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Abstract

Deep neural networks are dramatically over-parameterized and can be pruned without ef-
fecting the generalization. Existing pruning criteria inspect weights or gradients in isolation
and ignore the effect of optimization dynamics on pruning. We introduce Causal Pruning
(CP) – A method by which one learns the parameter-importance from the optimization
trajectory directly.
We exploit the “causal” signal hidden in SGD trajectories, where each weight update is
considered as an intervention and measuring its effect on the loss – observed versus predicted.
This view yields two insights: (i) a weight’s importance is proportional to the gap between
the predicted loss change (via a first-order Taylor estimate) and the observed loss change,
and (ii) at convergence, weights whose removal leaves the local basin no sharper – i.e. does
not reduce flatness – can be pruned without harming generalization. Empirically, we show
that causal pruning is comparable to recent state-of-the-art approaches.

1 Introduction

Gradient descent (GD) is one of the important reasons why deep neural networks works well (Arora et al.,
2019). Primarily, the high-dimensional nature of the loss-landscape allows gradient descent to obtain so-
lutions which generalize well. Arora et al. (2019) argues that the redundancy due to the width and depth
in the networks allows GD to overcome the non-convexity issues. On the flip side, while redundancy is
important for finding the solution, it is not required for inference and can easily be removed or pruned for
efficiency. In a very different line of research, several techniques have been developed for pruning neural
networks (Kalchbrenner et al., 2018; Hoefler et al., 2021). In this article we ask -

Does the inherent redundancy in stochastic gradient descent yield parameters that can be
pruned without compromising the network’s performance? If so, how can one identify them?

The key idea here is that – Gradient descent implicitly (and inefficiently) performs causal reasoning1. And,
by making the causal relationship explicit we obtain a simple and theoretically founded heuristic for pruning.
We refer to this procedure as causal pruning.

Implicit causality in gradient descent: Note that every step of gradient descent results in a change of
both the parameters θ and the loss function L. The change in parameters is dictated by the gradient of the
loss function ∂L/∂θ. The implicit causality within this model is that - Changing θ → θ + ∆θ is expected to
change the loss L → L + ∆L, where ∆L and ∆θ are related by the first-order gradient information. In other
words, “changing the parameters θ causes the change in the loss”. This however is not always true - there
usually are parameters which do not result in the reduction in the loss. Thus, the implicit causality in the
gradient descent is not perfect. We make the causality relationship explicit in section 4.

1Throughout the article we use the word causality to refer to Granger-type causality and not causality in the sense of
graphical models.
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Figure 1: Proof of concept that causal coefficients from SGD recovers feature importance on a synthetic
Friedman benchmark.The ground truth generative process uses five features X0-X4 with varying importance
and non-linear interactions, while five features X5-X9 are irrelevant. Right panel shows the distribution of
coefficients from a Lasso regression, estimated over 1000 data instantiations, identifies the zero-importance
features and captures the relative importance of the others. Left panel shows that the boxplot of causal
coefficients from SGD, and it shows a nearly identical relative ordering. This confirms that our method
effectively recovers the same feature attributions as the well-established Lasso on this controlled problem.

Proof of Concept: Figure 1 presents a simple illustration of our approach. We use the standard Fried-
man dataset(Friedman, 1991; Breiman, 1996), which includes both informative and uninformative features.
Specifically, features X0–X4 carry signal with varying levels of importance, while features X5–X10 are entirely
irrelevant.

The ground-truth feature importance is obtained using lasso regression. The resulting importances appear
in the right panel of Figure 1. Next, we use the gradient trajectory to compute feature contributions via the
causal model – ∆L =

∑
k γk(∆θ)2 (see Section 3 for derivation) – where ∆L is the actual change in the loss

and (∆θ) is the change in the parameters due to gradient descent. This formulation captures how changes
in parameters influence the loss during training. The comparison in Figure 1 shows a close match between
the importances estimated by lasso and those derived from the causal model. This alignment confirms that
gradient trajectories encode meaningful information about feature relevance.

We leverage this insight throughout the paper to identify which parameters are critical and which can be
safely pruned. Our findings suggest that SGD trajectories offer a reliable signal for assessing parameter
importance.

Summary of Key Results/Contributions.

1. Causal importance metric. We reinterpret each stochastic gradient update as a causal intervention on
the loss. This perspective allows us to derive a per-parameter coefficient, γk, that measures the discrepancy
between the predicted and observed change in loss. Unlike traditional pruning scores based on parameter
magnitude (Han et al., 2016) or Hessian curvature (Singh & Alistarh, 2020), our criterion learns directly
from the optimization trajectory.

2. Causal Pruning algorithm. We introduce a novel pruning method based on lasso regression over SGD
traces. The regression ranks parameters by their γk values and prunes those with minimal causal impact.
Our algorithm integrates seamlessly with any architecture, adds negligible overhead, and avoids the need
for second-order derivatives or Hessian computations. Figure 2b illustrates the distinct behavior of causal
pruning compared to traditional magnitude-based approaches. Rather than removing weights solely based
on their magnitude, causal pruning identifies and eliminates parameters that contribute least to actual loss
reduction.
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(a) (b)

Figure 2: (a) Top eigenvalues of LeNet trained on CIFAR-10 under both magnitude and causal pruning.
Observe that (i) causal pruning yields significantly fewer dominant eigenvalues, and (ii) unlike magnitude
pruning, the eigenvalues decrease with more pruning, indicating a reversal in spectral behavior. (b) Histogram
of remaining weights in ResNet-20 on CIFAR-10 after 90% pruning. Observe that (i) magnitude pruning
largely eliminates near-zero weights, while causal pruning targets a markedly different subset, and (ii) without
any finetuning, causal pruning achieves higher accuracy (84%) than magnitude pruning (81%), suggesting it
prunes both large and small weights in a complementary manner.

3, Theoretical Analysis. We show that pruning parameters with γk ̸= 0 preserves the descent direction
during early optimization and maintains the dominant eigenvalues of the Hessian at convergence. These
results connect our criterion to the flat-minima hypothesis and highlight its stability-aware behavior.

4. Empirical evidence. Causal Pruning achieves performance competitive with state-of-the-art methods
across a range of architectures and vision benchmarks (See section 5 for details). Moreover, the pruned models
exhibit significantly flatter Hessian spectra. Figure 2a reveals this behavior. We plot the top eigenvalues
of the Hessian for LeNet trained on CIFAR-10 under both causal and magnitude pruning and observe: (i)
causal pruning produces significantly smaller top-eigenvalues, and (ii) in contrast to magnitude pruning, the
spectral norm decreases with increased sparsity, indicating a reversal in the Hessian’s spectral profile.

2 Literature Review

Surprisingly, while many pruning methods leverage gradient or Hessian information to estimate parameter
importance, they typically ignore the role of the optimization dynamics. To our knowledge, no prior work
explicitly incorporates the influence of gradient updates, as realized through the steps of gradient descent,
into the pruning criterion. Below we survey some related aspects to our work - pruning, gradient based
methods

Related Literature on Pruning: Pruning neural networks has gathered a lot of attention for variety of
reasons - (i) Improves the efficiency of models at inference without compromising the accuracy (Kalchbrenner
et al., 2018; Hoefler et al., 2021), (ii) Lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019; Jin et al.,
2022; Paul et al., 2023) and related works show that pruning experiments can help us understand the working
of optimization and generalization in the training of neural networks.

Magnitude Based Pruning: The popular heuristic that, the magnitude of the parameter reflects the impor-
tance of the weight, underlies several existing pruning methods. (Han et al., 2016; Gordon et al., 2020; Wang
et al., 2023). In fact, as Wang et al. (2023) notes, using magnitude-based pruning at the level of filters (a.k.a
L1 norm pruning), the authors could achieve state-of-the-art results with this simple heuristic.

Gradient information based pruning: Tran et al. (2022) shows that small gradient norms contribute less to
the loss and hence provides a justification for pruning. Redman et al. (2022) uses gradient magnitudes as a
scoring function for pruning. Fladmark et al. (2023) uses fisher information based on gradients for scoring
function. Zhang et al. (2022) integrates pruning directly into the gradient updates, where one thresholds
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Algorithm 1 Causal Pruning
1: Parameters: Npre, Niter, Nprune, Npost, p.
2: Input: Model:fθ, Dataset:{xi, yi}
3: Train the model for Npre number of epochs.
4: for i = 1, 2, · · · , Niter do
5: Train the model for Nprune epochs and collect the values of the parameters and the losses after each

gradient step. Let {(θt, Lt)} denote the values after each gradient step.
6: Using Lasso Regression, fit the model in equation 3 using the L1 coefficient L1_coeff. Prune the

smallest p fraction of {γk}
7: Reset the remaining weights to be the ones after step 3.
8: end for
9: Complete the training of the model for Npost number of parameters.

the parameters based on an importance score and sensitivity. This is very similar to using L1 regularization
for pruning (Buschjäger & Morik, 2023). Gradient based methods for pruning have also been tested for very
large networks such as llms (Das et al., 2023).

Impact Based Pruning: Several pruning methods (LeCun et al., 1989; Singh & Alistarh, 2020) measure the
dip in the loss function with respect to the parameters and decide which parameters to prune. Approaches
such as one proposed by Singh & Alistarh (2020) use second-order Taylor approximation for the criterion.
Benbaki et al. (2023) uses combinatorial optimization and approximates the Hessian using a low-rank matrix.

Remark: Please note that we do not aim for an exhaustive survey. Instead, we highlight representative ideas
from the literature to contrast with our approach.

3 Causal Pruning Algorithm

Notation: Let pdata = {xi, yi} denote the dataset. Let fθ denote the network to be trained. Let L(θ)
denote the loss function used to optimize θ using Stochastic Gradient Descent (SGD). We use ∂L(θt)/∂θ to
denote the derivative of L with respect to θ at θ = θt. Let θ0, θ1, · · · , θt, · · · denote the path in the parameter
space taken by the gradient descent. Further, we let

(∆L)t = L(θt) − L(θt−1) (1)

Let θt
i denote the ith parameter in the vector θt. Then, we denote,

(∆θk)t = θt
k − θt−1

k (2)

Causal Pruning Algorithm. Consider gradient descent iterations indexed by t ∈ {1, . . . , T}, with
observed parameter updates {(∆θk)t}T

t=1 and corresponding loss variations {(∆L)t}T
t=1. We introduce a

sparsity-promoting regression framework to identify causal parameters by solving the following optimization
problem: ∑

t

(
∆Lt −

∑
k

γk(∆θt
k)2

)2

+ α
∑

k

|γk| (3)

where γk represent the learned causal importance weights and α controls the sparsity of the solution. Notably,
we leverage the parameter updates and loss changes inherently generated during gradient descent itself, thus
requiring no additional sampling effort beyond the natural optimization trajectory.

Remark (Pre and Post training): Given a dataset and architecture, we train the model for Npre epochs.
This is crucial as pointed out by Blalock et al. (2020). This phase decides the basin of attraction of the
parameters after which the model can be pruned more effectively. To maximize the performance of the
network, we train it further (using only unpruned weights) for Npost number of epochs.
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Optimization of equation 3: For some networks, the number of parameters within each layer can go
up to 16M and hence can cause memory issues. Shalev-Shwartz & Tewari (2011); Tsuruoka et al. (2009)
discusses several algorithms for stochastic optimization of Lasso models as in equation 3. We consider a
different approach in this article.

Note that, solving equation 3 with a given L1 coefficient (α) removes an arbitrary number of parameters.
However, for the purpose of pruning, one needs more control over the number of parameters we prune. To
achieve this, we select the smallest p fraction of {γk} to remove instead.

Computational Complexity: Apart from the usual training of the networks, this procedure requires
two additional steps - (i) Saving the checkpoints of the model after each gradient step for a few epochs, and
(ii) Solving the lasso regression of the equation 3. Note that saving the checkpoints does not increase the
computational complexity, but does require a larger storage. Further, these checkpoints can be removed after
the computation of the coefficients in equation 3. Solving equation 3 is a straightforward problem and there
exist several efficient solutions which use stochastic gradients (Shalev-Shwartz & Tewari, 2011; Tsuruoka
et al., 2009). The naive approach has the computational complexity of O(mdk) where m is the number of
samples, d is the number of features and k is the number of epochs required to reach the solution. Note that
it scales linearly in both the number of samples and some parameters (features), and hence very efficient.
Further, these algorithms can also be parallelized, leading to higher gains.

Parameter-Level or Layer-Level or Entire-Network: It sometimes helps to prune channels or layers
instead of individual parameters. This is referred to as structured pruning (He & Xiao, 2024). One can
adapt the procedure in equation 3 to structured pruning using the strategy of weight-sharing. In essence,
enforce the constraint that γk is equal for all parameters θk within a layer. In this article, we only consider
Parameter-Level pruning a.k.a unstructured pruning.

Collecting the data for fitting equation 3: Note that, one has to the collect the ∆L and ∆θ to perform
the causal pruning in equation 3. Since we are interested in measuring the effect of θ on the loss – We collect
the loss before and after the gradient step to compute ∆L.

4 Analysis of causal pruning

4.1 Why is our algorithm called causal pruning?

The key idea behind the causal pruning (algorithm 1) comes from Granger-Causality (Granger, 1969). Below
we discuss this relationship in detail.

Vanilla Gradient Descent: Firstly, we suitably modify the standard gradient descent as follows. Recall
that the parameter update of gradient descent is given by

θt+1 = θt − η
∂L(θt)

∂θ
(4)

where η denotes a fixed learning rate. Now, using a first-order Taylor approximation of L, we have

L(θt+1) = L(θt − η
∂L(θt)

∂θ
) ≈ L(θt) − η

(
∂L(θt)

∂θ

)T
∂L(θt)

∂θ
(5)

Substituting from equation 4,

L(θt+1) ≈ L(θt) − η

(
θt − θt+1

η

)T (
θt − θt+1

η

)
= L(θt) − 1

η
∥θt − θt+1∥2

= L(θt) − 1
η

∑
k

(θt
k − θt+1

k )2
(6)
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Recall Granger Causality: The Granger Causality test proposed in Granger (1969) is a classic test used
to predict future values of a time series by using another time series. If Xt and Yt denotes two time-series,
we check if Xt can forecast Yt by performing two (auto-)regressions as follows,

(R1) Yt = a0 + a1Yt−1 + a2Yt−2 + · · · + a2Yt−m + errort

(R2) Yt = a0 + a1Yt−1 + a2Yt−2 + · · · + a2Yt−m + bpXt−p + · · · + bqXt−q + errort

(7)

One can interpret that Xt can forecast Yt if the error under regression (R2) is smaller under (R1). The same
can also be extended to multivariate analysis.

Connecting Granger Causality with Gradient Descent: The main idea is to observe that, if we take
Yt = L(θt) and Xt,k = (θt+1

k − θt
k)2 = ((∆θk)t+1)2, equation 6 becomes,

Yt+1 = Yt +
∑

k

γkXt,k, (8)

where γk = −1/η. That is, γk is a constant independent of k. Explicitly, the granger causal interpretation
of gradient descent becomes,

Restricted: Yt+1 = Yt, Unrestricted: Yt+1 = Yt +
∑

k

γkXt,k. (9)

If the unrestricted model provides a statistically significant improvement in the prediction accuracy we can
establish that Xt,k Granger-causes Yt.

Argument that Gradient descent has implicit causality: From above, it is clear the gradient descent
assumes a causality in its dynamics. In words, equation 6 reveals an implicit causal model within GD,
albeit an approximate one. It suggests that the loss reduction is ’caused’ by the squared changes in each
parameter, with every parameter having the same causal influence coefficient: −1/η. This uniform influence
stems directly from the use of a single learning rate and the first-order approximation, which ignores the
true curvature and complexity of the loss landscape.

From Causality to Pruning via Sparsity: This explicit causal model above provides a natural frame-
work for network pruning. Existing network pruning criteria involve either assessing the sensitivity of the
loss function to a weight’s removal or evaluating the magnitude of the weight itself. We instead utilize
observational values to decide usefulness. If a parameter θk’s changes, (∆θk)2 do not consistently contribute
to the observed loss reduction ∆L, its learned causal coefficient γk should be close to zero. Such parameters
are effectively “causally unimportant” within the recent training dynamics and can be pruned.

Estimating the coefficients {γk} becomes a linear regression problem. Given data collected over Nprune steps
- pairs of (∆Lt, {(∆θt

k)2}k) - the goal is to find the γk that best fit the model ∆Lt ≈
∑

k γk(∆θt
k)2.

To encourage sparsity (i.e., force many γk to be exactly zero), we employ Lasso regression (L1 regularization)
to get the optimization problem in equation 3.

The L1 penalty term α
∑

k |γk| drives coefficients of features (here, (∆θk)2) with weak explanatory power
towards zero. The pruning decision is then straightforward: prune parameter θk if its corresponding learned
coefficient γk is zero after solving the Lasso problem equation 3. The use of cumulative penalties over
iterations is also relevant here (Tsuruoka et al., 2009). The approach by Tsuruoka et al. (2009) introduces an
efficient SGD training method for L1-regularized log-linear models, particularly suited for high-dimensional
sparse feature spaces. It achieves efficiency primarily through lazy updates, where parameters are only
updated when their corresponding feature appears in the current training instance. Crucially, this update
mechanism naturally allows parameters to become exactly zero: if the application of the cumulative penalty
causes a parameter’s value to cross zero, it is explicitly clipped to zero, thus enforcing the desired sparsity
induced by L1 regularization. In addition, it forces the weight to receive the total L1 penalty that would
have been applied if the weight had been updated by the true gradients.
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Remark: Note that we have only considered vanilla gradient descent above. Extending this analysis to
SGD+momentum approaches and possibly SGD+momentum+adaptive-learning rates will result in a more
comprehensive granger-casual model. A brief discussion of this can be found in appendix A. In this article,
we are only interested in the model for vanilla gradient descent.

4.2 Characterizing the parameters which are pruned using Causal Pruning

Here, we try to analyze the causal pruning algorithm under different conditions, to obtain an intuition
behind it’s working. There are two phases one can identify during gradient descent (Ziyin & Ueda, 2023) -
(i) An initial where where the first order relation control the dynamics and (ii) The second phase where one
reaches an local optima and the second order relation control the dynamics. Causal pruning procedure acts
differently in these two phases and we analyze the behavior under these phases below.

First order analysis:

Recall that for t = 0 . . . T , we have the parameters {θt} and the corresponding losses L(θt). Causal pruning
asks to fit the following (ignoring regularization),

∆L =
∑

k

γk(∆θk)2 (10)

However, a first order approximation of the loss L gives ∆L ≈
∑

k ∇kL(θ)∆θk, where ∇kL(θ) = ∂L(θ)/∂θk,
which when applied at each time step t gives

∆Lt ≈
∑

k

∇kL(θt)∆θt
k (11)

In simple words, equation 11 denotes the approximate relationship between the data, and equation 10 denotes
the relation we are trying to fit, i.e learn γk. From this, it is easy to see that

γk = arg min
T∑

t=1
(∇kL(θt) − γk∆θt

k)2 =
∑T

t=1 ∇kL(θt)∆θt
k∑T

t=1(∆θt
k)2

(12)

Important Remark: Note that, ∆L denotes the change in the actual total loss and ∆θ denotes the change
in parameters. For full gradient descent we would have ∆θt

k = η∇kL(θt). However, in stochastic gradient
descent ∆θt

k ̸= η∇kL(θt) because the change in parameters is dictated by the minibatch gradient descent.
Here we consider the latter case.

Key Insight: From equation 12, we see that γk represents the best single scaling factor that relates the
parameter update ∆θt

k to the gradient ∇kL(θt) across the T time steps. In words – (i) ∇kL(θt) denotes the
true direction of descent, (ii) ∆θt

k denotes the actual direction as dictated by SGD. So, γk captures how well
the noisy gradient descent captures the true loss. If γk ≈ 0, then the change in parameters is not related to
the change in loss. And hence, it makes sense to prune these parameters.

Second order analysis:

For the second order analysis, we assume that we have reached a steady state distribution of the gradients
∇L(θ) denoted by random variable y and ∆θ denoted by random variable x. Hence we have that E[x] = 0
i.e on an average the parameters do not change while there might be some variations at each step. Recall
the second order taylor approximation,

∆Lt ≈ ∇L(θt−1)T (∆θt) + 1
2(∆θt)T H(θt−1)(∆θt) (13)

where H(θt−1) denotes the hessian. We also assume for simplicity that the hessian does not change, i.e
H(θt) ≡ H. Again, to recall, causal pruning asks to fit the following (ignoring regularization),

∆L =
∑

k

γk(∆θk)2 (14)
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(a) 90% pruned (b) 90% pruned (c) 90% pruned

(d) 98% pruned (e) 98% pruned (f) 98% pruned

Figure 3: Effect of hyperparameters Npre Niter, Nprune. These experiments have been performed using
ResNet-20 on CIFAR10. Observe that accuracy remains robust to the changes in these hyperparameters.
Npre determines how long the model is trained before pruning begins. The pruning schedule is controlled by
Niter, which sets how many rounds of pruning are applied. Nprune, defines how many epochs of training we
use to record the SGD trajectory.

Since, E[x] = 0, we see that the following should hold true:

γ∗ = min
γ

E[(xtHx − γtx2)2] = (E[x2(x2)t])−1E[(xtHx)x2] (15)

Key Insight: Similar to the first order analysis, one can think of equation 15 as trying to explain the
distribution xtHx using γtx2. So, after convergence the values of γ tries to estimate the second order
changes. If γk = 0 for some k, it implies that parameter dimension k contributes negligibly to second-order
changes (i.e., x⊤Hx) and can therefore be pruned without significantly affecting the Hessian-based variation
in the loss. Importantly, this implies that causal pruning does not change the flatness of the minima. We
verify this in the experimental section.

5 Experiments

Scope of Experiments: Recall that the main aim of this article is to make explicit the implicit causal rela-
tion within gradient descent. We consider the application of pruning to explore the power of this observation.
Our focus is not on achieving state-of-the-art results but on substantiating the claim above. The code for these
experiments can be found at https://anonymous.4open.science/r/causalpruning-FA4A/README.md

5.1 Ablation on various parameters

To evaluate the sensitivity of Causal Pruning (CP) to its design choices, we varied three hyper-parameters
Npre, Niter, and Nprune —- and measured test accuracy at two sparsity levels: 90% and 98%. All experiments
used ResNet-20 on CIFAR-10. After pruning we train the model to convergence to obtain the accuracies.
Each configuration was run several times, and we summarize results using box plots in figure 3.

Each hyper-parameter controls a different stage of the CP pipeline. The parameter Npre determines how
long the model is trained before pruning begins. This warm-up phase defines the basin of attraction where

8
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(a) Relative Loss - LeNet+CIFAR-10 (b) Maximum Loss - LeNet+CIFAR-10

(c) Relative Loss - ResNet18+CIFAR-10 (d) Maximum Loss - ResNet18+CIFAR-10

Figure 4: Causal pruning induces flatter minima compared to magnitude pruning and the unpruned baseline.
Loss sensitivity is evaluated by perturbing trained parameters and measuring (a) the log-relative loss and
(b) the maximum loss deviation over 100 perturbations. Results for LeNet (top row) and ResNet18 (bottom
row) on CIFAR-10 show that causal pruning consistently leads to lower loss increases under perturbation,
especially at larger noise levels. This indicates flatter local minima, whereas magnitude pruning results in
significantly sharper minima.

importance scores γk are estimated. We explore values of {0, 10, 20, 30}. The pruning schedule is controlled
by Niter, which sets how many rounds of pruning are applied. After each round, we reset the remaining
weights to the model state at epoch Npre. Here, we consider {1, 5, 10, 20}. The third parameter, Nprune,
defines how many epochs of training we use to record the SGD trajectory. This trajectory is then used to
fit the Lasso model in equation 3, which estimates γk. We test {5, 10, 20} for this parameter.

Effect of Npre: At 90% sparsity (figure 3a), performance remains stable across the range of Npre, with
less than ±0.3 percentage points of variation. This suggests that CP does not require a lengthy warm-up to
perform well. At 98% sparsity (figure 3d), a large value of Npre > 30 seems to be preferable, even though
it’s not statistically significant.

Effect of Niter: Increasing the number of pruning iterations from 1 to 20 at 90% sparsity (figure 3b)
leads to only a ≈ 1 percentage point gain in accuracy. At 98% sparsity (figure 3e), the gains are more
pronounced, with multi-step pruning yielding about ≈ 6 percentage points of improvement. That said, the
benefits saturate after roughly 10 iterations. Additional iterations help most in the high-sparsity regime but
come with increased training time. For moderate sparsity levels like 90%, single-shot pruning often suffices.
For extreme sparsity, we recommend using at least 10 rounds.
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Effect of Nprune: Varying the number of epochs used to record the SGD trajectory shows similar trends.
At 90% sparsity (figure 3c), increasing Nprune from 5 to 20 epochs improves accuracy by about 1.5 percentage
points. This indicates that the causal signal stabilizes quickly. At 98% sparsity (figure 3f), effect of longer
windows is negligible. This shows that – small number of epochs are sufficient to identify the most important
parameters, but one needs more “data” to identify parameters of lower importance precisely.

5.2 Causal Pruning Obtains a Flatter Minima

Review of Flat Minima vs Generalization: One popular hypothesis to explain the generalization
of deep neural networks is the ideas of flat minima. The preference for flatter minima in deep learning
often stems from their superior generalization performance, which can be understood by considering the
inherent discrepancy between the training and test loss landscapes. Even if the test landscape is slightly
shifted relative to the training one due to differences in data distribution, the model’s parameters are likely to
remain in a region of relatively low test loss (Neyshabur et al., 2017). Thus, flatness implies robustness to this
train-test landscape shift, a key characteristic of models that generalize well (Jiang et al., 2020). Jiang et al.
(2020) performs extensive experiments and shows that the sharpness of the minima is the most correlated
measure with generalization. Foret et al. (2021) proposes a sharpness-aware minimization optimizer, which
is shown to have better results than the rest of the minima. Ahn et al. (2024) uses the trace of the Hessian
normalized by the dimension to measure the sharpness of the minima.

To assess the sharpness of the minima induced by causal pruning, we analyze the sensitivity of the loss
function to parameter perturbations. Given a trained model with parameters θ, we evaluate the perturbed
loss L(θ + σϵ), where ϵ ∼ N (0, I) and σ controls the perturbation scale. Two metrics are computed –

Relative Loss = log
(

L(θ + σϵ)
L(θ)

)
(16)

averaged across perturbations, measuring average curvature around the minimum. And,

Maximum Loss = max
j

|L(θ + σϵj) − L(θ)| (17)

over 100 noise realizations, quantifying worst-case sensitivity. Figure 4 present these metrics for LeNet and
ResNet18 trained on CIFAR-10, comparing causal pruning, magnitude pruning, and the unpruned baseline.

Across both architectures, causal pruning consistently yields lower relative and maximum loss deviations
than magnitude pruning, especially at higher noise levels. This behavior is particularly pronounced in
the ResNet18 results, where causal pruning maintains exponentially smaller maximum losses compared to
magnitude pruning as well as unpruned baselines (figure 4d).

These trends provide empirical support to the statement – causal pruning leads to flatter minima. In sharp
minima, even small perturbations in parameter space lead to steep increases in loss, whereas flatter minima
exhibit broader, low-loss basins. The consistent suppression of both average and worst-case loss increases
under perturbation for causal pruning indicates a superior alignment with flatter regions of the loss landscape.

5.3 Comparison with other baselines

Baselines: To the best of our knowledge, there does not exist any methods which explore the role of
gradient trajectories in pruning. Nevertheless, for completeness we compare causal pruning against a diverse
suite of state-of-the-art pruning methods – including CHITA, CHITA++ (Benbaki et al., 2023), CBS (Yu
et al., 2022), CNN-CFC(Li et al., 2019), NN-Relief(Dekhovich et al., 2024), DRIVE(Saikumar & Varghese,
2024), SNIP(Lee et al., 2019), and HRank(Lin et al., 2020) – across multiple architectures and datasets under
both single-shot and iterative pruning paradigms. The results consistently demonstrate the robustness and
efficacy of causal pruning, particularly in high-sparsity regimes and on challenging datasets such as Tiny-
ImageNet.

Single Shot Performance: In the single-shot setting (Table 1), causal pruning outperforms or closely
trails CHITA++ - the strongest baseline in preserving post-pruning accuracy. For ResNet-20 on CIFAR-10
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Table 1: Comparing Causal Pruning with Baselines (Single Shot). indicates best, indicates second-
best.

Model (# Params)
Dataset

% Pruned Algorithm Accuracy
Baseline Pruned ∆

ResNet-20 (200k)
CIFAR10

80

CHITA 91.36 57.90 33.46
CHITA++ 91.36 88.72 2.64
CBS 91.36 51.28 40.08
Causal Pruning (Niter = 1) 91.42 86.54 4.88

90
CHITA 91.36 15.6 75.76
CHITA++ 91.36 79.32 12.04
Causal Pruning (Niter = 1) 91.42 82.49 8.93

MobilenetV1 (3M)
Imagenet 80

CHITA 71.95 29.78 42.37
CHITA++ 71.95 47.45 24.50
CBS 71.95 16.38 55.57
Causal Pruning (Niter = 1) 71.95 56.82 15.13

ResNet50 (25M)
Imagenet 80 CHITA 77.01 45.002 32.01

Causal Pruning (Niter = 1) 77.01 67.95 9.06

Table 2: Comparing Causal Pruning with Baselines (Iterative). indicates best, indicates second-best.

Model (# Params)
Dataset

% Pruned Algorithm Accuracy
Baseline Pruned ∆

ResNet-20 (200k)
CIFAR10

43 CNN-CFC 92.20 91.13 1.07
64 NN-Relief 92.25 91.10 1.15
70 Causal Pruning 91.42 90.52 0.90

VGG (16M)
CIFAR10

82 HRank 93.96 92.34 1.62
95 DRIVE 92.40 92.68 -0.28
95 Causal Pruning 93.30 92.90 0.40
98 NN-Relief 92.50 92.40 0.10
97 SNIP 91.70 92.00 -0.30
98 DRIVE 92.40 91.36 1.04
98 Causal Pruning 93.30 92.36 0.60

VGG (16M)
Tiny-Imagenet

95 SNIP 45.14 44.27 0.87
95 DRIVE 48.74 45.60 3.14
95 Causal Pruning 56.01 54.31 1.70
97 NN-Relief 45.63 45.60 0.03
98 DRIVE 48.74 42.25 6.49
98 Causal Pruning 56.01 50.04 5.97

at 80% sparsity, CHITA++ achieves the smallest accuracy drop (∆ = 2.64), with causal pruning a close
second (∆ = 4.88), and significantly outperforming CHITA (∆ = 33.46) and CBS (∆ = 40.08). However,
at 90% sparsity, causal pruning (∆ = 8.93) surpasses CHITA++ (∆ = 12.04), which shows its ability to
maintain performance under aggressive compression.

A similar pattern is observed on MobileNetV1 for ImageNet at 80% sparsity: causal pruning retains 56.82%
top-1 accuracy, a substantial improvement over CHITA (29.78%), CBS (16.38%), and even CHITA++
(47.45%). This represents a ∆ of only 15.13 for causal pruning. Notably, on ResNet50 (ImageNet, 80%
pruning), causal pruning exhibits a ∆ of 9.06 compared to CHITA’s 32.01, demonstrating a pronounced
advantage in deeper architectures.
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Across all single-shot experiments, causal pruning shows a consistent trend of superior accuracy retention at
high pruning ratios, especially on larger networks and complex datasets.

Iterative Pruning Performance: In the iterative pruning regime (Table 2), causal pruning remains
competitive, with performance gaps narrowing. This is due to the fact that, all the approaches work more-
or-less similarly at low levels of pruning. For ResNet-20 on CIFAR-10, causal pruning achieves the lowest
∆ (0.90), outperforming CNN-CFC (1.07) and NN-Relief (1.15), despite operating at a higher pruning ratio
(70%).

On VGG with CIFAR-10, causal pruning trails only marginally behind DRIVE and SNIP at extreme pruning
levels. At 95% sparsity, causal pruning attains ∆ = 0.40 versus DRIVE’s ∆ = −0.28 (where a negative ∆
indicates improved accuracy post-pruning). At 98% pruning, causal pruning’s ∆ = 0.60 is second-best
behind SNIP (∆ = −0.30), still outperforming DRIVE (∆ = 1.04) and NN-Relief (∆ = 0.10). These results
highlight causal pruning’s robustness even in highly iterative settings, where certain baselines benefit from
fine-grained gradient and Hessian information.

On the more challenging Tiny-ImageNet dataset with VGG, causal pruning markedly surpasses other meth-
ods. At 95% sparsity, it retains 54.31% accuracy (∆ = 1.70), well above SNIP (∆ = 0.87) and DRIVE
(∆ = 3.14). At 98% pruning, causal pruning (∆ = 5.97) again significantly improves upon DRIVE (∆ = 6.49)
and NN-Relief (∆ = 0.03), suggesting better generalization.

Overall, causal pruning consistently matches or outperforms the best-performing baselines across architec-
tures, datasets, and pruning regimes.

6 Conclusion

This explicit causal model equation 3 provides a natural framework for network pruning. Existing network
pruning criteria involve either assessing the sensitivity of the loss function to a weight’s removal (LeCun et al.,
1989; Singh & Alistarh, 2020) ) or evaluating the magnitude of the weight itself (Wang et al., 2023; Han
et al., 2016). In contrast, we utilize observational values to decide usefulness. The core principle is simple
– if a parameter θk’s changes (∆θk)2 do not consistently contribute to the observed loss reduction ∆L, its
learned causal coefficient γk should be close to zero. Such parameters are effectively “causally unimportant”
within the recent training dynamics and can be pruned.

The theoretical analysis reveals two primary insights. First, we derive causal coefficients γk, which quantify
how changes in parameters affect the loss function. At convergence, these coefficients provide an optimal
diagonal approximation to the Hessian, thus preserving the flatness of the minima. We empirically validate
this flatness property using two neural network models subjected to Gaussian perturbations.

Empirically, causal pruning achieves performance competitive with state-of-the-art methods, significantly
outperforming existing approaches in single-shot pruning scenarios, though this advantage diminishes under
iterative pruning conditions. Additionally, we extend our framework to optimizers like SGD with Momentum,
introducing more complex linear models involving terms such as (∆θt

k)2 and cross-terms (∆θt
k)(∆θt+1

k ). This
extended model remains solvable using Lasso regression, where parameter-specific causal coefficients γk are
learned to identify and prune unimportant parameters effectively.

To the best of our knowledge, this approach provides a novel interpretation of gradient descent dynamics
through the lens of explicit, learnable Granger-type causality. In the process, we also achieve pruning from
the lens of causality via sparsity (induced by L1 regularization)! Future work will explore further extensions
of this causal pruning framework to adaptive optimization methods such as Adam (Kingma & Ba, 2015).
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A Deriving the Causal Relation in the case of GD + Momentum

Let’s consider the following variant of the gradient descent with momentum-

vt+1 = βvt + ∂L(θt)
∂θ

θt+1 = θt − ηvt+1
(18)

where β denotes the momentum hyperparameter. Then, we have, using first-order Taylor approximation,

L(θt+1) = L(θt) − η

(
∂L(θt)

∂θ

)T

vt+1

= L(θt) + ηβ
(
vt+1)T

vt − η
(
vt+1)T

vt+1

(19)

We also have,

vt+1 = θt+1 − θt

η
= ∆θt

η
⇒ η

(
vt+1)T

vt+1 = ∥θt+1 − θt∥2

η
(20)

vt+1 = ηvt + ∂L(θt)
∂θ

=⇒ ⟨vt+1, vt⟩ = η∥vt∥2 +
〈

∂L(θt)
∂θ

, vt

〉
(21)〈

∂L(θt)
∂θ

, vt

〉
= 1

η

〈
∂L(θt)

∂θ
, (θt−1 − θt)

〉
≈ L(θt−1) − L(θt) (22)

Substituting, equations 20,21,22 in equation 19, we get,

L(θt+1) = L(θt) − 1
η

∑
k

(θt+1
k − θt

k)2 + η2
∑

k

(θt
k − θt−1

k )2 − ηβ(L(θt−1) − L(θt)) (23)

Ignoring the constants β, η, and replacing them with c1, c2, c3.c4,

L(θt+1) = c1L(θt) + c2L(θt−1) + c3
∑

k

(θt+1
k − θt

k)2 + c4
∑

k

(θt
k − θt−1

k )2 (24)

where c1, c2, c3, c4 are some fixed functions of η, β. Using the same principle above, and replacing the
coefficients with parameter specific γk. However, note that here we have two possibly independent features
for each parameter θk - one for each time difference. Hence instead of using a single parameter γk (as in the
case of vanilla gradient descent), one needs to use (γk,0, γk,1). The model then becomes,

L(θt+1) = c1L(θt) + c2L(θt−1) +
∑

k

γk,0(θt+1
k − θt

k)2 +
∑

k

γk,1(θt
k − θt−1

k )2
(25)

Here we consider the parameter to be not-important if γk,0 = γk,1 = 0, i.e all the coefficients should be
irrelevant. We also replace the causal pruning step accordingly.

Remark: What about the case with varying learning rates? It turns out that it is not easy to
adapt the above procedure to gradient descent with adaptive learning rates such as ADAM (Kingma & Ba,
2015) or RMSProp (Hinton et al., 2014). Specifically, one would have to consider all the updates till time t
- {∆θt}t=t

t=0. Since this is computationally expensive and also since we see that GD with momentum works
sufficiently well in practice (Loshchilov & Hutter, 2017), we do not consider this case in the current scope of
the article.
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Hyperparameter Symbol Range/Values
Warm-up epochs before pruning Npre 0, 1, 10, 20, 30, 60
Pruning iterations Niter 1, 5, 10, 20, 30, 40
Epochs to collect SGD trajectory Nprune 1, 5, 10, 20
Total pruning ratio P 0.1 to 0.993
Causal Lasso max iterations — 50
Tolerance for convergence in Lasso — 5 (no improvement steps)

Table 3: Range of hyperparameters used across causal pruning experiments.

B Details of Flat Minima Experiments

To obtain the top eigenvalues from trained networks, we use the stochastic power-iteration method from
Yao et al. (2020). For visualizing the minima, we use the method proposed in Li et al. (2018), which is the
following:

1. We consider two arbitrary directions by initializing a network with weights from a normal distribution
with mean 0 and standard deviation 1 - u1 and u2. We then normalize the filters to have the same
norm as the original network

ui,j = ui,j

∥ui,j∥
∥di,j∥ (26)

where ui,j refers to the jth filter from ith layer of randomly initialized network, and di,j refers to the
the jth filter from ith layer of the trained network.

2. We then plot the loss obtained by f(θ∗ + αu1 + βu2) where f refers to the network architecture, θ∗

refers to the parameters of the original network and α, β ∈ (−1, 1). This is visualized as a 3d plot
as shown in the figures. Further, we also scale the z-axis as log(1 + f(θ)) for better visualization.

C Experimental Details

All experiments were carried out on a NVIDIA H100 server. The server is equipped with 2 AMD EPYC
9454 48-Core Processor with 48 physical cores per socket totaling 192 threads, paired with 512 GB of system
memory. The server houses a NVIDIA H100 NVL GPU with 94GB of VRAM.

Hyperparameter Settings

This section outlines the hyperparameter configurations used across all experiments evaluating causal prun-
ing. Our experimental scope spans multiple architectures and datasets, including CIFAR-10, Tiny ImageNet,
and ImageNet, with both randomly initialized and pretrained models.

Optimizer and Learning Rate Scheduling: Except for experiments on ImageNet, we use SGD with
momentum as the default optimizer. The learning rate schedule is either cosine annealing or one-cycle LR.
We set the base learning rate to 0.001, and the maximum learning rate to 0.1. All models are trained with
a fixed momentum of 0.9.

Optimization for Lasso Regression in equation 3: As described in the main text, we solve the lasso
regression using the stochastic method from Shalev-Shwartz & Tewari (2011). We use a learning rate of 0.1,
with a maximum of 50 iterations and a convergence tolerance of 5 iterations. The batch size is fixed to 16
due to memory constraints.

All reported accuracies correspond to pruned models that are trained to convergence. We report the best
accuracy achieved during this phase.
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Configuration for VGG-Style Architectures: On CIFAR-10, we compare an unpruned baseline against
models pruned to 98% sparsity using causal pruning over 30 iterations. On Tiny ImageNet, we adopt a more
extended schedule: pruning begins after 60 warm-up epochs, followed by a 120-epoch pre-pruning phase. We
collect SGD trajectories over 10 epochs per iteration, across 30 pruning iterations, targeting 98% sparsity.

For VGG-style models pretrained on CIFAR-10, we use a shortened pre-prune phase of 10 epochs and
initialize the causal-specific learning rate to 10−4.

Large-Scale Architectures and Datasets: On ImageNet, we apply causal pruning to ResNet50 and
MobileNetV1, both pretrained. We prune to 80% sparsity in a single iteration, using only one warm-up
and one pre-prune epoch. This minimal setup highlights the practicality of rapid causal pruning at scale.
Post-pruning training is performed with AdamW, using a learning rate of 0.01 and a weight decay of 0.01.
We fine-tune each model for at most 30 epochs.
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