 depicts440

the privacy-utility trade-off for GPT2 on the CC- 441

News dataset. Goldfish, with very large masking 442

rate (50%), can slightly reduce the risk of the ref- 443

erence attack but can increase the risks of other 444

attacks. By varying the weight α, DuoLearn offers 445

an adjustable trade-off between privacy protection 446

and language modeling performance. DuoLearn 447

largely dominates DPSGD and improves the lan- 448

guage modeling performance by around 10% with 449

the ideal privacy protection against MIAs. 450
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Figure 3: Privacy-utility trade-off of the methods while
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is set to 25%, 33%, and 50%. The privacy budget ϵ of
DPSGD is evaluated at 8, 16, 50, and 100. The weight
α of DuoLearn is configured at 0.2, 0.5, and 0.8.
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5.3 Ablation Study451

DuoLearn without reference models. To study452

the impact of the reference model, we adapt453

DuoLearn to a non-reference version which di-454

rectly uses the loss of the current training model455

(i.e., s(ti) = LCE(θ; ti)) to select the learning456

and unlearning tokens. This means the unlearning457

tokens are the tokens that have smallest loss val-458

ues. Figure 4 presents the training loss and testing459

perplexity. There is an inconsistent trend of the460

training loss and testing perplexity. Although the461

training loss decreases overtime, the test perplex-462

ity increases. This result indicates that identifying463

appropriate unlearning tokens without a reference464

model is challenging and conducting unlearning465

on an incorrect set hurts the language modeling466

performance.467
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Figure 4: Training Loss and Test Perplexity of
DuoLearn without a reference model.

DuoLearn with out-of-domain reference models.468

To examine the influence of the distribution gap469

in the reference model, we replace the in-domain470

trained reference model with the original pretrained471

base model. Figure 5 depicts the language mod-472

eling performance and privacy risks in this study.473

DuoLearn with an out-of-domain reference model474

can reduce the privacy risks but yield a significant475

gap in language modeling performance compared476

to DuoLearn using an in-domain reference model.477

DuoLearn without Unlearning. To study the478

effects of unlearning tokens, we implement479

DuoLearn which use the first term of the loss only480

(Lθ = LCE(θ; Th)). Figure 5 provides the perplex-481

ity and MIA AUC scores in this setting. Generally,482

without gradient ascent, DuoLearn can marginally483

reduce membership inference risks while slightly484

improving the language modeling performance.485

The token selection serves as a regularizer that486

helps to improve the language modeling perfor-487

mance. Additionally, tokens that are learned well488

in previous epochs may not be selected in the next489

epochs. This slightly helps to not amplify the mem-490

orization on these tokens over epochs. 491
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Figure 5: Privacy-utility trade-off of DuoLearn with dif-
ferent settings: in-domain reference model, out-domain
reference model, and without unlearning

5.4 Training Dynamics 492

Memorization and Generalization Dynamics. 493

Figure 6 (left) illustrates the training dynamics 494

of conventional fine tuning and DuoLearn, while 495

Figure 6 (middle) depicts the membership infer- 496

ence risks. Generally, the gap between training and 497

testing loss of conventional fine-tuning steadily in- 498

creases overtime, leading to model overfitting and 499

high privacy risks. In contrast, DuoLearn maintains 500

a stable equilibrium where the gap remains more 501

than 10 times smaller. This equilibrium arises from 502

the dual-purpose loss, which balances learning on 503

hard tokens while actively unlearning memorized 504

tokens. By preventing excessive memorization, 505

DuoLearn mitigates membership inference risks 506

and enhances generalization. 507

Gradient Conflicts. To study the conflict between 508

the learning and unlearning objectives in our dual- 509

purpose loss function, we compute the gradient 510

for each objective separately. We then calculate 511

the cosine similarity of these two gradients. Fig- 512

ure 6 (right) provides the cosine similarity between 513

two gradients over time. During training, the co- 514

sine similarity typically ranges from -0.15 to 0.15. 515

This indicates a mix of mild conflicts and near- 516

orthogonal updates. On average, it decreases from 517

0.05 to -0.1. This trend reflects increasing gradient 518

misalignment. Early in training, the model may 519

not have strongly learned or memorized specific to- 520

kens, so the conflicts are weaker. Overtime, as the 521

model learns more and memorization grows, the 522

divergence between hard and memorized tokens 523

increases, making the gradients less aligned. This 524

gradient conflict is the root of the small degradation 525

of language modeling performance of DuoLearn 526

compared to the conventional fine tuning approach. 527

Token Selection Dynamics. Figure 7 illustrates 528
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Figure 6: Training dynamics of DuoLearn and the conventional fine-tuning approach. The left and middle
figures provide the training-testing gap and membership inference risks, respectively. The testing LCE of FT and
training LCE of DuoLearn are significantly overlapping, we provide the breakdown in Figure 10 in Appendix D.
The right figure depicts the cosine similarity of the learning and unlearning gradients of DuoLearn. Cosine similarity
of 1 means entire alignment, 0 indicates orthogonality, and -1 presents full conflict.

the token selection dynamics of DuoLearn during529

training. The figure shows that the token selection530

process is dynamic and changes over epochs. In531

particular, some tokens are selected as an unlearn-532

ing from the beginning to the end of the training.533

This indicates that a token, even without being se-534

lected as a learning token initially, can be learned535

and memorized through the connections with other536

tokens. This also confirms that simple masking537

as in Goldfish is not sufficient to protect against538

MIAs. Additionally, there are a significant number539

of tokens that are selected for learning in the early540

epochs but unlearned in the later epochs. This indi-541

cates that the model learned tokens and then mem-542

orized them over epochs, and the during-training543

unlearning process is essential to mitigate the mem-544

orization risks.545

0 160 320 480 640 800
Training Step

0

50

100

150

200

250

To
ke

n 
In

de
x

Un
le

ar
ni

ng
Un

us
ed

Le
ar

ni
ng

Figure 7: Token Selection Dynamics of DuoLearn

5.5 Privacy Backdoor546

To study the worst case of privacy attacks and de-547

fense effectiveness under the state-of-the-art MIA,548

we perform a privacy backdoor – Precurious (Liu549

et al., 2024b). In this setup, the target model under-550

goes continual fine-tuning from a warm-up model. 551

The attacker then applies a reference-based MIA 552

that leverages the warm-up model as the attack’s 553

reference. Table 2 shows the language model- 554

ing and MIA performance on CCNews with GPT- 555

2. Precurious increases the MIA AUC score by 556

5%. Goldfish achieves the lowest PPL, aligning 557

with Hans et al. (2024), where the Goldfish mask- 558

ing mechanism acts as a regularizer that poten- 559

tially enhances generalization. Both DPSGD and 560

DuoLearn provide strong privacy protection, with 561

DuoLearn offering slightly better defense while 562

maintaining lower perplexity than DPSGD. 563

Metric WU FT GF DP DuoL
PPL 23.318 21.593 21.074 23.279 22.296
AUC 0.500 0.911 0.886 0.533 0.499

Table 2: Experimental results of privacy backdoor for
GPT2 on the CC-news dataset. WU stands for the warm-
up model leveraged by Precurious. GF, DP, and DuoL
are abbreviations of Goldfish, DPSGD, and DuoLearn

6 Conclusion 564

We introduced DuoLearn, an effective training 565

framework defending against MIAs for LLMs. The 566

extensive experiments demonstrate its robustness 567

in protecting privacy while maintaining strong 568

language modeling performance across various 569

datasets and architectures. Although our study 570

focuses on fine-tuning due to computational con- 571

straints, DuoLearn can be seamlessly applied to 572

large-scale pretraining, as done in prior selective 573

pretraining work (Lin et al., 2024). By categorizing 574

tokens and treating them appropriately, DuoLearn 575

opens a novel pathway for MIA defense. Future 576

work can explore improved token selection strate- 577

gies and multi-objective training approaches. 578
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A Additional Related Works 900

A.1 Training Data Selection 901

Training data selection are methods that filter high- 902

quality data from noisy big data before training to 903

improve the model utility and training efficiency. 904

There are several works leveraging reference mod- 905

els (Coleman et al., 2020; Xie et al., 2023), prompt- 906

ing LLMs (Li et al., 2024c), deduplication (Lee 907

et al., 2022; Kandpal et al., 2022), and distribution 908

matching (Kang et al., 2024). However, we do not 909

aim to cover this data selection approach, as it is 910

orthogonal and can be combined with ours. 911
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Figure 8: Histograms of MIA signal of tokens. Each figure depicts a sample. Blue means the member samples
while orange represents the non-member samples. We limited the y-axis range to -3 to 3 for better visibility, so it
can result in missing several non-significant outliers.

A.2 Selective Training912

Selective training refers to methods that dynam-913

ically choose specific samples or tokens during914

training. Selective training methods are the most915

relevant to our work. Generally, sample selection916

has been widely studied in the context of tradi-917

tional classification models via online batch selec-918

tion (Loshchilov and Hutter, 2016; Katharopou-919

los and Fleuret, 2018; Kawaguchi and Lu, 2020).920

These batch selection methods replace the naive921

random mini-batch sampling with mechanisms that922

consider the importance of each sample mainly via923

their loss values. Mindermann et al. (2022) indeed924

choose highly important samples from regular ran-925

dom batches by utilizing a reference model. How-926

ever, due to the sequential nature of LLMs, which927

makes the training significantly different from the928

traditional classification ML, sample-level selec-929

tion is not effective for language modeling (Kad-930

dour et al., 2023). Lin et al. (2024) extend the931

reference model-based framework to select mean-932

ingful tokens within batches. All of the previous 933

methods for selective training aim to improve the 934

training performance and compute efficiency. Our 935

work is the first looking at this aspect for defending 936

against MIAs. 937

B Token-level membership inference risk 938

analysis 939

Figures 8 and 9 present the analysis for additional 940

samples. Generally, the trends are consistent with 941

the one presented in Section 3. 942

C Experiment settings 943

C.1 Implementation details 944

• FT. We implement the conventional fine tuning 945

using Huggingface Trainer. We manually tune the 946

learning rate to make sure no significant underfit- 947

ting or overfitting. The batch size is selected appro- 948

priately to fit the physical memory and comparable 949

with the other methods’. 950

• Goldfish. Goldfish is also implemented 951

12



Figure 9: MIA signal ranking of tokens during training. Each figure illustrates a sample.

with Huggingface Trainer, where we custom the952

compute_loss function. We implement the deter-953

ministic masking version rather than the random954

masking to make sure the same tokens are masked955

over epochs, potentially leading to better prevent-956

ing memorization. The learning rate is also man-957

ually tuned, we noticed that the optimal Goldfish958

learning rate is usually slightly greater than FT’s.959

This can be the gradients of two methods are al-960

most similar, Goldfish just removes some tokens’961

contribution to the loss calculation. The batch size962

of FT can set as the same as FT, as Goldfish does963

not have significant overhead on memory.964

• DPSGD. DPSGD is implemented by FastDP (Bu965

et al., 2023a). We implement DPSGD with966

fastDP (Bu et al., 2023a) which offers state-of-967

the-art efficiency in terms of memory and training968

speed. We also use automatic clipping (Bu et al.,969

2023c) and a mixed optimization strategy (Bu et al.,970

2023d) between per-layer and per-sample clipping971

for robust performance and stability.972

• DuoLearn. We implement DuoLearn using Hug-973

gingface Trainer, same as FT and Goldfish. The974

learning is reused from FT. The batch size of975

DuoLearn is usually smaller than FT and Gold-976

fish when the model becomes large such as Pythia977

and Llama 2 due to the reference model, which978

consumes some memory.979

For a fair comparison, we aim to implement the980

same batch size for all methods if feasible. In case981

of OOM (out of memory), we perform gradient982

accumulation, so all the methods can have compa-983

rable batch sizes. We provide the hyper-parameters984

of method for GPT2 in Table 3. For Pythia and985

Llama 2, the learning rate, batch size, and number986

of epochs are tuned again, but the hyper-parameters987

regarding the privacy mechanisms remain the same.988

To make sure there is no naive overfitting, we eval-989

uate the methods by selecting the best models on990

a validation set. Moreover, the testing and attack991

datasets remains identical for evaluating all meth-992

ods. Additionally, we balance the number of mem- 993

ber and non-member samples for MIA evaluation. 994

It is worth noting that for the ablation study and 995

analysis, if not state, the default model architecture 996

and dataset are GPT2 and CC-news. 997

D Additional Results 998
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Figure 10: Breakdown to the cross entropy loss values
of FT on the testing set and DuoLearn on the training
set during training.

D.1 Overall Evaluation 999

Table 4 provides the True Positive Rate (TPR) at 1000

low False Positive Rate (FPR) of the overall evalua- 1001

tion. Generally, compared to CC-news, Wikipedia 1002

poses a significant higher risk at low FPR. For ex- 1003

ample, the reference-based attack can achieve a 1004

score of 0.57 on GPT2 if no protection. In general, 1005

Goldfish fails to mitigate the risk in this scenario, 1006

while both DPSGD and DuoLearn offer robust pro- 1007

tection. 1008

D.2 Auxiliary dataset 1009

We investigate the size of the auxiliary dataset 1010

which is disjoint with the training data of the target 1011

model and the attack model. In this experiment, the 1012

other methods are trained with 3K samples. Fig- 1013

ure 11 presents the language modeling performance 1014

while varying the auxiliary dataset’s size. The re- 1015

sult demonstrates that the better reference model, 1016
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LLM Method Hyper-parameter Value

GPT2

FT

Learning rate 1.75e-5
Batch size 96
Gradient accumulation steps 1
Number of epochs 20

Goldfish

Learning rate 2e-5
Batch size 96
Grad accumulation steps 1
Number of epochs 20
Masking Rate 25%

DPSGD

Learning rate 1.5e-3
Batch size 96
Grad accumulation steps 1
Number of epochs 10
Clipping automatic clipping
Privacy budget (8, 1e-5)-DP

DuoLearn

Learning rate 1.75e-3
Batch size 96
Grad accumulation steps 1
Number of epochs 20
Kh 60%
Km 20%
τ 0
α 0.8

Table 3: Hyper-parameters of the methods for GPT2.

LLM Method
Wikipedia CC-news

PPL Loss Ref min-k zlib PPL Loss Ref min-k zlib

GPT2

Base 34.429 0.002 0.014 0.010 0.002 29.442 0.018 0.002 0.022 0.006

124M

FT 12.729 0.018 0.574 0.016 0.014 21.861 0.030 0.026 0.016 0.016
Goldfish 12.853 0.018 0.632 0.016 0.010 21.902 0.030 0.024 0.028 0.016
DPSGD 18.523 0.004 0.036 0.018 0.006 26.022 0.018 0.004 0.018 0.008
DuoLearn 13.628 0.014 0.010 0.014 0.004 23.733 0.030 0.022 0.026 0.006

Pythia

Base 10.287 0.002 0.014 0.006 0.008 13.973 0.002 0.008 0.020 0.014

1.4B

FT 6.439 0.020 0.440 0.010 0.020 11.922 0.014 0.008 0.022 0.020
Goldfish 6.465 0.016 0.412 0.010 0.020 11.903 0.014 0.008 0.024 0.018
DPSGD 7.751 0.004 0.016 0.010 0.004 13.286 0.002 0.004 0.018 0.014
DuoLearn 6.553 0.008 0.030 0.006 0.006 12.670 0.004 0.020 0.018 0.016

Llama-2

Base 7.014 0.006 0.016 0.016 0.010 9.364 0.006 0.006 0.024 0.006

7B

FT 3.830 0.028 0.170 0.030 0.028 6.261 0.002 0.018 0.002 0.002
Goldfish 3.839 0.028 0.198 0.028 0.028 6.280 0.002 0.018 0.002 0.006
DPSGD 4.490 0.006 0.014 0.020 0.010 6.777 0.008 0.026 0.016 0.010
DuoLearn 4.006 0.010 0.002 0.028 0.012 6.395 0.002 0.020 0.004 0.002

Table 4: Overall Evaluation: Perplexity (PPL) and TPR at FPR of 1% scores of the MIAs with different signals
(Loss/Ref/Min-k/Zlib). For all metrics, the lower the value, the better the result.

the better language modeling performance. It is1017

worth noting that even with a very small number of1018

samples, DuoLearn can still outperform DPSGD.1019

Additionally, there is only a little benefit when in-1020

creasing from 1000 to 3000, this indicates that the 1021

reference model is not needed to be perfect, as it 1022

just serves as a calibration factor. This phenom- 1023

ena is consistent with previous selective training 1024
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Figure 11: Language modeling performance while vary-
ing the auxiliary dataset’s size. Note that the results of
FT and Goldfish are significantly overlapping.

works (Lin et al., 2024; Mindermann et al., 2022).1025

D.3 Training time1026

We report the training time for full fine-tuning1027

Pythia 1.4B. We manually increase the batch size1028

that could fit into the GPU’s physical memory. As1029

a results, FT and Goldfish can run with a batch1030

size of 48, while DPSGD and DuoLearn can reach1031

the batch size of 32. We also implement gradient1032

accumulation, so all the methods can have the same1033

virtual batch size.1034

Training Time 1 epoch (in minutes)
FT 2.10

Goldfish 2.10
DPSGD 3.19

DuoLearn 2.85

Table 5: Training time for one epoch of (full) Pythia
1.4B on a single H100 GPU

Table 5 presents the training time for one epoch.1035

Goldfish has little to zero overhead compared to1036

FT. DPSGD and DuoLearn have a slightly higher1037

training time due to the additional computation1038

of the privacy mechanism. In particular, DPSGD1039

has the highest overhead due to the clipping and1040

noise addition mechanisms. Meanwhile, DuoLearn1041

requires an additional forward pass on the reference1042

model to select the learning and unlearning tokens.1043

DuoLearn is also feasible to work at scale that has1044

been demonstrated in the pretraining settings of the1045

previous work (Lin et al., 2024).1046

E Limitations1047

The main limitation of our work is the small-scale1048

experiment setting due to the limited computing1049

resources. However, we believe DuoLearn can be 1050

directly applied to large-scale pretraining without 1051

requiring any modifications, as done in previous 1052

selective pretraining work (Lin et al., 2024). An- 1053

other limitation is the reference model, which may 1054

be restrictive in highly sensitive or domain-limited 1055

settings (Tramèr et al., 2024). From a technical 1056

perspective, while we show that DuoLearn per- 1057

forms well across different datasets and architec- 1058

tures, there is room for improvement. The cur- 1059

rent approach selects a fixed number of tokens, 1060

which may not be optimal since selected tokens 1061

contribute unequally. Future work could explore 1062

adaptive selection or weighted tokens’ contribution. 1063

At a high-level, compared to DPSGD, DuoLearn 1064

has not been supported by theoretical guarantees. 1065

Future work can investigate the convergence and 1066

overfitting analysis. 1067
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