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ABSTRACT

Gradient-based interpretations often require an anchor point of comparison to avoid
saturation in computing feature importance. We show that current baselines defined
using static functions—constant mapping, averaging or blurring—inject harmful
colour, texture or frequency assumptions that deviate from model behaviour. This
leads to accumulation of irregular gradients, resulting in attribution maps that are
biased, fragile and manipulable. Departing from the static approach, we propose
UNI to compute an (un)learnable, debiased and adaptive baseline by perturbing
the input towards an unlearning direction of steepest ascent. Our method discovers
reliable baselines and succeeds in erasing salient features, which in turn locally
smooths the high-curvature decision boundaries. Our analyses point to unlearning
as a promising avenue for generating faithful, efficient and robust interpretations.

1 INTRODUCTION

The utility of large models is hampered by their lack of explainability and robustness guarantees.
Yet breakthroughs in language modelling (Meta, 2024; Anthropic, 2024; Jiang et al., 2023; Google,
2024; Achiam et al., 2023) and generative computer vision (Rombach et al., 2022; Liu et al., 2023;
Deepmind, 2024; Brooks et al., 2024) yield promising high-stakes applications, spanning domains of
healthcare, scientific discovery, law and finance. As such, being able to interpret these models has
become a primary concern for researchers, policymakers and the general populace, with international
calls for explainability, accountability and fairness in AI decision-making (European Commission,
2021; White House OSTP, 2022; Bengio et al., 2023). To this end, recent works focus on the 2 main
directions of making models inherently explainable (Böhle et al., 2022; Brendel & Bethge, 2018; Koh
et al., 2020; Bohle et al., 2021; Chen et al., 2019; Ross et al., 2017) and post-hoc interpretable (Bau
et al., 2017; Kim et al., 2018; Zhou et al., 2018; Ghorbani et al., 2019b). Unfortunately, the former is
marred by the status quo of proprietary models and prohibitive training costs. This motivates seeking
robust attributions which reliably explain model predictions, to facilitate better risk assessment and
trade-off calibration (Böhle et al., 2022; Doshi-Velez & Kim, 2017).

Post-hoc methods explain a black-box model’s output by attributing its decision back to predictive
features of the input. They achieve this via leveraging components of the model itself (e.g. gradients
and activations), or through approximation with a simpler, interpretable simulator. A desirable
post-hoc explanation should exhibit high faithfulness – to be rationale-consistent (Yeh et al., 2019;
Atanasova et al., 2020) with respect to a model’s decision function; low sensitivity – to yield reliably
similar saliency predictions for input features in the same local neighbourhood (Alvarez Melis &
Jaakkola, 2018; Ghorbani et al., 2019b); low complexity – the explanation should be functionally
simpler and more understandable than the original black-box model (Bhatt et al., 2021).

Gradient-based saliency methods are widely used for feature attribution, due to their simplicity,
efficiency and post-hoc accessibility. This can be further decomposed into 3 families: perturbative,
backpropagative and path-based, which we detail in Section 6. Gradient-based attribution is intuitive
since the first-order derivative reveals which features significantly influence the model’s classification
decision. However, naively using local gradients yields unfaithful attributions due to saturation,
where the non-linear output function flattens in vicinity of the input and zero gradients are computed
(Sundararajan et al., 2017; 2016). To improve gradient-sensitivity, later methods introduce a baseline
input for reference, and backpropagate the difference in activation scores on a path between the
reference and image-of-interest (Shrikumar et al., 2016; Sundararajan et al., 2017). The baseline
is chosen to be devoid of predictive features and far away from the saturated local neighbourhood.
However, such methods accumulate gradient noise when interpolating from the baseline to the input,
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Figure 1: Left: Confidence of original model θ at image x and baseline x′. Right: Confidence of
unlearned model θ̂ at image x. After unlearning in the model space θ 7−→ θ̂, we optimise the baseline
to match the unlearned input confidence, such that Fc(x

′; θ) ≈ Fc(x; θ̂).

leading to high local sensitivity (Ancona et al., 2018). Consequently, attribution maps become
disconnected, sparse and irregular, where the saliency scores fluctuate wildly between neighbouring
pixels of the same object and are visually noisy (Adebayo et al., 2018). This noise accumulation
has two root causes—a poorly chosen baseline and high-curvature output manifold along the path
features. Previous works (Sturmfels et al., 2020; Xu et al., 2020) have sought better baselines by
empirically comparing between using a black image, a gaussian noised image, a gaussian blurred
image, a uniformly noised image, an inverted colour image, as well as averaging attributions over
several baseline choices. However, the correct baseline to represent a lack of salient features depends
heavily on the specific classification task, on the trained model and on the input image. Indeed,
the optimal baseline varies for each task–model–image combination (Akhtar & Jalwana, 2023);
the baseline problem remains largely unsolved. Turning to the second problem of high-curvature
output manifold, because trained neural networks exhibit approximately piece-wise linear decision
boundaries (Goodfellow et al., 2014), inputs near function transitions are vulnerable to perturbative
attacks. By simply adding norm-bounded, imperceptible adversarial noise to the input image, attackers
can dramatically alter the attribution map without changing the model’s class prediction (Ghorbani
et al., 2019a; Dombrowski et al., 2019). Methods of mitigation include explicit smoothing via
averaging over multiple noised gradient attributions (Smilkov et al., 2017); adaptively optimising the
integration path of attribution (Kapishnikov et al., 2021); imposing an attribution prior during training
and optimising it at each step (Erion et al., 2021). However, all of these proposals starkly increase the
complexity of attribution, requiring computationally costly forward and backward propagation steps.

To tackle the problematic triad of 1. post-hoc attribution biases, 2. poor baseline definition, 3. high-
curvature output manifold, we propose UNI to discover debiased baselines by locally unlearning
inputs, i.e. perturbing them in the unlearning direction of steepest ascent, as visualised in Figure 1.
Towards better baselines, our unlearned reference is by definition explicitly optimised to lower output
class confidence and can empirically erase or occlude salient features. We also say that the unlearned
baseline is specific and featureless w.r.t. each task–model–input combination. Unlike the practice of
using a black image baseline—which creates a post-hoc colour bias that darker pixels are less likely
to be salient, UNI does not impose additional, pixel-wise colour, scale or geometric assumptions that
are not already present in the model itself. Finally, we address the high-curvature decision boundaries
problem by realising that this is a product of the training process—targeted unlearning smooths the
decision boundary of the model within the vicinity of the input. For a more detailed overview on the
principle of machine unlearning, we refer the reader to Section 6 of the supplement. We empirically
verify this local smoothing effect by measuring the normal curvature of the model function before
and after unlearning; we also demonstrate that unlearning makes attributions resistant to perturbative
attacks. Our contributions can be summarised as follows:

1. Post-hoc attribution can impose new biases. We approach the baseline challenge from the fresh
lens of post-hoc biases. We show that static baselines (e.g. black, blurred, random noise) inject
additional colour, texture and frequency assumptions that are not present in the original model’s
decision rule, which leads to explanation infidelity and inconsistency.
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2. A well-chosen baseline is specific and featureless. We establish theoretically grounded principles
for sound baseline definitions, by formalising the idea of an “absence of signal” through an
unlearning direction of steepest ascent in model loss. By unlearning predictive features in the
model space and matching this reference model’s activations with a perturbation in the input
space, we introduce a new definition of “feature absence" and a novel attribution algorithm.

3. Unlearning reduces the curvature of decision boundaries and increases robustness. Targeted
unlearning simulates function statistics of unseen data, and smooths the curvature of the output
manifold around the sample. This is characterised by low geodesic path curvature and bounded
principal curvature of the output surface. This points to reduced variability of the gradient vector
under small-norm input perturbations, leading to better attribution robustness and faithfulness.

2 PRELIMINARIES

We consider feature attribution for trained deep neural networks within image classification.
Informally, we seek to assign scores to each pixel of an image for quantifying the pixel’s influence
(sign and magnitude) on the predicted output class confidence. It is noteworthy that attributions can
be signed: a negative value indicates that removing the pixel increases the target class probability.

2.1 NOTATION

The input (feature) space is denoted as X ⊂ RdX , where dX is the number of pixels in an image.
The output (label) space is Y ⊂ RdY ; Y is the set of all probability distributions on the set of
classes. The model space is denoted as F ⊂ YX . A trained model F : x 7→ (F1(x), ..., FdY

(x))
returns the probability score Fc(x) of each class c. Attribution methods are thus functions A :
{1, ..., dX} × F × {1, ..., dY } × X → R, where A(i, F, c, x) is the importance score of pixel i of
image x for the prediction made by Fc. For convenience, we use the shorthand Ai(x) to refer to
the attributed saliency score of a pixel i for a specific class prediction c ∈ {1, ..., dY }. We express
a linear path feature as γ(x′, x, α) : RdX × RdX × [0, 1] → RdX , where γ = (1 − α)x′ + αx and
employ shorthands γ(0) = x′, γ(1) = x.

3 GRADIENT-BASED ATTRIBUTIONS IN A NUTSHELL

3.1 LIMITATIONS

Taking the local gradients of a model’s output confidence map Fc(x) – for target class c – is a tried
and tested method for generating explanations. Commonly termed Simple Gradients (Erhan et al.,
2009; Baehrens et al., 2010; Simonyan et al., 2013), ASG

i (x) = ∇xi
Fc(x) can be efficiently computed

for most model architectures. However, it encounters output saturation when activation functions like
ReLU and Sigmoid are used, leading to zero gradients (hence null attribution) even for important
features (Sundararajan et al., 2017; 2016). DeepLIFT (Shrikumar et al., 2016) reduces saturation by
introducing a “reference state". A feature’s saliency score is decomposed into positive and negative
contributions by backpropagating and comparing each neuron’s activations to that of the baseline.
Integrated Gradients (IG) (Sundararajan et al., 2017) similarly utilises a reference, black image and
computes the integral of gradients interpolated on a straight line between the image and the baseline.

AIG
i (x) = (xi − x′

i)

∫ 1

α=0

∇xi
Fc (x

′ + α(x− x′)) dα (1)

Practically, the integral is approximated by a Riemann sum. Of existing methods, IG promises
desirable, game-theoretic properties of “sensitivity”, “implementation invariance”, “completeness”
and “linearity”. We consequently focus on analysing and developing the IG framework, though the
proposal to unlearn baselines can be applied to most mainstream gradient-based saliency methods.
Despite the advantages of IG, its soundness depends on a good baseline definition—an input which
represents the “absence” of predictive features; also on having stable path features—a straight-line of
increasing output confidence along the path integral from baseline to target image. In the conventional
setting where a black image is used, Akhtar & Jalwana (2023) prove that IG assumptions are violated
due to ambiguous path features, where extrema of model confidences lie along the integration
path instead of at the endpoints of the baseline (supposed minimum) and input image (supposed
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Figure 2: We visualise post-hoc biases imposed by
static baselines—black baseline (colour), blurred (texture),
random (frequency). UNI learns to mask out predictive
features used by the model, generating reliable attributions.

Algorithm 1 UNI: unlearning direction,
baseline matching and path-attribution

1: Given model F (·, θ); inputs (x, y)
2: Choose unlearning step-size η;

PGD steps T , budget ε, step-size µ;
Riemann approximation steps B

3: Initialise perturbation δ0

4: Unlearning direction.
θ̂ = θ + η ∇θL(Fc(x;θ),y)

∥∇θL(Fc(x;θ),y)∥

5: for t = 0, · · · , T − 1 do

C = DKL(F (x; θ̂) ∥ F (x+ δt; θ))

δt+1 = δt − µ ∇δC

δt+1 = ε
δt+1

∥δt+1∥

6: end for
7: Baseline definition x′ = x+ δT

8: Attributions computation: AUNI
i (x)

=
(xi − x′

i)

B

B∑
k=1

∇xiFc

(
x′ +

k

B
(x− x′); θ

)

maximum). Sturmfels et al. (2020) enumerate problems with other baselines obtained via gaussian
blurring, maximum distance projection, uniform noise. Despite the diversity of baseline alternatives,
no candidate is optimal for each and every attributions setting. For instance, models trained with
image augmentations (e.g. colour jittering, rescaling, gaussian blur) yield equivalent or even higher
confidences for blurred and lightly-noised baselines—we need baselines that are well-optimised for
each task–model–input combination. Without principled baselines, problems of non-conformant
intermediate paths and counter-intuitive attribution scores will doubtlessly persist.

3.2 POST-HOC BIASES ARE IMPOSED

Since the baseline represents an absence of or reduction in salient features, static baseline functions
(e.g. black, blurred, noised) implicitly assume that similar features (e.g. dark, smooth, high-frequency)
are irrelevant for model prediction. To illustrate this intuition, we can consider IG with a black
baseline, wherein it becomes more difficult to attribute dark but salient pixels. Due to the colour bias
that “near-black features are unimportant", the term (xi−x′

i) is small and requires a disproportionately
large gradient ∇xi

Fc(·) to yield non-negligible attribution scores. Indeed, this is what we observe in
Figures 2, 3, 11, where darker features belonging to the object-of-interest cannot be reliably identified.
We further empirically verify that each static baseline imposes its own post-hoc bias by experimenting
on ImageNet-C (Hendrycks & Dietterich, 2019). Corresponding to the 3 popular baseline choices for
IG (all-black, gaussian blurred, gaussian noised), we focus on the families of digital (brightening and
saturation), blur (gaussian and defocus blur) and noise (gaussian and shot noise) common-corruptions.
Figures 4, 12 demonstrate that IG with a blurred baseline fails to attribute blurred inputs due to
saturation and overly smoothed image textures; Figures 5, 13 visualise how a noised IG baseline
encounters high-frequency noise and outputs irregular, high-variance attribution scores, even for
adjacent pixels belonging to the same object. We crucially emphasise that such colour, texture and
frequency biases are not present naturally in the pre-trained model but rather injected implicitly by a
suboptimal choice of static baseline. The observation that poor baseline choices create attribution
bias has so far been overlooked. As such, we depart entirely from the line of work on alternative static
baseline towards adaptively (un)learning baselines with gradient-based optimisation. UNI eliminates
all external assumptions except for the model’s own predictive bias.
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Figure 3: When the brightness or saturation is altered,
IG with a black baseline fails to identify dark features,
such as the boat’s hull (R3) or the top of the boot (R1).

Table 1: Path monotonicity scores with Spearman
correlation coefficient (higher = better). Integrating from
a “featureless" baseline to the sample should give a path
of monotonically increasing prediction confidence.

UNI IG BlurIG GIG

ResNet-18 .97 ±.222 .69 ±.460 .57 ±.576 .45 ±.476

Eff-v2-s .95 ±.258 .28 ±.615 .34 ±.613 .38 ±.437

ConvNeXt-T .99 ±.121 .76 ±.379 .77 ±.486 .46 ±.485

VGG-16-bn .94 ±.286 .69 ±.474 .60 ±.544 .46 ±.479

ViT-B-16 .89 ±.396 .71 ±.399 .27 ±.648 .44 ±.468

SwinT .97 ±.189 .88 ±.326 .88 ±.482 .45 ±.474

Figure 4: Under gaussian or defocus blur, IG with
a blurred baseline suffers from saturation; has overly
smooth texture; does not yield meaningful features.

Figure 5: Gaussian and shot noise create visual
artifacts prominent in noised-baseline IG. Frequency
bias leads to disparate scores for adjacent pixels.

4 UNI: UNLEARNING-BASED NEURAL INTERPRETATIONS

4.1 BASELINE DESIDERATA

A desirable baseline should preserve the game-theoretic properties of path-attribution (Section 3.1)
and refrain from imposing post-hoc attribution biases (Section 3.2). For every given task-model-
image triad, a well-chosen baseline should be 1. image-specific—be connected via a path feature
of low curvature to the original image; 2. reflect only the model’s predictive biases—salient image
features should be excluded from the baseline; be 3. less task-informative than the original image—
interpolating from the baseline towards the input image should yield a path of increasing predictive
confidence. We now introduce the UNI pipeline: first, unlearn predictive information in the model
space; then, use activation-matching between unlearned and trained models to mine a featureless
baseline in the image space; finally, interpolate along the low-curvature, conformant and consistent
path from baseline to image to compute reliable explanations in the attributions space. Figure 8 visuals
and Table 7 results attest to UNI’s ability to compute specific, unlearned baselines for attribution.

4.2 DESIRABLE PATH FEATURES

Proximity The meaningfulness of the attributions highly depends on the meaningfulness of the
path. We aim for a smooth transition between absence and presence of features; and this intuitively
cannot be achieved if the baseline and input are too far apart. Srinivas & Fleuret (2019) formalises
this intuition through the concept of weak dependence, and proves that this property can only be
compatible with completeness in the case where the baseline and the input lie in the same connected
component (in the case of piecewise-linear models). An obvious implementation of this proximity
condition in the general case is to bound the distance ||x− x′|| to a certain value ε. This is strictly
enforced in Algorithm 1 by normalising the perturbation at each step t.

Low Curvature. The curvature of the model prediction along the integrated path has been identified
Dombrowski et al. (2019) as one of the key factors influencing both the sensitivity and faithfulness of
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the computed attributions. We substantiate the intuition that a smooth and regular path is preferred
by analysing the Riemannian sum calculation. Assuming that the function g : α ∈ [0, 1] 7→
∇Fc (x

′ + α(x− x′)) is derivable with a continuous derivative (i.e. C1) on the segment [x′, x],
elementary calculations and the application of the Taylor-Lagrange inequality give the following
error in the Riemann approximation of the attribution,∣∣∣∣∣(xi − x′

i)

∫ 1

α=0

g (α) dα− (xi − x′
i)

B

B∑
k=1

g

(
k

B

)∣∣∣∣∣ ≤ M ||x− x′||2

2B
(2)

where M = maxα∈[0,1]
dg
dα = maxα∈[0,1]

∂2Fc(x′+α(x−x′))
∂α2 exists by continuity of g′ on [0, 1].

Thus, lower curvature along the path implies a lower value of the constant M , which in turn implies a
lower error in the integration calculation. A smaller value B of Riemann steps is needed to achieve
the same precision. More generally, a low curvature (i.e. eigenvalues of the hessian) on and in a
neighbourhood of the baseline and path reduces the variability of the calculated gradients under
small-norm perturbations, increasing the sensitivity and consistency of the method. Empirically, we
observe a much lower curvature of paths computed by UNI, as per Table 1 and Appendix Figures 20,
21, 22, 23, 24, 25. Figure 10 also confirms the increased robustness to Riemann sum error induced.

Monotonic. Intuitively, the path γ defined by interpolating from the “featureless" baseline x′ to the
input image x should be monotonically increasing in output class confidence. At the image level, for
all j, k such that j ≤ k, since ||γ(j)− x|| ≥ ||γ(k)− x||, therefore the predictive confidence should
be non-decreasing and order-preserving: Fc(γ(j)) ≤ Fc(γ(k)). Constraining γ to be monotonically
increasing suffices to satisfy a weak version of the criteria for valid path features (Akhtar & Jalwana,
2023): sgn(∇xFc(x)) · sgn(∇x̃Fc(x

′)) = 1 is naturally met.

4.3 EFFECTS OF UNLEARNING AND MATCHING

We explain the success of UNI with the illustrative example of a three gaussians mixture model.
Figure 6 computes unlearning and activation matching for a model learned on three data points with
gradient descent. F is chosen to be the output of the three gaussian components (G1, G2, G3). Note
that the perturbation is not ε-normalised for clearer visualisation. We highlight two observations:

• The UNI path is monotonous, of low-curvature and proximal. Conversely, the path to the random
baseline is long, non-monotonous, and goes through several zones of high second derivative.

• Optimizing KL divergence on (G1, G2, G3) produces a better baseline. Figure 6b visualises
the unlearning objective (i.e. the target probability after unlearning), which gives four points of
intersection with the base model (a, b, c and d). By constraining proximity of the baseline with
the ε parameter, we restrain the optima found by gradient descent (on the global probability) to
the closest two points a and b. UNI is then able yield the more optimal of the two, by optimising
on each gaussian output. In fact, the idea of activation matching is to satisfy the crucial weak
dependence property for conformal path attribution (Akhtar & Jalwana, 2023). Since modern
ReLU networks have decision boundaries representable as piecewise linear functions (Xiong et al.,
2020), activation matching supervises the baseline to use the same (piecewise linear) weights. In
our case, we want to find a baseline for which G1 and G2 do not play a role, which is not the case
for a. This is why Algorithm 1 optimises on F and not on Fc.

Finally, ε normalisation serves to regularise baseline GD learning and account for pathological cases
where the locally shortest path would lead to further intersections than the closest one.

5 EXPERIMENTS

We experiment on ImageNet-1K (Deng et al., 2009), ImageNet-C (Hendrycks & Dietterich, 2019)
and compare against various path-based and gradient-based attribution methods. This includes IG
(Sundararajan et al., 2017), BlurIG (Xu et al., 2020), GIG (Kapishnikov et al., 2021), AGI (Pan et al.,
2021), GBP (Springenberg et al., 2014) and DeepLIFT (Shrikumar et al., 2016). We consider a diverse
set of pre-trained computer vision backbone models (Paszke et al., 2019), including ResNet-18 (He
et al., 2016), EfficientNet-v2-small (Tan & Le, 2021), ConvNeXt-Tiny (Liu et al., 2022), VGG-16-bn
(Simonyan & Zisserman, 2015), ViT-B_16 (Dosovitskiy et al., 2020) and Swin-Transformer-Tiny
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(a) Unlearned Model (b) Base Model

Figure 6: UNI baseline on a Gaussian mixture model of three gaussians G1, G2, G3, each of fixed
variance, parametrised by their mean and a scaling factor. (b) shows the model trained on the three
datapoints (1,1), (2, 5) and (4, 3), while (a) shows the model after one gradient ascent step on the
datapoint (2, 5). The path between UNI Baseline and the image is highlighted by arrows in (b).

(Liu et al., 2021). Unless otherwise specified, we the following hyperparameters: unlearning step size
η = 1; l2 PGD with T = 10 steps, a budget of ε = 0.25, step size µ = 0.1; Riemann approximation
with B = 15 steps. We further extend UNI to the NLP domain, to interpret generative language
models using activation patching (Heimersheim & Nanda, 2024). UNI complements activation
matching by computing a stable baseline without trading off attribution scalability, as observed in
Appendix Table 8 and Figure 9. Our results verify UNI’s high faithfulness, stability and robustness.

Table 2: MuFidelity scores measure the correlation between a subset of pixels’ impact on the output
(i.e. change in predictive confidence) and assigned saliency scores. Since attribution methods can
yield strong positive or negative correlations, we report the absolute scores.

UNI IG BlurIG GIG AGI GBP DeepLIFT

ResNet-18 .12 ±.124 .06 ±.068 .07 ±.076 .07 ±.080 .10 ±.110 .09 ±.094 .08 ±.082

EfficientNetv2s .06 ±.046 .05 ±.043 .05 ±.044 .05 ±.044 .06 ±.045 .05 ±.043 .05 ±.043

ConvNeXt-Tiny .16 ±.115 .11 ±.086 .15 ±.121 .18 ±.149 .17 ±.131 .09 ±.072 .11 ±.084

VGG-16-bn .18 ±.141 .08 ±.066 .09 ±.076 .13 ±.108 .14 ±.104 .13 ±.108 .10 ±.082

ViT-B_16 .15 ±.114 .10 ±.074 .10 ±.077 .11 ±.079 .14 ±.104 .09 ±.070 .10 ±.072

Swin-T-Tiny .13 ±.100 .09 ±.071 .12 ±.102 .12 ±.104 .13 ±.102 .09 ±.069 .10 ±.076

5.1 FAITHFULNESS

We report MuFidelity scores (Bhatt et al., 2021), i.e. the faithfulness of an attribution function
A, to a model F , at a sample x, for a subset of features of size |S|, given by µf (F,A;x) =
corr

S∈( [d]
|S|)

(∑
i∈S A(i, F, c, x), Fc(x)− Fc(x[xs=x̄s])

)
. We record the (absolute) correlation

coefficient between a randomly sampled subset of pixels and their attribution scores. In line with
open source exemplars (Fel et al., 2022a), we set |S| to be 25% of the total pixel count (slightly higher
than the referenced 20%) as is required to adjust for ImageNet’s complexity and for obtaining less
noisy measurements across all baseline methods. As from Table 2, UNI outperforms other methods
across all settings but one, indicating high faithfulness. We supplement these numbers with visual
comparisons in Appendix Figures 14, 15, 16, 17, 18, 19 against IG (black and noised baselines),
BlurIG, GIG, AGI, GBP, DeepLift. Furthermore, we report deletion and insertion scores (Petsiuk
et al., 2018)—a causally-motivated evaluation metric for interpretability methods—which measures
the decrease (deletion) or increase (insertion) of a model’s output confidence as salient pixels are
removed (from the original image) or inserted (into a featureless baseline). A steep drop in model
confidence under pixel deletion results in a desirable and small area under the curve (AUC) score;
a sharp rise under pixel insertion results in a desirably large AUC. Salient pixels are removed in
descending order of importance, as identified by the tested interpretability method. We evaluate with
a step size of 10% and average over 10,000 random image samples, where at each step, the next-10%
most salient pixels are removed or inserted for inference. UNI reliably identifies pixels which are
crucial for sample classification, achieving marked improvements especially in insertion AUC scores.
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Table 3: Deletion AUC ↓ measures how confidence drops as pixels are removed (lower = better).

UNI IG BlurIG GIG AGI GBP DeepLIFT

ResNet-18 .06 ±.128 .10 ±.174 .27 ±.252 .11 ±.150 .13 ±.147 .08 ±.160 .13 ±.165

EfficientNetv2s .19 ±.212 .26 ±.217 .50 ±.158 .19 ±.216 .18 ±.207 .23 ±.163 .27 ±.215

ConvNeXt-Tiny .11 ±.139 .16 ±.164 .46 ±.172 .21 ±.160 .17 ±.123 .16 ±.099 .21 ±.162

VGG-16-bn .08 ±.143 .12 ±.181 .18 ±.241 .10 ±.163 .14 ±.178 .14 ±.194 .12 ±.186

ViT-B_16 .14 ±.185 .22 ±.207 .60 ±.166 .17 ±.190 .13 ±.152 .23 ±.141 .17 ±.189

Swin-T-Tiny .13 ±.181 .22 ±.217 .47 ±.174 .22 ±.207 .21 ±.172 .21 ±.123 .23 ±.207

Table 4: Insertion AUC ↑ measures how confidence rises as pixels are inserted (higher = better).

UNI IG BlurIG GIG AGI GBP DeepLIFT

ResNet-18 .64 ±.138 .26 ±.045 .34 ±.131 .36 ±.048 .56 ±.068 .11 ±.066 .18 ±.042

EfficientNetv2s .64 ±.227 .38 ±.127 .51 ±.283 .37 ±.138 .38 ±.204 .23 ±.192 .37 ±.137

ConvNeXt-Tiny .63 ±.231 .21 ±.114 .40 ±.252 .56 ±.122 .52 ±.088 .22 ±.160 .17 ±.162

VGG-16-bn .56 ±.335 .37 ±.061 .31 ±.274 .38 ±.071 .47 ±.078 .26 ±.057 .17 ±.056

ViT-B_16 .71 ±.237 .32 ±.107 .59 ±.292 .28 ±.125 .43 ±.089 .35 ±.172 .28 ±.123

Swin-T-Tiny .68 ±.245 .28 ±.145 .63 ±.282 .26 ±.153 .25 ±.156 .31 ±.202 .26 ±.152

5.2 ROBUSTNESS

Next, we evaluate UNI’s robustness to fragility adversarial attacks on model interpretations. Following
Ghorbani et al. (2019a), we design norm-bounded attacks to maximise the disagreement in attributions
whilst constraining that the prediction label remains unchanged. We consider a standard l∞ attack
designed with FGSM (Goodfellow et al., 2014), with perturbation budget εf = 8/255.

δ∗f =arg max
∥δf∥p≤εf

1

dX

dX∑
i=1

d (A(i, F, c, x),A(i, F, c, x+ δf ))

subject to argmax
c′

Fc′(x) = argmax
c

Fc′(x+ δf ) = c

(3)

We report robustness results using 2 distance measures—Spearman correlation coefficient in Table
5 and top-k pixel intersection score in Table 6—pre and post attack. While other methods like
DeepLIFT (DL), BlurIG, Integrated Gradients (IG) are misled to output irrelevant feature saliencies,
UNI robustly maintains attribution consistency and achieves the lowest attack attribution disagreement
scores (before and after FGSM attacks) for both metrics.

Figure 7: UNI path features monotonically increase in output confidence when interpolating from
baseline to input. This eliminates instability and inconsistency problems caused by extrema and
turning points along the Riemann approximation path, which is present in other methods.
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5.3 STABILITY

We compare UNI and other methods’ sensitivity to Riemann approximation noise, which manifests in
visual artefacts and misattribution of salient features. As seen from Figures 7, 10, UNI reliably finds
unlearned, “featureless" baselines for consistent attribution, regardless of the number of approximation
steps B ∈ {1, 15, 30}. This is due to the low geodesic curvature of γUNI, which approximately
minimises the local distance between points used in Riemann approximation.

Table 5: Robustness: Spearman’s correlation
coefficient. Higher scores indicate better path
consistency pre/post FGSM attacks.

UNI IG BlurIG SG DeepL

ResNet-18 .271 .088 .084 .014 .139
Eff-v2-s .302 .009 .076 .008 .018
ConvNeXt-T .292 .010 .127 .011 .012
VGG-16-bn .290 .143 .098 .014 .108
ViT-B-16 .319 .018 .066 .023 .023
SwinT .271 .088 .084 .014 .139

Table 6: Robustness: Top-1000 pixel intersection.
Higher percentages indicate better attribution
reliability pre/post FGSM attacks.

UNI IG BlurIG SG DeepL

ResNet-18 37.3 20.0 25.3 18.2 24.8
Eff-v2-s 39.4 17.4 23.3 18.6 18.0
ConvNeXt-T 34.8 15.0 26.2 16.7 15.1
VGG-16-bn 35.7 25.5 25.3 18.8 25.2
ViT-B-16 40.7 17.1 21.7 19.6 17.2
SwinT 37.3 20.0 25.3 18.2 24.8

6 RELATED WORK

Machine unlearning. We draw inspiration from the high-level principle of unlearning, which
concerns the targeted “forgetting" of a data-point for a trained model, by localising relevant
information stored in network weights and introducing updates or perturbations (Bourtoule et al.,
2021). Formally, machine unlearning can be divided into exact and approximate unlearning
(Nguyen et al., 2022). Exact unlearning seeks indistinguishability guarantees for output and weight
distributions, between a model not trained on a sample and one that has unlearned said sample (Ginart
et al., 2019; Thudi et al., 2022; Brophy & Lowd, 2021). However, provable exact unlearning is
only achieved under full re-training, which can be computationally infeasible. Hence, approximate
unlearning was proposed stemming from ϵ-differential privacy (Dwork, 2011) and certified removal
mechanisms (Guo et al., 2020; Golatkar et al., 2020). The former guarantees unlearning for ϵ = 0,
i.e. the sample has null influence on the decision function; the latter unlearns with first/second
order gradient updates, achieving max-divergence bounds for single unlearning samples. Unlearning
naturally lends itself to path-based attribution, to localise then delete information in the weight
space, for the purposes of defining an “unlearned" activation. This “unlearned" activation can
be used to match the corresponding, “featureless" input, where salient features have been deleted
during the unlearning process. While the connection to interpretability is new, a few recent works
intriguingly connect machine unlearning to the task of debiasing classification models during training
and evaluation (Chen et al., 2024; Kim et al., 2019; Bevan & Atapour-Abarghouei, 2022).

Perturbative methods. Perturbative methods perturb inputs to change and explain outputs (Sculley
et al., 2015), including LIME (Ribeiro et al., 2016), SHAP, KernelSHAP and GradientSHAP
(Lundberg et al.), RKHS-SHAP (Chau et al., 2022), ConceptSHAP (Yeh et al., 2020), InterSHAP
(Janzing et al., 2020), and DiCE (Kommiya Mothilal et al., 2021). LIME variants optimise a
simulator of minimal functional complexity able to match the black-box model’s local behaviour
for a given input-label pair. SHAP (Lundberg et al.) consolidates LIME, DeepLIFT (Shrikumar
et al., 2016), Layerwise Relevance Propagation (LRP) (Montavon et al., 2019) under the general,
game-theoretic framework of additive feature attribution methods. For this framework, they outline
the desired properties of local accuracy, missingness, consistency; they propose SHAP values as
a feature importance measure which satisfies these properties under mild assumptions to generate
model-agnostic explanations. However, such methods fail to give a global insight of the model’s
decision function and are highly unstable due to the reliance on local perturbations (Fel et al., 2022b).
Bordt et al. (2022) show that this leads to variability, inconsistency and unreliability in generated
explanations, where different methods give incongruent explanations which cannot be acted on.
Recent works have made considerable progress, including RISE (Petsiuk et al., 2018), which strives
to causally explain model predictions by approximating the necessary saliency of pixels through
random masking; Sobol (Fel et al., 2021), which adapts Sobol indices for perturbation masks towards

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

variance-based sensitivity analysis; and FORGrad (Muzellec et al., 2023), which filters out high-
frequency gradient noise induced by white-box methods (and network pooling or striding operations)
and which can be complementarily applied to further UNI’s explanation faithfulness and efficiency.

Backpropagative methods. Beginning with simple gradients (Erhan et al., 2009; Simonyan et al.,
2013), this family of methods—also, LRP (Montavon et al., 2019), DeepLIFT (Shrikumar et al.,
2016), DeConvNet (Zeiler & Fergus, 2014), Guided Backpropagation (Springenberg et al., 2014) and
GradCAM (Selvaraju et al., 2017)—leverages gradients of the output w.r.t. the input to proportionally
project predictions back to the input space, for some given neuron activity of interest. Gradients of
neural networks are, however, highly noisy and locally sensitive – they can only crudely localise
salient feature regions. While this issue is partially remedied by SmoothGrad (Smilkov et al.,
2017), we still observe that gradient-based saliency methods have higher sample complexity for
generalisation than normal supervised training (Choi & Farnia, 2024) and often yield inconsistent
attributions for unseen images at test time.

Path-based attribution. This family of post-hoc attributions is attractive due to its grounding in
cooperative game-theory (Friedman, 2004). It comprises Integrated Gradients (Sundararajan et al.,
2017), Adversarial Gradient Integration (Pan et al., 2021), Expected Gradients (EG) (Erion et al.,
2021), Guided Integrated Gradients (GIG) (Kapishnikov et al., 2021) and BlurIG (Xu et al., 2020).
Path attribution typically relies on a baseline – a “vanilla" image devoid of features; a path—an
often linear path from the featureless baseline to the target image—along which the path integral is
computed for every pixel. Granular control over the attribution process comes with difficulties of
defining an unambiguously featureless baseline (for each (model, image) pair) (Sturmfels et al., 2020)
and then defining a reliable path of increasing label confidence without intermediate inflection points
(Akhtar & Jalwana, 2023). To measure the discriminativeness of features identified by attribution
methods and the extent to which model predictions depend on them, experimental benchmarks and
metrics such as ROAR (Hooker et al., 2019), DiffRAOR (Shah et al., 2021), deletion/insertion score
(Petsiuk et al., 2018), the Hilbert-Schmidt independence criterion (HSIC) (Novello et al., 2022) and
the Pointing Game (Zhang et al., 2018a) have been proposed.

7 CONCLUSION

In this work, we formally discuss the limitations of current path-attribution frameworks, outline
a new principle for optimising baseline and path features, as well as introduce the UNI algorithm
for unlearning-based neural interpretations. We empirically show that present reliance on static
baselines imposes undesirable post-hoc biases which are alien to the model’s decision function. We
account for and mitigate various infidelity, inconsistency and instability issues in path-attribution by
defining principled baselines and conformant path features. UNI leverages insights from unlearning to
eliminate task-salient features and mimic baseline activations in the “absence of signal". It discovers
low-curvature, stable paths with monotonically increasing output confidence, which preserves the
completeness axiom necessary for path attribution. We visually, numerically and formally establish
the utility of UNI as a means to compute robust, meaningful and debiased image attributions.

The contributions of UNI extend beyond the presented method and analyses, towards investigating
machine unlearning as a tool for white-box interpretability. Unlearning at different granularities
allows us to audit the various levels of a model’s learned feature hierarchy. In this work, we illustrate
how first-order, sample-wise unlearning can identify salient input features important for a single
prediction. A promising future direction involves interpreting higher-level, semantically complex
concepts required to learn a task or fit a data distribution, by instead unlearning a set of concept-
clustered exemplars. It is also of interest to delve into how interpretability methods impose additional
assumptions onto trained models, prompting questions such as how to best design and align the
correct interpretability method for a given model; how to use attribution methods to compare and
contrast the inductive biases of different network architectures, of models trained with robust versus
non-robust objectives, of models trained using different equivariant data augmentation strategies.
Further technical extensions to UNI include going beyond first-order approximate unlearning towards
certified, second-order machine unlearning; as well as granular investigations of how the baseline
definition, model’s robustness and model’s inductive biases exert influence on path attribution results.
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8 REPRODUCIBILITY STATEMENT

We report experimental details on the considered datasets, models and baselines, and hyperparameter
values for UNI in Section 5. Evaluation metrics of MuFidelity scores (measuring faithfulness),
Spearman correlation coefficient (measuring path monotonicity and attributions robustness), pixel
intersection score (measuring attributions robustness) are detailed and consistent with existing
literature. Theoretical arguments are substantiated by quantitative and qualitative results.
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A APPENDIX

A.1 VERIFYING ATTRIBUTION SPECIFICITY

To verify that UNI computes explanations that are specific to each task–model–input triplet, we
compare its saliency attributions across models for the same image input. Visually, we observe in
Figure 8 that attributions differ significantly and even reflect the inductive biases of respective models
(e.g. grid-like artefacts are present in ViT attributions whereas smoother attributions are computed
for convolutional architectures). We further present numerical results in Table 7—LPIPS (Zhang
et al., 2018b) scores reflect the dissimilarity/distance between the original image and the unlearned
baseline; the percentage change in confidence scores reflect how the unlearned baseline effectively
reduces predictive confidence (relative to the original input).

Table 7: UNI computes different baselines for
network architectures with different inductive
biases on the same input, as seen from the drop
in model confidence (∆% Confidence) and image-
baseline similarity scores (LPIPSvgg, LPIPalex).

∆% Confidence LPIPSvgg LPIPalex

ResNet-18 −82.3% .021 ±.025 .003 ±.005

Eff-v2-s −76.9% .025 ±.024 .004 ±.011

ConvNeXt-T −95.1% .018 ±.016 .002 ±.003

VGG-16-bn −71.6% .017 ±.020 .001 ±.002

ViT-B-16 −69.7% .014 ±.015 .004 ±.007

SwinT −84.6% .014 ±.015 .002 ±.002 Figure 8: UNI computes different attributions
to explain the predictions of each model.

A.2 PRELIMINARY RESULTS ON NLP

Table 8: Faithfulness: L2-Distance from activation patching to attribution patching results on the
residual stream (averaged over 100 samples).

UNI Random

Pythia-1b-v0 3.12 6.64

GPT2-medium 15.26 35.00

Llama-3.2-1B 5.25 10.17

We extend the testing of our method to the case of Natural Language Processing (NLP). We choose
to test the application of UNI in the general framework of generative models (which includes
classification models), and attribution of not only inputs but more generally activations. Activation
patching (Heimersheim & Nanda, 2024) is one of the most widely used technique in Mechanistic
Interpretability, and more generally to study the properties of LLMs’ internals (Vig et al., 2020; Meng
et al., 2023; Wang et al., 2022; Feng & Steinhardt, 2024; Cunningham et al., 2023; Stolfo et al., 2023;
Hanna et al., 2023). This attribution method consists in analyzing a model’s output variation after
replacing its internal activations, following the equation:

AACT
e (x) = F (x|e = e(x′))− F (x) (4)

where e denotes one activation in the model, x′ a chosen baseline, and F a function of the model’s
output (usually the logit value of the maximum probability token of the model run on x).
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Figure 9: Visual comparison of attribution results for Activation vs. Attribution patching, with UNI
versus Random baselines, on Pythia-1b-v0. Each cell shows the logit variation obtained by patching
at a specific token and layer the residual stream of our baseline with the original activation.

Unfortunately activation patching is computationally costly, especially for purposes such as circuit
discovery (Conmy et al., 2023). One of the main alternatives that solves the scalability problem
is attribution patching (Nanda, 2023; Syed et al., 2023), which computes a first order Taylor
approximation of Equation 4:

AATTR
e (x) = (e(x)− e(x′))T∇eF (x′) (5)

for which the attributions for all of the activations can be computed at the same time (no patching of
one single activation is performed). Despite its scalability, attribution patching suffers from a lack
of faithfulness for causal interventions, mainly due to saturation and lack of linearity of the studied
dependencies.

The analogy with integrated gradients seems quite striking, and indeed two recent works (to our
knowledge) have tried to investigate the use of IG for more faithful attribution patching. While Marks
et al. (2024) applies a very computationally complex version of such a method to small models,
Hanna et al. (2024) proves the potential of IG-based attribution patching, while showing it still gets
outperformed by activation patching.

We here provide a new UNI-based attribution method algorithm outputting faithful attributions while
maintaining the scalability advantage of attribution patching. Mainly, we apply Algorithm 1 to
compute a baseline x′ that is then used to compute Equation 1:

AUNI-ATTR
e (x) = (e(x)− e(x′))T∇eF (UNI(x)) (6)

where we take x to be the embedding of the input, to allow for continuous operations on it. Considering
the known high faithfulness of activation patching (Hanna et al., 2024), we approximate faithuflness
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of attributions computed from a baseline, as the L2-distance between these attributions and the
activation patching ones. The dataset used is a subset of 100 counterfactual prompts taken from
Meng et al. (2023), and three different models are tested: Pythia-1b-v0 (Biderman et al., 2023),
GPT2-medium (Radford et al., 2019) and Llama-3.2-1B (Dubey et al., 2024). The results can be seen
in Table 8, and visuals in Figure 9. Note that no fine-tuning of UNI hyperparameters has been done,
so that we expect even better results when adapting for each models. Unsurprisingly, decoding the
baselines by shortest distance to the rows of the embedding matrix yields the same input, and a direct
decoding of the perturbation δ doesn’t provide any interesting information.

A.3 ADDITIONAL VISUALISATIONS

We supplement the main text with visualisations of the UNI baseline, attributions and path features
(properties, stability and robustness). We additionally include figures elucidating the colour, texture
and frequency biases post-hoc imposed by path attribution methods. From Figure 10, we observe the
stability of UNI path features: our attributions can be reliably and efficiently computed with Riemann
approximation. In Figures 11, 12 and 13, we present visualisations on ImageNet-C, highlighting
how static choices of baselines may bias the path-attribution procedure, leading to null or noisy
explanations. UNI does not impose additional post-hoc assumptions that are alien to the model’s
decision function. Furthermore, we present qualitative comparisons of attribution results of pre-
trained models on the ImageNet-1K test set, in Figures 14, 15, 16, 17, 18 and 19. UNI attributions
are visibly better localised and more semantically meaningful. Finally, we visualise the consistent,
geodesic paths of monotonically increasing output confidence, discovered by UNI. As seen from
Figures 20, 21, 22, 23, 24 and 25, while other path attribution methods might encounter extrema and
turning points along the interpolation path from baseline to input, UNI’s path features are monotonic
and preserve the crucial completeness property on which the path attribution framework depends.

Figure 10: Comparison of attribution maps computed by Integrated Gradients and UNI, for a pre-
trained ResNet-18 on the ImageNet-1K test set. UNI occludes and unlearns predictive input features;
reliably localises predictive image regions; can be efficiently computed with only 1 Riemann step.
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Figure 11: Colour bias: When an image’s brightness or saturation is altered, IG with a black baseline
fails to identify dark features, such as the wings of the butterfly (R1) or black jacket (R3).

Figure 12: Texture bias: Using a blurred baseline for IG leads to a smoothness assumption in image
texture, which leads to missingness in attribution when the input is also gaussian or defocus blurred.

Figure 13: Frequency bias: A gaussian noised baseline for IG renders it vulnerable to high-frequency
corruptions. Adding gaussian or shot noise to the image yields unmeaningful, noisy attributions.
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Figure 14: Comparing attributions (ResNet-18): UNI attributions demonstrate higher saliency, fidelity
and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 15: Comparing attributions (EfficientNet-v2-small): UNI attributions demonstrate higher
saliency, fidelity and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 16: Comparing attributions (ConvNeXt-Tiny): UNI attributions demonstrate higher saliency,
fidelity and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 17: Comparing attributions (VGG-16-bn): UNI attributions demonstrate higher saliency,
fidelity and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 18: Comparing attributions (ViT-B_16): UNI attributions demonstrate higher saliency, fidelity
and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 19: Comparing attributions (Swin-Transformer-Tiny): UNI attributions demonstrate higher
saliency, fidelity and faithfulness relative to conventional baselines on the ImageNet test set.
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Figure 20: Comparing paths (ResNet-18): UNI discovers geodesic paths of monotonically increasing
output confidence, preserving the completeness property required for robust attributions.
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Figure 21: Comparing paths (EfficientNet-v2-small): UNI discovers geodesic paths of monotonically
increasing output confidence, preserving the completeness property required for robust attributions.
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Figure 22: Comparing paths (ConvNeXt-Tiny): UNI discovers geodesic paths of monotonically
increasing output confidence, preserving the completeness property required for robust attributions.
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Figure 23: Comparing paths (VGG-16-bn): UNI discovers geodesic paths of monotonically
increasing output confidence, preserving the completeness property required for robust attributions.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 24: Comparing paths (ViT-B_16): UNI discovers geodesic paths of monotonically increasing
output confidence, preserving the completeness property required for robust attributions.
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Figure 25: Comparing paths (Swin-Transformer-Tiny): UNI discovers geodesic paths of
monotonically increasing output confidence, preserving the completeness property required for
robust attributions.
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