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ABSTRACT

Understanding feature importance is crucial for conducting interpretable clinical
decision-making. However, the reliability of such analyses can be heavily im-
pacted by the available sample size, placing sites with lower data quality and
smaller sample sizes at inherent disadvantages. To address the challenge, we pro-
pose a model-agnostic transfer learning-based approach for feature importance
measurement and evaluate its effectiveness using real-world heterogeneous elec-
tronic health records.

1 INTRODUCTION

Feature selection is essential for clinical applications that demand model parsimony, aiming to use
as few features as possible while maintaining good prediction performance (Sanchez-Pinto et al.,
2018). For instance, in scoring systems applied to patients for quick risk stratification at emergency
departments (ED) (Vincent et al., 1996; Forni et al., 2013), the number of features should be lim-
ited enough for quick manual calculation while ensuring accuracy. Consequently, feature selection
becomes an essential step for such applications. However, feature importance measurements (FIM)
can be significantly influenced by data quality and the available sample size. Take logistic regres-
sion as an example, the required sample size for robust model fitting increases with the number of
features included in the model (van Smeden et al., 2019). Another example is data imbalance, in
which majority classes may impact FIM (Zhou & Wong, 2021).

Transfer learning (TL) encompasses a set of strategies for transferring information from one model
(source) to another (target), proving effective in enhancing model performance, especially in scenar-
ios where target data has a limited sample size (Chiu et al., 2020; Dhruba et al., 2018). To the best of
our knowledge, existing TL applications have all focused on the modeling process, overlooking its
potential in data pre-processing steps such as FIM. In this work, we employ TL to assist target sites
with small sample sizes in acquiring information from sources with larger sample sizes to improve
their FIM. We demonstrate the effectiveness of our method by applying it to real-world electronic
health records (EHRs), showing that the performance of the model using features selected by TL-
based FIM is superior to those selected by the target’s local FIM under the same degree of model
parsimony. The implementation of our proposed method is available at this GitHub link.

2 METHOD

2.1 SAGE-TL

Our proposed method builds upon Shapley additive global importance (SAGE) (Covert et al., 2020),
a pre-existing model-agnostic global feature importance measurement. Our main contribution is
integrating TL into the original SAGE framework, enabling it to leverage pre-existing knowledge
for targeting specific data. In the original SAGE approximation, (x, y) is sampled uniformly from
the sample data, which may be insufficient if the data is unrepresentative of the true population or
has a small sample size. To address this issue, we incorporate a privacy-preserving TL strategy for
instance re-weighting into SAGE.

Traditional TL methods, such as the kernel mean matching (KMM) method (Huang et al., 2006) and
the Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al., 2007), necessi-
tate simultaneous access and manipulation of both source and target datasets when determining the
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Figure 1: Workflow of SAGE-TL: Calculate instance weights w(x) with uLSIF, then derive SAGE-
TL feature importance scores. Use rankings to select the top n features for downstream prediction.

distance disparity. Such approaches raise potential privacy concerns for scenarios where users do
not own both source and target data. In consideration of potential privacy constraints in real-world
practice, we choose the unconstrained Least-Squares Importance Fitting (uLSIF) (Kanamori et al.,
2009) TL strategy (details available in Algorithm1) for our proposed method. We use uLSIF to
calculate sample weight ratios of source data {xs

i}
ns
i=1 to target data {xt

i}
nt
i=1.

{xs
i}

ns
i=1 ∼ ps(x) {xt

i}
nt
i=1 ∼ pt(x)

The importance function w(x) is denoted as w(x) = ps(x)
pt(x)

. The key point in our proposed method
is that we use w(x) to update the weight of each instance (details available in Algorithm2).

2.2 EXPERIMENTS

We consider the MIMIC-IV-ED dataset (a large database of emergency department admissions at the
Beth Israel Deaconess Medical Center between 2011 and 2019) (Johnson et al., 2023) and choose
inpatient mortality as our major outcome for proof-of-concept. We form a cohort of 8728 observa-
tions and 30 features and heterogeneously partition it into target and source data with a sample size
of 1409 and 7319. A detailed cohort formation description is available in Appendix A.1.

We utilize a neural network consisting of three layers to predict inpatient mortality. The hyper-
parameters are determined through empirical testing and fine-tuning to identify suitable values for
achieving convergence (see details in Appendix A.2). Sets of features with different values are se-
lected based on the importance ranking obtained from SAGE-TL. We compare the performance of
inpatient mortality prediction using feature selection by SAGE-TL and the baseline method (SAGE)
using the Area Under the Receiver Operating Characteristic (AUROC) analysis.

3 RESULTS AND CONCLUSION

Table 1: Model performance comparison (AUROC values) using different numbers of selected fea-
tures

Numbers of selected top n features 8 10 12 14 16
Target local 0.685 0.643 0.672 0.621 0.564
Target TL 0.691 0.750 0.752 0.718 0.683

As shown in Table 1, given the same degree of model parsimony, the models built upon features
selected by our proposed method have better prediction performance compared to those built using
the baseline method.

Our work is among the first few studies exploring the usage of TL in non-modeling processes, and
our results show its potential with studies in clinical and other domains that suffer from relatively
small sample sizes and have a strong need for model parsimony.
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A APPENDIX

A.1 DATA AND COHORT FORMATION

MIMIC IV Emergency Department (MIMIC-IV-ED) (Johnson et al., 2023) is a public dataset that
contains over 400,000 ED visit episodes, and we follow the data extraction pipelines by Xie et al.
(2022) to obtain a master dataset, from which the cohort used in this study is formed by excluding ob-
servations with missing values. Specifically, we form a cohort of 8728 samples by filtering the mas-
ter dataset to include only Emergency Department (ED) admissions of Asian patients. We remove
observations with missing values in candidate features, including age, gender, pulse (beats/min), res-
piration (times/min), peripheral capillary oxygen saturation (SpO2; %), diastolic blood pressure (mm
Hg), systolic blood pressure (mm Hg), pain scale, weight loss, depression, temperature (Celsius),
fever/chills, drug abuse, ED visit in the past 3 months (times), blood loss anemia, coagulopathy and
comorbidities including myocardial infarction, congestive heart failure, stroke, dementia, chronic
pulmonary disease, rheumatoid disease, peptic ulcer disease, kidney disease, paralysis, diabetes,
peripheral vascular disease and renal disease.

We assign each observation a unique probability (depending on the age feature) of being selected as
a source or target domain. As a result, patients with higher age values also have a higher probability
of being assigned to the target domain, thus realizing the difference in data distribution between
source and target data.

A.2 HYPERPARAMETERS

Table 2: Hyperparameter values for fine-tuning with chosen values highlighted
Hyperparameter Candidate values

Learning Rate 0.01, 0.005, 0.001
Momentum 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Weight Decay 0, 0.001, 0.0001
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A.3 PSEUDO CODE

Algorithm 1: uLSIF (Kanamori et al., 2009)
Input : {xt

i}
nt
i=1 and {xs

j}
ns
j=1

Output: ŵ(x)
b← min(100, ns); n← min(nt, ns)
Randomly choose b centers {cℓ}bℓ=1 from {xs

j}
ns
j=1 without replacement;

for each candidate of Gaussian width σ do
Ĥℓ,ℓ′ ← 1

nt

∑nt

i=1 exp (−
||xt

i−cℓ||2+||xt
i−cℓ′ ||

2

2σ2 ) for ℓ, ℓ′ = 1, 2, ..., b;

ĥℓ ← 1
ns

∑ns

j=1 exp (−
||xs

j−cℓ||2

2σ2 ) for ℓ = 1, 2, ..., b;

Xt
ℓ,i ← exp (− ||xt

i−cℓ||2
2σ2 ) for i = 1, 2, ..., n and ℓ = 1, 2, ..., b;

Xs
ℓ,i ← exp (− ||xs

i−cℓ||2
2σ2 ) for i = 1, 2, ..., n and ℓ = 1, 2, ..., b;

for each candidate of regularization parameter λ do
B̂ ← Ĥ + λ(nt−1)

nt
Ib;

B0 ← B̂−1ĥ1⊤n + B̂−1Xtdiag
(

ĥ⊤B̂−1Xt

nt1⊤n −1⊤b (Xt∗B̂−1Xt)

)
;

B1 ← B̂−1Xs + B̂−1Xtdiag
(

1⊤b (Xs∗B̂−1Xt)

nt1⊤n −1⊤b (Xt∗B̂−1Xt)

)
;

B2 ← max
(
Ob×n,

nt−1
nt(ns−1) (nsB0 −B1)

)
;

wt ← (1⊤b (X
t ∗B2))

⊤; ws ← (1⊤b (X
s ∗B2))

⊤;

LOOCV(σ, λ)← w⊤
t wt

2n − 1⊤n ws

n ;
end

end
(σ̂, λ̂)← argmin(σ,λ)LOOCV(σ, λ);

H̃ℓ,ℓ′ ← 1
nt

∑nt

i=1 exp (−
||xt

i−cℓ||2+||xt
i−cℓ′ ||

2

2σ̂2 ) for ℓ, ℓ′ = 1, 2, ..., b;

h̃ℓ ← 1
ns

∑ns

j=1 exp (−
||xs

j−cℓ||2

2σ̂2 ) for ℓ = 1, 2, ..., b;
α̂← max(0b, (H̃ + λ̂Ib)

−1h̃);
ŵ(x)←

∑b
ℓ=1 α̂ℓ exp (− ||x−cℓ||2

2σ̂2 );
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Algorithm 2: SAGE-TL (proposed, based on original SAGE algorithm(Covert et al., 2020))

Input: data {xi, yi}Ni=1, model f , loss function ℓ, outer samples n, inner samples m
Initialize ϕ̂1 = 0, ϕ̂2 = 0, ..., ϕ̂d = 0

marginalPred = 1
N

∑N
i=1 f(xi)

for i = 1 to n do
Sample (x, y) from {xi, yi}Ni=1 using w(x) = ps(x)

pt(x)
obtained from Algorithm1

Sample π, a permutation of D
S = ∅
lossPrev = ℓ(marginalPred, y)
for j = 1 to d do

S = S ∪ {π[j]}
y = 0
for k = 1 to m do

Sample xk
S̄
∼ q(xS̄ |XS = xS)

y = y + f(xS , x
k
S̄
)

end
ȳ = y

m
loss= ℓ(ȳ, y)
∆ =lossPrev − loss
ϕ̂π[j] = ϕ̂π[j] +∆
lossPrev = loss

end
end
return ϕ̂1

n , ϕ̂2

n , ..., ϕ̂d

n
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A.4 SAGE-TL RANK
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Figure 2: SAGE-TL Rank
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A.5 DISCUSSION

A.5.1 POTENTIAL SCALABILITY

Although we have only used an EHR dataset for illustration, our SAGE-TL method can be applied
to a wide range of clinical datasets, including but not limited to clinical trails and cohort studies of
rare diseases, especially those that suffer from insufficient sample size due to study limits and seek
to borrow information from pre-established external models. SAGE’s model-agnostic nature en-
sures broad compatibility with different prediction models, from traditional statistical regressions to
neural networks, enhancing the method’s general applicability and adaptability to new and evolving
modeling techniques. We plan to explore the application of SAGE-TL in future work with diverse
clinical datasets and prediction tasks.

A.5.2 CLINICAL SCENARIOS OF TRANSFER LEARNING APPLICATION

Transfer learning (TL) in clinical and biomedical research can occur across various domains in
a range of formats, encompassing but not limited to cross-tissues (Li et al., 2022; 2023), cross-
diseases (Alrefai et al., 2023; Turki et al., 2018), and cross-institutions (Holder et al., 2021; Wang
et al., 2022).

Our proposed method specifically focuses on addressing distribution shifts occurring between differ-
ent data sources. We achieve this by artificially partitioning data (based on age) from the same source
into two groups with distinct distributions. This mirrors common real-world scenarios, such as hos-
pitals with different patient populations—one with more senior patients and another with fewer.
This approach also aligns with existing works (Hwang et al., 2021; Li et al., 2021), where transfer
learning involves precisely the same type of clinical data from two sources but with heterogeneity
in data distribution.

Furthermore, TL applications in healthcare can also occur within a single data source when re-
searchers posit that the underlying data distribution may dynamically change over time (Zhang et al.,
2022). In such cases, TL is applied within one site when researchers believe that the population has
significantly shifted over time, using older models to update newer ones.
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