
1000FPS+ Novel View Synthesis from End-to-End Opaque Triangle
Optimization

Zhiwen Yan Weng Fei Low Tianxin Huang Gim Hee Lee
Department of Computer Science, National University of Singapore

yan.zhiwen@u.nus.edu wengfei.low@comp.nus.edu.sg {huangtx, gimhee.lee}@nus.edu.sg

High Compatibility Very Fast Rendering Downstream Applications

1000FPS+ 60FPS Relighting, Material Editing,
Physics Simulation, Particle Effects…

End-to-End Training

1080P OpenGL<1h Training

Custom Differentiable
Renderer

Unity WebGL

…

Figure 1. Our end-to-end opaque triangle optimization (OTO) method with a custom differentiable renderer demonstrates high compat-
ibility and very fast rendering across desktop and mobile platforms. Additionally, OTO models are natively supported by conventional
graphics engines, enabling a wide range of downstream applications.

Abstract

Recent implicit and primitive-based radiance field meth-
ods, such as NeRF and 3DGS, have demonstrated impres-
sive capabilities in novel view synthesis from multi-view im-
ages. However, their custom representations are often in-
compatible with conventional graphics pipelines, limiting
their application in areas like editing, relighting, physics
simulation, and particle effects. Additionally, their volume
rendering approach requires alpha-blending multiple col-
ors per pixel, which slows down rendering. Traditional dif-
ferentiable rendering methods, while offering higher com-
patibility and speed, rely on known mesh topology, mak-
ing them unsuitable for complex scene-level reconstruction.
To address these limitations, we introduce a novel end-to-
end optimization process of disjoint opaque triangles, na-
tively compatible with standard graphics engines for a wide
range of applications. To enable gradient-based optimiza-
tion over the highly non-differentiable rasterization process,
we employ a 2D SDF approximation and a two-layer oc-
clusion approximation. We also incorporate density con-
trols to ensure detailed and complete scene reconstructions.
Our paper tackles the challenging end-to-end optimization
of scene-level novel view synthesis with opaque representa-
tion only. Our approach achieves over 1000 FPS rendering
on a single desktop GPU, providing high compatibility and

similar novel view synthesis quality to existing methods.

1. Introduction
Recent advancements in radiance fields have significantly
improved rendering quality and speed for novel view syn-
thesis from multi-view images. Neural Radiance Fields
(NeRF) methods [1, 30, 32] have been widely adopted to
model 3D scenes with implicit neural representations us-
ing multi-layer perceptrons (MLPs). Through differentiable
volumetric rendering, these 3D implicit representations can
be optimized with 2D image supervision. However, the
need for a large number of samples per image has limited
rendering speed. To address this, 3D Gaussian Splatting
(3DGS) [19] was introduced, replacing the implicit rep-
resentation with a primitive-based approach that directly
splats semi-transparent 3D Gaussian primitives onto the im-
age plane to achieve faster rasterization.

Despite their strengths, neither implicit representations
nor 3D Gaussian primitives are natively compatible with
conventional graphics engines, which restricts their appli-
cability in content creation pipelines. This incompatibil-
ity limits support for essential downstream applications,
including mobile device compatibility, relighting, physics
simulation, and particle effects. Some two-stage baking
methods [41, 54] attempt to bridge this gap by converting
implicit or 3D Gaussian representations into mesh, compat-

Ground Truth NeRF2Mesh

NeuManifold OTO (Ours)

Figure 2. Comparison with two-stage baking methods, highlight-
ing the superior detail-preserving capability of OTO.

ible with standard graphics engines. However, these two-
stage baking approaches tend to lose fine structural details
due to conversion resolution limitations, as illustrated in
Fig. 2.

On the other hand, differentiable rendering algorithms
have been developed to directly optimize mesh vertex po-
sitions and attributes, enabling the recovery of shape and
surface properties from images. A key limitation of these
methods, however, is their inability to scale effectively to
scene-level reconstruction. Most differentiable rendering
approaches [8, 9, 18, 25] rely on a known mesh topology,
which is practical only for single objects. Recent methods
[14, 21, 40] attempt to eliminate the topology requirement
using techniques like deep marching cubes and tetrahedra,
but these approaches are still limited to object-level recon-
struction due to their resource-intensive dense grid design.

To address the compatibility and speed limitations of ra-
diance field methods while avoiding the detail loss com-
mon in two-stage approaches, we introduce opaque trian-
gle optimization (OTO), a novel representation for end-to-
end optimization. Inspired by differentiable rendering tech-
niques, OTO optimizes disjoint opaque triangles, breaking
free from the constraints of fixed-topology meshes. The tri-
angles are initialized from a sparse point cloud generated by
structure-from-motion (SfM) and undergo automatic den-
sity control to enhance scene detail and completeness. This
approach enables end-to-end optimization, producing mod-
els that are directly compatible with conventional graphics
engines and support various downstream applications. To
facilitate gradient calculation during the non-differentiable
rasterization process, we employ a 2D SDF approximation
and a two-layer occlusion approximation. Evaluated on
the MipNeRF-360 [1] dataset, our algorithm achieves sim-
ilar rendering quality, over 1000 FPS rendering speed, and
seamless compatibility with conventional graphics engines
for various downstream applications.

2. Related Works

2.1. Radiance Fields for Novel View Synthesis

Neural Radiance Fields (NeRF) [31] and various enhance-
ments [3, 5, 17, 20, 24, 32, 38, 46, 55] emerged in the recent
years with significant success in performing 3D reconstruc-
tion and novel view synthesis. These works represent ra-
diance fields with multilayer-perceptrons (MLPs)[17, 31],
grid structures[24, 55], or both[3, 32, 38]. Some exten-
sions are also introduced for dynamic scene[4, 13, 34–
36, 51], specular scenes[16, 44, 51], anti-aliasing[3, 17],
semantics[6] and surface reconstruction[46, 53].

3D Gaussian Splatting(3DGS)[19] was introduced later
to use 3D Gaussian primitives for scene representation. Its
fast splatting algorithm surpasses the sample-based method
used in NeRFs in terms of rendering efficiency while main-
taining high rendering quality. Many follow-up works
were introduced for improved quality[27, 52, 56], dynamic
scenes[28, 29, 49], compression[12] and more[7].

Despite the excellent novel view synthesis quality of
NeRF and 3DGS methods, they all rely on their own custom
representation and rendering pipeline. Unlike mesh models,
they do not natively support conventional graphics engines,
limiting their rendering speed and downstream compatibil-
ity. Some works [10, 15, 22] attach a neural texture or 3D
Gaussians to an optimized mesh. They often provide geom-
etry editing capability, but the rendering pipeline is still not
natively compatible with conventional graphics engines.

2.2. Mesh Baking from Radiance Fields

To address the incompatibility issue discussed earlier, sev-
eral works [11, 23, 37, 41] have explored two-stage meth-
ods that involve baking or distilling a radiance field into a
mesh model. These approaches typically involve training a
NeRF or 3DGS model [7], followed by mesh extraction us-
ing techniques like marching cubes [26] or other mesh ex-
traction algorithms. The extracted mesh’s attributes, includ-
ing vertex positions and texture colors, are often fine-tuned
to improve rendering quality. Some methods [11] further
simplify the mesh to reduce memory usage and enhance
rendering efficiency.

However, the primary drawback of these two-stage meth-
ods is the loss of detail during the extraction phase. NeRF
and 3DGS are highly effective at representing fine struc-
tures in a scene due to their flexible, topology-free nature.
Converting these representations into a mesh format makes
it challenging to retain intricate details, as meshes have lim-
ited resolution and tend to impose smoothness constraints
during extraction. While the rendering of the resultant mesh
is typically very fast, it often comes at the cost of overly
smoothed images.

Sparse Point Cloud OTO Initialization Final Representation

Custom Differentiable
Renderer

Very Fast Rendering

Lighting & Material Editing

Physics Simulation

Particle Effects

2D SDF Approx. 2-Layer Occlusion Approx.

� =−�(푆��)�1 � = �1�1 + (1 − �1)�2�2

Native Support

Spliting

Pruning

Insertion

Coverage-Based Density Control

��,� = �,�∈���,�(�, �)

Vertex Positions
� ∈ ℝ�×3×3

Vertex Colors
� ∈ ℝ�×3×3

Spherical Harmonics
� ∈ ℝ�×�

No Topology
No Semi-Transparency

3D Representation

Figure 3. Our OTO representation, parameterized by vertex positions, colors, and spherical harmonics, is initialized from a sparse point
cloud. Leveraging 2D SDF approximation, two-layer occlusion approximation, and coverage-based density control, OTO is optimized
using photometric rendering loss and our custom differentiable rendering pipeline. The resulting model natively supports various graphics
engines, downstream applications, and enables ultra-fast rendering.

2.3. Reconstruction using Differentiable Rendering

Many works have explored the direct optimization of ex-
plicit mesh representations through differentiable render-
ing. Some methods initialize a spherical or cubic mesh with
a fixed topology for optimization [8, 9, 18, 25, 45], while
more recent approaches introduce deep marching cubes
or tetrahedra to overcome the limitations of fixed topol-
ogy [14, 21, 40]. These techniques optimize mesh ver-
tices, colors, and sometimes materials and lighting condi-
tions through a differentiable rendering pipeline. However,
a common limitation of these methods is their focus on ob-
ject reconstruction, making them less suitable for complex
scenes. Acquiring the topology of an intricate scene be-
fore optimization is often infeasible, and performing deep
marching cubes or marching tetrahedra at high enough reso-
lutions to capture scene details can be computationally pro-
hibitive. Consequently, directly optimizing a highly dis-
crete representation, like a mesh, for complex scenes re-
mains largely unexplored.

In contrast, our proposed OTO representation addresses
these limitations by decomposing the mesh into disjoint,
opaque triangle primitives. With carefully designed approx-
imations and density control, OTO combines the compati-
bility advantages of mesh representations with the ability to
preserve fine details for novel view synthesis, overcoming
the constraints of fixed topology in complex scene recon-
struction.

3. Our Method

3.1. Differentiable Rendering

Following the approach of existing novel view synthesis
methods, we render our 3D representation into a 2D im-
age in a forward pass, then apply a backward pass using the
photometric 2D loss to update the OTO. We utilize only the

mean squared error, defined as LMSE = ||Ī − I|| between
ground truth Ī and rendered image I . To ensure that the ex-
ported OTO model is compatible with conventional graph-
ics engines, we design the forward pass to closely mimic
the traditional graphics pipeline, while the backward pass
approximates the gradient.

Representation Our OTO representation consists of a set
of N disjoint opaque triangles, parameterized by vertex po-
sitions V ∈ RN×3×3, vertex diffuse colors C ∈ RN×3×3,
and triangle view-dependent color parameters S ∈ RN×M .
Each triangle has 3 vertex position XY Z, 3 vertex dif-
fuse color RGB, and M view-dependent color parameters.
In differentiable rendering, view-dependent colors are typ-
ically modeled with various lighting and material parame-
ters. However, for scene-level reconstruction with complex
and unknown lighting conditions, we adopt a simple spher-
ical harmonics function instead.

The OTO initialization process begins with a sparse
point cloud generated by COLMAP Structure-from-Motion
(SfM)[39] similar to 3DGS[19]. One triangle is spawned
for each point, with its vertex diffuse color taking the point
color and the view-dependent parameters initialized with
zeros. To determine the exact position of the three ver-
tices, we first estimate the surface normal of each point
using Open3D[58], and the size of the triangle using the
nearest neighbor distance. A maximum triangle size limit
is imposed based on its estimated image coverage on the
nearest camera to prevent large floaters from covering the
camera. For unbounded scenes, we incorporate a skybox,
represented by a six-faced cube with each face subdivided
into a 50 × 50 array of triangles. While the colors of the
skybox triangles are optimized during training, their vertex
positions remain fixed. Additional details on the initializa-
tion stage can be found in the supplementary material.

� = �1
� = �1
��
�� = 0

Forward

Backward Approx.

Backward Grad.

� = �1
� = �1�1 + (1 − �1)�2�2
��
�� =

��1
�� (�1 −�2)

�1 �2

�3

�1 �2

�3

��
��1

��
��2

�1 �2

�3

� = �1
� = �1
��
�� = 0

�1 �2

�3

� = �1
� =−�(푆��)�1

��
�� =

��
�� ⋅

��
�푆�� ⋅

�푆��
��

��
��1

��
��2

2D SDF Approx. 2-Layer Occlusion Approx.w/o Approx. w/o Approx.

a) b)

Figure 4. An illustration of gradient estimation using our (a) 2D
SDF approximation and (b) two-layer occlusion approximation.

Vertex Processing Vertex processing is the first step in
the rendering pipeline, converting 3D triangle vertices into
their 2D projections. Our forward pass projects 3D vertex
positions to 2D and evaluates the vertex color based on the
current camera direction. Specifically, the 2D vertex posi-
tion and depth Vi,j

2D = {xi,j , yi,j , zi,j} of triangle i and
vertex j are calculated by transforming 3D vertex position
Vi,j using camera extrinsics [R|t] and intrinsics K. The 2D
view-dependent color Ci,j

2D = Ci,j + sh(Si,Di), where sh
denotes the spherical harmonics function and Di is the di-
rection from camera center to the triangle center. To reduce
the parameter count, we model each triangle with a uniform
view-dependent appearance due to their small size. All op-
erations in the vertex processing step are differentiable, so
no approximation is required in the backward pass.

Fragment Interpolation Fragments are potential pixels.
Fragment interpolation calculates fragment attributes based
on vertex attributes Vi,1:3

2D ,Ci,1:3
2D and pixel position {u, v}.

We employ the barycentric interpolation but adapt it to a
clamped version to handle pixels outside the triangle, which
are necessary for the backward pass. The adjusted barycen-
tric weight b̂j is computed using the original value bj of the
fragment with respect to the triangle:

b̂j = max(bj , 0)/

3∑
j̄=1

max(bj̄ , 0). (1)

Using these weights, the fragment position and colors
are interpolated as Vi,u,v

frag =
∑3

j b̂jV
i,j
2D and Ci,u,v

frag =∑3
j b̂jC

i,j
2D.

Rasterization Rasterization is one of the most challeng-
ing aspects of scene optimization due to its inherently non-
differentiable nature. As illustrated in Fig. 4, a pixel takes
the color of the triangle fragment if and only if the frag-
ment lies within the triangle, and is the nearest fragment to
the camera among all other fragments at that pixel location.
This can be written as:

Iu,v =

N∑
i=1

is inside(xi, yi, u, v)

· is nearest(zi,u,vfrag) ·C
i,u,v
frag.

(2)

As both the is inside() and is nearest() functions take
either value 1 or 0, they are discrete and non-differentiable.
The vertex positions of the triangle receive no gradient and
the shape cannot be updated.

To enable the gradient-based optimization of OTO, we
draw inspiration from volume rendering to redefine the ras-
terization process as:

Iu,v =

N∑
i=1

αi ·Ci,u,v
frag ·

i−1∏
k=1

(1− αk) (3a)

αi =− step(SDF (xi, yi, u, v)), (3b)

with an “opacity” value α and triangles i ∈ {1 : N} sorted
by depth. Unlike NeRF or 3DGS, our opaque triangles only
have opacity values of 1. However, we introduce this value
calculated with a 2D signed distance function (SDF) and
a step function for later use. The 2D SDF function is de-
fined as SDF (xi, yi, u, v) = d · s, where d is the short-
est distance from fragment (u, v) to the triangle boundary,
and s ∈ {−1,+1} indicates whether the fragment is inside
(s = −1) or outside (s = +1) the triangle

During the backward pass, we approximate the rasteri-
zation equation to:

Iu,v ≈ α1 ·C1,u,v
frag + (1− α1) · α2 ·C2,u,v

frag (4)

Only the nearest triangle (i = 1) covering or close to the
pixel, and the second nearest triangles (i = 2 containing
this pixel location are considered, forming a two-layer ap-
proximation to simplify occlusion as shown in Fig. 4b. Al-
though the “opacity” value α for opaque triangles is al-
ways 1, this allows us to calculate the gradient ∂Iuv

∂α1
=

C1,u,v
frag − α2 · C2,u,v

frag taking occlusion into account. Intu-
itively, this pushes the first-layer triangle to expand if its
color is closer to the ground truth than that of the second-
layer triangle, or to shrink otherwise.

To approximate the hard step function, we use a soft sig-
moid function defined as σ(x) = (1+exp(−τ ·x))−1, with
temperature τ , as shown in Fig. 4a:

α1 ≈ −σ(SDF (x1, y1, u, v), τ). (5)

This provides a ”spread” around the triangle boundaries,
with the scale controlled by temperature τ , allowing all
nearby fragments to receive gradients. Empirically, We find
a higher temperature τ for a shaper sigmoid function and a
more accurate approximation results in better quality.

By replacing the is inside and is nearest functions
with the proposed approximation, the forward pass remains
unchanged, while the backward pass enables gradient-based
optimization of vertex positions and triangle shapes. To val-
idate the effectiveness of this approach, we include a 2D
example where a random image is approximated using uni-
formly initialized opaque triangles. As shown in Fig. 5, the

GT

GT

Init 5000 Triangles

Init 30000 Triangles

10 iter

10 iter

50 iter

50 iter

200 iter

200 iter

Figure 5. An example of fitting a 2D image using our OTO method
with the proposed approximations.

triangles quickly adjust to closely resemble the target im-
age, capturing fine details within seconds.

Additional Rendering Details To mitigate aliasing ef-
fects for small triangles, we apply super-sampling anti-
aliasing (SSAA) with a factor of 2. To prevent large tri-
angles from slowing down the rendering process for the en-
tire image, we implement tiled rendering, dividing triangles
into smaller 16× 16 tiles before fragment processing. Dur-
ing tiling, we also add a small margin around each triangle
to capture pixels outside the triangle, which are required for
the backward pass. The margin size is determined by the
temperature of the sigmoid function used for the 2D SDF.

3.2. Density Control

The initial point cloud generated by structure-from-motion
is often sparse, incomplete, or contains errors, necessitat-
ing the addition and removal of certain primitives—similar
to the approach used in 3DGS [19]. To address this, we
propose three types of density control: splitting, pruning,
and insertion. Leveraging the characteristics of our opaque
representation, we introduce an efficient, intuitive coverage-
based density control method. This approach evaluates the
pixel coverage of each triangle at predetermined intervals
during training, allowing us to dynamically adjust the den-
sity by adding, removing, or refining triangles as needed.

Splitting A triangle is split if it appears too large on the
image or covers a region with high color variation. Un-
like semi-transparent primitives, our opaque triangles allow
each pixel to be directly associated with a specific triangle.
The area Ai,I for a triangle i on an image I can be eas-
ily calculated by counting the pixel rendered by the triangle
Ai,I =

∑
u,v∈I 1i,I(u, v), where 1i,I(u, v) indicates trian-

gle i is the nearest triangle covering pixel (u, v) on image
I . The coverage color variation is defined as the variation
of all ground truth pixel colors Îu,v covered by a triangle
Vi,I = var({Îu,v,∀(u, v) ∈ I ∧ 1i,I(u, v)}). A trian-
gle is split if its highest coverage count or average cover-
age color variation across all training images exceeds a per-
centile threshold. During splitting, two new triangles are
formed to replace the original one using the mid-point at
the longest edge as an additional vertex.

Pruning A triangle should be pruned if it appears too
small in the image or has extremely high error. Since
opaque triangles do not have an opacity parameter, some tri-
angles may become very small but never fully disappear. To
avoid aliasing artifacts and performance overhead, any tri-
angle whose maximum coverage area Ai,I across all images
falls below a certain threshold will be pruned. Additionally,
some floater triangles may be difficult to optimize due to
incorrect initialization position. We detect these triangles
using the coverage error Ei,I =

∑
u,v∈I(Îu,v − Iu,v)

2 ·
1i,I(u, v) and remove those with coverage error above a
certain percentile threshold.

Insertion To ensure scene completeness, additional trian-
gles are inserted. Some pixels covered by the skybox retain
high error values even after many optimization iterations,
indicating that they may belong to the foreground rather
than the distant background. For such pixels, we search
within a W ×W 2D window on the training image to find
pixels covered by a foreground triangle with a similar color
in the ground truth training image. A new triangle, match-
ing this color, is then inserted along the ray direction of the
pixel and positioned at the depth of the selected foreground
triangle. Intuitively, this duplicates the foreground triangle
to fill up the hole.

4. Experiments

In this section, we present both qualitative (Fig. 6) and
quantitative (Tab. 1) comparisons between our proposed
OTO method and four categories of existing methods: neu-
ral rendering methods, mesh geometry with neural texture
methods, two-stage baking methods, and end-to-end mesh
optimization methods. Each category showcases unique
strengths and weaknesses, and we analyze them individu-
ally to highlight the distinct advantages of OTO.

Given the diverse set of baseline methods, we use the
MipNeRF-360 dataset [2] as the primary benchmark for
rendering quality and speed, as it has been widely adopted
across these categories, ensuring a fair comparison. Quan-
titative metrics (including PSNR, SSIM [47], LPIPS[57],
training and rendering speed) are drawn directly from the
respective papers, while qualitative results are generated
using officially released implementations unless otherwise
specified. We also present an ablation study to evaluate the
contribution of each proposed component to the rendering
quality in Tab. 2.

To assess the compatibility of different methods with
downstream applications, we also evaluate their support
within conventional graphics engines and various practi-
cal use cases. Compatibility is marked as ”possible” when
explicit support is not reported in the original paper but
appears feasible based on our knowledge of the method’s

Ground Truth
InstantNGP 3DGS SuGaR NeRF2Mesh DiffSDF NVDiffRec OTO (Ours)

Neral Rendering
+ High Quality - Low Compatibility

- Limited FPS - Low Editability

Mesh + Neural Texture
+ High Quality - Low Compatibility
- Limited FPS - Limited Editability

2-Stage Baking
+ High FPS + High Compatibility

- Oversmooth - Loss of Detail

Object Mesh Optim.
+ High FPS + High Compatibility

- Need Topology - Fail Scene Level

Grid-Based Mesh Optim.
+ High FPS + High Compatibility

+ w/o Topology - Limited Grid Res.

End2End Triangle Optim.
+ High Quality + High FPS

+ High Compatibility + w/o Topology
+ Support Scene Level

Figure 6. A qualitative comparison of novel view synthesis results across different method categories on the MipNeRF360 dataset [2].

structure. We also demonstrate a few application visualiza-
tions in Fig. 7.

Compare with Neural Rendering Methods We select
Plenoxel [55], Instant NGP (iNGP) [32], MipNeRF [1], and
3D Gaussian Splatting (3DGS)[19] as the baselines in the
neural rendering category. Plenoxel and iNGP are opti-
mized versions of NeRF [30] that prioritize faster training
and rendering, while MipNeRF improves NeRF’s quality
at the cost of slower training and rendering. Meanwhile,
3DGS uses 3D Gaussian primitives to achieve both high-

quality and efficient training and rendering. As shown in
Tab. 1, our OTO method achieves rendering quality compa-
rable to iNGP and slightly lower than MipNeRF and 3DGS,
while providing a significant speedup, with rendering accel-
eration from 9.4× to 20, 000×.

All methods in this category rely on custom representa-
tions, making them incompatible with conventional graph-
ics engines. This limitation constrains their rendering speed
and makes downstream applications challenging. Although
some specialized approaches have been developed for neu-
ral representations, such as relighting [42] and physics sim-

MipNeRF360 Speed Applications Supported
PSNR↑ SSIM↑ LPIPS↓ Training↓ FPS(PC)↑ FPS(Mobile)↑ Engine Supported Editing Relighting Physics Particle

Plenoxel[55] 23.08 0.626 0.463 25 mins 6.79 - No no no no no
iNGP[32] 25.59 0.699 0.331 7 mins 9.43 - No no no no no
MipNeRF[1] 27.69 0.792 0.237 48 hours 0.06 - No no no no noNeural Rendering

3DGS[19] 27.21 0.815 0.214 41 mins 134 - No no no no no
MobileNeRF[10] 21.95 0.470 0.470 - 279 22.2 WebGL(Custom Script) no no no no
DLM[22] 27.54 0.843 0.212 28 mins - - No yes no no noMesh Geometry

+ Neural Texture SuGaR[15] 27.27 0.820 0.253 85 mins - - Blender(Custom Add-on) yes no no no
NeRF2Mesh[41] 22.74 0.523 0.457 41 mins - - Possible yes yes possible possible
NeuManifold[48] 24.53 0.666 0.355 - 93 - Possible yes possible yes possible
BakedSDF[54] 24.76 0.710 0.303 - 72 - Possible yes yes possible possible

Two Stage Baking/
Distillation

LTM [11] 24.66 0.695 0.290 - 212 - Possible yes yes possible possible
Diff. SDF Render[45] 3.46 0.227 0.707 41 mins - - Possible yes yes possible possible
NVDiffRec[33] 20.07 0.477 0.560 27 mins - - Possible yes yes yes possibleEnd-to-end Mesh/

Triangle Optim. OTO (Ours) 25.32 0.702 0.295 56 mins 1261 58.7
All (OpenGL, WebGL,

Unity, Unreal) yes yes yes yes

Table 1. A quantitative evaluation of rendering quality, speed, engine compatibility, and native support for downstream applications across
different method categories. Compatibility is marked as ”Possible” if not explicitly reported in the respective paper but appears feasible
based on our understanding of the method’s structure.

ulation [50], these are niche solutions requiring custom
code and environments. In contrast, our OTO method is
compatible with most existing graphics engines, allowing
it to be used seamlessly in downstream applications with-
out custom implementations. This high compatibility en-
ables OTO to integrate easily into established production
pipelines, such as those in games and films.

Compare with Mesh Neural Texture Methods Some
works use a mesh as their geometry representation and at-
tach a neural texture, rendered with custom scripts. For
instance, MobileNeRF [10] uses neural features as tex-
tures, which are later decoded by small multi-layer percep-
trons (MLPs) during rendering. In contrast, DLM [22] and
SuGaR [15] attach 3D Gaussians to the mesh surface, which
are rendered using the standard 3DGS pipeline. As shown
in Tab. 1, our OTO method achieves significantly higher
rendering quality and speed (on both PC and mobile plat-
forms) compared to MobileNeRF. While DLM and SuGaR
achieve slightly higher rendering quality than OTO due to
their reliance on the 3DGS pipeline, their rendering speed
is similarly constrained by the limitations of 3DGS.

None of these methods offer native support for conven-
tional graphics engines. MobileNeRF and SuGaR partially
address this by providing custom scripts for rendering in
WebGL and Blender, respectively, but their solutions are
mostly limited to rendering only. While DLM and SuGaR
support shape editing and animation due to their mesh-
based geometry, they still fall short in other downstream ap-
plications. Since these methods rely on the same rendering
pipeline as NeRF and 3DGS, they inherit the same compat-
ibility limitations. In contrast, our OTO method produces
opaque triangles, offering native compatibility with all con-
ventional graphics engines and supporting a broad range of
downstream applications.

Compare with Two-Stage Baking Methods Two-stage
methods begin by training a neural 3D representation,

which is then baked or distilled into a mesh format for ren-
dering and downstream applications. Unlike the previous
two categories, the final mesh produced by these two-stage
methods is typically compatible with conventional graphics
engines and downstream applications. However, the baking
process often results in a loss of details. As shown in Fig. 2
and Fig. 6, delicate structures, such as grass and leaves, ap-
pear blurry in NeRF2Mesh [41], whereas our end-to-end
OTO approach retains much of this fine detail. This preser-
vation is partly due to OTO’s flexibility, as it is not restricted
by a fixed topology, making it easier to optimize geometry
to capture small, intricate structures. Our method’s qual-
ity advantage is further reflected in Tab. 1, where OTO sur-
passes all two-stage baselines. Additionally, OTO demon-
strates the feasibility of end-to-end triangle optimization for
scene-scale novel view synthesis, avoiding the need to bake
an intermediate neural representation.

Compare with End-to-End Mesh Optimization End-
to-end mesh optimization and inverse rendering primarily
focus on object-level reconstruction. These methods are
closely related to our proposed approach in terms of render-
ing and optimization pipelines, but they lack the flexibility
of OTO, which supports complex scenes. To compare the
performance, we adapted the official code for DiffSDF [45]
and NVDiffRec [33] on the MipNeRF-360 [2] dataset.

DiffSDF is a classic differentiable rendering method that
initializes with a cubic spherical mesh and iteratively up-
dates the geometry and texture while keeping the topology
fixed. However, as shown in Fig. 6, it struggles to adapt this
simple mesh to complex scene structures, even with pro-
longed optimization, likely due to the significant topology
changes required. NVDiffRec[33], a more recent approach,
leverages differentiable marching tetrahedra, enabling op-
timization without a fixed topology. This allows it to fit
larger scenes, as illustrated in Fig. 6. However, its dense 3D
grid structure limits scalability to high resolutions, making
it challenging to achieve fine details across the entire scene.

Variable Lighting and Material

Physics Simulation
Character Interaction

Particle Effect

Figure 7. Examples of downstream application scenarios using our reconstructed model, with native support in the Unity engine[43].

PSNR↑ SSIM↑ LPIPS↓
OTO Full Model 25.32 0.702 0.295
w/o 2D SDF Approx. 17.41 0.241 0.610
w/o 2-Layer Occlusion Approx 16.02 0.276 0.609
w/o SH colors 24.90 0.682 0.317
w/o Triangle Split 24.51 0.651 0.374
w/o Triangle Pruning 24.68 0.669 0.338
w/o Triangle Insertion 24.96 0.690 0.312

Table 2. An ablation study for novel view synthesis quality on
MipNeRF360 dataset[2].

In contrast, our OTO method, producing disjoint opaque
triangles, allows for high-detail fitting without wasting
primitives in empty regions. As demonstrated in Tab. 1, ex-
isting end-to-end methods offer similar compatibility with
conventional engines as OTO but fall short in rendering
quality compared to our approach.

Downstream Applications of OTO To showcase the
compatibility of our method with conventional graphics en-
gines and related applications, we implemented several sce-
narios using our exported model in Unity[43], as shown in
Fig. 7. For a more detailed visualization, please refer to
the supplementary videos. The first row demonstrates re-
lighting and material editing capabilities by adjusting the
light source position and the material’s metallic parameters,
with realistic shadows generated automatically. The second
row illustrates physical simulation capabilities, including
object-object and object-scene collisions. We also added
a controllable character, allowing users to walk and jump
in the scene freely. The third row presents particle effects,
one of the most commonly used special effects, by setting
the model on fire wherever the effect ball is located. These
experiments highlight the ease of integrating our model into
diverse applications; each scenario required minimal effort,
with setup times of less than an hour for an experienced
game engine user.

5. Limitations

The 2D nature of triangle primitives in our OTO method
leads to limited 3D view consistency. Unlike volumetric
representations, such as NeRF [36] and 3DGS [19], small
2D triangles may become nearly invisible when viewed
from angles parallel to their surfaces. We observe that
triangles can sometimes hide themselves to mimic view-
dependent effects, such as reflections. Distant regions with
fewer training view angles have lower quality compared to
central regions with more diverse training views.

Additionally, the geometry of our presentation is not ex-
plicitly constrained to maximize the novel view synthesis
performance. Although this is not a serious problem for
most applications, as shown in the supplementary video and
Fig. 7, high-fidelity physics simulation and relighting might
be affected by the unconstrained surface normal. Supervi-
sion from normal estimation can mitigate this issue, but it is
beyond the novel view synthesis scope of this paper.

6. Conclusion

We introduced OTO, an end-to-end scene-level novel view
synthesis method that is natively compatible with conven-
tional graphics engines and downstream applications. To
address the challenges of the non-differentiable rasteriza-
tion pipeline, we employed 2D SDF and two-layer occlu-
sion approximations. We implemented coverage-based den-
sity control to achieve high-detail, complete reconstruc-
tions. Our results demonstrates significantly faster render-
ing speeds and superior compatibility compared to various
novel view synthesis methods, while preserving fine details.

Acknowledgement. This work is supported
by the Agency for Science, Technology and
Research (A*STAR) under its MTC Pro-
grammatic Funds (Grant No. M23L7b0021).

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 1, 2, 6, 7

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 5, 6, 7, 8

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. ICCV, 2023. 2

[4] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. CVPR, 2023. 2

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 2

[6] Hanlin Chen, Chen Li, Mengqi Guo, Zhiwen Yan, and
Gim Hee Lee. Gnesf: Generalizable neural semantic fields.
Advances in Neural Information Processing Systems, 36:
36553–36565, 2023. 2

[7] Hanlin Chen, Chen Li, and Gim Hee Lee. Neusg: Neural im-
plicit surface reconstruction with 3d gaussian splatting guid-
ance. arXiv preprint arXiv:2312.00846, 2023. 2

[8] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in neural information processing
systems, 32, 2019. 2, 3

[9] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang,
Clement Fuji Tsang, Sameh Khalis, Or Litany, and Sanja Fi-
dler. DIB-R++: Learning to predict lighting and material
with a hybrid differentiable renderer. In Advances in Neural
Information Processing Systems (NeurIPS), 2021. 2, 3

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In The Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 2, 7

[11] Jaehoon Choi, Rajvi Shah, Qinbo Li, Yipeng Wang, Ayush
Saraf, Changil Kim, Jia-Bin Huang Dinesh Manocha, Suhib
Alsisan, and Johannes Kopf. Ltm: Lightweight textured
mesh extraction and refinement of large unbounded scenes
for efficient storage and real-time rendering. In CVPR, 2024.
2, 7

[12] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, De-
jia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps,
2023. 2

[13] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.
Fast dynamic radiance fields with time-aware neural voxels.
In SIGGRAPH Asia 2022 Conference Papers, 2022. 2

[14] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning deformable

tetrahedral meshes for 3d reconstruction. Advances in neural
information processing systems, 33:9936–9947, 2020. 2, 3

[15] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. CVPR, 2024. 2, 7

[16] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. Nerfren: Neural radiance fields with reflec-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 18409–
18418, 2022. 2

[17] Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao,
Xiao Liu, and Yuewen Ma. Tri-miprf: Tri-mip represen-
tation for efficient anti-aliasing neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 19774–19783, 2023. 2

[18] Krishna Murthy Jatavallabhula, Edward Smith, Jean-
Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev,
Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja
Fidler. Kaolin: A pytorch library for accelerating 3d deep
learning research. arXiv preprint arXiv:1911.05063, 2019.
2, 3

[19] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1, 2, 3, 5, 6, 7, 8

[20] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. Nerfacc: Efficient sampling accelerates nerfs.
arXiv preprint arXiv:2305.04966, 2023. 2

[21] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 2, 3

[22] Ancheng Lin and Jun Li. Direct learning of mesh and
appearance via 3d gaussian splatting. arXiv preprint
arXiv:2405.06945, 2024. 2, 7

[23] Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang,
Sivabalan Manivasagam, and Raquel Urtasun. Neural scene
rasterization for large scene rendering in real time. In The
IEEE International Conference on Computer Vision (ICCV),
2023. 2

[24] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 2

[25] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 7707–7716, 2019. 2, 3

[26] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph., 21(4):163–169, 1987. 2

[27] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin
Wang, Dahua Lin, and Bo Dai. Scaffold-gs: Structured 3d
gaussians for view-adaptive rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20654–20664, 2024. 2

[28] Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Ming Yang,
Xiao Tang, Feng Zhu, and Yuchao Dai. 3d geometry-aware

deformable gaussian splatting for dynamic view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024. 2

[29] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. In 3DV, 2024. 2

[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 6

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 1, 2, 6, 7

[33] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting Triangular 3D Models, Materials, and Light-
ing From Images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 8280–8290, 2022. 7

[34] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 2

[35] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. ACM Trans. Graph., 40(6), 2021.

[36] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. arXiv preprint arXiv:2011.13961, 2020. 2,
8

[37] Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin
Arroyo, Michael Niemeyer, Abhijit Kundu, and Federico
Tombari. Nerfmeshing: Distilling neural radiance fields into
geometrically-accurate 3d meshes. In 2024 International
Conference on 3D Vision (3DV), pages 1156–1165. IEEE,
2024. 2

[38] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 14335–
14345, 2021. 2

[39] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[40] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-
tation for high-resolution 3d shape synthesis. In Advances in
Neural Information Processing Systems, pages 6087–6101.
Curran Associates, Inc., 2021. 2, 3

[41] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Er-
rui Ding, Jingdong Wang, and Gang Zeng. Delicate textured
mesh recovery from nerf via adaptive surface refinement.
arXiv preprint arXiv:2303.02091, 2022. 1, 2, 7

[42] Marco Toschi, Riccardo De Matteo, Riccardo Spezialetti,
Daniele De Gregorio, Luigi Di Stefano, and Samuele Salti.
Relight my nerf: A dataset for novel view synthesis and
relighting of real world objects. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20762–20772, 2023. 6

[43] Unity Technologies. Unity, 2023. Game development plat-
form. 8

[44] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. CVPR, 2022. 2

[45] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Dif-
ferentiable signed distance function rendering. Transactions
on Graphics (Proceedings of SIGGRAPH), 41(4):125:1–
125:18, 2022. 3, 7

[46] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 2

[47] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004. 5

[48] Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan
Sunkavalli, Zexiang Xu, and Hao Su. Neumanifold: Neural
watertight manifold reconstruction with efficient and high-
quality rendering support. arXiv preprint arXiv:2305.17134,
2023. 7

[49] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 20310–
20320, 2024. 2

[50] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. arXiv
preprint arXiv:2311.12198, 2023. 7

[51] Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural
radiance fields for dynamic specular objects. arXiv preprint
arXiv:2303.14435, 2023. 2

[52] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee.
Multi-scale 3d gaussian splatting for anti-aliased render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 20923–
20931, 2024. 2

[53] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021. 2

[54] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,

and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. arXiv, 2023. 1, 7

[55] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2021. 2, 6, 7

[56] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 19447–
19456, 2024. 2

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 5

[58] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 3

	. Introduction
	. Related Works
	. Radiance Fields for Novel View Synthesis
	. Mesh Baking from Radiance Fields
	. Reconstruction using Differentiable Rendering

	. Our Method
	. Differentiable Rendering
	. Density Control

	. Experiments
	. Limitations
	. Conclusion

