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Abstract

Named Entity Recognition (NER) is a funda-
mental and non-trivial task in natural language
processing, that is crucial for various down-
stream applications. This paper presents a
comprehensive comparative study of NER per-
formance across a spectrum of state-of-the-art
models, with a particular focus on the adap-
tation and fine-tuning of Question Answering
(QA) models, such as BERT and RoBERTa,
alongside prominent text generation models, in-
cluding Llama?2 (Touvron et al., 2023), Mistral
(Jiang et al., 2023), and ChatGPT3.5-Turbo. In
this study, we explore the efficacy of QA mod-
els when repurposed and adapted to NER tasks
and additionally, we examine the zero-shot ca-
pabilities of Large Language Models, utilizing
them without task-specific fine-tuning to assess
their innate ability to recognize named enti-
ties. Through extensive experimentation on the
benchmark dataset BUSTER, we analyze and
compare the precision, recall, and F1 scores of
each model variant across various NER cate-
gories. Furthermore, we investigate the robust-
ness of these models under different training
regimes and evaluation metrics.

1 Introduction

The natural language processing domain is rapidly
evolving with the recent developments of Large
Language Models (LLMs). The advent of LLMs,
such as the Generative Pre-trained Transformers
(GPT) series (Radford et al., 2018, 2019; Solaiman
et al., 2019; OpenAl et al., 2023), has ushered in
a new era of NLP by leveraging the power of deep
learning and vast amounts of unlabeled text data.
One of the most striking aspects of LLMs is their
ability to perform at State-of-the-Art (SOTA) levels
across a wide range of tasks without task-specific
fine-tuning. Unlike standard baselines, like bidirec-
tional encoder transformers (BERT) (Devlin et al.,
2019), which require task-specific modifications
and fine-tuning, LLMs are pre-trained on large cor-

pora of text data using unsupervised learning tech-
niques. However, it is essential to acknowledge
that, while LLMs showcase remarkable capabili-
ties, they also come with their own set of draw-
backs. One of the most notable drawbacks is their
complexity. LLMs, especially the larger variants
like GPT-3, consist of millions or even billions of
parameters, making them computationally inten-
sive to train and deploy. This complexity translates
into significant time and resource consumption,
both during the training phase and during infer-
ence, where the computational requirements can be
prohibitive for cost effective and/or real-time appli-
cations. However that’s not all, we have to mention
that LLMs often fall short due to their generalist
nature, struggling to grasp the nuanced understand-
ing and specialized knowledge required for tasks
in some domains like scientific and technical texts.
In this study, we conduct a comparative analysis of
various methodologies employing diverse model
architectures for Named Entity Recognition (NER).
NER involves identifying and classifying entities
within text into predefined categories such as per-
sons, organizations, locations, dates, and more. In
our case it is restricted on the main actors involved
in a business transaction. While on the surface, it
may seems similar to other NLP tasks, like senti-
ment analysis or text classification, it poses unique
challenges that set it apart. Firstly, NER requires a
deep understanding of language syntax, semantics,
and context. This involves parsing and compre-
hending complex linguistic structures, including
ambiguous references, colloquialisms, and vari-
ations in naming conventions. For instance, in
business transaction data, entities such as company
names and financial terms can exhibit significant
variability and ambiguity. Terms like "revenue" or
"earnings" may have different interpretations based
on the context and industry. Exploiting the same
reasoning applied for the aforementioned LLMs,
we study the behaviour of LLMs like BERT (De-



vlin et al., 2019), RoBERTa (Liu et al., 2019) and
Longformers (Beltagy et al., 2020), fine tuned on
a QA based Entity Extraction task. As reported
in (Liu et al., 2022) the Entity Extraction task is
naturally suited to be formulated as a question to
a QA model. Finally, the objective of the study
is to comprehensively assess various methodolo-
gies, quantifying the efficacy of each of these while
delineating their relative differences. This evalua-
tion facilitates informed decision-making regarding
model selection, incorporating considerations such
as deployment costs and resource consumption.

The paper is organized as follow. In the next
section, we describe some common approaches to
the NER task. In section 3, we introduce and de-
scribe the proposed QA approach to the NER task,
while in the subsequent section 4, we describe how
the Generative models can be exploited to face the
NER task. In section 5, we describe the experi-
mental setup with particular focus on the dataset,
the different tagging schemes and the evaluation
metrics used in the experiment. Then, in section 6,
we report the results of the experimental evaluation,
also describing the emerging scenarios. Finally in
section 7, we draw the conclusions.

2 Related works

Named Entity Recognition (NER) is a crucial task
in Natural Language Processing (NLP) that in-
volves identifying and classifying entities men-
tioned in a text into predefined categories such as
names of persons, organizations, locations, dates,
and other proper nouns. This task is essential for ex-
tracting structured information from unstructured
text, enabling various applications such as informa-
tion retrieval, question answering, and knowledge
graph construction. In many works NER tasks are
formulated as a sequence tagging or token classifi-
cation problem (Sang and Meulder, 2003; Devlin
et al., 2019; Yang and Katiyar, 2020). In sequence
tagging, each token in the input sequence is as-
signed a label indicating its entity type. The ma-
chine learning model predicts labels for each token
independently, resulting in a sequence of labels cor-
responding to the input tokens. Recent works, have
explored prompt-based learning in the NER field.
This approach has gained a huge popularity in the
NLP community in many downstream applications
(Liu et al., 2021) owing to its utility in tackling
data-intensive and time-consuming tasks such as
NER. Various methods have been proposed, such

as (Cui et al., 2021) where a template based method
in a seq2seq framework is presented, (Chen et al.,
2022) where the task is presented as a generation
problem. Meanwhile, other works related to NER
have explored the use of Question Answering (QA)
models (Li et al., 2020; Liu et al., 2022), which tra-
ditionally focus on providing answers to questions
posed in natural language. These models, particu-
larly those based on transformer architectures like
BERT (Devlin et al., 2019), have shown great re-
sults in NER tasks. By framing NER as a Machine
Reading Comprehension (MCR) task, where the
model is asked to find entities that answer specific
questions about the text, researchers have been able
to leverage the powerful contextual understanding
capabilities of QA models.

3 QA-based NER

Question Answering (QA) models can be a flexible
tool to tackle the NER task. QA models are de-
signed to comprehend and answer questions based
on a given context, requiring a deep understanding
of the text and its underlying semantics. This capa-
bility inherently involves reading comprehension
and context awareness, making QA models well-
suited for tasks requiring nuanced understanding
of textual data. Unlike traditional sequence tag-
ging approaches, QA models are trained to identify
and extract relevant information from passages of
text to generate accurate responses to questions.
This necessitates an understanding of the context in
which entities are mentioned, enabling the model to
discern entity boundaries and extract spans accord-
ingly. Furthermore, the inherent similarity between
the entity extraction and the question answering
tasks lends itself well to the adaptation of QA mod-
els for entity extraction. Adapting QA models for
multi-span extraction presents distinct challenges.
Unlike other proposed approaches (Liu et al., 2022;
Li et al., 2020), which focus on generating a single,
concise answer, multi-span extraction requires the
model to identify and extract multiple spans, poten-
tially with overlapping or nested entities. Although
some methods achieve multi-span extraction by
submitting the same question multiple times, this
approach is less efficient and the exact number of
submissions is not always clear. Therefore, mod-
ifications to the model architecture and training
objectives are necessary to accommodate the ac-
curate extraction of spans from a given context.
To adapt the question answering model for token



classification, we integrated a linear layer on top
of the network similarly of (Segal et al., 2020).
This adjustment allows the model to calculate the
probability of each token being part of an entity.
The dataset was adapted for our setup by dividing
the original samples according to each entity label.
Consequently, each document is fed into the net-
work multiple times, corresponding to the number
of entity labels it contains. This approach serves
two primary purposes: it simplifies the learning
by isolating a single class at a time, such that the
model’s task is easier as it focuses on extracting
one entity type per iteration. This reduction in com-
plexity facilitates the learning phase. Furthermore
presenting the same document multiple times, each
with a different question to focus on, encourages
the model to generalize better on the data. For
the questions, we opted for simplicity over exten-
sive prompt engineering, following the approach
reported in (Liu et al., 2022). We formulated ques-
tions using "Who is the [E]?" where [E] stands for
the entity type.

4 GenAl-based NER

Since their introduction by (Vaswani et al., 2023),
transformer-based models have marked a signifi-
cant turning point in NLP research. The advent of
generative models such as Generative Pre-Trained
Transformers (GPT), developed by OpenAl, has
further expanded the use of artificial intelligence
into everyday life, even for individuals without spe-
cific expertise in computer science.

Transformers like BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) leverage the transformer architecture for bidi-
rectional training and are pre-trained on two main
tasks: masked language modeling and next sen-
tence prediction. These transformers excel in tasks
requiring deep comprehension, such as reading
comprehension and text classification, due to their
ability to exploit the context from both directions.

On the other hand, GPT and other large language
models (LLMs) utilize autoregressive training, fo-
cusing on next-word prediction to generate coher-
ent text. However, their utility extends beyond
mere text generation, making them versatile tools
in various domains. Generative models undergo
extensive pre-training on diverse and large-scale
datasets, which endows them with a wealth of lin-
guistic knowledge and world information. This
pre-training enables them to learn rich represen-

tations of language, including syntax, semantics,
and factual knowledge, facilitating transfer learning
when applied to other tasks. Consequently, these
models perform well in question answering, lan-
guage translation, text summarization, and creative
writing.

Generative models have also demonstrated im-
pressive few-shot and zero-shot learning capabili-
ties, as highlighted by (Brown et al., 2020). These
capabilities allow them to perform tasks with min-
imal or no task-specific examples, making them
highly adaptable to new tasks with little (or no)
training data. For this reason we aim at testing
them on a hard task like Named Entity Recogni-
tion to evaluate their performance in this domain.
We mentioned in Section 3 about the similarity be-
tween question answering and entity extraction and
we pointed out that generative models are suited
for this task. Hence, we explored the use of these
models in a zero-shot learning context for NER.

S Experiments

The described approaches have been compared on
a specific NER task involving texts about business
transactions. In the following we describe the ex-
perimental setup.

5.1 Dataset

In our experimentation, we utilized the BUSTER
dataset (Zugarini et al., 2023). BUSTER is
a business-oriented dataset comprising approx-
imately 10,000 business transaction documents
sourced from EDGAR company acquisition reports.
The dataset is partitioned into two subsets: GOLD
and SILVER corpus. We exclusively employed the
GOLD subset due to its human-annotated nature,
while the SILVER corpus was annotated using a
trained Large Language Model (LLM) as detailed
in (Zugarini et al., 2023). The GOLD set consists
of 3,779 documents and it is split into five folds.

5.2 QA-based NER experiments setup

To ensure a fair comparison, we employed some
baseline networks used in (Zugarini et al., 2023),
with the difference that our models are meant for
QA and were fine-tuned on the Stanford Question
Answering Dataset 2.0 (SQuAD 2.0) (Rajpurkar
et al., 2016). Fine-tuning on SQuAD 2.0 was
chosen to leverage its comprehensive coverage of
question-answering nuances. It incorporates the
100,000 questions from SQuAD 1.1 alongside over



50,000 unanswerable questions, deliberately de-
signed to mimic the occurrence of answerable ques-
tions. To perform well on SQuAD 2.0, systems
must accurately answer questions when possible
and identify when a paragraph does not contain
an answer, abstaining from providing a response.
This approach is particularly useful for entity ex-
traction in lengthy texts, such as ours, where the
entities of interest are relatively sparse. By training
on a dataset that includes unanswerable questions,
systems improve their ability to discern relevant
information from irrelevant text, enhancing their
precision in identifying the correct entities. This
reduces false positives and increases the efficiency
of extracting meaningful data from large volumes
of text.

Tagging scheme In the experimentation, we in-
vestigated different tagging schemes based on the
BIO (Begin-Inside-Other) format to identify the
most effective approach for this task.

1. no-Entity BIO Scheme (nE-BIO): We tested
a plain BIO scheme without distinguishing
between different entity types. In particular,
this scheme assumes that the entity type is pro-
vided as additional input information to the
model. This approach simplifies the model,
making it more efficient and potentially im-
proving generalization by reducing the num-
ber of classes.

2. no-Entity BI Scheme (nE-BI): This approach
follows the idea of the previous approach,
with the addition that only the B and I tags are
used. The O tag is inferred from the absence
of both the B tag and the I tag on a token. In
particular, a sigmoid function is applied to the
final layer and a token is not considered part
of an entity (as for label O in other methods) if
the probabilities for both B’ and I’ are below
a certain threshold. This simplifies the classi-
fication process but requires careful threshold
tuning to ensure accurate token classification.

3. per-Entity BI Scheme (pE-BI): This method
uses specific B’ (begin) and ’I’ (inside) la-
bels for each entity type (e.g., B-PEOPLE,
I-PEOPLE). Thus, considering the 6 entity
types in the BUSTER dataset, this method
results in 12 different predictable classes per
token, providing detailed entity information
but increasing the complexity of the model.

The application of a sigmoid function to the
last layer is valid also for this scheme.

4. no-Entity I-Only Scheme (nE-I): This
scheme further reduces the number of pre-
dictable labels compared to the previous case
by eliminating the "B" label and limiting the
model output for each token exclusively to a
binary choice PART/NO-PART of an entity.
Also in this case, a sigmoid function is applied
on the final layer to estimate this probability.
This scheme, however, has a significant limita-
tion: without the "B" label, the model cannot
explicitly mark the start of an entity, poten-
tially leading to the merging of contiguous
entities. Such cases, however, are very rare in
our experiments.

Non informative samples During the training
phase one significant challenge was handling the
limited input token capacity of models. While
Longformers can have a maximum sequence length
of 4096 input tokens, models like BERT and
RoBERTa are limited to 512 tokens.

As noted in (Zugarini et al., 2023), most docu-
ments in the BUSTER dataset exceed 500 words,
surpassing the maximum sequence length of such
models. To accommodate these lengths, we divided
the documents into overlapping segments, ensuring
that entity labels were not inadvertently truncated.

Document segmentation, combined with multi-
ple document submissions, substantially increased
the number of samples to be fed to the networks.
However, it also resulted in a significant number of
non-informative (empty) samples, since entities are
sparse, which could impact learning. With the defi-
nition “non informative samples” we intend those
subdocuments where there are no labels within the
text. To address this problem we conducted exper-
iments (see Table 2) comparing the performances
with varying numbers of non-informative exam-
ples. The number of such samples can affect the
performances and it may slow down the training
phase.

5.3 GenAl-based NER experiments setup

We conducted experiments in a zero-shot learn-
ing context, particularly because our documents
are quite long, making true few-shot learning for
each class impractical. The main challenge lies in
handling long input lengths. While some models
can accept very long texts, processing these inputs



demands substantial computational resources and
strains the model’s ability to maintain coherence
and focus.

As input sequences get longer, the model’s ca-
pacity to focus on relevant parts of the text and
maintain coherent context diminishes. This often
results in outputs that are less coherent, more repet-
itive, or diverge from the intended context.

When working with generative models, formu-
lating precise and effective prompts is crucial, as
different prompts can significantly impact the qual-
ity of the generated responses. We experimented
with various prompts across different models, ob-
serving that some prompts yield satisfactory results
with some models but perform poorly with others.
This variability is attributed to each model’s spe-
cific characteristics, such as its complexity, num-
ber of parameters, and training data. Generally,
larger models like GPT-3 exhibit greater robustness
and generate more coherent answers, being less
affected by prompt variations.

To ensure accuracy and consistency in the gen-
erated responses, we instructed each model to fol-
low a precise schema and return answers in JSON
format. This format is chosen for its simplic-
ity, widespread use, and effectiveness in minimiz-
ing the need for extensive post-processing. Non-
standard formats, by contrast, are difficult and time-
consuming to clean and organize.

To automate the validation process, we devel-
oped a script that checks if the model’s response
adheres to the JSON format. If the response de-
viates from this format, the script automatically
sends a new request to the model. Additionally, to
mitigate the issue of hallucinations—where models
generate spurious or incorrect outputs—we imple-
mented a check on the labels in the predictions.
If the model introduces unrecognized classes, the
prediction is discarded, and a new request is is-
sued. However, if the model omits certain classes,
we interpret them as not present in the document
and accept the prediction as valid. This approach
ensures that the generated responses are both accu-
rate and in a standardized format, facilitating easier
integration and analysis.

5.4 Metrics

To evaluate the performance of QA-based NER
models, we employed precision, recall, and the
F1 score, either in a micro- and macro- averaging
scheme. These metrics were applied at the entity

level, meaning the F1 score considered the entire
span of the entities rather than individual tokens.
This approach provides a more holistic evaluation
of the model’s ability to correctly identify complete
entities compared to token-level metrics.

For evaluating the generative models’ predic-
tions, we used the same metrics. However,
comparing generative based NER and Question-
Answering NER models is not straightforward
since they fundamentally face different tasks. The
former models are trained to execute token clas-
sification tasks, aiming to find multiple instances
of the same entity within a document. In contrast,
generative models generate responses to generic
questions, making their task inherently different
and often less complex, since they are not required
to report each different occurrence of a given entity.

Given that Question-Answering NER models are
trained to identify multiple instances of the same
entity, their task is more challenging. To enable
a fair comparison between Question-Answering
and generative based models, we adjusted some
constraints for the first ones. Specifically, we clus-
tered predictions for each class using Jaccard Index
distance with a threshold K.

ANB

Where:

* |AN B is the number of common characters
between the two strings.

* |A U B is the total number of unique charac-
ters present in both strings.

If the Jaccard Index between two strings is
greater than K = (.5 they are considered to repre-
sent the same entity.

In the evaluation, we employed the same "re-
laxed" criterion used to cluster predictions also to
match ground truths and predictions. In the re-
laxed criterion two strings are considered equal if
their Jaccard Index is greater than the given thresh-
old. This relaxation allows for minor variations in
the strings while still considering them as correct
matches.

6 Experimental Results

In this section, we report the results of the different
experiments performed.



The impact of the Tagging scheme Firstly, we
investigate the impact of using the different Tag-
ging schemes in a QA-based NER approach. The
desired goal was to identify the optimal tagging
approach for robust entity recognition across dif-
ferent contexts. In particular, each scheme was
evaluated using BERT as the underlying model and
the results are reported in Table 1. Results show a

Tagging scheme p-F1 M-F1

pE-BI 72.6+0.8 756+1.7
nE-BIO 17.0+3.8 15.0+£3.8
nE-BI 73.2+0.7 76.8+0.7
nE-I 73.8+04 76.6%1.0

Table 1: F1 scores for different tagging schemes ob-
tained with BERT

significant performance discrepancy between the
BIO scheme and other tagging schemes.

The nE-BIO scheme proved ineffective for to-
ken classification in our context, primarily due
to the strong bias towards the 'O’ (Other) label.
This bias arises for two main reasons. Firstly, we
are targeting a precise, small set of entities within
lengthy texts, which on average exceed 500 words.
Secondly, in the BUSTER dataset (Zugarini et al.,
2023), entities were labeled only in paragraphs
where their roles were clearly specified, further
reducing their frequency within the documents. Re-
garding other tagging schemes, our findings indi-
cate that the pE-BI scheme performs slightly worse
than the nE-BI and nE-I schemes. This observa-
tion suggests that adding more granularity in the
tagging does not necessarily translate to better per-
formance. A possible explanation to this behaviour
can be found in the models architecture and train-
ing procedures. LLMs benefit from extensive pre-
training on diverse datasets, which allows them
to generalize well across different tasks without
needing highly specialized tagging schemes. Their
attention mechanisms enable them to effectively
manage the relationships between tokens, reducing
the reliance on specific tagging details that smaller,
less sophisticated models might require.

The impact of non-informative samples The re-
sults in Table 2 indicate that increasing the number
of non-informative samples generally improved the
performance of both BERT and RoBERTa mod-
els. Notably, RoBERTa showed significant im-
provement when the sample size increased from

6000 non-informative examples but no further im-
provements have been made with more samples.
A similar behaviour is observed with BERT, it
demonstrated more stable performance across dif-
ferent sample sizes up to 8000 samples, but as
RoBERTa performances start to decrease as we
further increase the number of non informative
samples. Such behaviour suggests that while non-
informative samples can enhance training, the op-
timal number can slightly vary between different
models and has to be carefully tuned in order to
optimize performances.

Comparison of QA-based models. In this ex-
periment, we compared the performance of several
common LLMs when used in a QA-based NER
task. Performances were evaluated in a k-fold
cross-validation setup, with k = 5, according to the
original dataset splits. Table 3 reports the obtained
results.

QA Model p-F1 M-F1
BERT-Large 73.6 05 77.2+0.7
RoBERTa-Large 74.4+0.5 78.6+0.8
Longformer 742+0.7 782+1.0
Table 3: QA-based NER approaches results on

BUSTER dataset. The evaluation has been done consid-
ering the per-entity F1 score.

BERT and RoBERTa performances were ob-
tained by tuning the number of non-informative
samples as described in the paragraph above.
RoBERTa was found to be the best model, followed
closely by Longformer, whereas BERT showed
slightly lower performances than the other two.

QA-based vs GenAl-based approaches to NER
Table 4 provides an overview of the performance
obtained using the two different approaches. As
detailed in Section 5, Question-Answering models
applied to NER are evaluated on their ability to
predict correct entities within an entire document,
rather than on the traditional token classification
task for which they were originally designed.



# non-informative samples BERT RoBERTa
p-F1 M-F1 p-F1 M-F1
2000 72.8 0.7 75.8+04 73.8+1.0 784 +0.5
4000 73.0+0.9 76.6 £1.0 73.8+04 782 +1.2
6000 73.2+0.7 76.8 +0.7 744 0.5 78.6 0.8
8000 73.6 +0.5 77.2+0.7 73.8+0.7 774 +12
All 73.2+0.7 76.6 £ 0.5 744 0.5 78.2+0.7
Table 2: BERT and RoBERTa f1 scores with varying number of non-informative samples.

Model WFl M-F1 necessary architectural modifications and the eval-

uation of various tagging schemes. Our analysis
ChatGPT3.5-turbo 64.4+06 56.0=+0.7 revealed that the traditional BIO tagging scheme
Llama-2-7b-chat-hf  50.8+1.1 40.0+£1.0 was suboptimal in our context due to its bias to-
Llama-2-13b-chat-hf 58.8+0.0 45.1+0.0 wards the O’ label, especially in lengthy texts with
Mistral-7b 522+13 383+1.2 sparse entities. We also addressed the impact of
BERT-Large 796+05 790+ 0.4 non-informative offsets generated by models with
RoBERTa-Large 80:2 N 1:1 79: 6+ 0:9 limited input capacity, highlighting the importance
Longformers 798+07 792+ 1.0 of carefully managing these offsets to avoid perfor-

Table 4: Full comparison of QA-based and GenAl-based
NER approaches on BUSTER dataset. In this case, the
evaluation of QA models have been performed using
entity clusters as specified in 5.4.

A comparison of Table 3 and Table 4 reveals
that the token classification task is inherently more
challenging than the entity extraction performed by
generative models. Generative models in a zero-
shot learning context do not yet match the perfor-
mance of smaller models that have been specifically
trained on targeted datasets, such as the one used
in our study.

This suggests that while generative models of-
fer versatility and the potential for broad applica-
tion without extensive retraining, specialized token
classification models currently provide superior ac-
curacy for NER tasks when trained on domain-
specific data. The gap highlights the need for con-
tinued development and fine-tuning of generative
models to achieve comparable results in specific
tasks.

7 Conclusions

In this study, we examined and compared two dis-
tinct machine learning approaches for Named En-
tity Recognition (NER). Our objective was to eval-
uate their strengths and weaknesses to determine
their relative efficacy in NER tasks. Firstly, we ex-
plored the use of QA models for NER, detailing the

mance degradation.

Next, we investigated the performance of Gener-
ative models in a zero-shot learning setting, focus-
ing on the choice of prompts and the differences
across various models. Despite their versatility
and ability to handle zero-shot learning, generative
models did not achieve the same level of accuracy
as specialized token classification models trained
on domain-specific data.

In summary, our comparison indicates that while
generative models offer significant flexibility and
broad applicability, they currently fall short of the
precision provided by models specifically trained
for NER tasks, expecially when dealing with spe-
cific domains. This underscores the need for con-
tinued refinement of generative models to close the
performance gap in specialized applications.

Limitations

Despite the promising results of proposed meth-
ods some limitations must be acknowledged. Due
to limited time our experiments are done only on
BUSTER dataset (Zugarini et al., 2023). While in
our opinion it is a good benchmark for NER task
in a real case scenario it is also a domain specific
dataset focused on financial data. Future devel-
opments could take into account experimentation
on other popular datasets to better compare our
approach with others. We have also to consider
that training and fine-tuning large models such as
BERT, RoBERTa, and Longformer require substan-



tial hardware resources. The computational cost
associated with extensive hyper-parameter tuning,
k-fold cross-validation, and handling large chunks
of data could limit accessibility of our approach.
However, it is important to note that once a QA
model adapted to NER task is trained, it can lever-
age prompt learning and few-shot techniques with
minimal question tuning. This adaptability is due
to the architecture’s independence from the specific
entity classes being identified.
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