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Abstract

Despite remarkable advances, existing incomplete
multi-view clustering (IMC) methods typically
leverage either perspective-shared or perspective-
specific determinants to encode cluster represen-
tations. To address this limitation, we introduce
a BACDL algorithm designed to explicitly cap-
ture both concurrently, thereby exploiting hetero-
geneous data more effectively. It chooses to bi-
furcate feature clusters and further alienate them
to enlarge the discrimination. With distribution
learning, it successfully couples view guidance
into feature clusters to alleviate dimension incon-
sistency. Then, building on the principle that sam-
ples in one common cluster own similar marginal
distribution and conditional distribution, it uni-
fies the association between feature clusters and
sample clusters to bridge all views. Thereafter,
all incomplete sample clusters are reordered and
mapped to a common one to formulate cluster-
ing embedding. Last, the overall linear overhead
endows it with a resource-efficient characteristic.

1. Introduction

In the era of information, heterogeneous data that are com-
monly gathered from various channels and modalities of
the same one object are growing more prevalent (Ma et al.,
2024b; Wang et al., 2023; Yu et al., 2025; Zhang et al., 2025).
Accordingly, how to effectively excavate out valuable po-
tential patterns from this type of data is grasping increasing
attention (Li et al., 2025; Yu et al., 2024b; Liang et al., 2024).
Multi-view clustering (MVC) technology, in virtue of the
ability to seamlessly integrate multi-source information and
powerfully partition samples into distinct sets without the

"Department of Computer Science, Hong Kong Baptist Univer-
sity. “Intelligent Game and Decision Lab. *National University
of Defense Technology. yu-shengju@foxmail.com. Correspon-
dence to: Yiu-ming Cheung <ymc@comp.hkbu.edu.hk>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

need of any labels known in advance, is generally perceived
as an encouraging method to tackle these data, and has been
widely deployed in fraud detection, personalized medicine,
social network analysis, etc, (Zhang et al., 2021; Yu et al.,
2023; Zhang et al.; Liu et al., 2024). The prerequisite for
MVC algorithms’ proper execution is that all views are re-
quired to be complete (Yu et al., 2024d; Ma et al., 2024a; Gu
et al., 2024a; Wan et al., 2024). Due to equipment defects or
collector faults, however, in real-life it inevitably causes cer-
tain views having missing samples, inducing the incomplete
multi-view clustering (IMC) issue (Yu et al.; Wang et al.,
2021a; Liu et al., 2023a; Yu et al., 2024a; Gu & Feng).

To cope with IMC tasks, recently, a great deal of promising
methods have been carefully presented (Xu et al., 2022;
Wang et al., 2021b; Yu et al., 2024c; Tang & Liu, 2022). For
instance, Wang et al. (2022) adopt consensus bipartite affin-
ity to characterize arbitrary views and jointly construct an-
chors using an unified learning mechanism. Li et al. (2023b)
decrease the disturbance of superfluous properties through
projecting operations and employ low-rank tensor regulariz-
ers to leverage high-order representation inside samples. Gu
et al. (2024b) utilize dictionary learning strategy to recover
missing parts and integrate Gaussian error rank into Lapla-
cian manifold optimization to explore local correlations.
Motivated by prototype advances, Li et al. (2024) build up
the conjunction between prototypes and observed instances
to avoid the generation of full-sized similarity and directly
formulate the overall graph structure without additional
hyper-parameter searching. These methods enhance the
clustering quality from various aspects, nevertheless, they
investigate either perspective-shared or perspective-specific
determinants to encode cluster representation. This single
paradigm could not sufficiently exploit the interrelations
among data features, restricting the model’s performance.

To get rid of this limitation, in the manuscript we propose
an IMC algorithm named BACDL, and its overall pipeline
is described in Fig. 1. Concretely, inspired by non-negative
matrix factorization, we choose to bifurcate feature clus-
ters and each bifurcation is explicitly interconnected to a
type of determinants. Through mutual exclusion learning,
we alienate them to strengthen their discrimination. Subse-
quently, in virtue of distribution learning, we couple view
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Figure 1. Pipeline of proposed BACDL. It firstly bifurcates feature clusters on each incomplete view and magnifies the discrimination
between determinants via mutual exclusion learning. Then, it couples view guidance into feature clusters through distribution learning
to alleviate the dimension inconsistency. Subsequently, it unifies the association between feature clusters and sample clusters to bridge
all views. Further, all sample clusters are reordered in latent subspace and, following adaptive weighting, mapped to a common one to
constitute clustering embedding. VG: view guidance; PDD: perspective-shared determinant; PCD: perspective-specific determinant;
ME: mutual exclusion; D: association between feature clusters and sample clusters; AW: adaptive weighting; IV1SC: incomplete view 1
sample clusters; [IVRSC: incomplete view r sample clusters; [VVSC: incomplete view v sample clusters; CSC: common sample clusters.

guidance into feature clusters to eliminate the inconsistent
dimensions. Further, relying on the fact that samples in one
common cluster are with similar marginal distribution and
conditional distribution, we unify the association between
feature clusters and sample clusters to bridge all views. Af-
terwards, we reorder sample clusters by space rotation and
map them after adaptive weighting onto a common one to
form clustering embedding. Then, for efficiently minimiz-
ing the formulated objective function, we give a nine-step
updating rule with overall linear overhead and theoretical
convergence. For verifying the effectiveness of BACDL, we
organize extensive comparison experiments under multiple
missing ratios. To sum up, in this manuscript we (1) propose
a new IMC learning paradigm, which achieves the simulta-
neous exploration of both perspective-shared determinants
and perspective-specific determinants via coupled distribu-
tion learning; (2) design a updating rule with overall linear
overhead, enhancing the practicality (3) conduct compre-
hensive experiments, demonstrating the effectiveness and
merits of presented BACDL method from multiple aspects.

2. Related Works

To effectively handle IMC problems, in recent years re-
searchers have proposed many prominent algorithms. Xu
et al. (2023) impose an adaptive projection in feature space
to evade imputation, and formulate cluster structures by si-

multaneously enlarging mutual information and shrinking
mean discrepancy. Ren et al. (2024) advance imputation
fidelity in an unsupervised manner and conduct data match-
ing across clients by utilizing the sample homogeneity and
view multi-functionality. Inspired by contrastive learning,
Yang et al. (2022) utilize observed pairs as positives and
randomly-selected cross-view samples as negatives to elimi-
nate the partial unalignment and alleviate the noisy impact.
Zhao et al. (2023) introduce consistency constraint to main-
tain the similarity between graphs on different views and
utilize the tensor means to extract graph correlations in
a manifold space. Orthogonal to them, He et al. (2023)
learn asymmetric similarities based on structural anchors
to replace distance-based weighting and extend late fusion
to general scenarios for affinity construction. Sun et al.
(2023) generate uniform probability representation by relax-
ing standard spectrum to increase the stability and integrate
a balance constraint to adaptively exploit intra-view features.
Li et al. (2023a) design a dual-stream mechanism to model
prototype-sample similarity and utilize the relationship be-
tween available views to conduct sample recovery. With the
idea of neighbor group, Wong et al. (2023) produce neighbor
sets for each sample pair to partition structure embedding
and encode view-missing position to guide the fusion of
individual graph. Zhang et al. (2024) introduce kernelized
subspace to extract intrinsic structure between views and
perform low-rank learning and affinity construction jointly.
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3. Preliminary

Non-negative matrix factorization (Ding et al., 2006; Long
et al., 2012; Ding et al., 2010) is usually deemed as a pow-
erful means to tackle multi-view data. The basic idea is
formulated as

v
) 2
Crzogglo,ETzo; HXT - C,D,E, HF ) (nH

where X, € R4 *" denotes the (complete) data matrix on
view r. d, is the feature dimension on view r, and n is
the number of samples. C, € R% <% denotes w feature
clusters. Each column of C,. represents a probability distri-
bution on d, features. t* = arg max,;(C,), ; indicates that
feature s is affiliated to feature cluster ¢* where (C, ), is
the element in the s-th row and ¢-th column of C,.. The ma-
trix E, € R™*# denotes z sample clusters. Each row of E,.
represents a probability distribution. t* = arg max;(E, ),
indicates that sample s is affiliated to sample cluster t*.
D, € R"*# denotes the association matrix between C,
and E,. The element (D, ), expresses the association
probability between feature cluster s and sample cluster ¢.

X, - C,D,E]|’,
can be equivalently deemed as ming, z, || X, — CTZT||?,
and minp,_ g, ||Z, — D,rEI ||?D C,- maps the original data
X, to the potential space Z,.. Correspondingly, the marginal
distribution P(x,.) is transformed to P(z,.). C, learns the
marginal distribution. Similarly, D, maps the potential
space Z, to the sample clusters E,.. Correspondingly, the
conditional distribution P(y|x,.) is transformed to P(y|z,.).
D, learns the conditional distribution.

Besides, the formula ming, p, E,

4. Proposed Model

Firstly, for incomplete dataset {X, }?_;, in order to work
with the incompleteness, we introduce the index matrix
G, € R"*" where (G,); ; = 1if (w,); == i otherwise
(Gy)ij = Oforany j € [1,2,--,n,]. w, € R"*!is
the indicator vector. n,. is the number of samples observed
on view r. Accordingly, X,G, € R%*" denotes the
available samples on the r-th view.

Then, to achieve double-determinant exploration, we bifur-
cate the feature clusters. Specifically, we attempt to jointly
utilize C € R*¥** and C,. € R4 ** to exploit perspective-
shared determinants and perspective-specific determinants
respectively where k is the number of clusters. However,
due to the feature dimension inconsistency, it is hard to
embed C into feature clusters. To alleviate this dilemma,
we introduce view guidance P, € R4 ** to assist C ex-
ploring inter-view characteristics. Accordingly, the feature
clusters are coupled as [P,.C|C,]. Additionally, given the
probability distribution characteristic of feature clusters, it

needs satisfying the constraint [P,.C|C,] " 14, = 14;. So,
the loss can be defined as

. - 2
e B, G- PCCD BTG

st.C>0,C, >0,D, >0,E, >0,P, >0,

[P,.C|C,] 14 = 14.

2
Further, in conjunction with the probability distribution char-
acteristic of sample clusters, we have that it needs satisfying
G,/ E,1; = 1, . On the other hand, in light of the fact that
samples in one common cluster are with similar marginal
distribution and conditional distribution, we unify the as-
sociation between feature clusters and sample clusters to
bridge all views. Besides, considering that views could have
different levels of contributions, we assign a weight for each
view to automatically balance them. Consequently, the loss
can be designed as

v
Lo= ngn;ai |X,G, - [P,C|C,]DE] G, ||’
st.C>0,C,>0,D>0,E,>0P, >0,a, >0,

Zar =1, [PTC‘CT]Tld,,. = 1o, G:Erlk = 1n,.7
r=1
3
where © = {C,C,.,D,E,, P, a,}. [-|] denotes the matrix
concatenation operation.

Thereafter, to enhance the discrimination between double
determinants, we make P, C and C,. alienated from each
other. Specially, by point-to-point alienation, we utilize the
matrix inner product (P, C, C,.) to render them as dissimi-
lar as possible. So, we have the following loss,

£y = min (P,C,C,)
P @
s.t. C>0,C, >0,P, >0,[P,.C|C,] 14, = 1.

Subsequently, sample clusters on different views could be
misregistered due to the unsupervised property, and we
associate a transformation space for the sample clusters
on each view to reorder them. Further, we map reordered
sample clusters to a common one so as to formulate full
clustering embedding. Consequently, the loss is defined as

Lo = T (E"S bE,F,
= v (v 0en)

v
st ETE=1,,F,F] =1, b2 =1,b.>0,

r=1

&)

where b,. is a weight variable.
Therefore, the loss of proposed BACDL is formulated as
L =L+ Ay — BLs. 6)
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5. Updating Rule

» When updating E,., the loss equivalently becomes

_ T
r%ma 8o, Tr (E ETFT)

st.E,. >0, GI Erlk =1,,

N (N
where A, = [P,.C|C,]D
We can derive the following updating rule for E,.,
1
(EXT,& +85,.(C,) ) ?
T T T 27T T )pos Zj
(E"’)i,j « (ET)’LJ ~ /\TA 8 ~ Y
(BBATA, +50,(Co)uey)
(®)

where B, = a’G,G, C, = EF,. ()pos and (*)neq
denote the positive part and negative part respectively.

Denote the loss (7) as L(E
definition of L(E,.).

Definition 1. F(E,,E i) is an auxiliary function of £(E,)
when for any E, and E, it satisfies F(E,,E,) > L(E,)
and F(E,,E,) = L(E,) (Ding et al., 2010).

). We give the auxiliary function

Then, we have the following theorem holds,

Theorem 1. Eq. (9) is an auxiliary function of L(E,.) and

also convex.
F(E,E,) = aQZ (G,.GE,AA,);
—2a2z )i (G.GTX[A,); (D,
—Bb, Y (E, ( pos)i), (ﬁr)z‘,j
—23 (B)ij(Gr®] 1, 1]);(Dy )i ©
+> (G 9,GE,1,1)); ;(H,)i

Y (@ aes) G

where (Dy);g = 1+ log (Br)ii/(Bp)ij ). (Ho)iy =
(B0)2,/(Bo)i, ()i = (B2 + (B)2,) /(Br)iy

On the basis of Theorem 1, we further have the following
theorem holds,

Theorem 2. Under the rule Eq. (8), the loss Eq. (6) is
monotonically decreasing.

» When updating C, the loss can be simplified as

v ~ 2
ngn;ai |X.G. ~A,E[G,| + T(CTP/C,)

st.C>0,C'P/14 =1;.
(10)

Then, we can get the following updating rule,

(Yo a2PIX K, ).
(X7 a?PT A ETK, + 3M)

[N

J

(C)i,j — (C)i,j

i,J
N (11)
where K, = G,G/E,D], D, = Dy;.. M =
Sy P, C,. Further, we have the following theorem,

Theorem 3. With column-normalized P,., P,.C satisfies
column normalization only if C is also column-normalized.

» When updating C,., the loss is transformed as

2
r Gl FATE (c'P!C,)

min (l
C.

st. C,. > 0, C'I'Tld'r‘ = 1.
(12)
We have the following updating rule,

[N

X,B,E,D]

( w)zgj

(A,ETB,E,D] +3P,C)
2y)

13)

(Cr); < (Cr);

(2]

where Dap = Dk+1:2k,:~

» When updating D, the loss can be formulated as

mana HX G,

s.t. D > 0.

- [P,C|C,]DE] G, ||}, "

We can obtain the following updating rule for D,

[N

(X0 a2l X, G, G E, )

(Z::l a

i3

Di,j <— Dl ——C
°LTL,DE] G,G E)

. “as)
where L, = [P,.C|C,].

» When updating P, the loss can be formulated as

2
r Gr|| + AT (c'p,/C,)

min CL
P,

s.t. P. >0, CTledT =1;.

(16)
We have the following updating rule,
(2%,K,CT) :
(Pr)i; = (Pr)y; — ~
! | (a2A,ETK,CT + 3C,CT)
]
a7

» When updating E, the loss equivalently becomes

min — Tr <ET > bEF) st ETE=1,. (18)

E
r=1
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Its optimal solution can be obtained by setting E as the
product of U and VT where U and VT are the singular
matrices of the term Y . _, b, E, F,.

» When updating F,., the loss equivalently becomes

r%m —Tr (ET Z bEF) st. F,F =1,. (19

r=1

The optimal solution is UV T, U and V are the singular
matrices of E E.

» When updating a,., the loss can be simplified as

v
: E 2
min a,.
A
r=1

X,G, - A,E| G,

(20)

The optimal solution is

X,,G,,ﬂ&l,,ET c. |
> - '

r=1X,G,~A,E] G,

a, =

2
F

Remark 1. The value of | X, G, — ATE:GTH% equals to
that of | X,.G,. G, — ATE: G, G/ ||%. The former needs
at least O(nn,.) computing overhead while the latter can
be calculated within O(n) overhead.

» When updating b,., the loss can be simplified as

in — T L. 2 = > (.
min ﬁ(E ZbrErFr>st;br 1,b, >0

r=1
(22)
The optimal solution is
M,
by = —/——. (23)

where M, = Tr (ETE, F, ).

Algorithm 1 summarizes the overall procedure of proposed
BACDL where ¢" denotes the loss value at the h-th iteration.
For the lower bound, we have the following theorem holds,
Theorem 4. The loss value is lower-bounded by —3+/vnk.

On the basis of Theorem 2 and Theorem 4, we further have
Theorem 5. The proposed BACDL algorithm is convergent.

About the complexity of BACDL, we have

Theorem 6. BACDL is with the time and space overhead
linear to the sample size n.

Remark 2 In virtue of the overall linear overhead, BACDL
is scalable to large-scale scenarios.

2 v
Fs.t.X:lar =1,a, > 0.
r—

Algorithm 1 Proposed BACDL Algorithm
Input: Data matrix X, indicator vector w,.,
hyper-parameters A and [3;
1: Constructing index matrix G,;
2: Doing distribution normalization on X, G;
3: while (¢" — g"*1)/g" > 1e — 3 do
4:  Updating the feature clusters E,. by (8);
Doing row-normalization on E,;
Updating the perspective-shared matrix C by (11);
Doing column-normalization on C;
Updating the perspective-specific matrix C,. by (13);
9:  Doing column-normalization on C,;
10:  Updating the association D by (15);
11:  Updating the view guidance P, by (17);
12:  Doing column-normalization on P,.;
13:  Updating the common sample clusters E by (18);
14:  Updating the space rotation matrix F,. by (19);
15:  Updating the view weight a,. by (21);
16:  Updating the sample cluster weight b,. by (23);
17: h=h+1;
18: end while
Qutput: Spectral clustering on E;

AN

Table 1. Details of Multi-view Datasets Used in Experiments

Dataset Samples Views Clusters Dimensions
FLOEVEN 1360 7 17 5376/1239/512/5376/5376/5376/5376
SYNTHREED 600 3 3 3/2003/3
DEOLOG 358 2 6 22/12
YALTHREE 165 3 15 3304/4096/6750
BGFEA 2500 3 5 1000/500/250
AWTEN 5814 6 10 2000/2688/2000/2000/252/2000
HDIGTWO 10000 2 10 256/784
YOUFOURV 38654 4 10 512/944/576/640

6. Experiments and Analysis
6.1. Benchmark and Baseline

The following IMC algorithms are utilized as the baselines:
Sparse Consensus Affinity Construction (LRTL (Chen
et al., 2023)), Interview Graph Connectivity Learning
(TCIMC (Xia et al., 2022)), Between-view Inferring and
Within-view Preservation (AGCIM (Wen et al., 2021a)),
Local Graph Embedding Generation and Unified Repre-
sentation Learning (LSIMV (Liu et al., 2023b)), Local
Geometric Similarity Conservation (GIMC (Wen et al.,
2021b)), Individual Consensus Structure Set Exploration
(IMVCI (Tang et al., 2024)), Projective Graph Regular-
ization Balance Learning (PIMVC (Deng et al., 2024)),
Similar Several-Neighbor Confidence Representation Gener-
ation (HCCGL (Wen et al., 2023a)), Multiple Spectral Con-
nection Relationship Fusion (USETL (Chen et al., 2024)),
Multi-matrix-factorization Geometry-preserving Learning
(LBIMYV (Wen et al., 2023b)), Feature Inferring and Cross-
view Correlation Guidance (UIMC (Lin et al., 2024)).
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Table 2. Clustering Results of Different IMC Algorithms

DATASET | FLOEVEN \ SYNTHREED
RATIO | 02 05 \ 0.8 \ 0.2 \ 0.5 \ 0.8
METRIC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC
LRTL 1108 927 785 1083 1085 7.60 1138 941 721 | 3987 4008 31.14 3867 40.67 3147 3583 39.83 31.88
TCIMC | 1093 1035 821 1063 963 687 988 948 569 | 3757 3892 3076 3753 3572 3123 3683 3623 2987
AGCIM | 11.02 1007 843 934 838 722 1067 1032 719 | 3350 3350 2779 3400 3400 2875 3417 3417 2915
LSIMV | 874 947 517 821 967 644 788 843 738 | 3774 3937 3221 3614 3673 3513 3478 3389 3133
GIMC 832 938 597 863 794 634 726 794 525 | 3689 3572 3267 3589 3373 3401 3384 3275 3384
IMVCI | 1037 1086 640 1095 1021 651 1135 10.17 508 | 40.38 4038 3280 3977 4068 3229 3893 3353 3041
PIMVC | 1111 928 432 1123 936 732 1078 856 635 | 4027 4067 3089 3950 3950 31.04 37.02 3502 3082
HCCGL | 7.3 668 538 706 691 564 728 706 531 | 4045 3995 3219 3967 39.67 3451 3701 3701 3146
USETL | 999 943 722 1019 956 767 932 890 725 | 3896 3896 2886 3615 3551 2956 3628 3628 29.08
LBIMV | 1056 1031 509 1107 985 518 1001 906 523 | 4027 4034 2745 4033 4007 30.16 3567 3567 27.04
UIMC 1088 922 580 IL12 996 599 1051 922 583 | 3933 3833 3213 3617 4017 3326 3883 3750 33.86
OURS | 1117 1080 588 1125 1053 588 1154 1074 588 | 4250 4212 3521 4283 4283 3524 41.04 4104 3459
\ DEOLOG \ YALTHREE
LRTL | 3143 2159 1529 3071 1987 1654 3137 2090 1593 | 21.02 2152 859 1888 20.17 635 1939 1885  6.61
TCIMC | 3086 1913 1643 3073 1926 1574 3347 2032 1588 | 2135 1798 779 2151 1787 698 2021 1779 5389
AGCIM | 3045 2145 1864 2955 2244 17.88 3201 2289 1732 | 2212 1812 788 1818 1797 587 1848 1767 642
LSIMV | 3126 1843 1437 3169 1857 1532 3294 1874 1457 | 1884 1642 673 1896 1652 626 1834 1643 746
GIMC | 3164 1932 1713 3264 1736 1563 3153 1857 1643 | 1946 1672 684 1783 1796 672 1943 1743 882
IMVCI | 3098 2158 1743 3093 2193 1798 3082 2482 1823 | 2115 2174 7.2 1915 2055 742 2036 2017 678
PIMVC | 3133 2204 1732 2936 2024 1754 3162 2303 1897 | 2064 1724 734 1812 1552 626 1836 1542 7.6
HCCGL | 2905 2005 1757 3058 1972 17.16 2932 2420 17.77 | 2191 2171 713  2L15 2018 716 2061 2036  9.23
USETL | 3084 1899 1813 2819 2261 17.68 3094 2222 1798 | 1994 2185 821 1733 1985 611 2085 1988 743
LBIMV | 3009 2009 1771 3093 2293 1807 2927 2142 1707 | 2294 1912 629 2094 1991 618 2115 1973 551
UIMC | 3083 1989 1623 3140 2082 1657 3101 2207 1617 | 2003 1982 639 1818 1758 486 2164 1782  7.30
OURS | 31.84 2232 1845 31.84 2374 1841 3128 2425 1956 | 2494 2355 789 2173 2061 630 2155 2070 670
| BGFEA | AWTEN
LRTL 1737 2021 1816 1827 2062 1901 1822 1922 1807 | 17.13  9.67 843 1803 1128 842 1953 940 838
TCIMC | 19.63 2046 1826 1943 2088 1833 20.16 19.69 1793 | 1678 1071 1063 1667 1148 937 1784 928 9.3
AGCIM | 2056 2043 1632 2128 2020 1643 2136 2032 1533 | 1356 1028 1066 1459 1032 947 1347 1073  9.89
LSIMV | 1973 1824 201 1803 1832 1826 1848 1821 1811 | 1947 1037 972 1739 1058 956 1769 1057 892
GIMC | 2126 1926 1942 1829 1797 1917 1897 1857 1832 | 2047 1098 983 2089 1024 946 1836 943 874
IMVCI | 1958 2048 1632  21.02 2002 1673 1842 2192 1732 | 2021  9.69 1154 2029 869 986 1955 807 935
PIMVC | 2258 2052 1628 2066 2087 1725 2076 2057 1573 | 2082  10.64 1085 2044 987 1024 1987 919 927
HCCGL | 2068 1832 1846 21.32 1932 1932 2060 1736 1843 | 2026 1018  7.83 2021  9.64 823 2013 967 738
USETL | 2132 1801 1693 1975 1856 1689 2021 1808 1562 | 2016 731 889 2007 826 987 2001 888 1021
LBIMV | 21.08 2011 1821 2218 2073 1616 2120 2052 1611 | 2043 895 803 2012 942 859 2002 923 869
UIMC | 2153 1869 1875 2078 1946 1933 1974 17.84 1782 | 1932 1025 943 1985 1049 878 1956 1023  9.64
OURS | 2208 2208 20.08 2264 2240 20.16 2248 2228 2020 | 2074 1224 1101 2017 1201 1097 20.18 1206 10.94
| HDIGTWO | YOUFOURV
LRTL 11.62 1002 843 1162 1061 892 978 1048 887 - - - - - - - - -
TCIMC | 1148 1062 942 1032 1063 862 957 932 763 - - - - - - - -
AGCIM | 11.82 1028 788 1159 1043 939 1068 1049  8.13 - - - - - - - - -
LSIMV | 1073 936 843 1267 893 856 963 917 753 - - - - - - - - -
GIMC | 1085 823 784 1132 842 832 932 963 689 | 1256 945 928 1136 899 866 1132 879 876
IMVCI | 1083 1035 850 1151 1105 936 1118 1065  9.09 - - - - - - - - -
PIMVC | 1093 844 869 1173 915 928 1073 894 743 | 1567 977 887 1412 979 933 1536 994 862
HCCGL | 1042 1127 844 1064 1116 852 877 1032 811 - - - - - - - - -
USETL | 1028 922 852 974 973 798 837 992 709 | 1132 894 968 1043 935 942 1042 875 847
LBIMV | 977 1071 810 955 935 926 916 1093 954 | 1532 1054 899 1603 1036 9.16 1432 1021  9.14
UIMC | 1074 1132 849 973 1056 923 842 1042 852 - - - - - - - - -
OURS | 1173 1151 1003 1175 1160 1011 1179 1170 1022 | 1599 1091 1048 1595 1085 1047 1595 1080  10.47

All algorithms are evaluated on the following eight multi-
view benchmark datasets: FLOEVEN, SYNTHREED, DE-
OLOG, YALTHREE, BGFEA, AWTEN, HDIGTWO, and
YOUFOURV. Table 1 presents their details.

6.2. Results and Discussions

We test the clustering performance under diverse missing
ratios, i.e., 0.2, 0.5 and 0.8 respectively. The results are
reported in Table 2. We can draw that

(1) Our BACDL makes more favorable results than multiple
competitors. For example, on SYNTHREED, we receive
the most desirable results; On BGFEA, HDIGTWO and

YOUFOURY, we are consistently in Top-2; On DEOLOG
and AWTEN, there are only two sub-optimal results totally.
This suggests that BACDL is effective to handle IMC issues.

(2) Algorithms LRTL, TCIMC, AGCIM, LSIMYV, IMVCI,
HCCGL and UIMC are unable to deal with the large-scale
dataset YOUFOURYV due to the complexity limitation. Or-
thogonal to them, not only do we normally work but pro-
vide competitive results, which illustrates that the proposed
BACDL is more widely applicable.

(3) There are some inferior results on FLOEVEN and
YALTHREE, possibly because we generate the cluster la-
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Figure 2. Running Time of Different IMC Algorithms

Table 3. Memory Overhead (GB) of Different IMC Algorithms

Table 4. Ablation for Perspective-shared Determinants

Method DATI DAT2 DAT3 DAT4 DAT5 DAT6 DAT7 DATS FLOEVEN
LRTL 161 012 005 007 185 1949 1959 - AB | 0.2 | 05 | 0.8
TCIMC 2.56 0.23 0.04 0.11 345 2273 37.70 - ‘ PUR ACC FSC ‘ PUR ACC FSC ‘ PUR ACC FSC
AGCIM 077 006 008 [JOO6] 084 713 1465 - OPDD 9.86 953 452 957 936 446 981 947 462
LSIMV 160 006 005 008 048 465 439 - WPDD 1117 1080 589 1125 1053 588 1154 1074 583
GIMC 122 009 003 041 050 463 547 98.86
IMVCI 099 007 003 007 078 596 1141 - SYNTHREED
PIMVC 389 005 005 366 045 414 477 8051 OPDD 36.14 3584 3321 37.17 37.17 3339 3725 3725 3343
HCCGL 132 010 005 007 166 1302 2146 - WPDD 42,50 4212 3521 42.83 42.83 3524 4104 4104 3459
USETL 072  0.04 008 007 105 585 1527 84.66 DEOLOG
LUBI;]:[A(Y 22: 8'?‘3‘ g'gi 8'?; g'zg 235;3239 235;93‘2 82.68 OPDD 29.53 2004 1613 29.02 2041 1634 2902 21.64 1758
: : : : : : : . WPDD 31.84 2232 1845 31.84 2374 1841 3128 2425 19.56
OURS 107 003 004 011 013 18 035 337
YALTHREE
OPDD 2127 2127 693 2136 1897 587 1903 1926 6.06
WPDD 2494 2355 7.89 2173 2061 630 2155 2070 6.70
. . BGFEA
bels from formed spectrumrather than directly from c.)rlgu?al OPDD 1958 1922 1757 1890 1874 1742 1890 1874 17.42
data. This could, to a certain extent, degenerate the diversity WPDD 22.08 22.08 20.08 22.64 2240 20.16 2248 2228 20.20
of view data, weakening the clustering performance. AWTEN
OPDD 1842 1007 925 1842 10.1 925 1842 1032 930
63. Ti ds Overhead WPDD 2074 1224 1101 2017 1201 1097 20.18 1206 10.94
.3. Time and Space Overhea HDIGTWO
Time Overhead: To validate the efficiency, we record the OPDD 935 929 807 956 931 810 932  9.18 808
T ¢ each aleorith yél' Fie. 2 (Th WPDD 1173 1151 10.03 1175 1160 10.11 1179 1170 10.22
running time of each algorithm, as suggested in Fig. (. e YOUFOURY
Yy-axis denotes log,(-) seconds plus a constant.) According OPDD 1348 830 799 1347 833 801 1351 827 801
to this figure, one can conclude that WPDD 1599 1091 1048 1595 10.85 1047 1595 10.80 1047

(1) Our BACDL requires relatively lower time overhead than
multiple competitors. For instance, it takes the least time on
SYNTHREED, DEOLOG, HDIGTWO and YOUFOURV.
On FLOEVEN, YALTHREE, BGFEA and AWTEN, its
running speed is still comparable. This demonstrates that
the proposed BACDL is computationally-efficient.

(2) LSIMV, PIMVC and HCCGL run faster than BACDL in
some cases, potentially because LSIMV introduces sparse

factors and integrates low-dimensional embedding into local
graphs to form uniform representation, PIMVC utilizes a
group of projections to leverage view diversities in a consen-
sus low-dimensional manifold space, HCCGL learns only
one affinity across views using a small-sized confidence
graph and refines structures directly from original similar-
ity. In spite of the time-saving benefits, they typically do
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Table 5. Ablation for Perspective-specific Determinants

Table 6. Ablation for the Alienating Action

FLOEVEN

FLOEVEN

ap | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC

ap | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC

OPCD 943 9.07 432 980 930 443 926 9.07 442
WPCD 11.17 1080 5.89 11.25 10.53 5.88 11.54 10.74 583

OALG 995 957 496 1016 956 503 1056 9.62 498
WALG 11.17 1080 589 11.25 10.53 588 11.54 10.74 5.83

SYNTHREED

SYNTHREED

OPCD 3575 3571 32.57
WPCD 4250 42.12 3521

37.50 3742 3327 3677 36.57 3249
42.83 42.83 3524 41.04 41.04 3459

OALG 3526 3493 33.12 3533 35.17 33.14 3583 3533 3327
WALG 4250 4212 3521 42.83 4283 3524 41.04 41.04 3459

DEOLOG

DEOLOG

OPCD 2893 18.16 1507 28.08 18.09 14.85 2859 17.89 1554
WPCD 31.84 2232 1845 31.84 2374 1841 31.28 24.25 19.56

OALG 30.14 2139 1744
WALG 31.84 2232 1845

30.14 2012 17.08 3041 2223 17.61
31.84 2374 1841 31.28 2425 19.56

YALTHREE

YALTHREE

OPCD 20.76 18.13 448 20.64 18.04 441 1949 18.13 546
WPCD 2494 2355 7.89 21.73 20.61 630 21.55 20.70 6.70

OALG 2292 2192 658 1958 1901 455 1980 19.65 536
WALG 2494 2355 7.89 21.73 20.61 630 21.55 20.70 6.70

BGFEA

BGFEA

OPCD 20.12 1954 1732 19.42 1934 1731 1942 19.14 17.36
WPCD 22.08 22.08 20.08 22.64 2240 20.16 22.48 22.28 20.20

OALG 2129 2129 19.23
WALG 22.08 22.08 20.08

21.73 2149 1936 22.65 21.41 1935
22.64 2240 20.16 2248 22.28 20.20

AWTEN

AWTEN

OPCD 1844 1024 9.03 1834 10.18 932 1844 10.17 9.29
WPCD 20.74 12.24 11.01 20.17 12.01 1097 20.18 12.06 10.94

OALG 18.72 1082 9.63 1872 10.60 9.58 18.72 10.58 9.54
WALG 20.74 12.24 11.01 20.17 12.01 1097 20.18 12.06 10.94

HDIGTWO

HDIGTWO

OPCD 929 920 799 913 895 795 918 9.06 795
WPCD 11.73 11.51 10.03 1175 11.60 10.11 1179 1170 10.22

OALG 10.03 9.84 840 10.09 991 846 10.10 10.03 8.3
WALG 11.73 1151 10.03 11.75 11.60 10.11 1179 1170 10.22

YOUFOURV

YOUFOURV

OPCD 13.15 789 787 1316 832 7.68 13.18 842 7.69
WPCD 1599 1091 1048 1595 10.85 1047 1595 10.80 10.47

OALG 1390 885 844 13.86 838l 844 1382 875 845
WALG 1599 1091 1048 1595 10.85 1047 1595 10.80 1047

not explore double-determinants, producing sub-optimal
clustering outcomes.

Space Overhead: To demonstrate the space-friendly char-
acteristic, we count the memory consumption, as presented
in Table 3 where DAT1~DATS are the alternative names of
datasets in Table 1. One can observe that

(1) Our BACDL consumes the least amount of memory
on SYNTHREED, BGFEA, AWTEN, HDIGTWO and
YOUFOURV. Especially, on YOUFOURY, it is clearly the
lowest. On FLOEVEN, DEOLOG and YALTHREE, it still
compares favorably with the optimal one. This gives evi-
dence that BACDL is memory-efficient.

(2) USETL, IMVCI and AGCIM achieve slightly less over-
head in some cases. The reasons could be that USETL
constructs low-rank spectrum and decreases the information
redundancy by multi-level partition, IMVCI generates con-
sensus structure and skips the procedure of seeking eigen-
vector, AGCIM integrates the graph restoration into clus-
ter structure and jointly conducts uniform representation
construction and similarity completion. Despite resource-
saving, they usually do not take into account view-specific
characteristics, harming the representation diversities.

6.4. Ablation

Table 4, 5 and 6 summarize relevant ablation (A/B) results.

According to Table 4 where OPDD and WPDD represent
the results without/with perspective-shared determinants,
one can observe that WPDD consistently surpasses OPDD,
confirming that the perspective-shared determinants are ben-
eficial for performance increment.

Similarly, Table 5 where OPCD and WPCD represent the
results without/with perspective-specific determinants sug-
gests that the perspective-specific determinants indeed help
improve the clustering results.

Both Table 4 and 5 illustrate that our dual-determinant
paradigm can facilitate the clustering performance.

Besides, we alienate them to enhance the discrimination. Ta-
ble 6 where OALG and WALG are the results without/with
alienation indicates that our alienating action is functional.

Due to space limit, other ablations are located in Section L.

7. Concluding Remarks

In the manuscript, we devise a dual-determinant exploration
paradigm for IMC issues. It bifurcates features clusters
and alienates them via mutual exclusion mechanism. To-
gether with coupled distribution learning, it effectively al-
leviates the dimension inconsistency. Then, it bridges all
views through unified association. All sample clusters are re-
ordered and mapped to formulate full clustering embedding.
The overall linear overhead further enlarges its applicability.
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Appendix
A. Solving Procedure

We split the entire original optimization problem Eq. (6) into nine sub-problems, and manage to provide a solving scheme
for each sub-problem respectively.

A.1. E, Sub-problem
Under given C, C,., D, P, E, F,., a,. and b,., the original optimization problem is equivalently transformed as

nEnnZ a? | X, G, — [PTC|CT]DEIGT||§ — BTr <ET 3 bEF)
" or=1

r=1

(24)
st. E,>0,G'E, 1, =1,,.

Owing to the fact that E,. on each view is independent of each other, we equivalently have the following optimization
problem,

min a? |X. G, — [PTC|CT}DE,TG,«||1 — b, Tr (E'E,F,)

(25)
st.E,>0,G E 1, =1,,.
To optimize this problem, we firstly design its Lagrange function as
L(E,,®,) = a?|X,G, — [P,C|C,|DE] G, |5, - #b, Tr (E"E,F,)
T T T (26)
+Tr ((I)7 (Gr E7'1k - 1n,«) (GT E?']-k - ]-nr) ) )
where &, € R"*"r is the Lagrange multiplier matrix.
Expanding F'-norm and removing irrelevant items to E,., we can equivalently get
L(E,,®,)=a’Tr (G ED'[P,.C|C,]"[P,C|C,|]DE, G, - 2G| X/ [P,C|C,|DE, G,) o
—pb, Tr (E'E,F,) +Tr (2,G, E, 1,1, E G, — 2¢,G, E, 1,1, ).
Combined with the trace cyclic property and transposition invariance property, we further have
L(E,, &) ="Tr (aﬁGrGI E.D'[P.C|C,]"[P,C|C,]DE, —24*G,G/ X [P.C|C,|DE/
(28)
—Bb,EF)E! + G,9,G E, 1,1, E] — zc;@jlmlg]a:).
Let ;TET = 0, and we have
242G, G, E,DT[P,C|C,]"[P,C|C,]D - 2:2G, G, X/ [P,C|C,]D — b, EF, 09)

+G,®,G'E 1,1} + G, 9 G E,1,1] —2G,®1,, 1] =0.
Given that ®,. is a diagonal matrix, we further have
’G,G]E,D'[P,.C|C,]T[P,C|C,]D — a?G,G X [P,.C|C,]D

(30)
_ngEFj +G,9,G E1,1] - G,®1, 1] =0.

In conjunction with complementary slackness condition for non-negative E,., we can get

(afGTG:ETDT[PTQCr]T[PTCCT]D -ad’G,G/X][P,.C|C,|D — gbrERT) (E.),;
i ' 31)

+(G,®,G, E, 1,1, — GrérlnTl,I)iJ (E,),; =0.

12
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Then, to eliminate the multiplier matrix ®,., we do normalization on the rows of GIET € R *F at each step optimization.
Accordingly, we can obtain that E?ZI(G: E,);; = 1holds fori =1,2,--- ,n, where the notation (-); ; represents the
element located in the i-th row and j-th column of the matrix. That is, GI E,.1; = 1,,_holds. Thus, we have

G,%,G'E 1,1 =G,o,1, 1/. (32)
Combining Eq. (31) and Eq. (32) yields

2

2y

(aﬁGTG:ETDT[PTQCT]T[PTCCT]D -a’G, G/ X][P,C|C,]D Bb,,ERT) (E,);; = 0. (33)

Further, noticed that E and F,. are orthogonal matrices, and accordingly there exist negative elements in the product of E and
F,. In response, we partition EF, into two parts, (EF:)pOS and (EFTT)neg. That is, EF,| = (EFTT)pOS - (EF))

where (EF, )05 and (EF,! ),,., represent the positive part and negative part of EF,| respectively. Then, we have

neg

<a$G,.GI E.D'[P,.C|C,]"[P,.C|C,|D - a’G,G} X [P,C|C,]D

8 8 B9
T T
= 5br (EF,),,, + 50, (BF, )neg)ij (Er);; = 0.
Consequently, we can get the following updating rule about E,.,
1
(a,%GTGIXTT[PchT]D + 85, (EFj)pOS) N !
(E,,.)m, — (E,.)Z.,j L) . (35)
(a%GTGIETDT[PTC\CT]T[PTC\CT]D + b, (EF:)M) 4
A.2. C Sub-problem
Under given E,., C,., D, P, E, F,., a, and b,., the original optimization problem is equivalently transformed as
RS 2 T 2 TpT
ménz_; a’||X,G, — [P,C|C,]DE/G, |, +ATr (C'P[C,) 6

st.C>0,C'P/ 1, =1,

Due to the coupled property, to separate out C, we first denote D, = D14 . and D, = Dy 1.25,.. Then, we equivalently
transform Eq. (36) the following optimization problem,

. . 2
ngn;az |H, - P,.CD,E/G,|,+ATr (C"P/C,)

(37
st.C>0,C'P/1, =14,
where H, = X,. G, — CTDcpE:—GT.
After removing irrelevant items and looping matrices, we can equivalently simplify Eq. (37) as
: 2pT T T ToT 2pT T T T T T
min Tr <Z a’P/P,CD,E/G,G,E,D]C" -2 (Z a’PH, G, ETDW> C’ +)C (Z P c)) 8
r=1 r=1 r=1

st.C>0,C'Pl 1, = 1.

Subsequently, its Lagrange function can be designed as

L(C,¥) =Tr (Z a;P/P,CJ,C" —2LC" +A\C'M + > ¥, (C"P/1,4 — 1) (C'P1, — 1k)T> , (39)

r=1 r=1

13
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where J, = D,E!G,G/E,D].L=3%"_, aP/H,G/E,D] and M =", P/C,. ¥, € R"*¥ is the Lagrange
multiplier matrix.

Combined with the zero partial derivative, we have
> a2 (P/P,CJ, +P[P.CI]) — 2L+ M+ > P[141; P,C (¥, +¥[) —2P[14, 1] ¥, =0.  (40)
r=1 r=1
Note that J,. and U,. are symmetric matrices, we can equivalently obtain
2> alP/P.CJ, — 2L+ M+ Y 2P[1,1) P,C¥, — 2P /14,1 ¥, =0. (41)
r=1 r=1
Combined with the complementary slackness property, we further have

v )\ v
(Z ?PP,CJ, — L+ oM+ > Pl1,1, P.CU, - Pj1dr1;\pr> Ci;j=0. (42)
r=1

r=1 ij

Therefore, we can obtain the following updating rule for C,

(L+P[1g,10T,), .
(XU ,a2PTP,CJ, + M +X.'_, PT1,1] P,CU,)

(C),; < (C), 43)

%,
Afterwards, to eliminate W,., we perform normalization on the columns of P,.C so as to make Z?;l (P,C), ; equal to 1 for
any j € {1,2,--- ,k}. Thatis, CT P, 1, = 1; holds. Then, we have

14,1, P,C=141]. (44)

In conjunction with Eq. (42), we further have

(C)i,j - (C)i,j (45)

(L), :
13‘7
(3=, a?PP,.CJ, + ;M)m‘] -

Subsequently, based on the facts that

v v
T T T T T T T T T T
L=> «P/H,G/E,D] => o (P/X,G,G/E,D] -P/C,D,E/G,G/E,D])
rjl r=1 § (46)
=> aP/X,G,G/E,D] - > a’P/C,D,E/G,G/E,D]
r=1 r=1

and that

> a’P]P,CJ, +> a’P]/C,D,E/G,GE,D] = a’P/P,CD,E[G,G,/E,D] +

r=1 r=1 r=1
a!P,C,D,E,G,G/ E,D] (47)
=> a’P/[P,C|C,|DE/G,G/E,D]
r=1
and Egs. (42), (45), we can obtain the following rule,
S a’P'X,G,G'E, D). 2
(C)i; < (O)i; | 7= (2o erbr 5D )., - , (48)
J 7 (Zr:l a%PTT[PTC|CT]DETTGTGTTETDI + §M)_ _
Zf.]

where M =3""_ P[C,.

14
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A.3. C, Sub-problem
Under given E,., C, D, P,., E, F,, a, and b,., the original optimization problem is equivalently transformed as
RS 2 T 2 TpT
nélflz a?||X,G, - [P,C|C,|DE; G, ||, + A\Tr (C"P/C,) 4
r=1 ( )
st.C,>0,Cl1, =1;.
According to the fact that {C,.}?_; are mutually independent, we can equivalently transform the above optimization problem

as
mina? || X, G, — [P,,C\C,,]DE:GTHQF +ATr (C'P,C,)
Cr

(50)
st. C. > 0,Cl 14, = 1.
Splitting D into D and Dy, D, = Dy.;. and Dy, = Dy 1:9¢,., we can get
min a? || X, G, — P,CD,E[ G, — C,D,E/G,|; + AT (CTP/C,)
(51)

st. C,>0,Cl 14, = 1.
Unfolding F'-norm via trace operation and deleting unrelated items yield
min Tr (a2C,D4E!G,G,E,D,C, - 2¢’X,G,G,E,D,C,/ +24¢’P,CD,E/G,G,E,D/C + \C'P/C,)

st. C, >0,Cl1, =1;.

(52)
The Lagrange function can be written as
L(C,,Q,) =Tr (a’C,DyE/G,G/E, D, C, — 2¢’X,G,G,E,D,C/ +
2 T T TOT TpT T T T (53)
2¢,;P,CD,E, G,G,E,D,C, +\C ' P,.C, +Q.(C, 14, — 1;)(C, 14, — 14) ) ,
where €2, € R*** is the multiplier matrix.
Thus, we have
2a2C,DyE/G,G/E, D}, — 2¢’X,G,G/E, D+ 54)
2a’P,CD,E,/G,G,E,Dj + A\P,C + 14, 1; C,Q, + 14,1 C,Q —2-1,41/Q, = 0.
Further, combined with the complementary condition, we can obtain
A
<afC,,D¢ETT G,G,E,Dj +a P,CD,E/G,G/E,Dj + 2P,ﬁc) (Cp)i;
i.j (35)
— (67X, GG, E,D,), (Cp)ij+ (14,14, CrQ — 14,14 Q), - (Cy)iy = 0.

To eliminate €2,., we conduct normalization on the columns of C,. at each step optimization so as to make C,T 14, =14
hold. Based on this, we can obtain 14, 1] C, = 14,1, Further, we have

A
<a$chij G,G/E,Dj +a’P,CD,E/G,G/E,Dj + QPTC)‘ (Cr)iy = (a2X, G, G ETD;)M (Cp)ij-

.3
(56)
Thus, we can have the following updating rule for C,.,

[N

(aszGTG:ETDg)

bJ . (57)

(Cr)ij < (Cr)yj
g ¥ (a%CTDwE,T G,G/E,D] + a?P,CD,E]G,G]E,D] + gP,,c)

]
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Combined with the fact that C,D,, + P, CD, = [P, C|C,|D, we can equivalently have

[ME

T T
(2%,G,G, Eer)i,j . (58)

(Ch); . < (Cy),; s
! * | (a2IP,C|C,]DE] G, G E,D] + 3P,C)

ij
A.4. D Sub-problem

Under given E,., C, C,., P,., E, F,., a, and b, the original optimization problem is equivalently transformed as

min Y a2 ||X, G, ~ [P.CIC,]DE] G, |}

r=1 (59)
s.t. D > 0.
After norm unfolding and unrelated item removing, we can equivalently obtain the following optimization problem,
min Zl «?Tr ([P.C|C,|DE, G,GE,D'[P,C|C,]" - 2X,G,G,E,D'[P,C|C,]") )
) s.t. D > 0.
By means of the trace cyclic characteristic, we can further transform the above optimization problem as
min Zl «?Tr ([P.C|C,]"[P,C|C,]DE,/G,G/E,D" - 2[P,C|C,]'X,G,G,E,D') oh)
) s.t. D > 0.
Let the partial derivation of objective function equal to zero, we have
i « ([P,C|C,][P,C|C,]DE, G,G, E, - [P,C|C,]'X,G,G,E,) = 0. (62)
r=1

Further, in conjunction with the complementary condition, we can obtain

(Zaf[PrCCT]T[P,»C|C,.]DE,TGTG,,TE,.> Dm»:(Zaf[P,.C|C,«]TX,G,«G,,TE,.> Di;.  (63)
r=1 J

r=1

l,

2%

Therefore, we have the following updating rule for the variable D,

[N

>y, a?[P,C|C,]"X,G,GE,)

r=1"r i 4
Di P 4= Di 1 ] Y 64

a4 Dug [(3_1az[Prcmm[PTC|CT]DEIGTG:ET>Z-J Y
A.5. P, Sub-problem
Under given E,., C, C,., D, E, F,., a,. and b,., the original optimization problem is equivalently transformed as

min 3 a2 ||X, G, — [P,C|C,]DE] G, |>. + \Tr (CTP] C,

P T T F T (65)

"op=1

st.P,.>0,C'Pl1, =1;.

Based on the fact that guidance matrices {P,.}*_; on different views are independent of each other, we can equivalently
obtain the following optimization problem,

mina? ||X,G, — [P,C|C,|DE; G, || + A\Tr (CTP/ C,)
Pr (66)
st.P.>0,C'P/1,; =1;.
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After removing irrelevant terms and combining trace cyclic property, we can equivalently have

min Tr (a?P,CD,E/G,G/E,D]C'P] — 242 (X,G, — C,D,EG,) G E,D]C'P/ + \P/C,CT)

(67)
P.>0,C'P/1,; =14,
where the last item is based on the fact that Tr (CT P,/ C,.) is equal to Tr (P,/ C,C").
Its Lagrange function can be formulated as
L(P,,T,) =Tr(a?P,CD,E/G,G/E,D]C'P] — 242 (X,G, - C,D,E/G,)GE,D]C'P/+ .
AP/C,C" +T,(C'P/14, —1,)(C'P/ 14, — 1)),
where ', € R*** denotes the multiplier matrix.
Given the zero partial derivation, we can get
2¢’P,CD,E/G,G,E,D]C" - 24’ (X,G, — C,D_E/G,) G, E,D/C' )
+AC,C" +141; P,C(I, +I'[)CT —2-1,1/T,C" =0.
Combined with the symmetry of I, and complementarity of P,., we have
(afPTCDVE: G.G/E,D C" —a? (X,G, — C,D,E/G,) G E,D C’
(70)

A
+5C,CT +14,1] P,CL,CT - 1d,‘1;rrcT)” (P,)

i =0
Further, we conduct normalization operation on the columns of P,.C to ensure C"P, 1, = 1 hold. Accordingly, we can
obtain \
<afPTCD7E:GTGIETDICT +a’C,D,E/G,G/E,D /C" + QCTCT) (P,),,; =
i ’ (71)
(a2X,G,G/E,D;C") (P,), ..
Kindly note that P,CD,E, G, G,/E,D C" + C,D,E/G,G/E,D]C" = [P,C|C,]DE/G,G,E,D]C", and
therefore we can obtain the following updating rule for P,.,
(?X,G,G}E,D]CT)

2

(a2[P,C|C,]DE]G,GE,D]CT + 3C,CT)

(Pr); ; < (Pr); (72)

]

A.6. E Sub-problem

Under given E,., C, C,., D, P,., F,., a, and b,, the original optimization problem is equivalently transformed as

maxTr (E" Y b,.E,F,
E ( Z ) (73)

r=1

st. ETE = 1.

Lety . _, b,E,F, equal to UXV T where U, X and V denote its left singular matrix, singular value matrix, right singular
matrix, respectively. Then, the optimal solution of E can be acquired by setting E = UV T,

A.7. F, Sub-problem

Under given E,., C, C,., D, P,., E, a, and b, the original optimization problem is equivalently transformed as

maxTr (ET Y b,.E,F,
Fr ( ; ) (74)
st. F,F] =1,.
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Owing to {F,.}?_, being independent of each other, we can further transform the above optimization problem as

max Tr (E'E,F,)

(75)
st. F,F] =1,.
Denote S, as F,., then, we equivalently have the following problem,
max Tr (STTETET)
S,
(76)

st.S'S, =1,.

Therefore, the optimal solution of variable F,. is UV T where U and V represent the left and right singular matrices of
E,E respectively.

A.8. a,- Sub-problem

Under given E,., C, C,., D, P,., E, F, and b,, the original optimization problem is equivalently transformed as

min }_ a?||X,G, - [P,C|C,]DE/ G, |,
=t ) (77)
s.t. Za,« =1,a, > 0.
r=1

To solve it, we formulate its Lagrange function as

L(ar, () = Zai X, G, — [PTC|CT}DE7TGT||2 +¢ (Z ay — 1) . (78)
r=1 r=1
Then, we have
2a, || X, G, — [PTC|CT]DETTGTH§ +¢=0,r=1,2,---,v;a1+as+---+a, —1=0. (79)
Thus, we can further obtain
o = ¢ (80)

" 2|X,G, - [P,C|C,|DE] G, |

Combined with a; + as + - -+ +a, — 1 = 0, we can get

2
(= ——3 T . (81)
2r=1 [X.G,—[P.C|C,]DE] G, |2
Plugging Eq. (81) into Eq. (80), consequently, we have
1 L
o — r=1 ||xrcr7[P,,,c\c,,,]DE1TTGTHQF2 _ UHXTGT—[P,rC|C,,,]1DE7TGrHQF . (82)
|IX,G, — [P,C|C,|]DE] G, | % p— X, G,—[P,C|C,|DE] G, |2
A.9. b, Sub-problem
Under given E,., C, C,., D, P,., E, F, and a,, the original optimization problem is equivalently transformed as
b, Tr (E"E,F,
rr})?x z_:l T ( )
= (83)

sty b2 =1,b, >0.
r=1
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We provide two solving solutions for it. Using Lagrange function method, we can get

L(by,m) = Z b, Tr (E'E,F,) +7 (Z b2 — 1) . (84)

Then, we have

Tr (E"E,F,) + 2nb, =0, Z b2 —1=0. (85)
. . Tr(E'E,F,) . . . v 39
Accordingly, we can obtain b, = - In conjunction with > b7 — 1 = 0, we have =

1
+ (Z:Zl (Tr (ETE,F,)) 2) * . Further, combined with the non-negative constraint, we have
Tt (ETE,F,)
(Z::l (Tr (ETETF7‘))2)

br = (86)

[N

Using Cauchy inequality (327, z;4:)° < (X, 22) (X, y?), we have

v 2 v
(Z b, Tr (ETETF,.)> <> (T (ETE,F,))”, (87)
r=1

r=1
where the equality holds if and only if Tr(ETElFl) Tr(E-Ir)ilgFg) ce= ﬁ
Let W = ¢ where c is a constant, and then we have b, = ¢Tr (ETETFT). Further, according to Zr 1 b% =1,
. v 2 T 2 _ . . .
we can obtain ) '_, ¢ (Tr (E ETFT)) =1.S0,c= o ETE ek Accordingly, the optimal solution of b,. is
Tr(E'E,F,)

VU (Te(ETE, F,))?

B. Proof of Theorem 1

Proof. During optimizing E,., on the basis of Eq. (28), for the term Tr (EFTT E,T) due to the orthogonal properties of E
and F,, the elements of EF,| could not be non-negative. In view of this, we split EF," into (EF, ),,s and (EF),,c,,
ie., EF] = (EF, ),0s — (EF, ),c, where (EF)),0s and (EF, ),,., denote the positive part and negative part of EF,
respectively. Therefore, we have Tr (EF, E,;) = Tr ((EF ),0.E, ) — Tr (EF, ) E[ ).

For the term Tr ((EF [ )0, E, ), combined with the non-negative property of E,, we have

Tr ((BF,)pos BT ) = Y (E, )i ((EF)) pos) >3 (B):, ((BF), s)..<1+log2§””>, (88)

r )i

where the inequality holds based on the fact that x > 1 + log  in which z requires to be non-negative.

Then, for the term Tr ((EF, ),,c,E, ), via element expanding, we have

1 ()2, + (B,)?,
Tr ((BF, )uegB)) = > (En)i ((EF/ )wg)i,j <35> ((BF] )neg)m TR (89)

Therefore, for the term Tr (EF,T E,T) we have

T (BB E]) = 3B, (B)),,.) (1 +log §E>) e (), BB o

r)i,j (Er)z}j
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Subsequently, for the term Tr (GTGTT X, [P,C|C,]DE/ ) in Eq. (28), in conjunction with the non-negative property of
G,G/X[P,.C|C,]D, we can obtain

Tr (G,G, X, [P,C|C,]DE/) > Z(]:]r)m-(GTGIXI[PTC|CT}D)M <1 + log giﬁ ) 1)
r)%,7

For the matrix G, ®,' 1,,. 1] E, likewise, we have

r)i,J

E,):
Tr (G @, 1, 1, E) = (B)i j(Gr®[ 1, 1)0)i 5 > Y (E,)i j(Gr® 1, 1)) <1+10g(E )”>. (92)

Further, for the term Tr (G, G,/ E,D ' [P,.C|C,]"[P,.C|C,|DE]] ), by utilizing clement unfolding and matrix symmetry,
we can get

Tr (G,G/E,D'[P,C|C,]"[P,C|C,]DE)) => > (G,G,)i:(E,)s (D' [P,C|C,]" [P,C|C,|D); ;(E,);

=> > (G+G/).i(E)i;(DT[P.C|C,][P.C|C,]D);+(E,)s .
(93)

Suppose the elements of E,. are related to that of ET with certain scale factors, i.e., (E;); ; = 2; ; (E«)L j where z; j is a
constant, then we have

> (GG )is(Br)os (DT [P,CIC,]T[P,CIC,ID) 1 (B g =
> (GrG)is(Br)su(DT[P.CIC,]T[P.CIC, D), (B, )iz, 0715 < (94)
5 3G G )i (B, (DT[PLCIC,] T [P, CIC D) (B)is (2, + 22)
and
> 3 (GG ()i (DT [P,CIC,]T[P,CIC, D) (E, ) =
Y Y (GrG)ei(E)iy(DT[P,CIC, T [PLCICID); (B, )s 12,7, < (95)

1 ~ ~
5 Z Z(GTGI)SJ(ET)M (DT[PTC\C,.]T[PTC\C,»]D)Lt(E,«)&t (212] + th) .
Further, using element folding, we can get

> ) (GrG)si(E,)i;(DT[P.C|C,]) T [P.C|C, D), 4(E,)s 122, =

Y (G.G/E,D'[P,C|C,]"[P,C|C,|D).(E, )2, =

> (G,GE,DT[P,C|C,]"[P,C|C,]D), (B, )s 12 = (96)
(G,G/E,DT[P,C|C,]T[P,C|C,|D),(E,)?,

Z (E‘r)s,t

and
>N (GhG))is(E) (DT [P,C|C,] T [P,C|C, D)y 4 (E, )i 22, =
(G, G]E,DT[P,C|C,]T[P,.C|C,]D), ,(E,)2 97)

Z T r T T T T T 2y} T 1,]
(ET’)M

Additionally, for X 33(G,G ), :(E,);;(DT[P,.C|C,]T[P,C|C,]D);(E,). 22, , in virtue of element transfer and

9,5 °
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element folding, we can get

(98)

In conjunction with the element relationship between E,. and Er, we can further have

ZZ (G,G, )s.i T)”(DT[P CIC,] [PTC|CT}D)j,t(ET)9 tZQ,J =

32 3G )ialB) s (DTPCIC TP CIC D) o = .

~ E
>2(G,G/E,DT[P,CICTIP.CIC/ID):,

Similarly, for the term 3° 3°(G,G,1); s(E, )5 +(DT [P,.C|C,]T[P,C|C,]D), ; (E,); 22, we can get

3 3G G )i (E)s (DT [P,CIC, )T P, CIC D) (Br)iy 22, =
E ) 100
Z(GTGTTETDT[PTC|CT]T[PTC|CT]D)S,75 EET;S’t' ( )
r)s,t

Combined with Eqgs. (93), (94), (95), (96), (97), (99) and (100), we have
Tr (G,G,E,D"[P,.C|C,]"[P,C|C,]DE,) <
1 ~ ~
i Z Z(GTGI)i,S(ET)S,t(DT[PTC‘CT]T[PTC|CT]D)t7j (Er)i,j (Zg,t + 212,7) +
1 ~ ~
1 Z Z(GTGTT)S,i(Er)i,j (DT[PTC|CT]T[PTC|CT]D)j7t(ET)s,t (7512,] + Z?,t)
- 1S @,.q'E DT P,ClC, TP, C|C,]D ()
—§Z(rrr[r|r][r|r])i-j?+
7)%,]
(B,)2,

1 ~
5 >_(G.G/EDT[P,C|C,]T[P,C|C,D)., B
r)8,t

(101)

Consequently, we can obtain

(GTGIETDT[PTC|Cr}T[PrC|Cr}D)i,j (Ev)?g (102)
(Er)i;

Tr (G,G/E,D"[P,C|C,|T[P,C|C,]DE]) <}

For the term Tr (Grd)rGrTErlklgE,T) in Eq. (28), we have

T~ (Er)f j

Tr (G, @, G E L1 E]) =3 (GG )i i (By) i (1x1y )i5(Br)iy < Z(Gr‘erjErlkl;)m‘ﬁ~
r)ig

(103)
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Combined with Egs. (90), (91), (92), (102) and (103), therefore, we can have

~ . E
F(E,E,) =d} ) (G,G/ED'[P,C|C,]"[P,C|C,]D);; =

— 247 ) (E,);,;(G,G/X[[P,CIC,]D),, <1+1og @”@f)

r)i,7
— B > (B ( EFT)pOS)M_ (1 +1log (9)’?’]’)

),

~ 104
L Bb 3 ((EFT) ) (E,)7; + (B e
2 T /neg i ). .

(Er)i;
_ E,)?.
+Z(GT<I>TG:ET1;€1,‘T.)M(~ )i
(Er)i,j
— 2 (E))i j(Gr® 1, 1) )i (1+1 W)
(Er)i;

According to the bound of each branch, we have that F(E,, E,) > £(E,) and F(E,, E,) = L(E,). Therefore, it is an
auxiliary function of L(E,). Further, its Hessian matrix is semi-positive, and consequently it is convex. The global solution
can be acquired by setting its derivative equaling to zero. That is,

[

(aic;rc;jxj [P.C|C,]D + 2b, (BF]) + G,«q>r1nr1;)
(E,), ;= - L . (105)
(a%GTGTTETDT[PTC|CT]T[PTC|CT]D + b, (EF)),, + GTQDTGTTElel;)

neg i

After eliminating ®,., we can equivalently obtain the updating rule Eq. (8).

C. Proof of Theorem 2

Proof. Let Eth) = arg ming,_ F(E,, Egh)), and then we have ]—'(Eghﬂ)7 Egh)) < ]—'(Egh), Egh)). In conjunction with
Theorem 1, we have that F(E,, Eg.h)) is convex and the global optimum can be achieved. Further, combined with the
definition of auxiliary function, we have

FEM EM) = L(ED) (106)
and
FEMD EM) > L(ER+D), (107)
Therefore, we can obtain
LESD) < LEM), (108)

which demonstrates that it is steadily decreasing.

Accordingly, we have the following inequality holds,

7 <E£h,+1)7 cm, ¢ Dt pt g ) g0 bgh)) <7 (Esﬂh% ct, ¢ ph pt g ) g0 bgh))
(109)
where 7 is the objective value of Eq. (6).

O
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D. Proof of Theorem 3

Proof. For the j-th column of P,.C, we have

n n k
Z (Prc)i,j = <Z (Pr)i,l Cl,j) . (110)

k n
Z(Prc)i,j = Z (Z (Pr)i,l> Cij. (111)

i=1 =1 \i=1
Since P, is column-normalized, we can get that Y, (P);; = 1 holds for any [ € {1,2,--- , k}. Therefore, we have
n k
Z(PTC)M = ch,j. (112)
i=1 =1
So, to ensure that the sum of the elements in each column of P,.C is equal to 1, under column-normalized P,., we only need
k
ZCz,J:L j=11,2,-- k. (113)
=1
That is, C also needs to be column-normalized. O

E. Proof of Theorem 4

Proof. For the objective function, according to F-norm characteristic, we have HXTGT - [P,
Combined with the non-negative property of C and C,. as well as P,., we can obtain (P,.C, C,.)
that the objective function is lower-bounded by —3 Tr (ET Sy bTErFT).

C|C,]DE; G, |3 > 0.
> 0. Therefore, we have

Finding the lower bound of — Tr (ET S brErFr) is equivalently to find the upper bound of Tr (ET Sy brErFr).

r=1
To obtain one upper bound of Tr (ET Sy bTETFr) , firstly, based on the linearity property of trace operator, we can
obtain

Tr (ET ZbEF) => b Tr (E'E,F,). (114)

r=1 r=1
Then, utilizing the cyclic property of trace, we can get
Tt (E'E,F,) =Tt (F,E'E,). (115)

The trace of a product of matrices is maximized when the matrices are aligned in a way that maximizes the sum of their
diagonal elements. Combined with the fact that E and E,. are orthogonal, therefore, the maximum value of Tr (FTETET)
occurs when E, is aligned with E and F,..

To demonstrate this point from theory, we firstly decompose E,. as UXV T where U and V are the left singular matrix and
right singular matrix respectively, and X is the singular value matrix with elements greater than or equal to zero. Then we
have Tr (FTETET) =Tr (FTETUEVT). Further, via cyclic operation, we have

Tr (F,E'E,) =T (V'F,E'UY). (116)

Kindly note that V, F,., E and U are all orthogonal matrices, accordingly, V' F,ET U is also an orthogonal matrix.
Therefore, we have
Tt (F,E'E,) < Tr (%), (117)

where the equality holds if and only if VT F,.ET U equals to an identity matrix.
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In conjunction with Tr (X) = Zi“”ll{" ok} c;(E,.) where o;(E,) denotes the i-th singular value of E,., we have

1
min{n,k} 2

Tr(X) < [min{n.k} > o (E,)| . (118)

=1

Then, given the fact that o2 (E,.) is equal to \;(E E,.) where \;(E, E,.) denotes the i-th eigenvalue of E| E,. and that
S M(EME,) is equal to Tr(E, E,.), we have

min{n,k}
T(E/E,)= Y ol(E) (119)
i=1
Further, considering that HE,||?m is equal to Tr( T E ) and that E,. is row-normalized and non-negative, we have that
Z§=1 (Er)l2 ; is less than or equal to 1 for any i = [1,2, - - , n]. Consequently, we can obtain
Tr(E E,) <n, (120)

where the equality holds if and only if each row of E,. is a one-hot vector. It can be further derived that at this point E,. is a
(one-sided) orthogonal matrix.

In conjunction with Egs. (117), (118), (119) and (120), consequently, we can obtain

Tr (F,E'E,) < v/min{n, k}n. (121)

Since the sample size n is largely greater than the cluster number k, we have

Tr (F,E'E,) < Vnk. (122)

Combining Eqs. (114), (115) and (122) yields

Tr (ET ZbEF) < MZ by. (123)
r=1

r=1

Afterwards, using Cauchy inequality, we can get

(5] <(5) (=)

Accordingly, combining Eqs. (123) and (124) yields
Tr (ET Zb,ETFT> < Vnk. (125)
r=1
Therefore, the objective value is lower-bounded by (—3+v/vnk). That is,

Z«ﬁ |X,G, - [P,C|C,]DE]G,|[;. + \(P,C,C,) - Tr <ETZbEF> > —BVunk. (126)

r=1
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F. Proof of Theorem 5

Proof. » During optimizing C, based on Eq. (39), we can equivalently rewrite its Lagrange function as

r=1 r=1 r=1

L£(C,¥)=Tr <Z a’P/P,CD,E/G,G/E,D]C" -2 a’P/X,G,G/E,D]C" +1) P/C,C"+

2> a’P/C,D,E/G,G/ED/C"+) Pl1,1;P.CV,CT -2 P[1,1,9,C"|.
r=1 r=1 r=1

(127)

For the matrix }_"_, a?P X, G, G, E,D] C", combined with the property of each matrix, we can get that it is element-

wisely non-negative. Meanwhile, unfolding the trace by element, we have

Tr <Z aiPIXTGrGIETDjCT> => (Z aiPTTXTGTGIETDI> Ci;
,J

r=1 r=1
(128)
v ~ C’L ]
=3 (Z aipjerrGIErDj> Ci; (1 +log J) :
r=1 i, 4.7
For the term Tr(P, 1,4, 1] ¥,.C "), similarly, we can obtain the following inequality,
~ C;
Tr (P 14,10 9,CT) > ) (P/14,1]¥,), . Cy; (1 + log J) . (129)
,J
Then, for the term Tr (}-7_, P C,CT), we can get
~pTo T ) < L ~pT C%, +Ci,
Tr ZPTCTC 352 ZPT C,| -l (130)
r=1 r=1 i,j Ciaj
Accordingly, for the term Tr(}"_, a?P C,D,E] G, G/E,D]CT), we have
~ 0T T T TT 1 ~ onT T T T Cz%j'kéij
Tr Z a’P/C,D,E/G,G/E,D]C" | < 5 Z ZarPr C,D,E/G,GE,D] —=— (131)
r=1 r=1 ij i,

Afterwards, for the matrix P/ P,.CD,E, G, G/E,D]C", suppose C,; = fsyjés,j for any s and j where f ; is a
constant, then we have

Tt (P/P,CD.E/G,G/ED/CT) =Y > (P/P,) . Ci; (D,E/G,G/ED]) C,;
=3 > (P'P,),,Cit (D,E[G,GE,D]), Cy;fitfs;
< % Y > (P, . Ciy (D,E,G,G/E,DJ), . Coy (F20+ 12,)-
(132)
Subsequently, based on the commutative property and symmetry, we can get
>N (PTTPT)SJ Ci: (D,E/G,GE,D]), C,;f? = SN (P:P,)S’i C., (DWETTGTGTTETDWT)N Cif?,
= (PTT P,CD.E G,G/ ETDI)

ti
Ciif?
it RFER
P,C T e o7y Cie
- (P/P,CD,E[G,G]E,D]) o
bt Gy
(133)
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and
2

_ C? .
> Y (P, ,Cii (D.E/G,GE,D]), C.,f =) (PIPTCDVETTGTGTTETDI)” é—f
> s,j

Consequently, combined with Egs. (132), (133) and (134), we can obtain the following inequality,

v v _ 02 )

2p T T T THT 2 T T T T 2,
Tr (Z «>P]P,CD,E]G,G/E,DC ) < a2y (PT P,CD,E/G,G/E,D] )ij =
r=1 r=1 g 2%

For Tr (P 14,1] P,CW¥,CT), after element unfolding, we have
Tr (P 14,1 P,CY,.CT) =33 (P 14,1] P,),, Cra(¥,),;Ci
= ZZ (P 14,1, P;),, Cea(¥,)1;Cijfrafi;
<35 ZZ (P 14,11 P,), , Cea(W,)1;Cu; (7 + J21) -

For the first term, we can get
2

~ - Cz
N3 (P14, 1P, Cu(w,),,Ci 2 =Y (Pj1dr1}TPTC\IJT)M éj

Further, in conjunction with the fact that ¥,. is a diagonal matrix, we can derive the following equality,
YD (P14,15 P, Coui(W),Cisffi =Y > (Pl 1010 Pr),  Coa(W,);,Ca 5 /7
=> > (P/14,1,P r)m- Ci;j(0,);:Crif?y
= (ledrgrpréxy,ﬂ)tll Cuif?

_ c?
= (Pj1dr1§ PTC\I/T) ity
" t,l Ct,l

Combined with Egs. (136), (137) and (138), we can get

_ c?.
T T T T T 2]
Tr (P 14,1}, P,C¥,CT) <} (P,, 1dT1dTPTC\IJT)i)j o

So, at this point, according to Egs. (128), (129), (130), (131), (135) and (139), we can have

& _ 2.
]—'(C,C) =N a? (PIPTCD EIGTGTTETDT) i
T; Z v )i Ci,j
v " Cz )
= (Z azpjxrchIErDj> Ci; (1 + log = J)
r=1 i,j 4,
~ T T o) ChLtCL
+> > «P/C,D,E]G,G/E,D] e
r=1 i,j i,

LYY (P, G (Hloggm)
" %,
- T T ~ C?.

£ (Prafeow,) 2

A —~ T C}, +Ci,
r=1 i, ]
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Accordingly, F(C, (~3) is an auxiliary function, and under the updating rule Eq. (11), the loss is monotonically decreasing.
Therefore, we can get the following inequality,

(141)
» During optimizing C,, after removing irrelevant items, the Lagrange function can be simplified as
£(C,,Q,) =Tr (a}C,DyE/G,G/E,D,C, - 2¢’X,G,G/E,D,C,/ +
2 T T ToT TpTC T T (142)
2a,P,CD,E, G,G,E,D,C, +\C P, C,+Q,C, 1g4, ld -20,C, 14,1, )
For the matrix X, G, G| ETDJCI, in conjunction with the non-negative property of C,., we have
T ToT T T C (Cr)iy
Tt (X.G,G,ED,C]) > (X,G,G, E.D;), (Coi; <1 + log (@):j) . (143)
For the term Tr (QTC;r 1,4, 12), according to the cyclic property of trace operation, we have
~ C,
Tr (2,C/14,1]) = Tr (14, 1/ 2,.C) > > (14,172),, (Cr)i; (1 +log Eé ; ’J> . (144)
r)%,]
For the matrix P,,CD, E," GTGTTETDJCTT, we have
(~jr 2. 4+ (C,)?,
Tr (P,CD,E/G,G/E,D,C]) <} (P,CD.E/G,G,/E,D]) ( Zfé )( s (145)
r)1,7
For Tr (CTPTT Cr), combined with the transpose property of trace operation, we have
C,)2. +(C,)2,
Tt (C'P/C,) =Tr (C/P,C) < Z(PTC)MM. (146)

2(C,)i,j

For the matrix C, D E] G, G, E, D] C], suppose that for any i and j, (C,); ; = w; ;(C,);,; where w ; is a constant,
after element folding, we can get

Tr (C,DyE,G,G/E,D,C/) ZZ )it (DB GG E,D)), ;(C,)i jw;wi

_ (147)
<3 Z > (C)ir(DyE GG E,D) ;(Cp)ij(wd, +w?)).
Combined with the symmetry, we can further have
> > (Ciu(DyE] GG ED));(Cr)ijwi, = > > (Cr)ij(DyE] GG E,D});(Cp)iw?,
— T T ) aus
= Z CTD¢ET GrGr Ede,)z,t(Cr)z,th,t (148)
~ C,)?
=> (C,D4EG,GE,D});, (~ )”.
(Cr)i,t
For the second term in Eq. (147), based on the element merging, we can get
> > (Cit(DyE] GG E.DJ);;(Cp)ijwi; =Y (C,DyEG,GE,D,);;(C,); jw?,
©yp, (49

= (éTDd)EIGTGIETD;}r)’L,] -~ N
2 (Cr)i
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Combining Eqs. (147), (148) and (149) yields

Tr (C,DyE/G,G/ED/C]) <3 (éerEIGTGIETDg)_ iy (150)

For the term Tr (2,C,/ 14,1, C,), we have
Tr (2,C/ 14,14 C,) = Tr (14,15, C,2,.C) =Y Y (a,14,);, (Cr)1a(2)e,5(Cr)ig
=D (La,14,),, (Cr)ue(Q0)e,5(Co)ijwrwi g (151)
1 ~ -
< ) Z Z (1d7~1(1)i,l (Cr)lyt(Qr)t,j(Cr)i,j (wl2,t + w?])

For the term )~ > (14, 1;)1, . (C)re (), #(Cy)i,jw} ;, in conjunction with the element merging property, we can obtain

331410, (Cia(20)e 5 (Cr)ijw?; = Y (1d,‘1;6,«9,.)” (Cigw?; =Y (1d"13r6’“9")7; =T

According to the facts that 14, 1; is symmetric and that €2,. is diagonal, we can get the following equality,
DD (1a1d), (Coue(@)ey (Coigud, = >0 (1a.14,),, (Crie(Q)5,6(Cr)i i (153)
Further, in conjunction with the element commutative law, we have

Z Z (ldv-l(—iz)l)i (ér)l,t(Qr)j,t(ér)i,jwzt = Z Z (]-drl;rr)lﬁi (ér)i,j(Qr)j,t(ér)l,twit- (154)

Using element combination property yields

o> (1a,14,),, (C)i (20);0(Crrawi, = D> <1dr1;(~3r9r>l)t (Co)rawi,

= Z Z <1drl,—jrrér9r>l . (Cr)l,twl,t (155)
:ZZ<1 1] C,0 ) ()i
dytd, ~rsir Lt (ér)l,t
Based on Eqgs. (151), (152), (153), (154) and (155), therefore, we have
Tr (2,C[ 14,1, C,) < 15,17 C,Q, ) —=4 (156)
Z ( )m (Cp)i

Combining Eqs. (143), (144), (145), (146), (150) and (156), we can get

~ ~ C, 2 ~
F(C,,Cr)=a? ) (CTDd,E,TG G'E Dw> EC i’f — 242 (X,G,G/E D¢) (Ciy <1+1 og E(f )J)
7)1,]
C 2+ (er 2
+a;y_ (P,CD,E/G,G/EDy), (Clis )i += Z (P.C), ()i +(Cri
(Cr)m (Cr)i,j
= (Cr)? T ~ (Cr)z i
+(14,15,C0) =L -2) (15,1;9,), (Cp)i; | 1+1og =" |.
( )W (Cr)ij 2 7 ! (Cr)ij

(157)
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F(C,, (NJT) is an auxiliary function and with the updating rule Eq. (13), the loss value decreases monotonically. Consequently,
we can obtain the following inequality,

3

(158)
7 (E7(Nh+1)7 cth+) ) p®) pt) g gh) 40 bgh)) _
» During optimizing D, owing to it being non-negative, we can get
Tr (Z af[PTC|CT]TXTGTG:ETDT> =3 (Z a%[PrCCT]TXTGTGIET> D;;
r=1 r=1 i
7 (159)
v ~ D. .
> a?[P,C|C,]'X,G,G'E, | D;;[1+log="L].
Z(Z [P..C|C,] ) ( E5,

Suppose that for any s and ¢, it holds for D, , = ds,tﬁs,t under constant d, ;. Then, utilizing element-wise expanding, we

have
Tr ([P,C|C,]'[P,C|C,]DE,G,G, ED") =

> > (P.cic]'[P.CIC,]), Dy (B G,GE,), Dij=

- - (160)
ZZ ([P.CIC,]"[P.CIC,]), D (Bl G,GE,), Dij;dsdi; <
5 ZZ P C|C P C|C ]) f)s,t (EIGTGIET)t,j f)i,j(dzz,j + di,t)'
For the first term, we have
> > (p.clc,]TP.ClC, D, ﬁst(ETG,ﬂGIET)Mﬁi,jdf,j:
T T D. .72 —
> (P.CIC.)T[P,C|C,IDE] G, GE, ) Di,d, a6
~ D2
3 ([PTC|CT]T[PTC|CT]DE:GTG:ET) i
ij Dy
Further, combining the symmetry, we have
> > (p.clc,]'[P.CIC,)), D, (E/G,G/E,), Dy;d;; =
M T T
> > (P.cic]'p.CIC,), ,Di; (B GG/ Er)ji D, d?, = 162)
N D2,
3 ([P,,C|CT]T[PTC|CT]DEIGTGIET) .
ij D
Combining Egs. (160), (161) and (162) yields
~ D2,
Tr ([P, C|C,]"[P,C|C,]DE G,G/ED") <} ([PTC|CT]T[PTC|CT}DETTGTG:ET)‘ s aey
1,7 i,j
Therefore, we have
v v _ D2 .
Tr a’[P,C|C,]"[P,C|C,|DEG,G E,D" | <) a2 P.C|C,]"[P,C|C,]DE/G,G E, ) ="
(ZT[ ©]"[P,C|C.]DE/ G, G <> a3 (IP-CIC,) P, CICIDE/ G, G/ B, ) |
(164)
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Based on Eqgs. (159) and (164), we can get

TQ,GTE,) 2w
Z Z(P c|c,]"[P,C|C,]DE; G, G, Er)i’j 5

(165)

2 T T N D;,;
2 Z ar Z ([Prclcr] X, G,G, Er)i,j D, (1 + log ﬁz,j) .

So, F(C, (~7) is an auxiliary function. Under the updating rule Eq. (15), the loss is monotonically decreasing. As a result,
we have the following inequality,

j(Eghﬂ),C(h+1)7cgh+1)’D(h+1) P EM F®) o0 bgh)) <

) ) I

(166)
» During optimizing P, the Lagrange function can be simplified as
£(P,,T,) =Tr(a’P,CD,E] G,G/E,D.C'P/ +24C,D,EG,G E,D/C'P/ +\P/C,C’
i YT T o s T p-r T ¥ r T (167)

-2a¢’X,G,G,E,D;C'P] +I,C'P/1,1; P,C—2IC'P,/1,1;).

Then, about the matrix X, G, G, E,«DI CTP/, in conjunction with the non-negativity of elements, we can have the
following inequality,

Tt (X,G,G/E,D]CTP]) >} (X,G,G/E,DICT), (P,) (1 +log g;ﬂ> : (168)
’ ©J r)i,j

For the term Tr (PTCD,YETT G,,G,T ETDTCTPTT ) , after unfolding element by element, we have

Tr (P,CD,E/G,G/E,D/C"P]) ZZ )ei(CDLE! GG E.DJC" ) (Pr)e.s ¢r.141,

~ P.);
< 3" 3 (P,CD,E] G, G E,D] C7), - orkte (169)
2(Pr)t s
2
ZZ )ti(CD,E] G, G, E,DC"),(P,):s q;’l,

where f’r is acquired based on the assumption that (P,.), ; is ¢;; times of (f)r)t,l for any ¢ and [. ¢ is a constant.

~ ~ 2
Further, for (Pr)tvl(CD.YETTGTG:ETD:'Y—CT)Z,S(P,a)tys %, by element exchange and combining the symmetry, we can
get

2 2
S S (P)ii(CD,E/ GG E,DICT )1, (B,);, 2! = 3 (P,CD,E] G, G ED]C )y (B, 2!
~ (P.); (170)
=Y (P,CD.E/G,G/E,D]C"),—
2(Pr)t7l
Therefore, for P,CD,E] G,G,/E, D] C P/, we can obtain the following inequality,
T T ToTpT 5 T T TT (PT)ZZJ
Tr (P,CD,E/G,G/E,DIC'P]) < 3" (PTCDVET G,G/E,D/C ) Ralledr 171)
w3 (Pr)i
For the term C, D, E,/ G, G,/ E, D] C" P, combining Cauchy inequality, we can get
1 (P,);; + (Pr)2;
Tr (C,D.E[G,G/E.DC'P[) <> (C.D,E/G,G/ED C"), . (%—)J (172)
)i,
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For the term P,nT C,CT, likewise, we have

Tr (P C,CT) < %Z (c.ch),, # (173)

Subsequently, for the term I',CTP 1, 1;;PTC , utilizing cyclic property and element-to-element expanding, we can
obtain
Tr (I,.C'P/ 141, P,C) = Tr (14,1 P,CI,C'P))

~ P,)?.
< T T (~’“ tJ
<> (w1 porer) 2t 174

~ ~ q s
>3 (10 1]),, (P (CLCT) (P =22

For the second item, combined the symmetry, we can derive the following equality,

> (a1d),, (P, )i.s (cr,cT), ( Py i = > (La1q),,( P,).; (CL, CT)., (P,)1s aF s

_ P,)? (175)
=" (14,17 PrCr,CT) Bois
ls (Pr)l,s
Therefore, we have
TpT T TH T (Pr)zzj
Tr (I,CP 14,1} P,C) < Y <1dT1dTPTCFTC ) iy (176)
id (Pr)i;
Likewise, for FTCTPTT 14, 1;, we have
. P.). .
Tr (I,C TP 14,1]) = Tr (1,1 T,C"P]) > 3 (1, 1/T,CT), . (P,.) 1 4 log Br)ii | | (177)
I i (Pr)i
Hence, combining Eqgs. (168), (171), (172), (173), (176) and (177), we can have
- - P.)?. )\ P,)}. + (P,
FP,.P,) =2y (PTCD,YE:GTG:ETDICT)_ _ Brliy | A Y (c.ch),, B+ ®rkiy
i (Pr)iy 2 ’ (Pr)ij
P,)? +(P,)2, - P,
a?» (C,D,E/G,G/ED]CT) M +) (1dr1;P,.chcT) ﬁ#
7 (Pr)i,j Pr)i; (178)

rE e ammie, (5], (1 E)

’ (PT i,

23 (1T, (P, (1+log%> |

r)i,j

Consequently, F (P, f’r) is an auxiliary function, and under the updating rule Eq. (17), the loss function is monotonically
decreasing. Accordingly, we have the following inequality,

7 (E£h+1)’ ch+1) gD ph+) phtl) gt i) o (1) bgh)) <

(179)
7 (E£h+1), cth 1), Cgh—&-l)’D(h+1)7P£h)7E(h),th),agh),bgh)) .
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» During optimizing E, since its optimal solution can be acquired via singular value decomposition, we can get that after
each iteration, there always has

7 (E£h+1), ct+1), C£h+1)7 D(1L+1)7P£h+1), E(IL+1)7F£‘IL)7a£h), bgh)) <

(180)
7 <E£h+1)’ ch+1) D) ph+l) phtl) gt ) o (1), bgﬂh)) .

» During optimizing F,, its optimal solution is obtained by Eq. (76). Therefore, the objective value is decreasing when
optimizing F,.. Accordingly, we have the following inequality,

7 <E£h+1)7 ct+1), C£h+1)7 D(h+1)7P£h+1)’ E(h-i—1)7F£h+1)7a£h)7b£iz)) <

(181)
7 (E£h+1)’ CchtD) o) phtl) plhtd) gkt ph) k) bgh)) '

» During optimizing a,., according to Eq. (82), its solution can be directly obtained. Therefore, we have

7 <E£h+l)’ ch+1) D) ph+) phtl) E(h—i—l)’th-i-l)’agh-&—l)?bgh)) <
(182)
7 (Ev(thrl), ch D, D) ph+) pltl) g+l) phtD) o), bgh)) _

» During optimizing b,, its optimal solution is acquired by Eq. (86). Consequently, we have

7 (E£h+1), ct+1), C£h+1)’ D(h+1)7P£h+1)7 E(h+1)’th+1),a£h+1))b£h+1)) <

(183)
7 (E£h+1)’ ch+1) D) ph+) phtl) E(h+1)7F£h+1)7a£h+1)7b7(nh)) .

Combining Egs. (109), (141), (158), (166), (179), (180), (181), (182) and (183), we can obtain

7 (E(h-&-l), c+) gt plh+)) plhtn) E(h-',—l)’F(h-‘,—l),a(h-&-l)?b(h-&-l)) <
(184)

which indicates that the objective value is monotonically decreasing with each iteration of the algorithm.

Combining the monotonic descent characteristic (i.e., Eq. (184) ) and the lower bound characteristic (i.e., Eq. (126)), we can
conclude that the proposed method is convergent. O

G. Proof of Theorem 6

G.1. Computational Complexity
Proof. The computing cost of presented algorithm primarily comes from solving E,., C, C,, D, P,., E, F,., a,. and b,..

During optimizing E,, note that G, G is in R"*", directly computing the term G,G,/]X[[P,.C|C,|D will
require at least O(n?) cost. To decrease the computational cost, we observe that G,G, is a diagonal ma-
trix. Specially, its diagonal elements consist of 377 (Gy)15, 252 (Gr)2,gs - 5 252 (Gr)nyj.  We can equiv-

alently transform the term G, G, X][P,C|C,]D as (X, ®O,)' [P,C|C,]D where O, € R%*" is equal to

1g4, (Z?L(Gr)l,ja Z?ll(GT’)Zj? e Z?L(Gr)n,j) and © denotes the element-wise multiplication operation. Based

on this, computing G, G,) X,/ [P,.C|C,|D will take O(d,n + 2nd,.k + 2nk?) cost. In the similar way, we can obtain that
computing G,.G,'E, D" [P,.C|C,]"[P,C|C,]D will need O(nk + 2nk? + 2nkd,.) cost. In addition, computing EF,
will need O(nk?). Therefore, optimizing each E,. totally requires O (ndrk + nk‘z) cost.

During optimizing C, adopting the element-wise multiplication technique employed on E,., we can obtain that computing
XTGTGTTETDI and [P,«C|CT]DETTGTG:,TETD;r will require O(d,n + d,nk + d,k?) and O(2d,.k? + d.kn + d,.k?)
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respectively. Accordingly, computing >°"_, ¢?X, G, G E, DT and >/_, a?[P,C|C,|DE; G,G/E, DT will require
O(dkn + dk?) and O(dk? + dkn) respectively where d is the dlmensmn sum of all view data. Therefore, OptlleIIlg the
matrix C totally requires O (dk? + dkn) computing cost.

During optimizing C,, computing the term X, G, G,/ E, D ], requires O(d,n+d,nk-+d,k*) computational cost. Computing
[P,C|C,]DE'G,G' ETDZ requires O(nk + 2d,.k? + d,nk + d,.k?). Therefore, optimizing each C,. totally requires
O (dynk + d,k?*) cost.

During optimizing D, computing the terms [P,C|C,]'X,G,G'E, and [P,.C|C,]'[P,C|C,]DEG,GE,
take (’)(d n + 2kd,n + 2k*n) and O(nk + 4k*d, + 4k® + 2nk?) respectively.  Consequently, computing
S _ a?[P.C|C,]"X,G,G/E,and Y !_, a?[P,C|C,]" [P, C|C,|DE; G, G/ E, takes O(kdn+vk?n) and O(k?d+
vk3 + vnkQ) respectively. Therefore, optimizing D totally requires O (kdn + vk?n + k*d + vk® + vnk?).

During optimizing P,., constructing XTGTGTTETDICT and C,.C" require O(d,n + d.nk + d,k*) and O(d,.k?) com-
puting costs respectively. Constructing [P,.C|C,|DE] GG, E,D] C" requires O(nk + 2d,k* 4 d,nk). Therefore,
optimizing each P, requires O(d,.nk + d,.k?) cost.

During optimizing E, it involves conducting singular value decomposition on y__, b, E,F,. Constructing the term

>0 _, b.E,F, and performing singular value decomposition on it require O(vnk?) and O(nk?) respectively. Performing
U multiplying VT to generate the optimal solution takes O(nk?) Therefore, optimizing E totally requires O (vnkz) cost.

During optimizing F,., it involves conducting singular value decomposition on E " E,., which requires O(k®) computing
cost. Additionally, constructing the term ET E,. requires O(nk?) cost. Therefore, optimizing each F,. totally requires
O (nk* + k%) cost.

During optimizing a,., it involves calculating the term HXTGT —[P,C|C,|DE] GTHQF‘ Note that X, and G, are in
R?X" and R"*"> respectively. Directly computing || X, G, — [P,C|C,|DE, GTH2F will require at least O(nn,) com-
putational cost. Especially, when the incomplete percentage is relatively small, i.e., n, is larger, the cost is almost
close to O(n?). To reduce the cost, we observe that the value of HX,.GT - [P,.C|C,|DE; G, Hi is the same as that of
||XTGTG;'— - [P,.C|C,]DE/ G, G| ||j, In virtue of the element-wise multiplication technique adopted in analyzing E,.,
we can obtain that computing the term HX GG - [P .C|C,|DE/; G, GTHFrequlres O(dyn+kn+2d,k*+d,kn) cost.
Accordingly, computing the term > " dn + vkn + 2dk? + dkn) cost. Therefore,

r=1[X,.G.—[P, C|CT]DETG B requires O(
optimizing all a,. totally requires O(vkn + dk? + dkn) computing cost.

During optimizing b,, computing the term Tr (ETETFT) will require O(nk? + k) cost. Accordingly, computing
> Tr (ETE,F,) will need O(vnk?® + vk®). Therefore, optimizing all b, totally requires O (vnk? + vk*) com-
putational cost.

Based on the above analysis, we can obtain that optimizing all E,., C, C,, D, P,., E, F,., a, and b, will require
O (ndk‘ + vnk‘2), (@) (dk;2 + dk;n), O (dnk + dk‘Q), (@) (k:dn + vk?n + k2d + vk® + vnk‘Q), O(dnk + dk‘2), (@) (vnk;Q),
O (vnk? + vk?), O(vkn + dk? 4+ dkn) and O (vnk?* 4 vk?) respectively. Therefore, the total computing cost is O(ndk +
vnk? + dk? + vk?). Considering that the view number v and the cluster number k are generally greatly smaller than the
sample number n and that the dimension sum d is independent of n, we can obtain that the total computational complexity
is O(n). That is, the computing cost is linear with respect to the sample size n. O

G.2. Space complexity

Proof. During optimizing E,., generating the term G,.G,| X! [P,.C|C,|D needs O(d,n + 2d,.k + 2k? + 2nk) memory
cost. Similarly, generating G,.G,'E, D' [P,.C|C,] " [P,.C|C,]D needs O(nk + 2k? + 2kd, + 2k?d, + nkd,.) cost. For
the term EF, it needs O(nk + k2 4+ nk?). Therefore, during optimizing the variable E,., it requires O(k%d,. + nkd,. +nk?)
memory cost.

During optimizing C, generating the term X, G.,.G,” ETDWT needs O(d,n+nk+k?+d, k) memory cost. Generating the term
[P,.C|C, ]DETG G/ E,D needs O(nk+2d,k+2k? +d,n) cost. Consequently, generating >, _, a?X,.G, G/ E,D ]
and Y_"_, a?[P,C|C, }DETG G, E,D] will need O(dn+uvnk-+uvk?+dk) and O(vnk+2dk+2vk*+dn) respectlvely
Therefore, during optimizing C, it requlres O(dn + vnk + vk? + dk) memory cost.
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During optimizing C,., generating the terms XTGTGTTETDJ and [PTC\CT]DETTGTG,TETDJ needs O(d,n + nk +
k? + d.k) and O(2d,.k + 2k* + nk + d,n) memory costs respectively. Therefore, during optimizing C,., it requires
O(d.n + nk + k? + d,.k) memory cost.

During optimizing D, generating the term [P,C|C,]' X,G,G,E, needs O(d,n + 2d.k + 2nk + 2k?) mem-
ory cost. Generating [P,.C|C,]T[P,.C|C,|DE,; G,G,E, needs O(2d,k + 4k + 2nk). Accordingly, generating
S [P.C|C,] X, G, G E, and 3*_, [P,C|C,]T[P,C|C,]DE G, G E, will need O(dn + 2dk + 2vnk + 20k?)

and O(2dk + 4k?v + 2vnk) respectively. Therefore, during optimizing D, it requires O(dn + dk + vnk + vk?) memory
cost.

During optimizing P,., generating the terms XTGTG:ETD;'—CT and C,C T needs O(d,n+nk+k*+d k) and O(d, k+k?)
memory costs respectively. Generating the term [P,.C|C,|DE/ G, G, E,D] C" needs O(d,k + 2k*> + nk + d,n).
Therefore, during optimizing P,., it requires O(d,n + nk + k? + d,.k) memory cost.

During optimizing E, generating E, F,. needs O(nk + k*) memory cost. Accordingly, constructing Y _._, E, F, will need
O(vnk + vk?). Singular value decomposition and singular matrix multiplication will need O(nk + k?). Therefore, during
optimizing E, it requires O(vnk + vk?) memory cost.

During optimizing F,., generating E" E,. needs O(nk + k?) cost. Performing singular value decomposition needs O(k?).
Therefore, during optimizing F.., it requires O(nk + k?) memory cost.

During optimizing a,., instead of calculating the term HXTGT — [PTC\CT]DE,T GT| i,, we equivalently calculate the term
X, GG, — [PTC\CT]DE:GTGTTH; which requires O(d,n + kn + 2d,.k) memory cost. Accordingly, generating

>, ||X:G.G - [P,C|C,]DE]G,G] Hi requires O(dn + vkn + 2dk) cost. Therefore, optimizing all a, requires
O(dn + vkn + dk) memory cost.

During optimizing b,, constructing the term ETE,F, needs O(nk + k2) memory cost. Accordingly, constructing
S (Tx (ETETFT))2 will need O(vnk + vk?). Therefore, optimizing all b, requires O(vnk + vk?) memory cost.

r=1
Consequently, we have that during optimizing all E,, C, C,., D, P, E, F,., a, and b,, it will need O(kzd + nkd + vnkQ),
O(dn +vnk +vk?+dk), O(dn + vnk +vk? + dk), O(dn + dk + vnk +vk?), O(dn +vnk + vk? + dk), O(vnk + vk?),
O(vnk + vk?), O(dn + vkn + dk) and O(vnk + vk?) memory costs respectively. Accordingly, the total memory cost is
O(k%*d + nkd + vnk?). Owing to the data dimension sum d being independent of the sample size n and the view number v
and the cluster number being far less than n, we have that the total space complexity is O(n). That is, our memory cost is
linear with respect to the sample size n. O

H. Experimental Background
H.1. Data Preprocessing

In experiments, each (observed) view data is normalized to a probability form. Specially, we first map the data to have a
mean of 0 and a variance of 1 so as to prevent certain dimensions from encountering excessively large scales, and then
employ the softmax function to transform negative elements into positive ones. Subsequently, we conduct normalization
operation and transform each view data into a probability distribution. Afterwards, all comparison algorithms are evaluated
on these preprocessed datasets.

H.2. Parameter Setting

Owing to the elements in X,., G, P,, C, C,, D, E,, a and b being between 0 and 1, we can obtain that the terms
a? || X, G, — [P.C|C,|DE,; GrHi, and (P,.C,C,) (i.e., Tr(CTP, C,)) are less than 1. Additionally, combined with
the orthogonality of E and E,., we have that the value of Tr (ET Sy brETFT) is generally much larger than that
of a2 || X, G, — [PrC|C7.]DE,rTG,.||i and that of Tr (CTPC,). Therefore, we fine-tune X in a wide range while
fine-tuning [ in a relatively narrow range. Further, considering that Tr (ET P b,,ETF,,) is upper-bounded by v/vnk
and that the sample size n is largely greater than the view number v and the cluster number k, we search A and /3 in

[1072,107%,10°,10%,102] and [1072,107%,10°, 10%, 10?] - \/vlﬂ respectively.
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H.3. Implementation Details

Since P,.C denotes the feature cluster, we normalize it column by column. During optimizing P, and C, we do column
normalization on them respectively. Similarly, C,. denotes the feature cluster, and we also normalize it column by column.
Additionally, E, denotes the sample cluster, and thus we do row normalization on it. D denotes the association between
feature cluster and sample cluster, and we do distribution normalization on it.

To evaluate the clustering outcomes from various perspectives, we adopt three commonly-utilized metrics, purity(PUR),
accuracy(ACC), F-score(FSC).

I. Symbol Description

Table 7 summarizes the symbols used in this manuscript and corresponding meaning as well as the size.

Table 7. Symbol Description

Notation Description Size
X, Data matrix on r-th view dr Xn
P, Guidance matrix on r-th view dr x k
C Perspective-shared matrix kxk
C, Perspective-specific matrix d. x k
D Association matrix between 9%k x k

feature clusters and sample clusters

E, Feature clusters on r-th view nxk
G, Index matrix on r-th view n X N,
E Common feature clusters nxk
F, Space rotation matrix on r-th view kxk
a View weight vector vXx1
b Sample cluster weight vector vXx1
D, Dk, kxk
Dgp Dk+1:2k,: kxk
d, Lagrange multiplier matrix Ny X Ny
v, Lagrange multiplier matrix kxk
Q, Lagrange multiplier matrix kxk
J Lagrange multiplier matrix kxk
H., Temporary matrix d, X n,
J. Temporary matrix kxk
L Temporary matrix kxk
M Temporary matrix kxk
Ar Temporary matrix d. x k
f’)r Temporary matrix nxn
ér Temporary matrix nxk
K, Temporary matrix nxk
L, Temporary matrix dyr X 2k
d, Data dimension on r-th view -

d Data dimension sum -

v The number of views -

n The number of samples -

k The number of clusters -

n The number of samples i

.

observed on view r
[-]] Matrix concatenation -
Element in the ¢-th row and
j-th column of matrix.
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J. Hyper-parameter Sensitivity

In the paper, our model involves two hyper-parameters, A and /3. To investigate the model sensitivity about hyper-parameters,
we plot the performance changes with respect to different hyper-parameter values, as suggested in Fig. 3 where for the sake
of simplicity, we in figure omit the coefficient 1/v/nvk. One can observe that under given 3, the performance is relatively
stable with respect to A while under given A, the performance fluctuates within a tolerable range. Therefore, we can state
that the proposed model to a certain extent is parameter-robust.

PUR PUR PUR PUR

102 102 102 102 102 102 102 102

(a) FLOEVEN (b) SYNTHREED (c) DEOLOG (d) YALTHREE

PUR PUR PUR PUR

102 102 102 102 102 102 102 102

(e) BGFEA (f) AWTEN (2) HDIGTWO (h) YOUFOURV

Figure 3. Performance Changes under Different Hyper-parameter Values

K. Experimental Convergence

We have proven the convergence theoretically. Here, to confirm the convergence, we draw the objective value changes, as
presented in Fig. 4. One can observe that along with iterations, our loss value is gradually decreasing, which demonstrates
that our objective function is experimentally convergent.

L. More Ablations
L.1. The Ablation of Common Sample Clusters

In the manuscript, we utilize a common sample cluster matrix to formulate full spectral embedding. This strategy not only
facilitates view information communication during the procedure of learning but avoids the fusion between view-specific
sample clusters. To validate the effectiveness of this common sample cluster strategy, we organize relevant ablation. The
comparison results are reported in Table 8 where OCSC and WCSC represent the clustering results without/with common
sample clusters respectively. It can be observed that WCSC outperforms OCSC, illustrating that our common sample cluster
strategy is functional.
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Figure 4. Loss Changes along with Iterations
Table 8. Ablation for Common Sample Clusters
DATASET | FLOEVEN \ SYNTHREED
AB | 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC
OCSC 1023 10.14 493 1033 9.57 501 10.14 952 438 | 40.05 3897 3398 40.73 38.56 33.69 36.73 3640 30.79
WCSC 11.17 1080 589 11.25 10.53 5.88 11.54 10.74 5.83 | 42,50 42.12 3521 42.83 4283 3524 41.04 41.04 34.59
| DEOLOG | YALTHREE
OCSC 29.06 20.82 16.62 30.29 21.87 17.79 2875 2285 18.51 | 22.19 2098 6.75 1931 1942 559 1859 1897 5.19
WCSC 31.84 2232 1845 31.84 23.74 1841 31.28 2425 19.56 | 2494 2355 7.89 21.73 20.61 630 21.55 20.70 6.70
| BGFEA | AWTEN
OCSC 1876 1924 1932 2044 21.88 1970 2045 2021 1946 | 1854 11.21 991 1853 11.02 9.60 1853 10.10 9.33
WCSC 22.08 22.08 20.08 22.64 2240 20.16 2248 2228 20.20 | 20.74 12.24 11.01 20.17 12.01 1097 20.18 12.06 10.94
| HDIGTWO | YOUFOURV
OCSC 957 9.65 979 879 1073 9.01 1045 997 936 | 1353 839 886 1426 936 861 1322 9.12 84l
WCSC 11.73 1151 10.03 11.75 11.60 10.11 1179 11.70 10.22 | 1599 1091 1048 1595 10.85 1047 1595 10.80 10.47

L.2. The Ablation of Space Rotation

We adopt a space rotation strategy to reorder sample clusters on each view so as to decrease the risk of misregistration.
To validate its effectiveness, we conduct ablation experiments, and the results are summarized in Table 9. OSR and WSR
represent the clustering results without/with our space rotation strategy respectively. As seen, after rotating, the clustering
performance is improved. This gives evidence that our rotation strategy is beneficial for performance enhancement.
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Table 9. Ablation for Space Rotation

DATASET | FLOEVEN \ SYNTHREED
| 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FsC

A/B

OSR | 1057 1013 518 1035 1013 513 998 939 507 | 3817 3817 3368 3767 3633 3355 3850 37.00 33.65

WSR | 1117 10.80 589 1125 1053 588 1154 10.74 583 | 4250 4212 3521 4283 4283 3524 4104 4104 34.59
| DEOLOG | YALTHREE

OSR  [3062 2151 1796 3034 21.89 18.16 30.23 2201 1807|2226 21.05 579 2049 1897 559 2072 1951 639

WSR | 31.84 2232 1845 3184 2374 1841 3128 2425 19.56 | 2494 2355 7.89 2173 2061 630 2155 2070 6.70
| BGFEA | AWTEN

OSR | 2146 2126 19.68 2174 2166 19.88 21.70 2142 19.80 | 19.05 11.09 10.02 19.05 11.03 997 19.05 1119 10.16

WSR | 22.08 22.08 20.08 22.64 2240 20.16 2248 2228 2020 | 2074 1224 1101 2017 1201 1097 2018 12.06 10.94
| HDIGTWO | YOUFOURV

OSR 1027 1019 922 1034 1017 942 1060 1027 942 | 1427 901 875 1421 927 927 1425 924 927

WSR | 1173 1151 1003 1175 1160 10.11 1179 1170 1022 | 1599 1091 1048 1595 1085 1047 1595 10.80 10.47

L.3. The Ablation of View Weight

Orthogonal to previous techniques regarding views equally, in this manuscript we associate a variable for each view to
automatically balance the view contributions. To verify its effectiveness, we ablate the view weighting. The comparison
results are summarized in Table 10 where OVW and WV W represent the results without/with view weight respectively.
Apparently, WVW does better than OVW, illustrating that the view weighting is effective.

Table 10. Ablation for View Weight
DATASET | FLOEVEN \ SYNTHREED
| 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC

A/B

OVW | 1006 9.61 478 992 941 469 1043 944 475 | 4095 4095 33.82 41.52 41.14 3389 3921 3997 33.19

WVW | 1117 1080 589 1125 10.53 588 1154 1074 583 | 42.50 4212 3521 42.83 4283 3524 4104 4104 3459
DEOLOG | YALTHREE

OVW | 3012 2084 17.32 3039 2174 17.62 3181 2299 1792|2206 2061 7.92 1989 19.13 525 19.67 1874 6.00

WVW | 31.84 2232 1845 31.84 23.74 1841 3128 24.25 19.56 | 24.94 2355 789 2173 2061 630 2155 2070 6.70

BGFEA | AWTEN

OVW | 2034 2034 1825 2027 20.54 1837 2058 2034 1836 | 1929 11.24 1009 19.28 1085 1004 19.23 1105 10.04

WVW | 2208 2208 20.08 22.64 2240 20.16 2248 22.28 20.20 | 20.74 12.24 11.01 2017 12.01 1097 20.18 12.06 10.94
HDIGTWO | YOUFOURV

OVW | 1078 1054 9.3 1086 1077 922 1088 1078 9.24 | 13.65 956 9.16 1417 950 9.14 1403 945 9.5

WVW | 1L73 1151 1003 1L75 1L60 1011 1179 1170 10.22 | 1599 1091 1048 1595 1085 1047 1595 10.80 1047

L.4. The Ablation of Sample Cluster Weight

We also associate weights for the sample clusters on all views to automatically balance them. The ablation results are
presented in Table 11 where OSCW and WSCW represent the clustering results without/with the sample cluster weight
respectively. As seen, the sample cluster weights indeed facilitate the clustering performance improvement.

M. Comparison Results under Other Missing Ratios

In order to further exhibit the strengths, we conduct experiments under more missing ratios. Specially, we organize the
comparison under missing ratio being 0.3, 0.4, 0.6 and 0.7 respectively. Table 12, 13, 14 and 15 summarize relevant
clustering results. According to these tables, one can observe that under these missing ratios, our proposed model still can
provide competitive clustering results.
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Table 11. Ablation for Sample Cluster Weight

DATASET | FLOEVEN \ SYNTHREED
AB | 0.2 | 0.5 | 0.8 | 0.2 | 0.5 | 0.8
| PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC
0SCW ‘10.68 1025 552 1064 994 552 1085 10.17 549 ‘40.92 40.57 3368 4097 4113 3363 3972 3979 33.16
WSCW | 1117 1080 589 1125 1053 588 1154 1074 583 | 4250 4212 3521 4283 4283 3524 4104 4104 3459
| DEOLOG | YALTHREE
OSCW ‘30.44 2101 1757 3071 2289 1774 3044 2234 18.03 ‘ 2313 2227 689 2055 1958 517 2116 2025 553
WSCW | 31.84 2232 1845 31.84 2374 1841 3128 2425 19.56 | 2494 2355 7.89 2173 2061 630 2155 2070 6.70
| BGFEA | AWTEN
OSCW ‘ 2098 2094 1888 21.38 2172 1943 2118 2098 19.01 ‘ 1952 1142 1039 1952 1125 1037 19.52 1125 1035
WSCW | 2208 2208 20.08 22.64 2240 20.16 2248 2228 2020 | 2074 1224 1101 20.17 12.01 1097 20.18 12.06 10.94
| HDIGTWO | YOUFOURV
0SCW ‘ 1103 1093 944 1113 1098 951 1119 1111 954 ‘ 1507 996 955 1494 986 953 1491 989 954
WSCW | 1173 1151 10.03 1175 1160 1011 1179 1170 1022 | 1599 1091 1048 1595 10.85 1047 1595 10.80 1047
Table 12. Clustering Comparison under Missing Ratio Being 0.3
DATASET | FLOEVEN | SYNTHREED | DEOLOG | YALTHREE
METRIC | PUR ACC  FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC  FSC
LRTL 1058 1067  8.18 3836 3936 3275 2742 2055 1642 2009 2076  7.11
TCIMC 1131 1021 826 3874 3772 3143 3174 1843 1548 20.63 17.65 83l
AGCIM 941 846 836 3367 33.67 2833 31.82 2126 17.67 21.88 1845 733
LSIMV 9.06 1013 532 3643 3883 3327 3174 1788 1588 1847 1573  7.23
GIMC 8.13 8.86 583 3653 3484 3296 3127 1827 1738 1858 1632 623
IMVCI 992 994 581 4071 4171 3322 3196 2096 1835 2197 1839  6.70
PIMVC 1083 929 632 4053 3986 3137 3077 2321 1799 2139 1800 7.6l
HCCGL 7.4 683 572 3800 34.67 3497 3158 2046 1811 2245 2145 829
USETL 1020 956  7.35 3933 3933 2995 2973 19.05 1812 1994 2067 849
LBIMV 1066 1046 501  41.07 4174 2790 3098 2098 1759 21.18 1897 522
UIMC 1088 1044 624 3617 3956 3327 33.02 1943 1582 2082 1861 536
OURS 11.63 1090 596 4240 4240 3492 3212 2291 1848 2291 2161  6.64
| BGFEA \ AWTEN \ HDIGTWO \ YOUFOURV
LRTL 1757 2016 19.02 1679 1018  7.88 1025 10.63  9.07 - - -
TCIMC 1837 2083 1772 1684 1133  10.84 1073 1024  8.63 - - -
AGCIM 1943 2016 1589 1833 1037 1057 1167 1077 872 - - -
LSIMV 1727 1936 19.62 2077 11.12 1014 1157 912 823 - - -
GIMC 1979 1913 18.66 1978 932 989 1094 811 7731084 1027 842
IMVCI 1878 1979 1574 2053 847 1079 1127 1112 874 - - -
PIMVC 2064 2051 1723 2061 987 935 1049 8.1l 878 1524 1036  8.75
HCCGL 2257 1928 1895 2011 987 823 1057 1097 827 - - -
USETL 2036 1911 1684 2018  7.84 9.1 1032 812 834 1053 932 892
LBIMV 192 2194 1838 2033 1041 871 836 1172 885 1588 998 927
UIMC 19.87 1827 1846 1869 1137 936 926 1043  9.17 - - -
OURS 2216 21.88  20.06 20.85 1214 1102 11.81 1157 1007 1602 10.82 1048

N. Stability and Reliability

In order to demonstrate the stability and reliability of devised model, we record the standard deviations and present them in
Fig. 6 where D-1 ~ D-8 are the alternative name of datasets in Table 1 correspondingly. According to this figure, we can
observe that even under various missing ratios’ scenarios, the value of standard deviation is fairly small relative to the mean
value. This provides evidence that our model is stable and the produced results are reliable.
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Table 13. Clustering Comparison under Missing Ratio Being 0.4
DATASET | FLOEVEN | SYNTHREED | DEOLOG | YALTHREE
METRIC | PUR ACC  FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC  FSC

LRTL 11.07 9.42 7.57 3956  41.78 3392  29.33 19.49 17.40 19.24 2282 5.71
TCIMC 10.43 9.73 7.87 3774 36.68  30.63 31.86 18.47 16.43 21.43 18.32 5.87
AGCIM 9.04 8.01 6.73 33.83 33.83 29.18 31.36 22.30 17.86  22.03 18.03 8.29
LSIMV 7.97 9.23 433 36.23 3779 33.73 31.76 17.26 14.46 17.69 15.62 8.23
GIMC 7.84 7.73 6.74 36.74 3257 3326  31.26 18.32 16.47 19.47 16.57 6.73
IMVCI 10.27 9.62 5.65 41.68 39.68 3472 3056 @ 21.56 18.38 19.52  20.64 7.31
PIMVC 10.71 9.38 5.12 42.17 37.17  32.87 30.88 21.77 18.22 17.79 14.79 6.11
HCCGL 7.06 6.91 5.36 40.18 37.33 32.41 30.53 20.97 17.31 19.61 20.12 7.37
USETL 9.57 8.97 6.88 38.04 3748  29.01 29.63 19.51 17.89  20.85 19.85 7.04
LBIMV 10.96 9.04 5.47 40.51 40.53 3024 30.18 21.18 18.51 21.33 19.32 5.52
UIMC 11.18 9.83 6.06 35.67 40.67 33.16 3143 20.26 16.53 20.64 18.82 6.67
OURS 11.25 10.47 5.86 41.83  41.67 34.85 3212 22.63 18.47 2221 21.33 6.23

| BGFEA | AWTEN | HDIGTWO | YOUFOURV

LRTL 19.76 19.76 19.33 17.74 10.11 8.67 12.53 9.72 9.21 - - -
TCIMC 19.21 21.47 17.65 15.73 10.76 9.79 11.53 9.83 8.73 - - -
AGCIM 20.48 20.40 15.78 18.00 11.42 10.32 10.86 11.01 8.46 - - -
LSIMV 19.34 18.57 18.88 19.28 11.09 9.72 11.89 7.65 7.89 - - -

GIMC 17.87 18.86 2023  20.97 10.25 10.35 11.73 8.93 8.17 11.72 9.32 8.74
IMVCI 22.03 19.68 1533 20.56 9.20 10.05 11.83 10.98 9.03 - - -
PIMVC 22.98 20.66 16.72 2037 10.02 9.08 10.37 9.23 9.23 15.88 10.47 9.42
HCCGL 20.52 18.36 18.57  20.17 10.21 8.14 11.53 10.26 9.74 - - -
USETL 20.61 18.12 17.21 20.13 7.39 8.97 9.43 9.21 7.87 11.32 9.74 8.77
LBIMV 19.16  21.43 17.74  20.09 9.45 8.83 8.70 10.44 8.90 15.42 10.32 9.24

UIMC 22.37 19.21 18.21 20.14 11.63 9.47 9.96 10.78 8.63 - - -

OURS 22.28 22.16  20.11 20.58 12.06 10.98 11.94 11.61 10.09 16.00 10.87 10.48
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(a) Learned View Weights (b) Learned Sample Cluster Weights

Figure 5. Visualization of View Weights and Sample Cluster Weights

0. Weight Visualization

We associate views and sample clusters with learnable weight vectors respectively to adaptively measure their contributions.
To validate that it indeed learns different weights for views and sample clusters respectively, we visualize these weights,
as illustrated in Fig. 5. D-1 ~ D-8 are the alternative name of datasets in Table 1. It is easy to see that on each dataset,
the view weights learned are different and the sample cluster weights learned are also different, which indicates that our
optimization procedure is functional. Additionally, in conjunction with Table 10 and 11, we have that the weight strategy
brings performance increasement. Therefore, we can state that the devised weight strategy works well with incomplete
multi-view clustering.
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Table 14. Clustering Comparison under Missing Ratio Being 0.6

DATASET | FLOEVEN | SYNTHREED \ DEOLOG | YALTHREE
METRIC | PUR ACC FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC  FsC

LRTL 11.05 10.47 7.34 37.83 40.83 30.68 31.42 20.70 16.26 18.06 19.82 5.98
TCIMC 10.56 10.38 6.68 36.89 3543 30.55 31.27 20.78 16.47 20.36 18.36 8.10
AGCIM 8.97 8.24 6.95 33.67 33.67 29.41 32.91 23.07 17.55 19.98 17.03 6.22
LSIMV 8.24 8.58 7.82 35.86 35.86 34.55 32.58 17.56 15.37 17.49 15.74 6.37

GIMC 8.37 8.47 7.32 34.62 32.97 35.37 31.94 17.67 16.58 18.85 17.46 6.73
IMVCI 11.16 9.68 5.84 41.03 37.18 30.47 31.49 23.49 17.87 20.21 19.33 7.23
PIMVC 11.13 9.28 8.33 36.14 35.18 31.47 30.18 21.07 18.31 16.70 14.27 8.01
HCCGL 7.28 6.99 5.36 38.17 38.17 31.66  30.04 21.76 17.91 18.88 21.52 6.82
USETL 9.59 8.92 7.81 37.61 37.61 28.64 2742 21.28 17.33 20.71 19.06 6.72
LBIMV 9.81 10.93 5.57 40.50  41.58 29.46  30.77 22.77 17.57 20.12 19.09 6.25

UIMC 10.81 9.29 5.93 34.67 38.33 33.09 29.94 19.89 16.53 20.64 18.42 6.86

OURS 11.54 10.74 5.98 4250  41.50 35.08 31.28 24.02 18.53 21.33 20.36 5.87

| BGFEA | AWTEN | HDIGTWO | YOUFOURV

LRTL 1937 2197  21.22 17.89 10.23 8.33 10.98 10.27 9.12 - - -
TCIMC 18.67  20.42 18.92 16.83 10.31 10.32 10.63 10.42 8.45 - - -
AGCIM 20.32  20.20 16.48 19.84 9.53 10.11 11.36 9.87 9.46 - - -
LSIMV 19.35 17.92 17.97 16.47 10.64 10.33 11.32 8.58 8.27 - - -

GIMC 19.13 17.85 18.16 19.32 9.26 9.38 10.63 8.47 7.78 10.74 9.52 8.53
IMVCI 22.68  22.68 16.83 20.58 8.92 9.69 10.97 12.43 9.88 - - -
PIMVC 20.60  20.54 16.79  20.51 10.28 9.67 10.24 8.73 8.66 15.48 9.32 9.62
HCCGL 20.56 18.32 18.77 20.23 10.83 8.44 9.43 11.24 7.43 - - -
USETL 19.06 18.01 17.33 20.21 8.59 10.23 8.37 8.89 8.43 9.87 9.11 9.27
LBIMV 21.96 19.76 15.35 20.14 9.05 7.51 9.37 9.64 9.00 14.32 9.48 9.22

UIMC 21.37 18.27 18.45 19.67 10.16 8.96 10.27 9.75 8.49 - - -

OURS 2253 2224  20.16  20.79 12.07 10.96 11.80 11.69 10.15 15.93 10.81 10.47

Table 15. Clustering Comparison under Missing Ratio Being 0.7

DATASET | FLOEVEN | SYNTHREED \ DEOLOG | YALTHREE
METRIC | PUR ACC  FSC | PUR ACC FSC | PUR ACC FSC | PUR ACC  FSC

LRTL 11.03 10.42 7.40 35.43 40.43 3243 31.06 21.25 17.24 19.12 20.48 6.14
TCIMC 11.07 10.43 7.12 37.38 36.62 30.32 30.88 18.56 15.76 ~ 20.17 18.12 6.75
AGCIM 8.90 8.31 6.96 34.17 34.00  28.80 30.11 23.26 18.12  20.73 17.12 6.73
LSIMV 8.12 9.23 7.32 34.67 34.72 32.36 31.17 17.47 15.35 17.74 15.63 7.22

GIMC 7.73 8.23 6.43 34.85 31.87 33.43 32.87 18.32 16.78 19.74 15.78 7.21
IMVCI 9.70 9.95 5.66 39.58 38.74 31.59 30.24 23.24 17.38 20.16  20.79 8.62
PIMVC 11.27 8.36 7.48 34.33 32.50 31.39 30.19 21.08 18.13 16.52 13.97 7.11
HCCGL 7.13 6.78 5.76 36.00 36.00 32.97 29.57 22.17 18.38 20.67 20.27 7.14
USETL 9.41 8.85 7.33 36.51 36.51 28.13 30.41 20.38 18.88 19.88 20.06 7.89
LBIMV 9.12 10.06 5.81 39.17 36.17 27.11 30.57 20.30 17.68 21.33 18.52 5.35

UIMC 10.74  10.37 5.98 4267 4067 3092 31.18 2247 1673 206l 17.20 6.32

OURS 11.81  11.01 5.90 41.83 4150 3500 3128 24.02 18.68 2091  19.82 5.83
| BGFEA | AWTEN | HDIGTWO | YOUFOURV

LRTL 18.68 20.84 1825 1772  10.81 8.29 1026  11.03 9.23 - - -

TCIMC 18.73 19.83 18.27 15.68 9.57 9.78 10.26 10.37 7.84 - - -
AGCIM 2032 20.28 14.45 14.11 9.84 11.08 9.87 10.41 8.50 - - -
LSIMV 19.16 17.88 18.26 17.86 11.29 9.47 10.47 8.37 7.94 - - -
GIMC 19.72 19.53 18.13 18.37 8.97 9.63 11.33 8.86 7.43 11.28 9.32 8.43
IMVCI 18.73 20.73 17.47 20.05 8.11 10.22 11.25 11.32 8.28 - -
PIMVC 21.74  20.74 16.38 20.36 10.11 9.25 9.39 9.51 8.47 16.36 10.89 8.94
HCCGL 21.35 18.36 18.27 20.21 10.14 7.87 9.15 9.32 7.83 - - -
USETL 19.24 19.09 15.83 20.14 8.74 9.46 8.64 8.47 8.47 9.49 8.32 9.56
LBIMV 20.84 2047 18.36 20.07 8.34 8.61 8.11 10.49 9.03 15.23 9.74 8.72
UIMC 20.72 17.75 18.33 18.47 11.32 9.36 9.67 9.06 8.01 - - -
OURS 22.60 2240  20.19 20.32 11.92 10.95 11.91 11.80 10.17 15.98 10.88 10.48
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Figure 6. Errorbar of Standard Deviation and Mean Value
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