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Abstract

Named Entity Recognition (NER) is a funda-001
mental and non-trivial task in natural language002
processing, that is crucial for various down-003
stream applications. This paper presents a004
comprehensive comparative study of NER per-005
formance across a spectrum of state-of-the-art006
models, with a particular focus on the adap-007
tation and fine-tuning of Question Answering008
(QA) models, such as BERT and RoBERTa,009
alongside prominent text generation models, in-010
cluding Llama2 (Touvron et al., 2023), Mistral011
(Jiang et al., 2023), and ChatGPT3.5-Turbo. In012
this study, we explore the efficacy of QA mod-013
els when repurposed and adapted to NER tasks014
and additionally, we examine the zero-shot ca-015
pabilities of Large Language Models, utilizing016
them without task-specific fine-tuning to assess017
their innate ability to recognize named enti-018
ties. Through extensive experimentation on the019
benchmark dataset BUSTER, we analyze and020
compare the precision, recall, and F1 scores of021
each model variant across various NER cate-022
gories. Furthermore, we investigate the robust-023
ness of these models under different training024
regimes and evaluation metrics.025

1 Introduction026

The natural language processing domain is rapidly027

evolving with the recent developments of Large028

Language Models (LLMs). The advent of LLMs,029

such as the Generative Pre-trained Transformers030

(GPT) series (Radford et al., 2018, 2019; Solaiman031

et al., 2019; OpenAI et al., 2023), has ushered in032

a new era of NLP by leveraging the power of deep033

learning and vast amounts of unlabeled text data.034

One of the most striking aspects of LLMs is their035

ability to perform at State-of-the-Art (SOTA) levels036

across a wide range of tasks without task-specific037

fine-tuning. Unlike standard baselines, like bidirec-038

tional encoder transformers (BERT) (Devlin et al.,039

2019), which require task-specific modifications040

and fine-tuning, LLMs are pre-trained on large cor-041

pora of text data using unsupervised learning tech- 042

niques. However, it is essential to acknowledge 043

that, while LLMs showcase remarkable capabili- 044

ties, they also come with their own set of draw- 045

backs. One of the most notable drawbacks is their 046

complexity. LLMs, especially the larger variants 047

like GPT-3, consist of millions or even billions of 048

parameters, making them computationally inten- 049

sive to train and deploy. This complexity translates 050

into significant time and resource consumption, 051

both during the training phase and during infer- 052

ence, where the computational requirements can be 053

prohibitive for cost effective and/or real-time appli- 054

cations. However that’s not all, we have to mention 055

that LLMs often fall short due to their generalist 056

nature, struggling to grasp the nuanced understand- 057

ing and specialized knowledge required for tasks 058

in some domains like scientific and technical texts. 059

In this study, we conduct a comparative analysis of 060

various methodologies employing diverse model 061

architectures for Named Entity Recognition (NER). 062

NER involves identifying and classifying entities 063

within text into predefined categories such as per- 064

sons, organizations, locations, dates, and more. In 065

our case it is restricted on the main actors involved 066

in a business transaction. While on the surface, it 067

may seems similar to other NLP tasks, like senti- 068

ment analysis or text classification, it poses unique 069

challenges that set it apart. Firstly, NER requires a 070

deep understanding of language syntax, semantics, 071

and context. This involves parsing and compre- 072

hending complex linguistic structures, including 073

ambiguous references, colloquialisms, and vari- 074

ations in naming conventions. For instance, in 075

business transaction data, entities such as company 076

names and financial terms can exhibit significant 077

variability and ambiguity. Terms like "revenue" or 078

"earnings" may have different interpretations based 079

on the context and industry. Exploiting the same 080

reasoning applied for the aforementioned LLMs, 081

we study the behaviour of LLMs like BERT (De- 082
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vlin et al., 2019), RoBERTa (Liu et al., 2019) and083

Longformers (Beltagy et al., 2020), fine tuned on084

a QA based Entity Extraction task. As reported085

in (Liu et al., 2022) the Entity Extraction task is086

naturally suited to be formulated as a question to087

a QA model. Finally, the objective of the study088

is to comprehensively assess various methodolo-089

gies, quantifying the efficacy of each of these while090

delineating their relative differences. This evalua-091

tion facilitates informed decision-making regarding092

model selection, incorporating considerations such093

as deployment costs and resource consumption.094

The paper is organized as follow. In the next095

section, we describe some common approaches to096

the NER task. In section 3, we introduce and de-097

scribe the proposed QA approach to the NER task,098

while in the subsequent section 4, we describe how099

the Generative models can be exploited to face the100

NER task. In section 5, we describe the experi-101

mental setup with particular focus on the dataset,102

the different tagging schemes and the evaluation103

metrics used in the experiment. Then, in section 6,104

we report the results of the experimental evaluation,105

also describing the emerging scenarios. Finally in106

section 7, we draw the conclusions.107

2 Related works108

Named Entity Recognition (NER) is a crucial task109

in Natural Language Processing (NLP) that in-110

volves identifying and classifying entities men-111

tioned in a text into predefined categories such as112

names of persons, organizations, locations, dates,113

and other proper nouns. This task is essential for ex-114

tracting structured information from unstructured115

text, enabling various applications such as informa-116

tion retrieval, question answering, and knowledge117

graph construction. In many works NER tasks are118

formulated as a sequence tagging or token classifi-119

cation problem (Sang and Meulder, 2003; Devlin120

et al., 2019; Yang and Katiyar, 2020). In sequence121

tagging, each token in the input sequence is as-122

signed a label indicating its entity type. The ma-123

chine learning model predicts labels for each token124

independently, resulting in a sequence of labels cor-125

responding to the input tokens. Recent works, have126

explored prompt-based learning in the NER field.127

This approach has gained a huge popularity in the128

NLP community in many downstream applications129

(Liu et al., 2021) owing to its utility in tackling130

data-intensive and time-consuming tasks such as131

NER. Various methods have been proposed, such132

as (Cui et al., 2021) where a template based method 133

in a seq2seq framework is presented, (Chen et al., 134

2022) where the task is presented as a generation 135

problem. Meanwhile, other works related to NER 136

have explored the use of Question Answering (QA) 137

models (Li et al., 2020; Liu et al., 2022), which tra- 138

ditionally focus on providing answers to questions 139

posed in natural language. These models, particu- 140

larly those based on transformer architectures like 141

BERT (Devlin et al., 2019), have shown great re- 142

sults in NER tasks. By framing NER as a Machine 143

Reading Comprehension (MCR) task, where the 144

model is asked to find entities that answer specific 145

questions about the text, researchers have been able 146

to leverage the powerful contextual understanding 147

capabilities of QA models. 148

3 QA-based NER 149

Question Answering (QA) models can be a flexible 150

tool to tackle the NER task. QA models are de- 151

signed to comprehend and answer questions based 152

on a given context, requiring a deep understanding 153

of the text and its underlying semantics. This capa- 154

bility inherently involves reading comprehension 155

and context awareness, making QA models well- 156

suited for tasks requiring nuanced understanding 157

of textual data. Unlike traditional sequence tag- 158

ging approaches, QA models are trained to identify 159

and extract relevant information from passages of 160

text to generate accurate responses to questions. 161

This necessitates an understanding of the context in 162

which entities are mentioned, enabling the model to 163

discern entity boundaries and extract spans accord- 164

ingly. Furthermore, the inherent similarity between 165

the entity extraction and the question answering 166

tasks lends itself well to the adaptation of QA mod- 167

els for entity extraction. Adapting QA models for 168

multi-span extraction presents distinct challenges. 169

Unlike other proposed approaches (Liu et al., 2022; 170

Li et al., 2020), which focus on generating a single, 171

concise answer, multi-span extraction requires the 172

model to identify and extract multiple spans, poten- 173

tially with overlapping or nested entities. Although 174

some methods achieve multi-span extraction by 175

submitting the same question multiple times, this 176

approach is less efficient and the exact number of 177

submissions is not always clear. Therefore, mod- 178

ifications to the model architecture and training 179

objectives are necessary to accommodate the ac- 180

curate extraction of spans from a given context. 181

To adapt the question answering model for token 182
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classification, we integrated a linear layer on top183

of the network similarly of (Segal et al., 2020).184

This adjustment allows the model to calculate the185

probability of each token being part of an entity.186

The dataset was adapted for our setup by dividing187

the original samples according to each entity label.188

Consequently, each document is fed into the net-189

work multiple times, corresponding to the number190

of entity labels it contains. This approach serves191

two primary purposes: it simplifies the learning192

by isolating a single class at a time, such that the193

model’s task is easier as it focuses on extracting194

one entity type per iteration. This reduction in com-195

plexity facilitates the learning phase. Furthermore196

presenting the same document multiple times, each197

with a different question to focus on, encourages198

the model to generalize better on the data. For199

the questions, we opted for simplicity over exten-200

sive prompt engineering, following the approach201

reported in (Liu et al., 2022). We formulated ques-202

tions using "Who is the [E]?" where [E] stands for203

the entity type.204

4 GenAI-based NER205

Since their introduction by (Vaswani et al., 2023),206

transformer-based models have marked a signifi-207

cant turning point in NLP research. The advent of208

generative models such as Generative Pre-Trained209

Transformers (GPT), developed by OpenAI, has210

further expanded the use of artificial intelligence211

into everyday life, even for individuals without spe-212

cific expertise in computer science.213

Transformers like BERT (Bidirectional Encoder214

Representations from Transformers) (Devlin et al.,215

2019) leverage the transformer architecture for bidi-216

rectional training and are pre-trained on two main217

tasks: masked language modeling and next sen-218

tence prediction. These transformers excel in tasks219

requiring deep comprehension, such as reading220

comprehension and text classification, due to their221

ability to exploit the context from both directions.222

On the other hand, GPT and other large language223

models (LLMs) utilize autoregressive training, fo-224

cusing on next-word prediction to generate coher-225

ent text. However, their utility extends beyond226

mere text generation, making them versatile tools227

in various domains. Generative models undergo228

extensive pre-training on diverse and large-scale229

datasets, which endows them with a wealth of lin-230

guistic knowledge and world information. This231

pre-training enables them to learn rich represen-232

tations of language, including syntax, semantics, 233

and factual knowledge, facilitating transfer learning 234

when applied to other tasks. Consequently, these 235

models perform well in question answering, lan- 236

guage translation, text summarization, and creative 237

writing. 238

Generative models have also demonstrated im- 239

pressive few-shot and zero-shot learning capabili- 240

ties, as highlighted by (Brown et al., 2020). These 241

capabilities allow them to perform tasks with min- 242

imal or no task-specific examples, making them 243

highly adaptable to new tasks with little (or no) 244

training data. For this reason we aim at testing 245

them on a hard task like Named Entity Recogni- 246

tion to evaluate their performance in this domain. 247

We mentioned in Section 3 about the similarity be- 248

tween question answering and entity extraction and 249

we pointed out that generative models are suited 250

for this task. Hence, we explored the use of these 251

models in a zero-shot learning context for NER. 252

5 Experiments 253

The described approaches have been compared on 254

a specific NER task involving texts about business 255

transactions. In the following we describe the ex- 256

perimental setup. 257

5.1 Dataset 258

In our experimentation, we utilized the BUSTER 259

dataset (Zugarini et al., 2023). BUSTER is 260

a business-oriented dataset comprising approx- 261

imately 10,000 business transaction documents 262

sourced from EDGAR company acquisition reports. 263

The dataset is partitioned into two subsets: GOLD 264

and SILVER corpus. We exclusively employed the 265

GOLD subset due to its human-annotated nature, 266

while the SILVER corpus was annotated using a 267

trained Large Language Model (LLM) as detailed 268

in (Zugarini et al., 2023). The GOLD set consists 269

of 3,779 documents and it is split into five folds. 270

5.2 QA-based NER experiments setup 271

To ensure a fair comparison, we employed some 272

baseline networks used in (Zugarini et al., 2023), 273

with the difference that our models are meant for 274

QA and were fine-tuned on the Stanford Question 275

Answering Dataset 2.0 (SQuAD 2.0) (Rajpurkar 276

et al., 2016). Fine-tuning on SQuAD 2.0 was 277

chosen to leverage its comprehensive coverage of 278

question-answering nuances. It incorporates the 279

100,000 questions from SQuAD 1.1 alongside over 280
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50,000 unanswerable questions, deliberately de-281

signed to mimic the occurrence of answerable ques-282

tions. To perform well on SQuAD 2.0, systems283

must accurately answer questions when possible284

and identify when a paragraph does not contain285

an answer, abstaining from providing a response.286

This approach is particularly useful for entity ex-287

traction in lengthy texts, such as ours, where the288

entities of interest are relatively sparse. By training289

on a dataset that includes unanswerable questions,290

systems improve their ability to discern relevant291

information from irrelevant text, enhancing their292

precision in identifying the correct entities. This293

reduces false positives and increases the efficiency294

of extracting meaningful data from large volumes295

of text.296

Tagging scheme In the experimentation, we in-297

vestigated different tagging schemes based on the298

BIO (Begin-Inside-Other) format to identify the299

most effective approach for this task.300

1. no-Entity BIO Scheme (nE-BIO): We tested301

a plain BIO scheme without distinguishing302

between different entity types. In particular,303

this scheme assumes that the entity type is pro-304

vided as additional input information to the305

model. This approach simplifies the model,306

making it more efficient and potentially im-307

proving generalization by reducing the num-308

ber of classes.309

2. no-Entity BI Scheme (nE-BI): This approach310

follows the idea of the previous approach,311

with the addition that only the B and I tags are312

used. The O tag is inferred from the absence313

of both the B tag and the I tag on a token. In314

particular, a sigmoid function is applied to the315

final layer and a token is not considered part316

of an entity (as for label O in other methods) if317

the probabilities for both ’B’ and ’I’ are below318

a certain threshold. This simplifies the classi-319

fication process but requires careful threshold320

tuning to ensure accurate token classification.321

3. per-Entity BI Scheme (pE-BI): This method322

uses specific ’B’ (begin) and ’I’ (inside) la-323

bels for each entity type (e.g., B-PEOPLE,324

I-PEOPLE). Thus, considering the 6 entity325

types in the BUSTER dataset, this method326

results in 12 different predictable classes per327

token, providing detailed entity information328

but increasing the complexity of the model.329

The application of a sigmoid function to the 330

last layer is valid also for this scheme. 331

4. no-Entity I-Only Scheme (nE-I): This 332

scheme further reduces the number of pre- 333

dictable labels compared to the previous case 334

by eliminating the "B" label and limiting the 335

model output for each token exclusively to a 336

binary choice PART/NO-PART of an entity. 337

Also in this case, a sigmoid function is applied 338

on the final layer to estimate this probability. 339

This scheme, however, has a significant limita- 340

tion: without the "B" label, the model cannot 341

explicitly mark the start of an entity, poten- 342

tially leading to the merging of contiguous 343

entities. Such cases, however, are very rare in 344

our experiments. 345

Non informative samples During the training 346

phase one significant challenge was handling the 347

limited input token capacity of models. While 348

Longformers can have a maximum sequence length 349

of 4096 input tokens, models like BERT and 350

RoBERTa are limited to 512 tokens. 351

As noted in (Zugarini et al., 2023), most docu- 352

ments in the BUSTER dataset exceed 500 words, 353

surpassing the maximum sequence length of such 354

models. To accommodate these lengths, we divided 355

the documents into overlapping segments, ensuring 356

that entity labels were not inadvertently truncated. 357

Document segmentation, combined with multi- 358

ple document submissions, substantially increased 359

the number of samples to be fed to the networks. 360

However, it also resulted in a significant number of 361

non-informative (empty) samples, since entities are 362

sparse, which could impact learning. With the defi- 363

nition “non informative samples” we intend those 364

subdocuments where there are no labels within the 365

text. To address this problem we conducted exper- 366

iments (see Table 2) comparing the performances 367

with varying numbers of non-informative exam- 368

ples. The number of such samples can affect the 369

performances and it may slow down the training 370

phase. 371

5.3 GenAI-based NER experiments setup 372

We conducted experiments in a zero-shot learn- 373

ing context, particularly because our documents 374

are quite long, making true few-shot learning for 375

each class impractical. The main challenge lies in 376

handling long input lengths. While some models 377

can accept very long texts, processing these inputs 378
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demands substantial computational resources and379

strains the model’s ability to maintain coherence380

and focus.381

As input sequences get longer, the model’s ca-382

pacity to focus on relevant parts of the text and383

maintain coherent context diminishes. This often384

results in outputs that are less coherent, more repet-385

itive, or diverge from the intended context.386

When working with generative models, formu-387

lating precise and effective prompts is crucial, as388

different prompts can significantly impact the qual-389

ity of the generated responses. We experimented390

with various prompts across different models, ob-391

serving that some prompts yield satisfactory results392

with some models but perform poorly with others.393

This variability is attributed to each model’s spe-394

cific characteristics, such as its complexity, num-395

ber of parameters, and training data. Generally,396

larger models like GPT-3 exhibit greater robustness397

and generate more coherent answers, being less398

affected by prompt variations.399

To ensure accuracy and consistency in the gen-400

erated responses, we instructed each model to fol-401

low a precise schema and return answers in JSON402

format. This format is chosen for its simplic-403

ity, widespread use, and effectiveness in minimiz-404

ing the need for extensive post-processing. Non-405

standard formats, by contrast, are difficult and time-406

consuming to clean and organize.407

To automate the validation process, we devel-408

oped a script that checks if the model’s response409

adheres to the JSON format. If the response de-410

viates from this format, the script automatically411

sends a new request to the model. Additionally, to412

mitigate the issue of hallucinations—where models413

generate spurious or incorrect outputs—we imple-414

mented a check on the labels in the predictions.415

If the model introduces unrecognized classes, the416

prediction is discarded, and a new request is is-417

sued. However, if the model omits certain classes,418

we interpret them as not present in the document419

and accept the prediction as valid. This approach420

ensures that the generated responses are both accu-421

rate and in a standardized format, facilitating easier422

integration and analysis.423

5.4 Metrics424

To evaluate the performance of QA-based NER425

models, we employed precision, recall, and the426

F1 score, either in a micro- and macro- averaging427

scheme. These metrics were applied at the entity428

level, meaning the F1 score considered the entire 429

span of the entities rather than individual tokens. 430

This approach provides a more holistic evaluation 431

of the model’s ability to correctly identify complete 432

entities compared to token-level metrics. 433

For evaluating the generative models’ predic- 434

tions, we used the same metrics. However, 435

comparing generative based NER and Question- 436

Answering NER models is not straightforward 437

since they fundamentally face different tasks. The 438

former models are trained to execute token clas- 439

sification tasks, aiming to find multiple instances 440

of the same entity within a document. In contrast, 441

generative models generate responses to generic 442

questions, making their task inherently different 443

and often less complex, since they are not required 444

to report each different occurrence of a given entity. 445

Given that Question-Answering NER models are 446

trained to identify multiple instances of the same 447

entity, their task is more challenging. To enable 448

a fair comparison between Question-Answering 449

and generative based models, we adjusted some 450

constraints for the first ones. Specifically, we clus- 451

tered predictions for each class using Jaccard Index 452

distance with a threshold K. 453

J(A,B) =
|A ∩B|
|A ∪B|

(1) 454

Where: 455

• |A ∩B| is the number of common characters 456

between the two strings. 457

• |A ∪B| is the total number of unique charac- 458

ters present in both strings. 459

If the Jaccard Index between two strings is 460

greater than K = 0.5 they are considered to repre- 461

sent the same entity. 462

In the evaluation, we employed the same "re- 463

laxed" criterion used to cluster predictions also to 464

match ground truths and predictions. In the re- 465

laxed criterion two strings are considered equal if 466

their Jaccard Index is greater than the given thresh- 467

old. This relaxation allows for minor variations in 468

the strings while still considering them as correct 469

matches. 470

6 Experimental Results 471

In this section, we report the results of the different 472

experiments performed. 473
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The impact of the Tagging scheme Firstly, we474

investigate the impact of using the different Tag-475

ging schemes in a QA-based NER approach. The476

desired goal was to identify the optimal tagging477

approach for robust entity recognition across dif-478

ferent contexts. In particular, each scheme was479

evaluated using BERT as the underlying model and480

the results are reported in Table 1. Results show a

Tagging scheme µ-F1 M-F1

pE-BI 72.6 ± 0.8 75.6 ± 1.7
nE-BIO 17.0 ± 3.8 15.0 ± 3.8
nE-BI 73.2 ± 0.7 76.8 ± 0.7
nE-I 73.8 ± 0.4 76.6 ± 1.0

Table 1: F1 scores for different tagging schemes ob-
tained with BERT

481
significant performance discrepancy between the482

BIO scheme and other tagging schemes.483

The nE-BIO scheme proved ineffective for to-484

ken classification in our context, primarily due485

to the strong bias towards the ’O’ (Other) label.486

This bias arises for two main reasons. Firstly, we487

are targeting a precise, small set of entities within488

lengthy texts, which on average exceed 500 words.489

Secondly, in the BUSTER dataset (Zugarini et al.,490

2023), entities were labeled only in paragraphs491

where their roles were clearly specified, further492

reducing their frequency within the documents. Re-493

garding other tagging schemes, our findings indi-494

cate that the pE-BI scheme performs slightly worse495

than the nE-BI and nE-I schemes. This observa-496

tion suggests that adding more granularity in the497

tagging does not necessarily translate to better per-498

formance. A possible explanation to this behaviour499

can be found in the models architecture and train-500

ing procedures. LLMs benefit from extensive pre-501

training on diverse datasets, which allows them502

to generalize well across different tasks without503

needing highly specialized tagging schemes. Their504

attention mechanisms enable them to effectively505

manage the relationships between tokens, reducing506

the reliance on specific tagging details that smaller,507

less sophisticated models might require.508

The impact of non-informative samples The re-509

sults in Table 2 indicate that increasing the number510

of non-informative samples generally improved the511

performance of both BERT and RoBERTa mod-512

els. Notably, RoBERTa showed significant im-513

provement when the sample size increased from514

6000 non-informative examples but no further im- 515

provements have been made with more samples. 516

A similar behaviour is observed with BERT, it 517

demonstrated more stable performance across dif- 518

ferent sample sizes up to 8000 samples, but as 519

RoBERTa performances start to decrease as we 520

further increase the number of non informative 521

samples. Such behaviour suggests that while non- 522

informative samples can enhance training, the op- 523

timal number can slightly vary between different 524

models and has to be carefully tuned in order to 525

optimize performances. 526

Comparison of QA-based models. In this ex- 527

periment, we compared the performance of several 528

common LLMs when used in a QA-based NER 529

task. Performances were evaluated in a k-fold 530

cross-validation setup, with k = 5, according to the 531

original dataset splits. Table 3 reports the obtained 532

results. 533

QA Model µ-F1 M-F1

BERT-Large 73.6 ± 0.5 77.2 ± 0.7
RoBERTa-Large 74.4 ± 0.5 78.6 ± 0.8
Longformer 74.2 ± 0.7 78.2 ± 1.0

Table 3: QA-based NER approaches results on
BUSTER dataset. The evaluation has been done consid-
ering the per-entity F1 score.

BERT and RoBERTa performances were ob- 534

tained by tuning the number of non-informative 535

samples as described in the paragraph above. 536

RoBERTa was found to be the best model, followed 537

closely by Longformer, whereas BERT showed 538

slightly lower performances than the other two. 539

QA-based vs GenAI-based approaches to NER 540

Table 4 provides an overview of the performance 541

obtained using the two different approaches. As 542

detailed in Section 5, Question-Answering models 543

applied to NER are evaluated on their ability to 544

predict correct entities within an entire document, 545

rather than on the traditional token classification 546

task for which they were originally designed. 547
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# non-informative samples BERT RoBERTa

µ-F1 M-F1 µ-F1 M-F1

2000 72.8 ± 0.7 75.8 ± 0.4 73.8 ± 1.0 78.4 ± 0.5
4000 73.0 ± 0.9 76.6 ± 1.0 73.8 ± 0.4 78.2 ± 1.2
6000 73.2 ± 0.7 76.8 ± 0.7 74.4 ± 0.5 78.6 ± 0.8
8000 73.6 ± 0.5 77.2 ± 0.7 73.8 ± 0.7 77.4 ± 1.2
All 73.2 ± 0.7 76.6 ± 0.5 74.4 ± 0.5 78.2 ± 0.7

Table 2: BERT and RoBERTa f1 scores with varying number of non-informative samples.

Model µ-F1 M-F1

ChatGPT3.5-turbo 64.4 ± 0.6 56.0 ± 0.7
Llama-2-7b-chat-hf 50.8 ± 1.1 40.0 ± 1.0
Llama-2-13b-chat-hf 58.8 ± 0.0 45.1 ± 0.0
Mistral-7b 52.2 ± 1.3 38.3 ± 1.2

BERT-Large 79.6 ± 0.5 79.0 ± 0.4
RoBERTa-Large 80.2 ± 1.1 79.6 ± 0.9
Longformers 79.8 ± 0.7 79.2 ± 1.0

Table 4: Full comparison of QA-based and GenAI-based
NER approaches on BUSTER dataset. In this case, the
evaluation of QA models have been performed using
entity clusters as specified in 5.4.

A comparison of Table 3 and Table 4 reveals548

that the token classification task is inherently more549

challenging than the entity extraction performed by550

generative models. Generative models in a zero-551

shot learning context do not yet match the perfor-552

mance of smaller models that have been specifically553

trained on targeted datasets, such as the one used554

in our study.555

This suggests that while generative models of-556

fer versatility and the potential for broad applica-557

tion without extensive retraining, specialized token558

classification models currently provide superior ac-559

curacy for NER tasks when trained on domain-560

specific data. The gap highlights the need for con-561

tinued development and fine-tuning of generative562

models to achieve comparable results in specific563

tasks.564

7 Conclusions565

In this study, we examined and compared two dis-566

tinct machine learning approaches for Named En-567

tity Recognition (NER). Our objective was to eval-568

uate their strengths and weaknesses to determine569

their relative efficacy in NER tasks. Firstly, we ex-570

plored the use of QA models for NER, detailing the571

necessary architectural modifications and the eval- 572

uation of various tagging schemes. Our analysis 573

revealed that the traditional BIO tagging scheme 574

was suboptimal in our context due to its bias to- 575

wards the ’O’ label, especially in lengthy texts with 576

sparse entities. We also addressed the impact of 577

non-informative offsets generated by models with 578

limited input capacity, highlighting the importance 579

of carefully managing these offsets to avoid perfor- 580

mance degradation. 581

Next, we investigated the performance of Gener- 582

ative models in a zero-shot learning setting, focus- 583

ing on the choice of prompts and the differences 584

across various models. Despite their versatility 585

and ability to handle zero-shot learning, generative 586

models did not achieve the same level of accuracy 587

as specialized token classification models trained 588

on domain-specific data. 589

In summary, our comparison indicates that while 590

generative models offer significant flexibility and 591

broad applicability, they currently fall short of the 592

precision provided by models specifically trained 593

for NER tasks, expecially when dealing with spe- 594

cific domains. This underscores the need for con- 595

tinued refinement of generative models to close the 596

performance gap in specialized applications. 597

Limitations 598

Despite the promising results of proposed meth- 599

ods some limitations must be acknowledged. Due 600

to limited time our experiments are done only on 601

BUSTER dataset (Zugarini et al., 2023). While in 602

our opinion it is a good benchmark for NER task 603

in a real case scenario it is also a domain specific 604

dataset focused on financial data. Future devel- 605

opments could take into account experimentation 606

on other popular datasets to better compare our 607

approach with others. We have also to consider 608

that training and fine-tuning large models such as 609

BERT, RoBERTa, and Longformer require substan- 610

7



tial hardware resources. The computational cost611

associated with extensive hyper-parameter tuning,612

k-fold cross-validation, and handling large chunks613

of data could limit accessibility of our approach.614

However, it is important to note that once a QA615

model adapted to NER task is trained, it can lever-616

age prompt learning and few-shot techniques with617

minimal question tuning. This adaptability is due618

to the architecture’s independence from the specific619

entity classes being identified.620
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