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ABSTRACT

Textual graphs (TGs) are graphs whose nodes correspond to text (sentences or
documents), which are widely prevalent. The representation learning of TGs
involves two stages: (i) unsupervised feature extraction and (ii) supervised graph
representation learning. In recent years, extensive efforts have been devoted to
the latter stage, where Graph Neural Networks (GNNs) have dominated. However,
the former stage for most existing graph benchmarks still relies on traditional
feature engineering techniques. This motivates us to investigate the outcomes of
enhancing only the text embeddings in benchmark models. While it is anticipated
that advanced text embeddings will boost GNN performance, key questions remain
underexplored: the extent of this improvement, particularly how advanced text
features can enhance a rudimentary GNN architecture. Therefore, in this work, we
present SimTeG, a frustratingly Simple approach for Textual Graph learning that
does not innovate in frameworks, models, and tasks. We first perform supervised
parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task,
such as node classification. We then generate node embeddings using the last hidden
states of finetuned LM. These derived features can be further utilized by any GNN
for training on the same task. We evaluate our approach on two fundamental graph
representation learning tasks: node classification and link prediction. Through
extensive experiments, we show that our approach significantly improves the
performance of various GNNs, especially basic GNN baselines, on multiple graph
benchmarks. Remarkably, when additional supporting text provided by large
language models (LLMs) is included, a simple two-layer GraphSAGE trained on an
ensemble of SimTeG achieves an accuracy of 77.48% on OGBN-Arxiv, comparable
to state-of-the-art (SOTA) performance obtained from far more complicated GNN
architectures. We will release our code and generated node features soon.

1 INTRODUCTION

Textual Graphs (TGs) offer a graph-based representation of text data where relationships between
phrases, sentences, or documents are depicted through edges. TGs are ubiquitous in real-world
applications, including citation graphs (Hu et al., 2020; Yang et al., 2016), knowledge graphs (Wang
et al., 2021), and social networks (Zeng et al., 2019; Hamilton et al., 2017), provided that each entity
can be represented as text. Different from traditional NLP tasks, instances in TGs are correlated with
each other, which provides non-trivial and specific information for downstream tasks. In general,
graph benchmarks are usually task-specific (Hu et al., 2020), and most TGs are designed for two
fundamental tasks: node classification and link prediction. For the first one, we aim to predict the
category of unlabeled nodes while for the second one, our goal is to predict missing links among
nodes. For both tasks, text attributes offer critical information.

In recent years, TG representation learning follows a two-stage paradigm: (i) upstream: unsupervised
feature extraction that encodes text into numeric embeddings, and (ii) downstream: supervised
graph representation learning that further transform the embeddings utilizing the graph structure.
While Graph Neural Networks (GNNs) have dominated the latter stage, with an extensive body
of academic research published, the former stage surprisingly still relies on traditional feature
engineering techniques. For example, in most existing graph benchmarks (Hu et al., 2020; Yang et al.,
2016; Zeng et al., 2019), node features are constructed using skip-gram (Mikolov et al., 2013). This

1



Under review as a conference paper at ICLR 2024

intuitively limits the performance of downstream GNNs, as it fails to fully capture textual semantics,
fostering an increasing number of GNN models with more and more complex structures.

Consequently, our research aims to investigate the impact of enhancing benchmark text embeddings
exclusively. While an anticipated outcome is an improved GNN performance by introducing ad-
vanced text embeddings, key inquiries remain underexplored: the extent of this improvement, and
specifically, the potential enhancement of a basic GNN architecture by advanced text features. This
inquiry holds practical significance, as industry applications of GNN architectures are limited by
computational efficiency. To date, a notable exception is Pinsage (Ying et al., 2018), a GraphSAGE-
based recommendation system for Pinterest. If incorporating advanced text features could bypass the
necessity of using complex GNN models, it would significantly boost the application of GNNs in
industry. We take an step forwards to explore the above research questions by introducing a simple
and straightforward framework SimTeG on TGs and empirically evaluating it on two fundamental
graph tasks: node classification and link prediction. We first parameter-efficiently finetune (PEFT)
an LM on the textual corpus of a TG with task-specific labels and then use the finetuned LM to
generate node representations given its text by removing the head layer. Afterward, a GNN is trained
with the derived node embeddings on the same downstream task for final evaluation. with extensive
experiments on three prestigious graph benchmarks on node classification and link prediction, we
find several key observations:

❶ Good language modeling could generally improve the learning of GNNs on both node classification
and link prediction. We evaluate SimTeG on three prestigious graph benchmarks for either node
classification or link prediction, and find that SimTeG consistently outperforms the official features
and the features generated by pretrained LMs (without finetuning) by a large margin. Notably, backed
with SOTA GNN, we achieve new SOTA performance of 78.02% on OGBN-Arxiv. See Sec. 5.1 and
Appendix A1 for details.

❷ Incorporating advanced text features, a simple two-large GraphSAGE achieves on-par SOTA
performance on node classfication and link prediction tasks. Notably, a simple two-layer Graph-
SAGE (Hamilton et al., 2017) trained on SimTeG with proper LM backbones achieves on-par SOTA
performance of 77.48% on OGBN-Arxiv (Hu et al., 2020). To date, It achieves the top three rank on
the leaderboard, while the original result for sole GraphSAGE is ranked 62.

❸ PEFT are crucial when finetuning LMs to generate representative embeddings, because full-
finetuning usually leads to extreme overfitting due to its large parameter space and the caused fitting
ability. The overfitting in the LM finetuning stage will hinder the training of downstream GNNs with
a collapsed feature space. See Sec. 5.3 for details.

❹ SimTeG is moderately sensitive to the selection of LMs. Generally, the performance of SimTeG
is positively correlated with the corresponding LM’s performance on text embedding tasks, e.g.
classification and retrieval. In addition, the performance is not closely correlated with the number of
parameters in the LM. We refer to Sec. 5.4 for details. Based on this, we expect further improvement
of SimTeG once more powerful LMs for text embedding are available.

2 RELATED WORKS

In this section, we first present several works that are closely related to ours and further clarify several
concepts and research lines that are plausibly related to ours in terms of similar terminology.

Leveraging LMs on TGs. Focusing on leveraging the power of LMs to TGs, there are several
works that are existed and directly comparable with ours. For these works, they either focus on (i)
designing specific strategies to generate node embeddings using LMs (He et al., 2023; Chien et al.,
2021) or (ii) jointly training LMs and GNNs within a framework (Zhao et al., 2022; Mavromatis et al.,
2023). Representatively, for the former one, Chien et al. (2021) proposed a self-supervised graph
learning task integrating XR-Transformers (Zhang et al., 2021b) to extract node representation, which
shows superior performance on multiple graph benchmarks, validating the necessity for acquiring
high-quality node features for attributed graphs. Jin et al. (2023) proposed two pretraining strategies
for network-contextualized masked language modeling and masked node prediction to capture
semantics and structure information at once. Besides, He et al. (2023) utilizes ChatGPT (OpenAI,
2023) to generate additional supporting text with LLMs. For the latter mechanism, Zhao et al. (2022)
proposed a variational expectation maximization joint-training framework for LMs and GNNs to learn
powerful graph representations. Mavromatis et al. (2023) designs a graph structure-aware framework
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to distill the knowledge from GNNs to LMs. Generally, the joint-training framework requires
specific communication between LMs and GNNs, e.g. pseudo labels (Zhao et al., 2022) or hidden
states (Mavromatis et al., 2023). It is worth noting that the concurrent work He et al. (2023) proposed
a close method to ours. However, He et al. (2023) focuses on generating additional informative
texts for nodes with LLMs, which is specifically for citation networks on node classification task. In
contrast, we focus on generally investigating the effectiveness of our proposed method, which could
be widely applied to unlimited datasets and tasks. Utilizing the additional text provided by He et al.
(2023), we further show that our method could achieve now SOTA on OGBN-Arxiv. In addition to the
main streams, there are related works trying to fuse the architecture of LM and GNN for end-to-end
training. Yang et al. (2021) proposed a nested architecture by injecting GNN layers into LM layers.
However, due to the natural incompatibleness regarding training batch size, this architecture only
allows 1-hop message passing, which significantly reduce the learning capability of GNNs.

More “Related” Works. ❶ Graph Transformers (Wu et al., 2021; Ying et al., 2021; Hussain et al.,
2022; Park et al., 2022; Chen et al., 2022): Nowadays, Graph Transformers are mostly used to denote
Transformer-based architectures that embed both topological structure and node features. Different
from our work, these models focus on graph-level problems (e.g. graph classification and graph
generation) and specific domains (e.g. molecular datasets and protein association networks), which
cannot be adopted on TGs. ❷ Leveraging GNNs on Texts (Zhu et al., 2021; Huang et al., 2019; Zhang
et al., 2020): Another seemingly related line on integrating GNNs and LMs is conversely applying
GNNs to textual documents. Different from TGs, GNNs here do not rely on ground-truth graph
structures but the self-constructed or synthetic ones.

3 PRELIMINARIES

Notations. To make notations consistent, we use bold uppercase letters to denote matrices and vectors,
and calligraphic font types (e.g. T ) to denote sets. We denote a textual graph as a set G = (V, E , T ),
where V and E are a set of nodes and edges, respectively. T is a set of text and each textual item is
aligned with a node v ∈ V . For practical usage, we usually rewrite E into A ∈ {0, 1}|V|×|V|, which
is a sparse matrix, where entry Ai,j denotes the link between node vi, vj ∈ V .

Problem Formulations. We focus on two fundamental tasks in TGs: (i) node classification and
(ii) link prediction. For node classification, given a TG G, we aim to learn a model Φ : V → Y ,
where Y is the ground truth labels. For link prediction, given a TG G, we aim to learn a model
Φ : V×V → {0, 1}, where f(vi, vj) = 1 if there is a link between vi and vj , otherwise f(vi, vj) = 0.
Different from traditional tasks that are widely explored by the graph learning community, evolving
original text into learning is non-trivial. Particularly, when ablating the graphs structure, node
classification and link prediction problem are collapsed to text classification and text similarity
problem, respectively. This sheds light on how to leverage LMs for TG representation learning.

Node-level Graph Neural Networks. Nowadays, GNNs have dominated graph-related tasks. Here
we focus on GNN models working on node-level tasks (i.e. node classification and link prediction).
These models work on generating node representations by recursively aggregating features from
their multi-hop neighbors, which is usually noted as message passing. Generally, one can formulate
a graph convolution layer as: Xl+1 = Ψl(CXl), where C is the graph convolution matrix (e.g.
C = D−1/2AD−1/2 in Vanilla GCN (Kipf & Welling, 2016)) and Ψl is the feature transformation
matrix. For the node classification problem, a classifier (e.g., an MLP) is usually appended to the
output of a k-layer GNN model; while for link prediction, a similarity function is applied to the
final output to compute the similarity between two node embeddings. As shown above, as GNNs
inherently evolve the whole graph structure for convolution, it is notoriously challenging for scaling
it up. It is worth noting that evolving sufficient neighbors during training is crucial for GNNs. Many
studies (Duan et al., 2022; Zou et al., 2019) have shown that full-batch training generally outperforms
mini-batch for GNNs on multi graph benchmarks. In practice, the lower borderline of batch size
for training GNNs is usually thousands. However, when applying it to LMs, it makes the GNN-LM
end-to-end training intractable, as a text occupies far more GPU memories than an embedding.

Text Embeddings and Language Models. Transforming text in low-dimensional dense embeddings
serves as the upstream of textual graph representation learning and has been widely explored in
the literature. To generate sentence embeddings with LMs, two commonly-used methods are (i)
average pooling (Reimers & Gurevych, 2019) by taking the average of all word embeddings along
with attention mask and (ii) taking the embedding of the [CLS] token (Devlin et al., 2018). With
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Title: BERT: Pretraining of Deep 
Bidirectional Transformers for Language 
Understanding; Abstract: We introduce a 
new language representation model 
called BERT, which stands for 
Bidirectional Encoder Representations 
from Transformers. Unlike recent 
language representation models (Peters et 
al., 2018a; Rad- ford et al., 2018), 
BERT is designed to pretrain deep 
bidirectional representations from 
unlabeled text by jointly conditioning on 
both left and right context in all layers. 
As a result, the pretrained BERT model 
can be finetuned with just one additional 
output layer to create state-of-the-art 
models for a wide range of tasks, such as 
question answering and language 
inference, without substantial task-
specific architecture modifications. 

Consistent 

e.g., node classification

𝑋: text embedding

𝐴: graph structure

LM w. Lora GNN (Message Passing)

Figure 1: The overview of SimTeG. In stage 1, we train a LM with lora (Hu et al., 2022) and then
generate the embeddings X as the representation of text. In stage 2, we train a GNN on top of
the embeddings X , along with the graph structure. The two stages are guided with consistent loss
function, e.g., link prediction or node classification.

the development of pre-trained language models (Devlin et al., 2018; Liu et al., 2019), particular
language models (Li et al., 2020; Reimers & Gurevych, 2019) for sentence embeddings have been
proposed and shown promising results in various benchmarks (Muennighoff et al., 2022).

4 SIMTEG: METHODOLOGY

We propose an extremely simple two-stage training manner that decouples the training of gnn(·) and
lm(·). We first finetune lm on T with the downstream task loss:

Losscls = Lθ

(
ϕ(lm(T )),Y

)
, Losslink = Lθ

(
ϕ
(
lm(Tsrc), lm(Tdst)

)
,Y

)
, (1)

where ϕ(·) is the classifier (left for node classification) or similarity function (right for link prediction)
and Y is the label. After finetuning, we generate node representations X with the finetuned LM
ˆlm. In practice, we follow Reimers & Gurevych (2019) to perform mean pooling over the output

of the last layer of the LM and empirically find that such a strategy is more stable and converges
faster than solely taking the <CLS> token embedding as representation (Zhao et al., 2022). In the
second stage, we train gnn on (A,X) with the same task. The corresponding loss is computed by
replacing lm(T ) with gnn(A,X). The two stage is fully decoupled and one can take advantage
of any existing GNN and LM models. We illustrate the two stages in Fig. 1 and the pseudo code is
presented in Appendix A2.1.

Regularization with PEFT. When fully finetuning a LM, the inferred features are prone to overfit
the training labels, which results in collapsed feature space and thus hindering the generalization
in GNN training. Though PEFT was proposed to accelerate the finetuning process without loss of
performance, in our two-stage finetuning stage, we empirically find PEFT (Hu et al., 2022; Houlsby
et al., 2019; He et al., 2022) could alleviate the overfitting issue to a large extent and thus provide
well-regularized node features. See Sec. 5.3 for empirical analysis. In this work, We take the popular
PEFT method, lora (Hu et al., 2022), as the instantiation.

Selection of LM. As the revolution induced by LMs, a substantial number of valuable pre-trained
LMs have been proposed. As mentioned before, when ablating graph structures of TG, the two
fundamental tasks, node classification and link prediction, are simplified into two well-established
NLP tasks, text classification and text similarity (retrieval). Based on this motivation, we select LMs
pretrained for information retrieval as the backbone of SimTeG. Concrete models are selected based
on the benchmark MTEB1 considering the model size and the performance on both retrieval and
classification tasks. An ablation study regarding this motivation is presented in Sec. 5.4.

1https://huggingface.co/spaces/mteb/leaderboard
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Figure 2: The two-dimensional feature space of X-SimTeG, X-Fix, and X-OGB for OGBN-Arixv,
and OGBN-Products. X-SimTeG denotes the features generated by the finetuned LM. different
values and shapes refer to different labels on the specific dataset. The feature values are computed by
T-SNE. The LM backbone is e5-large (Wang et al., 2022).

A Finetuned LM Provides A More Distinguishable Feature Space. We plot the two-dimensional
feature space computed by T-SNE (Van der Maaten & Hinton, 2008) of X-SimTeG, X-Fix (features
generated by pretrained LM without finetuning), and X-OGB regarding labels on OGBN-Arxiv and
OGBN-Products in Fig. 2. In detail, we randomly select 100 nodes each with various labels and use
T-SNE to compute its two-dimensional features. As shown below, X-SimTeG has a significantly
more distinguishable feature space as it captures more semantic information and is finetuned on
the downstream dataset. Besides, we find that X-Fix is more distinguishable than X-OGB, which
illustrates the inner semantic capture ability of LMs. Furthermore, in comparison with OGBN-Arixv,
features in OGBN-Products is visually indifferentiable, indicating the weaker correlation between
semantic information and task-specific labels. It accounts for the less improvement of SimTeG on
OGBN-Products in Sec. 5.1.

5 EXPERIMENTS

In the experiments, we aim at answering three research questions as proposed in the introduction
(Sec. 1). For a clear statement, we split and reformat them into the following research questions. Q1:
How much could SimTeG generally improve the learning of GNNs on node classification and link
prediction? Q2: Does X-SimTeG facilitate better convergence for GNNs? Q3: Is PEFT a necessity
for LM finetuning stage? Q4: How sensitive is GNN training to the selection of LMs?

Datasets. Focusing on two fundamental tasks node classification and link prediction, we conduct
experiments on three prestigious benchmarks: OGBN-Arxiv (Arxiv), OGBN-Products (Products),
and OGBL-Citation2 (Hu et al., 2020). The former two are for node classification while the latter
one is for link prediction. For the former two, we follow the public split, and all text resources
are provided by the officials. For the latter one, OGBL-Citation2, as no official text resources are
provided, we take the intersection of it and another dataset ogbn-papers100M w.r.t. unified paper
ids, which results in a subset of OGBL-Citation2 with about 2.7M nodes. The public split is further
updated according to this subset. In comparison, the original OGBL-Citation2 has about 2.9M
nodes, which is on par with the TG version, as the public valid and test split occupies solely 2%
overall. As a result, we expect roughly consistent performance for methods on the TG version of
OGBL-Citation2 and the original one. We introduce the statistics of the three datasets in Table. A10
and the details in Appendix A2.2.

Baselines. We compare SimTeG with the official features X-OGB (Hu et al., 2020), which is
the mean of word embeddings generated by skip-gram (Mikolov et al., 2013). In addition, for
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node classification, we include another two SOTA methods: X-GIANT (Chien et al., 2021) and
GLEM (Zhao et al., 2022). Particularly, X-* are methods are different at learning node embeddings
and any GNN model could be applied in the downstream task for a fair comparison. To make things
consistent, we denote our method as X-SimTeG without further specification.

GNN Backbones. Aiming at investigating the general improvement of SimTeG, for each dataset,
we select two commonly-used baselines GraphSAGE and MLP besides one corresponding SOTA
GNN models based on the official leaderboard2. For OGBN-Arxiv, we select RevGAT (Li et al.,
2021); for OGBN-Products, we select SAGN+SCR (Sun et al., 2021; Zhang et al., 2021a); and for
ogbn-citation2, we select SEAL (Zhang & Chen, 2018).

LM Backbones. For retrieval LM backbones, we select three popular LMs on MTEB (Muennighoff
et al., 2022) leaderboard3 w.r.t. model size and performance on classification and retrieval: all-
MiniLM-L6-v2 (Reimers & Gurevych, 2019), all-roberta-large-v1 (Reimers & Gurevych, 2019), and
e5-large-v1 (Wang et al., 2022). We present the properties of the three LMs in Table. A12.

Hyperparameter search. We utilize optuna (Akiba et al., 2019) to perform hyperparameter search
on all tasks. The search space for LMs and GNNs on all datasets is presented in Appendix A2.4.

5.1 Q1: HOW MUCH COULD SIMTEG generally IMPROVE THE LEARNING OF GNNS ON NODE
CLASSIFICATION AND LINK PREDICTION?

In this section, we conduct experiments to show the superiority of SimTeG on improving the learning
of GNNs on node classification and link prediction. The reported results are selected based on the
validation dataset. We present the results based on e5-large backbone in Table. 1 and present the
comprehensive results of node classification and link prediction with all the three selected backbones
in Table A5 and Table A6. Specifically, in Table 1, we present two comparison metric ∆MLP and ∆GNN
to describe the performance margin of (SOTA GNN, MLP) (SOTA GNN, GraphSAGE), respectively.
The smaller the value is, even negative, the better the performance of simple models is. In addition,
we ensemble the GNNs with multiple node embeddings generated by various LMs and text resources
on OGBN-Arxiv and show the results in Table 2. We find several interesting observations as follows.

Observation 1: SimTeG generally improves the performance of GNNs on node classification
and link prediction by a large margin. As shown in Table 1, SimTeG consistently outperforms
the original features on all datasets and backbones. Besides, in comparison with X-GIANT, a LM
pretraining method that utilizes the graph structures, SimTeG still achieves better performance on
OGBN-Arxiv with all backbones and on OGBN-Products with GraphSAGE, which further indicates
the importance of text attributes per se.

Observation 2: (X-SimTeG + GraphSAGE) consistently outperforms (X-OGB + SOTA GNN)
on all the three datasets. This finding implies that the incorporation of advanced text features can
bypass the necessity of complex GNNs, which is why we perceive our method to be frustratingly
simple. Furthermore, when replacing GraphSAGE with the corresponding SOTA GNN in X-
SimTeG, although the performance is improved moderately, this margin of improvement is notably
smaller compared to the performance gap on X-OGB. Particularly, we show that the simple 2-layer
GraphSAGE achieves comparable performance with the dataset-specific SOTA GNNs. Particularly, on
OGBN-Arxiv, GraphSAGE achieves 76.84%, taking the 4-th place in the corresponding leaderboard
(by 2023-08-01). Besides, on OGBL-Citation2, GraphSAGE even outperforms the SOTA GNN
method SEAL on Hits@3.

Observation 3: With additional text attributes, SimTeG with Ensembling achieves new SOTA
performance on OGBN-Arxiv. We further demonstrate the effectiveness of SimTeG by ensembling
the node embeddings generated by different LMs and texts. For text, we use both the original
text provided by Hu et al. (2020) and the additional text attributes4 provided by He et al. (2023),
which is generated by ChatGPT. For LMs, we use both e5-large and all-roberta-large-v1. We train
GraphSAGE or RevGAT on those node embeddings generated by various LMs and texts, and make
the final predictions with weighted ensembling (taking the weighted average of all predictions). As

2https://ogb.stanford.edu/docs/leader_nodeprop
3https://huggingface.co/spaces/mteb/leaderboard
4It is worth noting that as GPT-4 used by He et al. (2023) does not release their training recipe, we do not

know whether the arxiv papers are included during training, which may lead to a label leakage problem.
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Table 1: The performance of SOTA GNN, GraphSAGE and MLP on OGBN-Arxiv, OGBN-Products,
OGBL-Citation2, which are averaged over 10 runs (Please note the we solely train LM once to
generate the node embeddings). The results of GLEM is from the orignal paper. We bold the best
results w.r.t. the same GNN backbone and red color the smallest ∆MLP and ∆GNN.

Dataset Metric Method SOTA GNN A 2-layer Simple MLP / GNN

RevGAT MLP ∆MLP GraphSAGE ∆GNN

Arxiv Acc. (%)

X-OGB 74.01 ± 0.29 47.73 ± 0.29 25.24 71.80 ± 0.20 3.40
X-GIANT 75.93 ± 0.22 71.08 ± 0.22 4.85 73.70 ± 0.09 2.23
GLEM 76.97 ± 0.19 - - 75.50 ± 0.24 1.47

X-SimTeG 77.04 ± 0.13 74.06 ± 0.13 2.98 76.84 ± 0.34 0.20

Dataset Metric Method SOTA GNN A 2-layer Simple MLP / GNN

SAGN+SCR MLP ∆MLP GraphSAGE ∆GNN

Products Acc. (%)

X-OGB 81.82 ± 0.44 50.86 ± 0.26 30.96 78.81 ± 0.23 3.01
X-GIANT 86.12 ± 0.34 77.58 ± 0.24 8.54 82.84 ± 0.29 3.28
GLEM 87.36 ± 0.07 - - 83.16 ± 0.19 4.20

X-SimTeG 85.40 ± 0.28 76.73 ± 0.44 8.67 84.59 ± 0.44 0.81

Dataset Metric Method SOTA GNN A 2-layer Simple MLP / GNN

SEAL MLP ∆MLP GraphSAGE ∆GNN

Citation2
MRR (%) X-OGB 86.14 ± 0.40 25.44 ± 0.01 60.70 77.31 ± 0.90 8.83

X-SimTeG 86.66 ± 1.21 72.90 ± 0.14 13.76 85.13 ± 0.73 1.53

Hits@3 (%) X-OGB 90.92 ± 0.32 28.22 ± 0.02 62.70 85.56 ± 0.69 5.36
X-SimTeG 91.42 ± 0.19 80.55 ± 0.13 10.87 91.62 ± 0.87 -0.20

Table 2: The performance of GraphSAGE and RevGAT trained on OGBN-Arxiv with additional text
attributes provided by He et al. (2023). LMs for ensembling are e5-large and all-roberta-large-v1. We
select the top-3 SOTA methods from the leaderboard of OGBN-Arxiv (accessed on 2023-07-18) for
comparison and gray color our results (reported over 10 runs).

.

Rank Method GNN Backbone Valid Acc. (%) Test Acc. (%)

1 TAPE + SimTeG (ours) RevGAT 78.46 ± 0.04 78.03 ± 0.07
2 TAPE (He et al., 2023) RevGAT 77.85 ± 0.16 77.50 ± 0.12
3 TAPE + SimTeG (Ours) GraphSAGE 77.89 ± 0.08 77.48 ± 0.11
4 GraDBERT (Mavromatis et al., 2023) RevGAT 77.57 ± 0.09 77.21 ± 0.31
5 GLEM (Zhao et al., 2022) RevGAT 77.46 ± 0.18 76.94 ± 0.25

shown in Table 2, with RevGAT, we achieve new SOTA performance on OGBN-Arxiv with 78.03%
test accuracy, more than 0.5 % higher than the previous SOTA performance (77.50%) achieved by He
et al. (2023). It further validates the importance of text features and the effectiveness of SimTeG.

Observation 4: Text attributes are unequally important for different datasets. As shown
in Table 1, we compute ∆MLP which is the performance gap between MLP and SOTA GNNs.
Empirically, this value indicates the importance of text attributes on the corresponding dataset, as
MLP is solely trained on the texts (integrated with SOTA LMs) while SOTA GNN additionally takes
advantage of graph structures. Therefore, approximately, the less ∆MLP is, the more important text
attributes are. As presented in Table 1, ∆MLP on OGBN-Arxiv is solely 2.98, indicating the text
attributes are more important, in comparison with the ones in OGBN-Products and OGBL-Citation2.
This empirically indicates why the performance of SimTeG in OGBN-Products does not perform
as well as the one in OGBN-Arxiv. We show a sample of text in OGBN-Arxiv and OGBN-Products
respectively in Appendix A2.2. We find that the text in OGBN-products resembles more a bag of
words, which account for the less improvement when using LM features.

5.2 Q2: DOES X-SIMTEG FACILITATE BETTER CONVERGENCE FOR GNNS?

Towards a comprehensive understanding of the effectiveness of SimTeG, we further investigate the
convergence of GNNs with SimTeG. We compare the training convergence and the corresponding
validation performance of GNNs trained on SimTeG, X-OGB, and X-FIX, where X-FIX denotes
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Figure 3: Training convergence and validation results of GNNs with X-SimTeG, X-OGB, and
X-FIX. The LM backbone is e5-large. The learning rate and batch size are consistent.

Table 3: The training results of finetuning LM (LM stage) and further training GNN on top of derived
features (GNN stage). We compare the results of PEFT (SimTeG) with full-finetuning (X-FULL).
The LM backbone is e5-large and the GNN backbone is GraphSAGE. We bold the better results on
each comparison. ∆overfit computes (Train Acc. - Test Acc.) to measure the overfitting.

datasets Stage X_type Train Acc. Valid Acc Test Acc. ∆overfit

Arxiv
LM X-FULL 82.33 75.85 74.77 7.56

X-SimTeG 75.72 75.40 74.31 1.41

GNN X-FULL 84.39 76.73 75.28 9.11
X-SimTeG 79.37 77.47 76.85 2.52

Products
LM X-FULL 95.46 91.70 78.70 16.76

X-SimTeG 89.45 88.85 77.81 11.64

GNN X-FULL 96.42 93.18 81.80 14.62
X-SimTeG 95.37 93.57 84.58 10.79

the node embeddings generated by the pretrained LMs without finetuning. The illustration is placed
in Fig. 3. It is worth noting that we use the training accuracy on OGBN-Arxiv and OGBN-Products
to denote their convergence since we utilize label smoothing during training which make the training
loss not directly comparable on them. Based on Fig. 3, we have the following observation:

Observation 5: SimTeG moderately speeds up and stabilizes the training of GNNs. As shown
in Fig. 3, GNNs with SimTeG generally converge faster than the ones with X-OGB and X-FIX.
With SimTeG, GraphSAGE could converge within 2 epochs on OGBN-Arxiv and OGBN-Products.
In contrast, training on the features directly generated by the pretrained LMs (i.e., X-FIX) converges
much slower, even slower than one of X-OGB (possibly due to a larger hidden dimension). This
further indicates the benefits of SimTeG.

5.3 Q3: IS PEFT A NECESSITY FOR LM FINETUNING STAGE?

In this ablation study, we analyze the effectiveness of PEFT for LM finetuning stage in SimTeG.
Besides the accelerating finetuning, we also find notable contribution of PEFT to the effectiveness.
We summarize the training, validation, and test accuracy of two stages: LM finetuning stage and
GNN training stage. The results of node classification are presented in Table 3.

Observation 6: PEFT could significantly alleviate the overfitting problem during finetuning LM
and further facilitate the training of GNNs with regularized features. As shown in Table 3, due
to the excessively strong learning capacity of LMs, finetuning LMs on the downstream task causes a
severe overfitting problem. Although full-finetuning outperforms PEFT in LM stage, training GNNs

8
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Figure 4: (Left): The performance of GraphSAGE trained on SimTeG with different LM backbones
on three datasets. (Right): Comparative analysis of GNN’s performance on OGBN-Arxiv using LMs
of various sizes, indicated by the bubble size.
Table 4: The performance of Graph and MLP trained on SimTeG backed with all-roberta-large-v1 and
roberta-large, which have the same model architecture. we bold the best results for each comparison
in X-Fix and X-SimTeG. all results are reported based on 10 runs.

datasets Metric X_type X-Fix X-SimTeG

LM Backbone roberta-large all-roberta-large-v1 roberta-large all-roberta-large-v1

Arxiv Acc. MLP 61.15 ± 0.83 72.58 ± 0.25 71.55 ± 0.24 74.32 ± 0.12
GraphSAGE 72.15 ± 0.59 75.51 ± 0.23 75.48 ± 0.16 76.18 ± 0.37

Products Acc. MLP 68.14 ± 0.23 70.10 ± 0.08 78.45 ± 0.14 77.48 ± 0.19
GraphSAGE 77.65 ± 0.34 82.38 ± 0.60 83.56 ± 0.21 83.68 ± 0.32

Citation2 MRR MLP 00.20 ± 0.01 70.12 ± 0.12 63.15 ± 0.20 72.90 ± 0.14
GraphSAGE 79.71 ± 0.27 83.20 ± 0.40 84.37 ± 0.34 85.13 ± 0.73

on the derived features gains notably less improvement. In contrast, PEFT could significantly mitigate
the overfitting issue according to ∆overfit in LM finetuning stage and assist the training of GNNs with
regularized features to gain considerable improvement compared with full-finetuning.

5.4 Q4: HOW SENSITIVE IS GNN TRAINING TO THE SELECTION OF LMS?

In this experiment, we investigate the effects of the selection of LMs. In detail, we aim at answering:
Is the training of GNN sensitive to the selection of LMs? If so, what is the underlying factors? We
conduct experiments on multiple LM backbones and have the following observations.

Observation 7: GNN’s training is moderately sensitive to the selection of LMs. We select
three retrieval LMs based on their rank in MTEB leaderboard in terms of the classification and
retrieval performance. Interestingly, based on the leaderboard, the performance ranking is e5-large
> all-roberta-large-v1 > all-MiniLM-L6-v2, which is consistent with their overall performance in
left subfigure Figure 4 and Table A9. Based on the right subfigure of Figure 4, we find that the
performance of downstream GNN is not closely correlated with the LM size, but probably with
ability to generate representative text embeddings. To further validate this, we perform an ablation
study regarding the comparison between a pretrained LM and the same LM finetuned for retrieval
tasks. The results are shown in Table 4. We observe that given the same architecture, the models
specifically finetuned for retrieval tasks (all-roberta-large-v1) generally perform better on tasks of
TG representation learning.

6 CONCLUSION

In this work, we propose a frustratingly simple approach SimTeG for TG representation learning.
We show that with a parameter-efficiently finetuned LM on the same downstream task first, a simple
two-layer GraphSAGE trained on the generated node embeddings can achieve on-par state-of-the-art
(SOTA) performance on OGBN-Arxiv (77.48 %). It indicates that when incorporating advaced text
features, one can bypass the necessity of using complex GNN architectures and the combination
of LM + Simple GNN is capable of achieving satisfactory results on graph tasks including node
classification and link prediction.
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A1 MORE EXPERIMENT RESULTS

A1.1 COMPREHENSIVE RESULTS OF MAIN EXPERIMENTS

Table A5: Node Classification Accuracy of X-SimTeG on ogbn-arxiv (Arxiv) and ogbn-products
(Products). All reported results are averaged over 10 runs in the format of mean ± std. We red color
the best results and blue color the runner-ups with the same GNN backbone. ↑ (%) denotes the
improvement of X-SimTeG over the original feature X-OGB. ∆MLP and ∆GNN denotes the extreme
value difference among all methods (including MLP) and GNNs, respectively.

Datasets GNN Acc. (%) Baselines X-SimTeG

X-OGB X-GIANT GLEMa MiniLM-L6 ↑ (%) e5-large ↑ (%) roberta-large ↑ (%)

Arxiv

MLP val 49.14 ± 0.27 72.02 ± 0.16 - 71.59 ± 0.07 22.45 75.08 ± 0.09 26.66 74.80 ± 0.07 25.66
test 47.73 ± 0.29 71.08 ± 0.22 - 70.56 ± 0.09 22.83 74.06 ± 0.13 26.33 74.32 ± 0.12 26.59

GraphSAGE val 72.80 ± 0.18 74.58 ± 0.20 76.45 ± 0.05 75.92 ± 0.17 3.12 77.47 ± 0.14 4.67 76.86 ± 0.13 4.06
test 71.80 ± 0.20 73.70 ± 0.09 75.50 ± 0.24 75.14 ± 0.30 3.34 76.84 ± 0.34 5.04 76.18 ± 0.37 4.38

GAMLP val 71.49 ± 0.41 76.36 ± 0.09 76.95 ± 0.14 76.75 ± 0.11 5.26 77.90 ± 0.12 6.41 77.57 ± 0.15 6.08
test 70.61 ± 0.52 75.26 ± 0.15 75.62 ± 0.23 75.46 ± 0.17 4.85 76.92 ± 0.10 6.31 76.72 ± 0.19 6.11

SAGN val 72.74 ± 0.39 75.76 ± 0.21 - 76.84 ± 0.08 4.10 78.03 ± 0.05 5.29 77.63 ± 0.16 4.89
test 71.76 ± 0.41 74.39 ± 0.38 - 75.50 ± 0.23 3.74 76.85 ± 0.12 5.09 76.59 ± 0.17 4.83

RevGAT val 75.10 ± 0.15 76.97 ± 0.08 77.49 ± 0.17 76.86 ± 0.24 1.76 77.68 ± 0.07 2.58 76.32 ± 0.18 1.22
test 74.01 ± 0.29 75.93 ± 0.22 76.97 ± 0.19 75.96 ± 0.21 1.95 77.04 ± 0.13 3.03 75.88 ± 0.58 1.87

∆MLP/∆GNN 25.24 / 3.40 4.85 / 2.23 - 5.40 / 0.82 - 2.98 / 0.20 - 2.40 / 0.84 -

Products

MLP val 63.44 ± 0.30 89.67 ± 0.07 - 86.82 ± 0.02 23.38 88.75 ± 0.04 25.31 90.01 ± 0.03 26.57
test 50.86 ± 0.26 77.58 ± 0.24 - 72.36 ± 0.12 21.50 76.73 ± 0.44 25.87 77.48 ± 0.19 26.62

GraphSAGE val 90.03 ± 0.08 93.49 ± 0.09 93.84 ± 0.12 93.49 ± 0.08 3.46 93.57 ± 0.20 3.54 93.34 ± 0.09 3.31
test 78.81 ± 0.23 82.84 ± 0.29 83.16 ± 0.19 82.04 ± 0.57 3.23 84.59 ± 0.44 5.78 83.68 ± 0.32 4.87

SAGN+SCR val 91.83 ± 0.24 94.04 ± 0.12 94.00 ± 0.03 92.89 ± 0.07 1.06 94.12 ± 0.10 2.29 94.13 ± 0.12 2.30
test 81.82 ± 0.44 86.12 ± 0.34 87.36 ± 0.07 82.43 ± 0.40 0.61 85.40 ± 0.28 3.58 85.23 ± 0.32 3.41

∆MLP/∆GNN 30.96 / 3.01 8.54 / 3.28 - 10.07 / 0.39 8.67 / 0.81 - 7.75 / 1.55 -
a results are from the original papers.

Table A6: Link prediction results on OGBL-Citation2-2.7M (Citation2). All reported results are
averaged over 10 runs. We red color the best results and blue color the runner-ups with the same
GNN backbone. ↑ (%) denotes the improvement of X-SimTeG over the original feature X-OGB.
∆MLP and ∆GNN denotes the margin of (MLP, SEAL) and (GraphSAGE, SEAL), respectively. We
use blue color denoting the negative values and red denoting positive. Specifically, in the context of
∆, positives indicate MLP/GraphSAGE performs better than SEAL.

Metrics GNN Split Baselines X-SimTeG

X-OGB MiniLM-L6 ↑ (%) roberta-large ↑ (%) e5-large ↑ (%)

MRR

MLP val 25.37 ± 0.09 64.56 ± 0.15 39.19 70.20 ± 0.19 44.83 72.79 ± 0.17 47.42
test 25.44 ± 0.01 64.49 ± 0.18 39.05 70.32 ± 0.22 44.88 72.90 ± 0.14 47.46

GraphSAGE val 77.40 ± 0.88 83.13 ± 0.72 5.73 85.27 ± 0.78 7.87 85.20 ± 0.69 7.80
test 77.31 ± 0.90 83.09 ± 0.75 5.78 85.29 ± 0.70 7.98 85.13 ± 0.73 7.82

SEAL val 87.21 ± 0.03 88.33 ± 0.30 1.12 88.29 ± 0.45 1.08 88.56 ± 0.38 1.35
test 86.14 ± 0.40 86.69 ± 0.43 0.55 87.02 ± 0.46 0.88 86.66 ± 1.21 0.52

∆MLP/∆GNN -60.70 / -8.83 -22.20 / -3.60 - -16.70 /-1.73 - -13.76 / -1.53 -

Hits@1

MLP val 15.04 ± 0.09 52.29 ± 0.18 37.25 59.46 ± 0.19 44.42 62.21 ± 0.23 47.17
test 15.11 ± 0.06 52.18 ± 0.25 37.07 59.66 ± 0.26 44.55 62.31 ± 0.19 47.20

GraphSAGE val 67.28 ± 1.20 74.83 ± 1.02 7.55 77.98 ± 1.20 10.70 77.73 ± 0.89 10.45
test 67.09 ± 1.25 74.79 ± 1.10 7.70 77.99 ± 0.89 10.90 77.66 ± 0.91 10.57

SEAL val 82.76 ± 0.14 84.35 ± 0.42 1.59 84.25 ± 0.79 1.49 84.70 ± 0.58 1.94
test 81.74 ± 0.46 81.40 ± 0.96 -0.34 82.34 ± 0.79 0.60 81.15 ± 2.04 -0.59

∆MLP/∆GNN -66.63 / -14.65 -29.22 /-6.61 - -22.68 / -4.35 - -18.84 / -3.39 -

Hits@3

MLP val 28.06 ± 0.10 72.60 ± 0.16 44.54 77.56 ± 0.23 49.50 80.42 ± 0.15 52.36
test 28.22 ± 0.02 72.62 ± 0.19 44.40 77.66 ± 0.24 49.44 80.55 ± 0.13 52.33

GraphSAGE val 85.54 ± 0.69 90.17 ± 0.61 4.63 91.55 ± 0.98 6.01 91.72 ± 0.90 6.18
test 85.56 ± 0.69 90.16 ± 0.51 4.60 91.57 ± 1.10 6.01 91.62 ± 0.87 6.06

SEAL val 91.36 ± 0.44 92.00 ± 0.07 0.64 92.15 ± 0.19 0.79 91.75 ± 0.18 0.39
test 90.92 ± 0.32 91.42 ± 0.60 0.50 91.52 ± 0.56 0.60 91.42 ± 0.19 0.50

∆MLP/∆GNN -62.70 / -5.36 -18.80 / -1.26 - -13.86 / 0.05 - -10.87 / 0.20 -

Hits@10

MLP val 46.73 ± 0.14 87.62 ± 0.06 40.89 89.80 ± 0.20 43.07 91.74 ± 0.08 45.01
test 46.59 ± 0.11 87.57 ± 0.12 40.98 89.66 ± 0.14 43.07 91.74 ± 0.10 45.15

GraphSAGE val 94.29 ± 0.19 96.25 ± 0.13 1.96 96.61 ± 0.12 2.32 96.71 ± 0.09 2.42
test 94.37 ± 0.17 96.30 ± 0.13 1.93 96.64 ± 0.12 2.27 96.74 ± 0.11 2.37

SEAL val 94.59 ± 0.14 94.88 ± 0.25 0.29 95.08 ± 0.12 0.49 95.08 ± 0.21 0.49
test 93.90 ± 0.49 94.40 ± 0.07 0.50 93.95 ± 0.37 0.05 94.54 ± 0.25 0.64

∆MLP/∆GNN -47.31 / -0.47 -6.83 /1.90 - -4.29 / 2.66 - -2.80 / 2.20 -
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Table A7: The p values for two comparisons, SimTeG v.s. baseline (GIANT/OGB) and GraphSAGE
v.s. SOTA GNN on three datasets. p value smaller than 0.05 means that SimTeG (or SOTA GNN) is
significantly better than the baseline (GraphSAGE)

Dataset GNN SimTeG Baseline P-Value P <0.05

OGBN-Arxiv RevGAT 77.04 75.93 7.77e-14 True
GraphSAGE 76.84 73.70 4.11e-17 True

OGBN-Products SAGN+SLE 85.40 86.12 4.15e-06 True
GraphSAGE 84.59 82.84 9.01e-10 True

OGBL-Citation2 SEAL 91.42 90.92 0.0023 True
GraphSAGE 91.62 85.13 5.01e-12 True

Dataset Embeddings GraphSAGE SOTA GNN P-Value P <0.05

OGBN-Arxiv X-SimTeG 76.84 77.04 0.0427 True
X-GIANT 73.70 75.93 7.79e-22 True

OGBN-Products X-SimTeG 84.59 85.40 8.74e-06 True
X-GIANT 82.84 86.12 7.87e-17 True

OGBL-Citation2 X-SimTeG 91.62 91.42 0.1380 False
X-OGB 85.13 90.92 2.98e-15 True

Table A8: The results of more LM-involved methods. All results are averaged over 10 runs.
Method ogbn-arxiv ogbn-products ogbl-citation (MRR)
GraphFormer 72.81 ± 0.20 74.72 ± 0.16 82.78 ± 0.24
SimTeG + GraphSAGE 76.84 ± 0.34 84.59 ± 0.44 85.13 ± 0.73
SimTeG + SOTA GNN 77.04 ± 0.13 85.40 ± 0.28 86.66 ± 1.21

A1.2 P VALUE ANALYSIS

As shown in the upper sub-table in Table A7, all p values are lower than 0.05, indicating the significant
improvement of SimTeG. It is worth noting that as the results of GLEM are reported by the original
paper and we do not have the results for each individual experiment, we are not able to compute the
corresponding p values. We do acknowledge that there is a subtle difference between SimTEG and
GLEM and GLEM outperforms SimTEG on OGBN-Products. This phenomenon is discussed in our
Observation 4 in Section 5.1 of the paper.

In addition, as shown in the bottom sub-table in Table A7, the p values of SimTeG are significantly
smaller than the baseline embeddings. Specifically, the p values of SimTeG on OGBN-Arxiv and
OGBL-Citation2 are close or larger than 0.05. This further supports our key findings: in cooperation
with advanced text embeddings, one can bypass the necessity of using complex GNN models.

A1.3 COMPARISON WITH MORE LM-INVOLVED METHODS

The results of GraphFormer on OGBN-Arxiv and OGBN-Products are directly borrowed from the
GLEM paper (Zhao et al., 2022). since the datasets and split are exactly the same. We run Graph-
Former on ogbl-citation2 for 10 times and report the mean with std. For the hyperparameter setting,
we use the default parameters, and the batch size is set to 100 to make it consistent with the reported
results in GLEM. As shown in the table, SimTeG performs consistently better than GraphFormer. It
is possibly because (i) the GNN-nested architecture of GraphFormer solely allows 1-hop message
passing, which limits the express ability of GNN models; (ii) GraphFormer’s implementation modi-
fies the architecture code of BERT (Devlin et al., 2018) and cannot be easily extended to other SOTA
embedding models nowadays.
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Table A9: The performance of GraphSAGE and MLP trained on SimTeGwith different LM backbones.
The former three LMs are finetuned with searched hyperparameters. For each row, we bold the best
result and underline the runner-up. all results are reported based on 10 runs.

datasets Metric LM backbone all-MiniLM-L6-v2 all-roberta-large-v1 e5-large

#Params. 22M 355M 335M

Arxiv Acc. MLP 70.56 ± 0.09 74.32 ± 0.12 74.06 ± 0.13
GraphSAGE 75.14 ± 0.30 76.18 ± 0.37 76.84 ± 0.34

Products Acc. MLP 72.36 ± 0.12 77.48 ± 0.19 76.73 ± 0.44
GraphSAGE 82.04 ± 0.57 83.68 ± 0.32 84.59 ± 0.44

Citation2 MRR MLP 64.49 ± 0.18 70.32 ± 0.22 72.90 ± 0.14
GraphSAGE 83.09 ± 0.75 85.29 ± 0.70 85.13 ± 0.73

A1.4 MORE RESULTS OF ABLATION STUDIES

A2 REPRODUCIBILITY STATEMENT

A2.1 PSEUDO CODE OF SIMTEG

Algorithm 1: PyTorch-style code of SimTeG. Left: node classification; Right: link prediction.

# f_lm: language model wrapped with PEFT method, f_mlp: mlp model, f_gnn: gnn model
# inputs: A textual graph (adj_t (A), input_ids (T), att_mask (M)) and task-specific labels (Y)
# outputs: node representations

# Node Classification
for T, M, Y in train_loader:

X = f_lm(T, M)
logits = f_mlp(X)
loss = CrossEntropyLoss(logits, Y)
loss.backward()
lm_optimizer.step()

with torch.no_grad():
X = f_lm(T, M)

f_mlp.reset_parameters()
for A, X, Y in train_loader:

X = f_gnn(A, X)
logits = f_mlp(X)
loss = CrossEntropyLoss(logits, Y)
loss.backward()
gnn_optimizer.step()

# Link Prediction
for (T_src, T_dst), (M_src, M_dst), Y in train_loader:

X_src, X_dst = f_lm((T_src, M_src), (T_dst, M_dst))
logits = f_mlp(X_src, X_dst)
loss = BCEWithLogitsLoss(logits, Y)
loss.backward()
lm_optimizer.step()

with torch.no_grad():
X = lm(T, M)

f_mlp.reset_parameters()
for A, (X_src, X_dst), Y in train_loader:

X_src, X_dst = f_gnn(A, (X_src, X_dst))
logits = f_mlp(X_src, X_dst)
loss = BCEWithLogitsLoss(logits, Y)
loss.backward()
gnn_optimizer.step()

A2.2 DETAILS OF TG VERSION FOR THE THREE OGB DATASETS

In this section, we present the details of the TG version of OGBN-Arxiv, OGBN-Products, and
OGBL-Citation2. The statistics of the three datasets are shown in Table A10 and the text resources
are shown in Table A11.

Table A10: Statistics of OGBN-Arxiv, OGBN-Products, and OGBL-Citation2-2.7M
Datasets #Nodes #Edges Avg. Degree #Task Metric

OGBN-Arxiv (Arxiv) 169, 343 1, 166, 243 13.7 node classification Accuracy
OGBN-Products (Products) 2, 449, 029 61, 859, 140 50.5 node classification Accuracy
OGBL-Citation2-2.7M (Citation2) 2, 728, 032 27, 731, 705 10.2 link prediction MRR / Hits

OGBN-Arxiv. OGBN-Arxiv is a directed academic graph, where node denotes papers and edge
denotes directed citation. The task is to predict the category of each paper as listed in https:
//arxiv.org. For its TG version, we use the same split as Hu et al. (2020). The text for each node
is its title and abstract. We concatenate them for each node with the format of "title: {title}; abstract:
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{abstract}" as the corresponding node’s text. For example, "title: multi view metric learning for multi
view video summarization; abstract: Traditional methods on video summarization are designed to
generate summaries for single-view video records; and thus they cannot fully exploit the redundancy
in multi-view video records. In this paper, we present a multi-view metric learning framework for
multi-view video summarization that combines the advantages of maximum margin clustering with
the disagreement minimization criterion. ..."

OGBN-Products. OGBN-Products is a co-purchase graph, where node denotes a product on Amazon
and an edge denotes the co-purchase relationship between two products. The task is to predict the
category of each product (node classification). We follow the public split as Hu et al. (2020) and the
text processing strategy of GLEM (Zhao et al., 2022). For each node, the corresponding text is its
item description. For example, "My Fair Pastry (Good Eats Vol. 9)" "Disc 1: Flour Power (Scones;
Shortcakes; Southern Biscuits; Salmon Turnovers; Fruit Tart; Funnel Cake; Sweet or Savory; Pte
Choux) Disc 2: Super Sweets 4 (Banana Spitsville; Burned Peach Ice Cream; Chocolate Taffy; Acid
Jellies; Peanut Brittle; Chocolate Fudge; Peanut Butter Fudge) ..."

OGBL-Citation2-2.7M. OGBL-Citation2-2.7M is a citation graph, where nodes denote papers
and edges denote the citations. The task is to predict the missing citation among papers (link
prediction). All papers are collected by the official from Mircrosoft Academic Graph whereas the
text resources are not provided. Though MAG IDs for all papers are provided, we cannot find all
corresponding text resources due to the close of MAG project 5. Hence, we take an intersection of
OGBL-Citation2 and OGBN-Papers100M whose text resources are provided by the official, and
build a subgraph, namely OGBL-Citation2-2.7M. It contains 93% nodes of OGBL-Citation2 and
offers a roughly on-par performance for baselines.

Table A11: The URLs of text resources for ogbn-arxiv, ogbn-products, and OGBL-Citation2.
Dataset Text Resource URL

OGBN-Arxiv https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz
OGBN-Products https://drive.google.com/u/0/uc?id=1gsabsx8KR2N9jJz16jTcA0QASXsNuKnN&export=download
OGBL-Citation2-2.7M https://drive.google.com/u/0/uc?id=19_hkbBUDFZTvQrM0oMbftuXhgz5LbIZY&export=download

A2.3 PROPERTIES OF LANGUAGE MODELS

Table A12: Properties of the selected LM backbones. Repository are hosted by huggingface.
LM #Params. #Layers #Hidden Dim. Repository

all-MiniLM-L6-v2 23M 6 384 sentence-transformer/all-MiniLM-L6-v2
all-roberta-large-v1 355M 24 1024 sentence-transformer/all-roberta-large-v1
e5-large 335M 24 1024 intfloat/e5-large

A2.4 HYPERPARAMETER SEARCH SPACE

For language models, we design the hyperparameter (HP) search space as in Table A13. Please
note that for link prediction, the label smoothing factor is omitted. For HP searching, we utilize
optuna (Akiba et al., 2019) to search the best HPs for each dataset and each model. For LMs, we take
10 trials. For GNNs, we take 20 trials. The final HP setting for LMs and GNNs are placed as shell
scripts in our repository.

Table A13: The search space of LMs and GNNs.
LM GNN

hyperparameter search space type hyperparameter search space type

learning rate [1e-6, 1e-4] continual learning rate [1e-4, 1e-2] continual
weight decay [1e-7, 1e-4] continual weight decay [1e-7, 1e-4] continual
label smoothing [0.1, 0.7] continual label smoothing [0.1, 0.7] continual
header dropout [0.1, 0.8] continual dropout [0.1, 0.8] continual
lora r [1, 2, 4, 8] descrete num of layers [2, 3, 4, 6, 8] descrete
lora alpha [4, 8, 16, 32] descrete
lora dropout [0.1, 0.8] continual

5https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

A16

https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz
https://drive.google.com/u/0/uc?id=1gsabsx8KR2N9jJz16jTcA0QASXsNuKnN & export=download
https://drive.google.com/u/0/uc?id=19_hkbBUDFZTvQrM0oMbftuXhgz5LbIZY & export=download
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

	Introduction
	Related Works
	Preliminaries
	SimTeG: Methodology
	Experiments
	Q1: How much could SimTeG generally improve the learning of GNNs on node classification and link prediction?
	Q2: Does X-SimTeG facilitate better convergence for GNNs?
	Q3: Is PEFT a necessity for LM finetuning stage?
	Q4: How sensitive is GNN training to the selection of LMs?

	Conclusion
	More Experiment Results
	Comprehensive Results of Main Experiments
	P value analysis
	Comparison with More LM-involved Methods
	More Results of Ablation Studies

	Reproducibility Statement
	pseudo code of SimTeG
	Details of TG Version for the three OGB datasets
	Properties of Language Models
	Hyperparameter Search Space


