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Abstract
Despite remarkable advances, existing incomplete
multi-view clustering (IMC) methods typically
leverage either perspective-shared or perspective-
specific determinants to encode cluster represen-
tations. To address this limitation, we introduce
a BACDL algorithm designed to explicitly cap-
ture both concurrently, thereby exploiting hetero-
geneous data more effectively. It chooses to bi-
furcate feature clusters and further alienate them
to enlarge the discrimination. With distribution
learning, it successfully couples view guidance
into feature clusters to alleviate dimension incon-
sistency. Then, building on the principle that sam-
ples in one common cluster own similar marginal
distribution and conditional distribution, it uni-
fies the association between feature clusters and
sample clusters to bridge all views. Thereafter,
all incomplete sample clusters are reordered and
mapped to a common one to formulate cluster-
ing embedding. Last, the overall linear overhead
endows it with a resource-efficient characteristic.

1. Introduction
In the era of information, heterogeneous data that are com-
monly gathered from various channels and modalities of
the same one object are growing more prevalent (Ma et al.,
2024b; Wang et al., 2023; Yu et al., 2025; Zhang et al., 2025).
Accordingly, how to effectively excavate out valuable po-
tential patterns from this type of data is grasping increasing
attention (Li et al., 2025; Yu et al., 2024b; Liang et al., 2024).
Multi-view clustering (MVC) technology, in virtue of the
ability to seamlessly integrate multi-source information and
powerfully partition samples into distinct sets without the
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need of any labels known in advance, is generally perceived
as an encouraging method to tackle these data, and has been
widely deployed in fraud detection, personalized medicine,
social network analysis, etc, (Zhang et al., 2021; Yu et al.,
2023; Zhang et al.; Liu et al., 2024). The prerequisite for
MVC algorithms’ proper execution is that all views are re-
quired to be complete (Yu et al., 2024d; Ma et al., 2024a; Gu
et al., 2024a; Wan et al., 2024). Due to equipment defects or
collector faults, however, in real-life it inevitably causes cer-
tain views having missing samples, inducing the incomplete
multi-view clustering (IMC) issue (Yu et al.; Wang et al.,
2021a; Liu et al., 2023a; Yu et al., 2024a; Gu & Feng).

To cope with IMC tasks, recently, a great deal of promising
methods have been carefully presented (Xu et al., 2022;
Wang et al., 2021b; Yu et al., 2024c; Tang & Liu, 2022). For
instance, Wang et al. (2022) adopt consensus bipartite affin-
ity to characterize arbitrary views and jointly construct an-
chors using an unified learning mechanism. Li et al. (2023b)
decrease the disturbance of superfluous properties through
projecting operations and employ low-rank tensor regulariz-
ers to leverage high-order representation inside samples. Gu
et al. (2024b) utilize dictionary learning strategy to recover
missing parts and integrate Gaussian error rank into Lapla-
cian manifold optimization to explore local correlations.
Motivated by prototype advances, Li et al. (2024) build up
the conjunction between prototypes and observed instances
to avoid the generation of full-sized similarity and directly
formulate the overall graph structure without additional
hyper-parameter searching. These methods enhance the
clustering quality from various aspects, nevertheless, they
investigate either perspective-shared or perspective-specific
determinants to encode cluster representation. This single
paradigm could not sufficiently exploit the interrelations
among data features, restricting the model’s performance.

To get rid of this limitation, in the manuscript we propose
an IMC algorithm named BACDL, and its overall pipeline
is described in Fig. 1. Concretely, inspired by non-negative
matrix factorization, we choose to bifurcate feature clus-
ters and each bifurcation is explicitly interconnected to a
type of determinants. Through mutual exclusion learning,
we alienate them to strengthen their discrimination. Subse-
quently, in virtue of distribution learning, we couple view
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Figure 1. Pipeline of proposed BACDL. It firstly bifurcates feature clusters on each incomplete view and magnifies the discrimination
between determinants via mutual exclusion learning. Then, it couples view guidance into feature clusters through distribution learning
to alleviate the dimension inconsistency. Subsequently, it unifies the association between feature clusters and sample clusters to bridge
all views. Further, all sample clusters are reordered in latent subspace and, following adaptive weighting, mapped to a common one to
constitute clustering embedding. VG: view guidance; PDD: perspective-shared determinant; PCD: perspective-specific determinant;
ME: mutual exclusion; D: association between feature clusters and sample clusters; AW: adaptive weighting; IV1SC: incomplete view 1
sample clusters; IVRSC: incomplete view r sample clusters; IVVSC: incomplete view v sample clusters; CSC: common sample clusters.

guidance into feature clusters to eliminate the inconsistent
dimensions. Further, relying on the fact that samples in one
common cluster are with similar marginal distribution and
conditional distribution, we unify the association between
feature clusters and sample clusters to bridge all views. Af-
terwards, we reorder sample clusters by space rotation and
map them after adaptive weighting onto a common one to
form clustering embedding. Then, for efficiently minimiz-
ing the formulated objective function, we give a nine-step
updating rule with overall linear overhead and theoretical
convergence. For verifying the effectiveness of BACDL, we
organize extensive comparison experiments under multiple
missing ratios. To sum up, in this manuscript we (1) propose
a new IMC learning paradigm, which achieves the simulta-
neous exploration of both perspective-shared determinants
and perspective-specific determinants via coupled distribu-
tion learning; (2) design a updating rule with overall linear
overhead, enhancing the practicality (3) conduct compre-
hensive experiments, demonstrating the effectiveness and
merits of presented BACDL method from multiple aspects.

2. Related Works
To effectively handle IMC problems, in recent years re-
searchers have proposed many prominent algorithms. Xu
et al. (2023) impose an adaptive projection in feature space
to evade imputation, and formulate cluster structures by si-

multaneously enlarging mutual information and shrinking
mean discrepancy. Ren et al. (2024) advance imputation
fidelity in an unsupervised manner and conduct data match-
ing across clients by utilizing the sample homogeneity and
view multi-functionality. Inspired by contrastive learning,
Yang et al. (2022) utilize observed pairs as positives and
randomly-selected cross-view samples as negatives to elimi-
nate the partial unalignment and alleviate the noisy impact.
Zhao et al. (2023) introduce consistency constraint to main-
tain the similarity between graphs on different views and
utilize the tensor means to extract graph correlations in
a manifold space. Orthogonal to them, He et al. (2023)
learn asymmetric similarities based on structural anchors
to replace distance-based weighting and extend late fusion
to general scenarios for affinity construction. Sun et al.
(2023) generate uniform probability representation by relax-
ing standard spectrum to increase the stability and integrate
a balance constraint to adaptively exploit intra-view features.
Li et al. (2023a) design a dual-stream mechanism to model
prototype-sample similarity and utilize the relationship be-
tween available views to conduct sample recovery. With the
idea of neighbor group, Wong et al. (2023) produce neighbor
sets for each sample pair to partition structure embedding
and encode view-missing position to guide the fusion of
individual graph. Zhang et al. (2024) introduce kernelized
subspace to extract intrinsic structure between views and
perform low-rank learning and affinity construction jointly.
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3. Preliminary
Non-negative matrix factorization (Ding et al., 2006; Long
et al., 2012; Ding et al., 2010) is usually deemed as a pow-
erful means to tackle multi-view data. The basic idea is
formulated as

min
Cr≥0,Dr≥0,Er≥0

v∑
r=1

∥∥Xr −CrDrE
⊤
r

∥∥2
F
, (1)

where Xr ∈ Rdr×n denotes the (complete) data matrix on
view r. dr is the feature dimension on view r, and n is
the number of samples. Cr ∈ Rdr×w denotes w feature
clusters. Each column of Cr represents a probability distri-
bution on dr features. t∗ = argmaxt(Cr)s,t indicates that
feature s is affiliated to feature cluster t∗ where (Cr)s,t is
the element in the s-th row and t-th column of Cr. The ma-
trix Er ∈ Rn×z denotes z sample clusters. Each row of Er
represents a probability distribution. t∗ = argmaxt(Er)s,t
indicates that sample s is affiliated to sample cluster t∗.
Dr ∈ Rw×z denotes the association matrix between Cr

and Er. The element (Dr)s,t expresses the association
probability between feature cluster s and sample cluster t.

Besides, the formula minCr,Dr,Er

∥∥Xr −CrDrE
⊤
r

∥∥2
F

can be equivalently deemed as minCr,Zr ∥Xr −CrZr∥2F
and minDr,Er

∥∥Zr −DrE
⊤
r

∥∥2
F

. Cr maps the original data
Xr to the potential space Zr. Correspondingly, the marginal
distribution P (xr) is transformed to P (zr). Cr learns the
marginal distribution. Similarly, Dr maps the potential
space Zr to the sample clusters Er. Correspondingly, the
conditional distribution P (y|xr) is transformed to P (y|zr).
Dr learns the conditional distribution.

4. Proposed Model
Firstly, for incomplete dataset {Xr}vr=1, in order to work
with the incompleteness, we introduce the index matrix
Gr ∈ Rn×nr where (Gr)i,j = 1 if (wr)j == i otherwise
(Gr)i,j = 0 for any j ∈ [1, 2, · · · , nr]. wr ∈ Rnr×1 is
the indicator vector. nr is the number of samples observed
on view r. Accordingly, XrGr ∈ Rdr×nr denotes the
available samples on the r-th view.

Then, to achieve double-determinant exploration, we bifur-
cate the feature clusters. Specifically, we attempt to jointly
utilize C ∈ Rk×k and Cr ∈ Rdr×k to exploit perspective-
shared determinants and perspective-specific determinants
respectively where k is the number of clusters. However,
due to the feature dimension inconsistency, it is hard to
embed C into feature clusters. To alleviate this dilemma,
we introduce view guidance Pr ∈ Rdr×k to assist C ex-
ploring inter-view characteristics. Accordingly, the feature
clusters are coupled as [PrC|Cr]. Additionally, given the
probability distribution characteristic of feature clusters, it

needs satisfying the constraint [PrC|Cr]
⊤1dr = 12k. So,

the loss can be defined as

min
C,Cr,Dr,Er,Pr,

v∑
r=1

∥∥XrGr − [PrC|Cr]DrE
⊤
r Gr

∥∥2
F

s.t. C ≥ 0,Cr ≥ 0,Dr ≥ 0,Er ≥ 0,Pr ≥ 0,

[PrC|Cr]
⊤1dr = 12k.

(2)
Further, in conjunction with the probability distribution char-
acteristic of sample clusters, we have that it needs satisfying
G⊤
r Er1k = 1nr

. On the other hand, in light of the fact that
samples in one common cluster are with similar marginal
distribution and conditional distribution, we unify the as-
sociation between feature clusters and sample clusters to
bridge all views. Besides, considering that views could have
different levels of contributions, we assign a weight for each
view to automatically balance them. Consequently, the loss
can be designed as

L0 = min
Θ

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

s.t. C ≥ 0,Cr ≥ 0,D ≥ 0,Er ≥ 0,Pr ≥ 0, ar ≥ 0,
v∑
r=1

ar = 1, [PrC|Cr]
⊤1dr = 12k,G

⊤
r Er1k = 1nr

,

(3)
where Θ = {C,Cr,D,Er,Pr, ar}. [·|·] denotes the matrix
concatenation operation.

Thereafter, to enhance the discrimination between double
determinants, we make PrC and Cr alienated from each
other. Specially, by point-to-point alienation, we utilize the
matrix inner product ⟨PrC,Cr⟩ to render them as dissimi-
lar as possible. So, we have the following loss,

L1 = min
C,Cr,Pr,

⟨PrC,Cr⟩

s.t. C ≥ 0,Cr ≥ 0,Pr ≥ 0, [PrC|Cr]
⊤1dr = 12k.

(4)

Subsequently, sample clusters on different views could be
misregistered due to the unsupervised property, and we
associate a transformation space for the sample clusters
on each view to reorder them. Further, we map reordered
sample clusters to a common one so as to formulate full
clustering embedding. Consequently, the loss is defined as

L2 = max
E,Fr,br

Tr

(
E⊤

v∑
r=1

brErFr

)

s.t. E⊤E = Ik,FrF
⊤
r = Ik,

v∑
r=1

b2r = 1, br ≥ 0,

(5)

where br is a weight variable.

Therefore, the loss of proposed BACDL is formulated as

L = L0 + λL1 − βL2. (6)
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5. Updating Rule
▶ When updating Er, the loss equivalently becomes

min
Er

a2r

∥∥∥XrGr − ÂrE
⊤
r Gr

∥∥∥2
F
− βbr Tr

(
E⊤ErFr

)
s.t. Er ≥ 0,G⊤

r Er1k = 1nr
,

(7)
where Âr = [PrC|Cr]D.

We can derive the following updating rule for Er,

(Er)i,j ← (Er)i,j


(
B̂rX

⊤
r Âr +

β
2 br(Ĉr)pos

)
i,j(

B̂rErÂ⊤
r Âr +

β
2 br(Ĉr)neg

)
i,j


1
2

(8)
where B̂r = a2rGrG

⊤
r , Ĉr = EF⊤

r . (·)pos and (·)neg
denote the positive part and negative part respectively.

Denote the loss (7) as L(Er). We give the auxiliary function
definition of L(Er).
Definition 1. F(Er, Ẽr) is an auxiliary function of L(Er)
when for any Er and Ẽr it satisfies F(Er, Ẽr) ≥ L(Er)
and F(Er,Er) = L(Er) (Ding et al., 2010).

Then, we have the following theorem holds,

Theorem 1. Eq. (9) is an auxiliary function of L(Er) and
also convex.

F(Er, Ẽr) = a2r
∑

(GrG
⊤
r ẼrÂ

⊤
r Âr)i,j(Ĥr)i,j

−2a2r
∑

(Ẽr)i,j(GrG
⊤
r X

⊤
r Âr)i,j(D̂r)i,j

−βbr
∑

(Ẽr)i,j

(
(Ĉr)pos

)
i,j

(D̂r)i,j

−2
∑

(Ẽr)i,j(GrΦ
⊤
r 1nr

1⊤
k )i,j(D̂r)i,j

+
∑

(GrΦrG
⊤
r Ẽr1k1

⊤
k )i,j(Ĥr)i,j

+
βbr
2

∑(
(Ĉr)neg

)
i,j

(Ĵr)i,j ,

(9)

where (D̂r)i,j = 1 + log
(
(Er)i,j/(Ẽr)i,j

)
, (Ĥr)i,j =

(Er)
2
i,j/(Ẽr)i,j , (Ĵr)i,j =

(
(Ẽr)

2
i,j + (Er)

2
i,j

)
/(Ẽr)i,j .

On the basis of Theorem 1, we further have the following
theorem holds,

Theorem 2. Under the rule Eq. (8), the loss Eq. (6) is
monotonically decreasing.

▶ When updating C, the loss can be simplified as

min
C

v∑
r=1

a2r

∥∥∥XrGr − ÂrE
⊤
r Gr

∥∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. C ≥ 0,C⊤P⊤

r 1dr = 1k.
(10)

Then, we can get the following updating rule,

(C)i,j ← (C)i,j


(∑v

r=1 a
2
rP

⊤
r XrK̂r

)
i,j(∑v

r=1 a
2
rP

⊤
r ÂrE⊤

r K̂r +
λ
2M

)
i,j


1
2

(11)
where K̂r = GrG

⊤
r ErD

⊤
γ , Dγ = D1:k,:, M =∑v

r=1 P
⊤
r Cr. Further, we have the following theorem,

Theorem 3. With column-normalized Pr, PrC satisfies
column normalization only if C is also column-normalized.

▶ When updating Cr, the loss is transformed as

min
Cr

a2r

∥∥∥XrGr − ÂrE
⊤
r Gr

∥∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Cr ≥ 0,C⊤

r 1dr = 1k.
(12)

We have the following updating rule,

(Cr)i,j ← (Cr)i,j


(
XrB̂rErD

⊤
ψ

)
i,j(

ÂrE⊤
r B̂rErD⊤

ψ + λ
2PrC

)
i,j


1
2

(13)
where Dφ = Dk+1:2k,:.

▶ When updating D, the loss can be formulated as

min
D

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

s.t. D ≥ 0.

(14)

We can obtain the following updating rule for D,

Di,j ← Di,j


(∑v

r=1 a
2
rL̂

⊤
r XrGrG

⊤
r Er

)
i,j(∑v

r=1 a
2
rL̂

⊤
r L̂rDE⊤

r GrG⊤
r Er

)
i,j


1
2

(15)
where L̂r = [PrC|Cr].

▶ When updating Pr, the loss can be formulated as

min
Pr

a2r

∥∥∥XrGr − ÂrE
⊤
r Gr

∥∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Pr ≥ 0,C⊤P⊤

r 1dr = 1k.
(16)

We have the following updating rule,

(Pr)i,j ← (Pr)i,j


(
a2rXrK̂rC

⊤
)
i,j(

a2rÂrE⊤
r K̂rC⊤ + λ

2CrC⊤
)
i,j


1
2

(17)

▶ When updating E, the loss equivalently becomes

min
E
−Tr

(
E⊤

v∑
r=1

brErFr

)
s.t. E⊤E = Ik. (18)
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Its optimal solution can be obtained by setting E as the
product of U and V⊤ where U and V⊤ are the singular
matrices of the term

∑v
r=1 brErFr.

▶ When updating Fr, the loss equivalently becomes

min
Fr

−Tr

(
E⊤

v∑
r=1

brErFr

)
s.t. FrF⊤

r = Ik. (19)

The optimal solution is UV⊤. U and V are the singular
matrices of E⊤

r E.

▶ When updating ar, the loss can be simplified as

min
ar

v∑
r=1

a2r

∥∥∥XrGr − ÂrE
⊤
r Gr

∥∥∥2
F

s.t.
v∑
r=1

ar = 1, ar ≥ 0.

(20)

The optimal solution is

ar =

1

∥XrGr−ÂrE⊤
r Gr∥2

F∑v
r=1

1

∥XrGr−ÂrE⊤
r Gr∥2

F

. (21)

Remark 1. The value of ∥XrGr − ÂrE
⊤
r Gr∥2F equals to

that of ∥XrGrG
⊤
r − ÂrE

⊤
r GrG

⊤
r ∥2F . The former needs

at least O(nnr) computing overhead while the latter can
be calculated within O(n) overhead.

▶ When updating br, the loss can be simplified as

min
br
−Tr

(
E⊤

v∑
r=1

brErFr

)
s.t.

v∑
r=1

b2r = 1, br ≥ 0.

(22)

The optimal solution is

br =
M̂r√∑v

r=1

(
M̂r

)2 . (23)

where M̂r = Tr
(
E⊤ErFr

)
.

Algorithm 1 summarizes the overall procedure of proposed
BACDL where gh denotes the loss value at the h-th iteration.

For the lower bound, we have the following theorem holds,
Theorem 4. The loss value is lower-bounded by −β

√
vnk.

On the basis of Theorem 2 and Theorem 4, we further have
Theorem 5. The proposed BACDL algorithm is convergent.

About the complexity of BACDL, we have
Theorem 6. BACDL is with the time and space overhead
linear to the sample size n.

Remark 2 In virtue of the overall linear overhead, BACDL
is scalable to large-scale scenarios.

Algorithm 1 Proposed BACDL Algorithm
Input: Data matrix Xr, indicator vector wr,

hyper-parameters λ and β;
1: Constructing index matrix Gr;
2: Doing distribution normalization on XrGr;
3: while (gh − gh+1)/gh ≥ 1e− 3 do
4: Updating the feature clusters Er by (8);
5: Doing row-normalization on Er;
6: Updating the perspective-shared matrix C by (11);
7: Doing column-normalization on C;
8: Updating the perspective-specific matrix Cr by (13);
9: Doing column-normalization on Cr;

10: Updating the association D by (15);
11: Updating the view guidance Pr by (17);
12: Doing column-normalization on Pr;
13: Updating the common sample clusters E by (18);
14: Updating the space rotation matrix Fr by (19);
15: Updating the view weight ar by (21);
16: Updating the sample cluster weight br by (23);
17: h = h+ 1;
18: end while
Output: Spectral clustering on E;

Table 1. Details of Multi-view Datasets Used in Experiments
Dataset Samples Views Clusters Dimensions

FLOEVEN 1360 7 17 5376/1239/512/5376/5376/5376/5376
SYNTHREED 600 3 3 3/2003/3

DEOLOG 358 2 6 22/12
YALTHREE 165 3 15 3304/4096/6750

BGFEA 2500 3 5 1000/500/250
AWTEN 5814 6 10 2000/2688/2000/2000/252/2000

HDIGTWO 10000 2 10 256/784
YOUFOURV 38654 4 10 512/944/576/640

6. Experiments and Analysis
6.1. Benchmark and Baseline

The following IMC algorithms are utilized as the baselines:
Sparse Consensus Affinity Construction (LRTL (Chen
et al., 2023)), Interview Graph Connectivity Learning
(TCIMC (Xia et al., 2022)), Between-view Inferring and
Within-view Preservation (AGCIM (Wen et al., 2021a)),
Local Graph Embedding Generation and Unified Repre-
sentation Learning (LSIMV (Liu et al., 2023b)), Local
Geometric Similarity Conservation (GIMC (Wen et al.,
2021b)), Individual Consensus Structure Set Exploration
(IMVCI (Tang et al., 2024)), Projective Graph Regular-
ization Balance Learning (PIMVC (Deng et al., 2024)),
Similar Several-Neighbor Confidence Representation Gener-
ation (HCCGL (Wen et al., 2023a)), Multiple Spectral Con-
nection Relationship Fusion (USETL (Chen et al., 2024)),
Multi-matrix-factorization Geometry-preserving Learning
(LBIMV (Wen et al., 2023b)), Feature Inferring and Cross-
view Correlation Guidance (UIMC (Lin et al., 2024)).
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Table 2. Clustering Results of Different IMC Algorithms
DATASET FLOEVEN SYNTHREED

RATIO 0.2 0.5 0.8 0.2 0.5 0.8

METRIC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

LRTL 11.08 9.27 7.85 10.83 10.85 7.60 11.38 9.41 7.21 39.87 40.08 31.14 38.67 40.67 31.47 35.83 39.83 31.88
TCIMC 10.93 10.35 8.21 10.63 9.63 6.87 9.88 9.48 5.69 37.57 38.92 30.76 37.53 35.72 31.23 36.83 36.23 29.87
AGCIM 11.02 10.07 8.43 9.34 8.38 7.22 10.67 10.32 7.19 33.50 33.50 27.79 34.00 34.00 28.75 34.17 34.17 29.15
LSIMV 8.74 9.47 5.17 8.21 9.67 6.44 7.88 8.43 7.38 37.74 39.37 32.21 36.14 36.73 35.13 34.78 33.89 31.33
GIMC 8.32 9.38 5.97 8.63 7.94 6.34 7.26 7.94 5.25 36.89 35.72 32.67 35.89 33.73 34.01 33.84 32.75 33.84
IMVCI 10.37 10.86 6.40 10.95 10.21 6.51 11.35 10.17 5.08 40.38 40.38 32.80 39.77 40.68 32.29 38.93 33.53 30.41
PIMVC 11.11 9.28 4.32 11.23 9.36 7.32 10.78 8.56 6.35 40.27 40.67 30.89 39.50 39.50 31.04 37.02 35.02 30.82
HCCGL 7.13 6.68 5.38 7.06 6.91 5.64 7.28 7.06 5.31 40.45 39.95 32.19 39.67 39.67 34.51 37.01 37.01 31.46
USETL 9.99 9.43 7.22 10.19 9.56 7.67 9.32 8.90 7.25 38.96 38.96 28.86 36.15 35.51 29.56 36.28 36.28 29.08
LBIMV 10.56 10.31 5.09 11.07 9.85 5.18 10.01 9.06 5.23 40.27 40.34 27.45 40.33 40.07 30.16 35.67 35.67 27.04
UIMC 10.88 9.22 5.80 11.12 9.96 5.99 10.51 9.22 5.83 39.33 38.33 32.13 36.17 40.17 33.26 38.83 37.50 33.86
OURS 11.17 10.80 5.88 11.25 10.53 5.88 11.54 10.74 5.88 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG YALTHREE

LRTL 31.43 21.59 15.29 30.71 19.87 16.54 31.37 20.90 15.93 21.02 21.52 8.59 18.88 20.17 6.35 19.39 18.85 6.61
TCIMC 30.86 19.13 16.43 30.73 19.26 15.74 33.47 20.32 15.88 21.35 17.98 7.79 21.51 17.87 6.98 20.21 17.79 5.89
AGCIM 30.45 21.45 18.64 29.55 22.44 17.88 32.01 22.89 17.32 22.12 18.12 7.88 18.18 17.97 5.87 18.48 17.67 6.42
LSIMV 31.26 18.43 14.37 31.69 18.57 15.32 32.94 18.74 14.57 18.84 16.42 6.73 18.96 16.52 6.26 18.34 16.43 7.46
GIMC 31.64 19.32 17.13 32.64 17.36 15.63 31.53 18.57 16.43 19.46 16.72 6.84 17.83 17.96 6.72 19.43 17.43 8.82
IMVCI 30.98 21.58 17.43 30.93 21.93 17.98 30.82 24.82 18.23 21.15 21.74 7.12 19.15 20.55 7.42 20.36 20.17 6.78
PIMVC 31.33 22.04 17.32 29.36 20.24 17.54 31.62 23.03 18.97 20.64 17.24 7.34 18.12 15.52 6.26 18.36 15.42 7.56
HCCGL 29.05 20.05 17.57 30.58 19.72 17.16 29.32 24.20 17.77 21.91 21.71 7.13 21.15 20.18 7.16 20.61 20.36 9.23
USETL 30.84 18.99 18.13 28.19 22.61 17.68 30.94 22.22 17.98 19.94 21.85 8.21 17.33 19.85 6.11 20.85 19.88 7.43
LBIMV 30.09 20.09 17.71 30.93 22.93 18.07 29.27 21.42 17.07 22.94 19.12 6.29 20.94 19.91 6.18 21.15 19.73 5.51
UIMC 30.83 19.89 16.23 31.40 20.82 16.57 31.01 22.07 16.17 20.03 19.82 6.39 18.18 17.58 4.86 21.64 17.82 7.30
OURS 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA AWTEN

LRTL 17.37 20.21 18.16 18.27 20.62 19.01 18.22 19.22 18.07 17.13 9.67 8.43 18.03 11.28 8.42 19.53 9.40 8.38
TCIMC 19.63 20.46 18.26 19.43 20.88 18.33 20.16 19.69 17.93 16.78 10.71 10.63 16.67 11.48 9.37 17.84 9.28 9.13
AGCIM 20.56 20.43 16.32 21.28 20.20 16.43 21.36 20.32 15.33 13.56 10.28 10.66 14.59 10.32 9.47 13.47 10.73 9.89
LSIMV 19.73 18.24 20.11 18.03 18.32 18.26 18.48 18.21 18.11 19.47 10.37 9.72 17.39 10.58 9.56 17.69 10.57 8.92
GIMC 21.26 19.26 19.42 18.29 17.97 19.17 18.97 18.57 18.32 20.47 10.98 9.83 20.89 10.24 9.46 18.36 9.43 8.74
IMVCI 19.58 20.48 16.32 21.02 20.02 16.73 18.42 21.92 17.32 20.21 9.69 11.54 20.29 8.69 9.86 19.55 8.07 9.35
PIMVC 22.58 20.52 16.28 20.66 20.87 17.25 20.76 20.57 15.73 20.82 10.64 10.85 20.44 9.87 10.24 19.87 9.19 9.27
HCCGL 20.68 18.32 18.46 21.32 19.32 19.32 20.60 17.36 18.43 20.26 10.18 7.83 20.21 9.64 8.23 20.13 9.67 7.38
USETL 21.32 18.01 16.93 19.75 18.56 16.89 20.21 18.08 15.62 20.16 7.31 8.89 20.07 8.26 9.87 20.01 8.88 10.21
LBIMV 21.08 20.11 18.21 22.18 20.73 16.16 21.20 20.52 16.11 20.43 8.95 8.03 20.12 9.42 8.59 20.02 9.23 8.69
UIMC 21.53 18.69 18.75 20.78 19.46 19.33 19.74 17.84 17.82 19.32 10.25 9.43 19.85 10.49 8.78 19.56 10.23 9.64
OURS 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO YOUFOURV

LRTL 11.62 10.02 8.43 11.62 10.61 8.92 9.78 10.48 8.87 - - - - - - - - -
TCIMC 11.48 10.62 9.42 10.32 10.63 8.62 9.57 9.32 7.63 - - - - - - - - -
AGCIM 11.82 10.28 7.88 11.59 10.43 9.39 10.68 10.49 8.13 - - - - - - - - -
LSIMV 10.73 9.36 8.43 12.67 8.93 8.56 9.63 9.17 7.53 - - - - - - - - -
GIMC 10.85 8.23 7.84 11.32 8.42 8.32 9.32 9.63 6.89 12.56 9.45 9.28 11.36 8.99 8.66 11.32 8.79 8.76
IMVCI 10.83 10.35 8.50 11.51 11.05 9.36 11.18 10.65 9.09 - - - - - - - - -
PIMVC 10.93 8.44 8.69 11.73 9.15 9.28 10.73 8.94 7.43 15.67 9.77 8.87 14.12 9.79 9.33 15.36 9.94 8.62
HCCGL 10.42 11.27 8.44 10.64 11.16 8.52 8.77 10.32 8.11 - - - - - - - - -
USETL 10.28 9.22 8.52 9.74 9.73 7.98 8.37 9.92 7.09 11.32 8.94 9.68 10.43 9.35 9.42 10.42 8.75 8.47
LBIMV 9.77 10.71 8.10 9.55 9.35 9.26 9.16 10.93 9.54 15.32 10.54 8.99 16.03 10.36 9.16 14.32 10.21 9.14
UIMC 10.74 11.32 8.49 9.73 10.56 9.23 8.42 10.42 8.52 - - - - - - - - -
OURS 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

All algorithms are evaluated on the following eight multi-
view benchmark datasets: FLOEVEN, SYNTHREED, DE-
OLOG, YALTHREE, BGFEA, AWTEN, HDIGTWO, and
YOUFOURV. Table 1 presents their details.

6.2. Results and Discussions

We test the clustering performance under diverse missing
ratios, i.e., 0.2, 0.5 and 0.8 respectively. The results are
reported in Table 2. We can draw that
(1) Our BACDL makes more favorable results than multiple
competitors. For example, on SYNTHREED, we receive
the most desirable results; On BGFEA, HDIGTWO and

YOUFOURV, we are consistently in Top-2; On DEOLOG
and AWTEN, there are only two sub-optimal results totally.
This suggests that BACDL is effective to handle IMC issues.

(2) Algorithms LRTL, TCIMC, AGCIM, LSIMV, IMVCI,
HCCGL and UIMC are unable to deal with the large-scale
dataset YOUFOURV due to the complexity limitation. Or-
thogonal to them, not only do we normally work but pro-
vide competitive results, which illustrates that the proposed
BACDL is more widely applicable.

(3) There are some inferior results on FLOEVEN and
YALTHREE, possibly because we generate the cluster la-
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Figure 2. Running Time of Different IMC Algorithms

Table 3. Memory Overhead (GB) of Different IMC Algorithms
Method DAT1 DAT2 DAT3 DAT4 DAT5 DAT6 DAT7 DAT8

LRTL 1.61 0.12 0.05 0.07 1.85 19.49 19.59 -
TCIMC 2.56 0.23 0.04 0.11 3.45 22.73 37.70 -
AGCIM 0.77 0.06 0.08 0.06 0.84 7.13 14.65 -
LSIMV 1.60 0.06 0.05 0.08 0.48 4.65 4.39 -
GIMC 1.22 0.09 0.03 0.41 0.50 4.63 5.47 98.86
IMVCI 0.99 0.07 0.03 0.07 0.78 5.96 11.41 -
PIMVC 3.89 0.05 0.05 3.66 0.45 4.14 4.77 80.51
HCCGL 1.32 0.10 0.05 0.07 1.66 13.02 21.46 -
USETL 0.72 0.04 0.08 0.07 1.05 5.85 15.27 84.66
LBIMV 0.81 0.04 0.03 0.37 0.35 3.33 3.94 82.68
UIMC 3.81 0.13 0.04 0.15 2.68 28.29 28.34 -
OURS 1.07 0.03 0.04 0.11 0.13 1.82 0.35 3.37

bels from formed spectrum rather than directly from original
data. This could, to a certain extent, degenerate the diversity
of view data, weakening the clustering performance.

6.3. Time and Space Overhead

Time Overhead: To validate the efficiency, we record the
running time of each algorithm, as suggested in Fig. 2 (The
y-axis denotes log2(·) seconds plus a constant.) According
to this figure, one can conclude that

(1) Our BACDL requires relatively lower time overhead than
multiple competitors. For instance, it takes the least time on
SYNTHREED, DEOLOG, HDIGTWO and YOUFOURV.
On FLOEVEN, YALTHREE, BGFEA and AWTEN, its
running speed is still comparable. This demonstrates that
the proposed BACDL is computationally-efficient.

(2) LSIMV, PIMVC and HCCGL run faster than BACDL in
some cases, potentially because LSIMV introduces sparse

Table 4. Ablation for Perspective-shared Determinants
FLOEVEN

A/B 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC

OPDD 9.86 9.53 4.52 9.57 9.36 4.46 9.81 9.47 4.62
WPDD 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83

SYNTHREED

OPDD 36.14 35.84 33.21 37.17 37.17 33.39 37.25 37.25 33.43
WPDD 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG

OPDD 29.53 20.04 16.13 29.02 20.41 16.34 29.02 21.64 17.58
WPDD 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56

YALTHREE

OPDD 21.27 21.27 6.93 21.36 18.97 5.87 19.03 19.26 6.06
WPDD 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA

OPDD 19.58 19.22 17.57 18.90 18.74 17.42 18.90 18.74 17.42
WPDD 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20

AWTEN

OPDD 18.42 10.07 9.25 18.42 10.11 9.25 18.42 10.32 9.30
WPDD 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO

OPDD 9.35 9.29 8.07 9.56 9.31 8.10 9.32 9.18 8.08
WPDD 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22

YOUFOURV

OPDD 13.48 8.30 7.99 13.47 8.33 8.01 13.51 8.27 8.01
WPDD 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

factors and integrates low-dimensional embedding into local
graphs to form uniform representation, PIMVC utilizes a
group of projections to leverage view diversities in a consen-
sus low-dimensional manifold space, HCCGL learns only
one affinity across views using a small-sized confidence
graph and refines structures directly from original similar-
ity. In spite of the time-saving benefits, they typically do
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Table 5. Ablation for Perspective-specific Determinants
FLOEVEN

A/B 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC

OPCD 9.43 9.07 4.32 9.80 9.30 4.43 9.26 9.07 4.42
WPCD 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83

SYNTHREED

OPCD 35.75 35.71 32.57 37.50 37.42 33.27 36.77 36.57 32.49
WPCD 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG

OPCD 28.93 18.16 15.07 28.08 18.09 14.85 28.59 17.89 15.54
WPCD 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56

YALTHREE

OPCD 20.76 18.13 4.48 20.64 18.04 4.41 19.49 18.13 5.46
WPCD 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA

OPCD 20.12 19.54 17.32 19.42 19.34 17.31 19.42 19.14 17.36
WPCD 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20

AWTEN

OPCD 18.44 10.24 9.03 18.34 10.18 9.32 18.44 10.17 9.29
WPCD 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO

OPCD 9.29 9.20 7.99 9.13 8.95 7.95 9.18 9.06 7.95
WPCD 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22

YOUFOURV

OPCD 13.15 7.89 7.87 13.16 8.32 7.68 13.18 8.42 7.69
WPCD 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

not explore double-determinants, producing sub-optimal
clustering outcomes.

Space Overhead: To demonstrate the space-friendly char-
acteristic, we count the memory consumption, as presented
in Table 3 where DAT1∼DAT8 are the alternative names of
datasets in Table 1. One can observe that

(1) Our BACDL consumes the least amount of memory
on SYNTHREED, BGFEA, AWTEN, HDIGTWO and
YOUFOURV. Especially, on YOUFOURV, it is clearly the
lowest. On FLOEVEN, DEOLOG and YALTHREE, it still
compares favorably with the optimal one. This gives evi-
dence that BACDL is memory-efficient.

(2) USETL, IMVCI and AGCIM achieve slightly less over-
head in some cases. The reasons could be that USETL
constructs low-rank spectrum and decreases the information
redundancy by multi-level partition, IMVCI generates con-
sensus structure and skips the procedure of seeking eigen-
vector, AGCIM integrates the graph restoration into clus-
ter structure and jointly conducts uniform representation
construction and similarity completion. Despite resource-
saving, they usually do not take into account view-specific
characteristics, harming the representation diversities.

6.4. Ablation

Table 4, 5 and 6 summarize relevant ablation (A/B) results.

Table 6. Ablation for the Alienating Action
FLOEVEN

A/B 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC

OALG 9.95 9.57 4.96 10.16 9.56 5.03 10.56 9.62 4.98
WALG 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83

SYNTHREED

OALG 35.26 34.93 33.12 35.33 35.17 33.14 35.83 35.33 33.27
WALG 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG

OALG 30.14 21.39 17.44 30.14 20.12 17.08 30.41 22.23 17.61
WALG 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56

YALTHREE

OALG 22.92 21.92 6.58 19.58 19.01 4.55 19.80 19.65 5.36
WALG 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA

OALG 21.29 21.29 19.23 21.73 21.49 19.36 22.65 21.41 19.35
WALG 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20

AWTEN

OALG 18.72 10.82 9.63 18.72 10.60 9.58 18.72 10.58 9.54
WALG 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO

OALG 10.03 9.84 8.40 10.09 9.91 8.46 10.10 10.03 8.53
WALG 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22

YOUFOURV

OALG 13.90 8.85 8.44 13.86 8.81 8.44 13.82 8.75 8.45
WALG 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

According to Table 4 where OPDD and WPDD represent
the results without/with perspective-shared determinants,
one can observe that WPDD consistently surpasses OPDD,
confirming that the perspective-shared determinants are ben-
eficial for performance increment.

Similarly, Table 5 where OPCD and WPCD represent the
results without/with perspective-specific determinants sug-
gests that the perspective-specific determinants indeed help
improve the clustering results.

Both Table 4 and 5 illustrate that our dual-determinant
paradigm can facilitate the clustering performance.

Besides, we alienate them to enhance the discrimination. Ta-
ble 6 where OALG and WALG are the results without/with
alienation indicates that our alienating action is functional.

Due to space limit, other ablations are located in Section L.

7. Concluding Remarks
In the manuscript, we devise a dual-determinant exploration
paradigm for IMC issues. It bifurcates features clusters
and alienates them via mutual exclusion mechanism. To-
gether with coupled distribution learning, it effectively al-
leviates the dimension inconsistency. Then, it bridges all
views through unified association. All sample clusters are re-
ordered and mapped to formulate full clustering embedding.
The overall linear overhead further enlarges its applicability.
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Appendix

A. Solving Procedure
We split the entire original optimization problem Eq. (6) into nine sub-problems, and manage to provide a solving scheme
for each sub-problem respectively.

A.1. Er Sub-problem

Under given C, Cr, D, Pr, E, Fr, ar and br, the original optimization problem is equivalently transformed as

min
Er

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
− β Tr

(
E⊤

v∑
r=1

brErFr

)
s.t. Er ≥ 0,G⊤

r Er1k = 1nr .

(24)

Owing to the fact that Er on each view is independent of each other, we equivalently have the following optimization
problem,

min
Er

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
− βbr Tr

(
E⊤ErFr

)
s.t. Er ≥ 0,G⊤

r Er1k = 1nr .
(25)

To optimize this problem, we firstly design its Lagrange function as

L(Er,Φr) = a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
− βbr Tr

(
E⊤ErFr

)
+Tr

(
Φr
(
G⊤
r Er1k − 1nr

) (
G⊤
r Er1k − 1nr

)⊤)
,

(26)

where Φr ∈ Rnr×nr is the Lagrange multiplier matrix.

Expanding F -norm and removing irrelevant items to Er, we can equivalently get

L(Er,Φr) = a2r Tr
(
G⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r Gr − 2G⊤
r X

⊤
r [PrC|Cr]DE⊤

r Gr

)
−βbr Tr

(
E⊤ErFr

)
+Tr

(
ΦrG

⊤
r Er1k1

⊤
k E

⊤
r Gr − 2ΦrG

⊤
r Er1k1

⊤
nr

)
.

(27)

Combined with the trace cyclic property and transposition invariance property, we further have

L(Er,Φr) = Tr
(
a2rGrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r − 2a2rGrG
⊤
r X

⊤
r [PrC|Cr]DE⊤

r

−βbrEF⊤
r E

⊤
r +GrΦrG

⊤
r Er1k1

⊤
k E

⊤
r − 2GrΦ

⊤
r 1nr1

⊤
k E

⊤
r

)
.

(28)

Let ∂L
∂Er

= 0, and we have

2a2rGrG
⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D− 2a2rGrG

⊤
r X

⊤
r [PrC|Cr]D− βbrEF⊤

r

+GrΦrG
⊤
r Er1k1

⊤
k +GrΦ

⊤
r G

⊤
r Er1k1

⊤
k − 2GrΦ

⊤
r 1nr

1⊤
k = 0.

(29)

Given that Φr is a diagonal matrix, we further have

a2rGrG
⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D− a2rGrG

⊤
r X

⊤
r [PrC|Cr]D

−β

2
brEF⊤

r +GrΦrG
⊤
r Er1k1

⊤
k −GrΦr1nr

1⊤
k = 0.

(30)

In conjunction with complementary slackness condition for non-negative Er, we can get(
a2rGrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D− a2rGrG

⊤
r X

⊤
r [PrC|Cr]D−

β

2
brEF⊤

r

)
i,j

(Er)i,j

+
(
GrΦrG

⊤
r Er1k1

⊤
k −GrΦr1nr

1⊤
k

)
i,j

(Er)i,j = 0.

(31)
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Then, to eliminate the multiplier matrix Φr, we do normalization on the rows of G⊤
r Er ∈ Rnr×k at each step optimization.

Accordingly, we can obtain that
∑k
j=1(G

⊤
r Er)i,j = 1 holds for i = 1, 2, · · · , nr where the notation (·)i,j represents the

element located in the i-th row and j-th column of the matrix. That is, G⊤
r Er1k = 1nr

holds. Thus, we have

GrΦrG
⊤
r Er1k1

⊤
k = GrΦr1nr

1⊤
k . (32)

Combining Eq. (31) and Eq. (32) yields(
a2rGrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D− a2rGrG

⊤
r X

⊤
r [PrC|Cr]D−

β

2
brEF⊤

r

)
i,j

(Er)i,j = 0. (33)

Further, noticed that E and Fr are orthogonal matrices, and accordingly there exist negative elements in the product of E and
F⊤
r . In response, we partition EF⊤

r into two parts,
(
EF⊤

r

)
pos

and
(
EF⊤

r

)
neg

. That is, EF⊤
r =

(
EF⊤

r

)
pos
−
(
EF⊤

r

)
neg

where (EF⊤
r )pos and (EF⊤

r )neg represent the positive part and negative part of EF⊤
r respectively. Then, we have(

a2rGrG
⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D− a2rGrG

⊤
r X

⊤
r [PrC|Cr]D

− β

2
br
(
EF⊤

r

)
pos

+
β

2
br
(
EF⊤

r

)
neg

)
i,j

(Er)i,j = 0.

(34)

Consequently, we can get the following updating rule about Er,

(Er)i,j ← (Er)i,j


(
a2rGrG

⊤
r X

⊤
r [PrC|Cr]D+ β

2 br
(
EF⊤

r

)
pos

)
i,j(

a2rGrG⊤
r ErD

⊤[PrC|Cr]⊤[PrC|Cr]D+ β
2 br (EF⊤

r )neg

)
i,j


1
2

. (35)

A.2. C Sub-problem

Under given Er, Cr, D, Pr, E, Fr, ar and br, the original optimization problem is equivalently transformed as

min
C

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. C ≥ 0,C⊤P⊤

r 1dr = 1k.

(36)

Due to the coupled property, to separate out C, we first denote Dγ = D1:k,: and Dφ = Dk+1:2k,:. Then, we equivalently
transform Eq. (36) the following optimization problem,

min
C

v∑
r=1

a2r
∥∥Hr −PrCDγE

⊤
r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. C ≥ 0,C⊤P⊤

r 1dr = 1k,

(37)

where Hr = XrGr −CrDφE
⊤
r Gr.

After removing irrelevant items and looping matrices, we can equivalently simplify Eq. (37) as

min
C

Tr

(
v∑
r=1

a2rP
⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ − 2

(
v∑
r=1

a2rP
⊤
r HrG

⊤
r ErD

⊤
γ

)
C⊤ + λC⊤

(
v∑
r=1

P⊤
r Cr

))
s.t. C ≥ 0,C⊤P⊤

r 1dr = 1k.

(38)

Subsequently, its Lagrange function can be designed as

L (C,Ψ) = Tr

(
v∑
r=1

a2rP
⊤
r PrCJrC

⊤ − 2LC⊤ + λC⊤M+

v∑
r=1

Ψr
(
C⊤P⊤

r 1dr − 1k
) (

C⊤P⊤
r 1dr − 1k

)⊤)
, (39)
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where Jr = DγE
⊤
r GrG

⊤
r ErD

⊤
γ , L =

∑v
r=1 a

2
rP

⊤
r HrG

⊤
r ErD

⊤
γ and M =

∑v
r=1 P

⊤
r Cr. Ψr ∈ Rk×k is the Lagrange

multiplier matrix.

Combined with the zero partial derivative, we have
v∑
r=1

a2r
(
P⊤
r PrCJr +P⊤

r PrCJ⊤
r

)
− 2L+ λM+

v∑
r=1

P⊤
r 1dr1

⊤
drPrC

(
Ψr +Ψ⊤

r

)
− 2P⊤

r 1dr1
⊤
k Ψr = 0. (40)

Note that Jr and Ψr are symmetric matrices, we can equivalently obtain

2

v∑
r=1

a2rP
⊤
r PrCJr − 2L+ λM+

v∑
r=1

2P⊤
r 1dr1

⊤
drPrCΨr − 2P⊤

r 1dr1
⊤
k Ψr = 0. (41)

Combined with the complementary slackness property, we further have(
v∑
r=1

a2rP
⊤
r PrCJr − L+

λ

2
M+

v∑
r=1

P⊤
r 1dr1

⊤
drPrCΨr −P⊤

r 1dr1
⊤
k Ψr

)
i,j

Ci,j = 0. (42)

Therefore, we can obtain the following updating rule for C,

(C)i,j ← (C)i,j

[ (
L+P⊤

r 1dr1
⊤
k Ψr

)
i,j(∑v

r=1 a
2
rP

⊤
r PrCJr +

λ
2M+

∑v
r=1 P

⊤
r 1dr1

⊤
dr
PrCΨr

)
i,j

] 1
2

. (43)

Afterwards, to eliminate Ψr, we perform normalization on the columns of PrC so as to make
∑dr
i=1(PrC)i,j equal to 1 for

any j ∈ {1, 2, · · · , k}. That is, C⊤P⊤
r 1dr = 1k holds. Then, we have

1dr1
⊤
drPrC = 1dr1

⊤
k . (44)

In conjunction with Eq. (42), we further have

(C)i,j ← (C)i,j

[
(L)i,j(∑v

r=1 a
2
rP

⊤
r PrCJr +

λ
2M

)
i,j

] 1
2

. (45)

Subsequently, based on the facts that

L =

v∑
r=1

a2rP
⊤
r HrG

⊤
r ErD

⊤
γ =

v∑
r=1

a2r
(
P⊤
r XrGrG

⊤
r ErD

⊤
γ −P⊤

r CrDφE
⊤
r GrG

⊤
r ErD

⊤
γ

)
=

v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ −

v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ

(46)

and that
v∑
r=1

a2rP
⊤
r PrCJr +

v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ =

v∑
r=1

a2rP
⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ +

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ

=

v∑
r=1

a2rP
⊤
r [PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
γ

(47)

and Eqs. (42), (45), we can obtain the following rule,

(C)i,j ← (C)i,j

[ (∑v
r=1 a

2
rP

⊤
r XrGrG

⊤
r ErD

⊤
γ

)
i,j(∑v

r=1 a
2
rP

⊤
r [PrC|Cr]DE⊤

r GrG⊤
r ErD

⊤
γ + λ

2M
)
i,j

] 1
2

, (48)

where M =
∑v
r=1 P

⊤
r Cr.
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A.3. Cr Sub-problem

Under given Er, C, D, Pr, E, Fr, ar and br, the original optimization problem is equivalently transformed as

min
Cr

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Cr ≥ 0,C⊤

r 1dr = 1k.

(49)

According to the fact that {Cr}vr=1 are mutually independent, we can equivalently transform the above optimization problem
as

min
Cr

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Cr ≥ 0,C⊤

r 1dr = 1k.
(50)

Splitting D into Dγ and Dψ , Dγ = D1:k,: and Dψ = Dk+1:2k,:, we can get

min
Cr

a2r
∥∥XrGr −PrCDγE

⊤
r Gr −CrDφE

⊤
r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Cr ≥ 0,C⊤

r 1dr = 1k.
(51)

Unfolding F -norm via trace operation and deleting unrelated items yield

min
Cr

Tr
(
a2rCrDψE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r − 2a2rXrGrG

⊤
r ErD

⊤
ψC

⊤
r + 2a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r + λC⊤P⊤

r Cr

)
s.t. Cr ≥ 0,C⊤

r 1dr = 1k.
(52)

The Lagrange function can be written as

L(Cr,Ωr) = Tr
(
a2rCrDψE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r − 2a2rXrGrG

⊤
r ErD

⊤
ψC

⊤
r +

2a2rPrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r + λC⊤P⊤

r Cr +Ωr(C
⊤
r 1dr − 1k)(C

⊤
r 1dr − 1k)

⊤) , (53)

where Ωr ∈ Rk×k is the multiplier matrix.

Thus, we have

2a2rCrDψE
⊤
r GrG

⊤
r ErD

⊤
ψ − 2a2rXrGrG

⊤
r ErD

⊤
ψ+

2a2rPrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψ + λPrC+ 1dr1

⊤
drCrΩr + 1dr1

⊤
drCrΩ

⊤
r − 2 · 1dr1⊤

k Ωr = 0.
(54)

Further, combined with the complementary condition, we can obtain(
a2rCrDψE

⊤
r GrG

⊤
r ErD

⊤
ψ + a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
ψ +

λ

2
PrC

)
i,j

(Cr)i,j

−
(
a2rXrGrG

⊤
r ErD

⊤
ψ

)
i,j

(Cr)i,j +
(
1dr1

⊤
drCrΩr − 1dr1

⊤
k Ωr

)
i,j

(Cr)i,j = 0.

(55)

To eliminate Ωr, we conduct normalization on the columns of Cr at each step optimization so as to make C⊤
r 1dr = 1k

hold. Based on this, we can obtain 1dr1
⊤
dr
Cr = 1dr1

⊤
k . Further, we have(

a2rCrDψE
⊤
r GrG

⊤
r ErD

⊤
ψ + a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
ψ +

λ

2
PrC

)
i,j

(Cr)i,j =
(
a2rXrGrG

⊤
r ErD

⊤
ψ

)
i,j

(Cr)i,j .

(56)
Thus, we can have the following updating rule for Cr,

(Cr)i,j ← (Cr)i,j


(
a2rXrGrG

⊤
r ErD

⊤
ψ

)
i,j(

a2rCrDψE⊤
r GrG⊤

r ErD
⊤
ψ + a2rPrCDγE⊤

r GrG⊤
r ErD

⊤
ψ + λ

2PrC
)
i,j


1
2

. (57)
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Combined with the fact that CrDψ +PrCDγ = [PrC|Cr]D, we can equivalently have

(Cr)i,j ← (Cr)i,j


(
a2rXrGrG

⊤
r ErD

⊤
ψ

)
i,j(

a2r[PrC|Cr]DE⊤
r GrG⊤

r ErD
⊤
ψ + λ

2PrC
)
i,j


1
2

. (58)

A.4. D Sub-problem

Under given Er, C, Cr, Pr, E, Fr, ar and br, the original optimization problem is equivalently transformed as

min
D

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

s.t. D ≥ 0.

(59)

After norm unfolding and unrelated item removing, we can equivalently obtain the following optimization problem,

min
D

v∑
r=1

a2r Tr
(
[PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤[PrC|Cr]
⊤ − 2XrGrG

⊤
r ErD

⊤[PrC|Cr]
⊤)

s.t. D ≥ 0.

(60)

By means of the trace cyclic characteristic, we can further transform the above optimization problem as

min
D

v∑
r=1

a2r Tr
(
[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤ − 2[PrC|Cr]
⊤XrGrG

⊤
r ErD

⊤)
s.t. D ≥ 0.

(61)

Let the partial derivation of objective function equal to zero, we have
v∑
r=1

a2r
(
[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r Er − [PrC|Cr]

⊤XrGrG
⊤
r Er

)
= 0. (62)

Further, in conjunction with the complementary condition, we can obtain(
v∑
r=1

a2r[PrC|Cr]
⊤[PrC|Cr]DE⊤

r GrG
⊤
r Er

)
i,j

Di,j =

(
v∑
r=1

a2r[PrC|Cr]
⊤XrGrG

⊤
r Er

)
i,j

Di,j . (63)

Therefore, we have the following updating rule for the variable D,

Di,j ← Di,j

[ (∑v
r=1 a

2
r[PrC|Cr]

⊤XrGrG
⊤
r Er

)
i,j

(
∑v
r=1 a

2
r[PrC|Cr]⊤[PrC|Cr]DE⊤

r GrG⊤
r Er)i,j

] 1
2

. (64)

A.5. Pr Sub-problem

Under given Er, C, Cr, D, E, Fr, ar and br, the original optimization problem is equivalently transformed as

min
Pr

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Pr ≥ 0,C⊤P⊤

r 1dr = 1k.

(65)

Based on the fact that guidance matrices {Pr}vr=1 on different views are independent of each other, we can equivalently
obtain the following optimization problem,

min
Pr

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λTr

(
C⊤P⊤

r Cr

)
s.t. Pr ≥ 0,C⊤P⊤

r 1dr = 1k.
(66)
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After removing irrelevant terms and combining trace cyclic property, we can equivalently have

min
Pr

Tr
(
a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r − 2a2r

(
XrGr −CrDφE

⊤
r Gr

)
G⊤
r ErD

⊤
γ C

⊤P⊤
r + λP⊤

r CrC
⊤)

Pr ≥ 0,C⊤P⊤
r 1dr = 1k,

(67)

where the last item is based on the fact that Tr
(
C⊤P⊤

r Cr

)
is equal to Tr

(
P⊤
r CrC

⊤).
Its Lagrange function can be formulated as

L(Pr,Γr) = Tr
(
a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r − 2a2r

(
XrGr −CrDφE

⊤
r Gr

)
G⊤
r ErD

⊤
γ C

⊤P⊤
r +

λP⊤
r CrC

⊤ + Γr(C
⊤P⊤

r 1dr − 1k)(C
⊤P⊤

r 1dr − 1k)
⊤) , (68)

where Γr ∈ Rk×k denotes the multiplier matrix.

Given the zero partial derivation, we can get

2a2rPrCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ − 2a2r
(
XrGr −CrDφE

⊤
r Gr

)
G⊤
r ErD

⊤
γ C

⊤

+λCrC
⊤ + 1dr1

⊤
drPrC(Γr + Γ⊤

r )C
⊤ − 2 · 1dr1⊤

k ΓrC
⊤ = 0.

(69)

Combined with the symmetry of Γr and complementarity of Pr, we have(
a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ − a2r
(
XrGr −CrDφE

⊤
r Gr

)
G⊤
r ErD

⊤
γ C

⊤

+
λ

2
CrC

⊤ + 1dr1
⊤
drPrCΓrC

⊤ − 1dr1
⊤
k ΓrC

⊤
)
i,j

(Pr)i,j = 0.
(70)

Further, we conduct normalization operation on the columns of PrC to ensure C⊤P⊤
r 1dr = 1k hold. Accordingly, we can

obtain (
a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ + a2rCrDφE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ +
λ

2
CrC

⊤
)
i,j

(Pr)i,j =(
a2rXrGrG

⊤
r ErD

⊤
γ C

⊤) (Pr)i,j .

(71)

Kindly note that PrCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ +CrDφE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ = [PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤
γ C

⊤, and
therefore we can obtain the following updating rule for Pr,

(Pr)i,j ← (Pr)i,j

[ (
a2rXrGrG

⊤
r ErD

⊤
γ C

⊤)
i,j(

a2r[PrC|Cr]DE⊤
r GrG⊤

r ErD
⊤
γ C

⊤ + λ
2CrC⊤

)
i,j

] 1
2

. (72)

A.6. E Sub-problem

Under given Er, C, Cr, D, Pr, Fr, ar and br, the original optimization problem is equivalently transformed as

max
E

Tr

(
E⊤

v∑
r=1

brErFr

)
s.t. E⊤E = Ik.

(73)

Let
∑v
r=1 brErFr equal to UΣV⊤ where U, Σ and V denote its left singular matrix, singular value matrix, right singular

matrix, respectively. Then, the optimal solution of E can be acquired by setting E = UV⊤.

A.7. Fr Sub-problem

Under given Er, C, Cr, D, Pr, E, ar and br, the original optimization problem is equivalently transformed as

max
Fr

Tr

(
E⊤

v∑
r=1

brErFr

)
s.t. FrF⊤

r = Ik.

(74)
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Owing to {Fr}vr=1 being independent of each other, we can further transform the above optimization problem as

max
Fr

Tr
(
E⊤ErFr

)
s.t. FrF⊤

r = Ik.
(75)

Denote S⊤
r as Fr, then, we equivalently have the following problem,

max
Sr

Tr
(
S⊤
r E

⊤Er
)

s.t. S⊤
r Sr = Ik.

(76)

Therefore, the optimal solution of variable Fr is UV⊤ where U and V represent the left and right singular matrices of
E⊤
r E respectively.

A.8. ar Sub-problem

Under given Er, C, Cr, D, Pr, E, Fr and br, the original optimization problem is equivalently transformed as

min
ar

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

s.t.
v∑
r=1

ar = 1, ar ≥ 0.

(77)

To solve it, we formulate its Lagrange function as

L(ar, ζ) =
v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ ζ

(
v∑
r=1

ar − 1

)
. (78)

Then, we have

2ar
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ ζ = 0, r = 1, 2, · · · , v; a1 + a2 + · · ·+ av − 1 = 0. (79)

Thus, we can further obtain

ar = −
ζ

2 ∥XrGr − [PrC|Cr]DE⊤
r Gr∥2F

. (80)

Combined with a1 + a2 + · · ·+ av − 1 = 0, we can get

ζ = − 2∑v
r=1

1
∥XrGr−[PrC|Cr]DE⊤

r Gr∥2
F

. (81)

Plugging Eq. (81) into Eq. (80), consequently, we have

ar =

1∑v
r=1

1

∥XrGr−[PrC|Cr ]DE⊤
r Gr∥2

F

∥XrGr − [PrC|Cr]DE⊤
r Gr∥2F

=

1
∥XrGr−[PrC|Cr]DE⊤

r Gr∥2
F∑v

r=1
1

∥XrGr−[PrC|Cr]DE⊤
r Gr∥2

F

. (82)

A.9. br Sub-problem

Under given Er, C, Cr, D, Pr, E, Fr and ar, the original optimization problem is equivalently transformed as

max
br

v∑
r=1

br Tr
(
E⊤ErFr

)
s.t.

v∑
r=1

b2r = 1, br ≥ 0.

(83)
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We provide two solving solutions for it. Using Lagrange function method, we can get

L(br, η) =
v∑
r=1

br Tr
(
E⊤ErFr

)
+ η

(
v∑
r=1

b2r − 1

)
. (84)

Then, we have

Tr
(
E⊤ErFr

)
+ 2ηbr = 0,

v∑
r=1

b2r − 1 = 0. (85)

Accordingly, we can obtain br = −Tr(E⊤ErFr)
2η . In conjunction with

∑v
r=1 b

2
r − 1 = 0, we have η =

± 1
2

(∑v
r=1

(
Tr
(
E⊤ErFr

))2) 1
2

. Further, combined with the non-negative constraint, we have

br =
Tr
(
E⊤ErFr

)(∑v
r=1 (Tr (E

⊤ErFr))
2
) 1

2

. (86)

Using Cauchy inequality (
∑n
i=1 xiyi)

2 ≤
(∑n

i=1 x
2
i

) (∑n
i=1 y

2
i

)
, we have(

v∑
r=1

br Tr
(
E⊤ErFr

))2

≤
v∑
r=1

(
Tr
(
E⊤ErFr

))2
, (87)

where the equality holds if and only if b1
Tr(E⊤E1F1)

= b2
Tr(E⊤E2F2)

= · · · = bv
Tr(E⊤EvFv)

.

Let br
Tr(E⊤ErFr)

= c where c is a constant, and then we have br = cTr
(
E⊤ErFr

)
. Further, according to

∑v
r=1 b

2
r = 1,

we can obtain
∑v
r=1 c

2
(
Tr
(
E⊤ErFr

))2
= 1. So, c = 1√∑v

r=1(Tr(E
⊤ErFr))

2
. Accordingly, the optimal solution of br is

Tr(E⊤ErFr)√∑v
r=1(Tr(E

⊤ErFr))
2

.

B. Proof of Theorem 1
Proof. During optimizing Er, on the basis of Eq. (28), for the term Tr

(
EF⊤

r E
⊤
r

)
, due to the orthogonal properties of E

and Fr, the elements of EF⊤
r could not be non-negative. In view of this, we split EF⊤

r into (EF⊤
r )pos and (EF⊤

r )neg,
i.e., EF⊤

r = (EF⊤
r )pos − (EF⊤

r )neg where (EF⊤
r )pos and (EF⊤

r )neg denote the positive part and negative part of EF⊤
r

respectively. Therefore, we have Tr
(
EF⊤

r E
⊤
r

)
= Tr

(
(EF⊤

r )posE
⊤
r

)
− Tr

(
(EF⊤

r )negE
⊤
r

)
.

For the term Tr
(
(EF⊤

r )posE
⊤
r

)
, combined with the non-negative property of Er, we have

Tr
(
(EF⊤

r )posE
⊤
r

)
=
∑

(Er)i,j

((
EF⊤

r

)
pos

)
i,j
≥
∑

(Ẽr)i,j

((
EF⊤

r

)
pos

)
i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)
, (88)

where the inequality holds based on the fact that x ≥ 1 + log x in which x requires to be non-negative.

Then, for the term Tr
(
(EF⊤

r )negE
⊤
r

)
, via element expanding, we have

Tr
(
(EF⊤

r )negE
⊤
r

)
=
∑

(Er)i,j

((
EF⊤

r

)
neg

)
i,j
≤ 1

2

∑((
EF⊤

r

)
neg

)
i,j

(Ẽr)
2
i,j + (Er)

2
i,j

(Ẽr)i,j
. (89)

Therefore, for the term Tr
(
EF⊤

r E
⊤
r

)
we have

Tr
(
EF⊤

r E
⊤
r

)
≥
∑

(Ẽr)i,j

((
EF⊤

r

)
pos

)
i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)
− 1

2

∑((
EF⊤

r

)
neg

)
i,j

(Ẽr)
2
i,j + (Er)

2
i,j

(Ẽr)i,j
. (90)
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Subsequently, for the term Tr
(
GrG

⊤
r X

⊤
r [PrC|Cr]DE⊤

r

)
in Eq. (28), in conjunction with the non-negative property of

GrG
⊤
r X

⊤
r [PrC|Cr]D, we can obtain

Tr
(
GrG

⊤
r X

⊤
r [PrC|Cr]DE⊤

r

)
≥
∑

(Ẽr)i,j(GrG
⊤
r X

⊤
r [PrC|Cr]D)i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)
. (91)

For the matrix GrΦ
⊤
r 1nr

1⊤
k E

⊤
r , likewise, we have

Tr
(
GrΦ

⊤
r 1nr

1⊤
k E

⊤
r

)
=
∑

(Er)i,j(GrΦ
⊤
r 1nr

1⊤
k )i,j ≥

∑
(Ẽr)i,j(GrΦ

⊤
r 1nr

1⊤
k )i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)
. (92)

Further, for the term Tr
(
GrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r

)
, by utilizing element unfolding and matrix symmetry,

we can get

Tr
(
GrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r

)
=
∑∑

(GrG
⊤
r )i,s(Er)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Er)i,j

=
∑∑

(GrG
⊤
r )s,i(Er)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Er)s,t.

(93)

Suppose the elements of Er are related to that of Ẽr with certain scale factors, i.e., (Er)i,j = zi,j(Ẽr)i,j where zi,j is a
constant, then we have∑∑

(GrG
⊤
r )i,s(Er)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Er)i,j =∑∑

(GrG
⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,jzs,tzi,j ≤

1

2

∑∑
(GrG

⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,j

(
z2s,t + z2i,j

) (94)

and ∑∑
(GrG

⊤
r )s,i(Er)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Er)s,t =∑∑

(GrG
⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,tzi,jzs,t ≤

1

2

∑∑
(GrG

⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,t

(
z2i,j + z2s,t

)
.

(95)

Further, using element folding, we can get∑∑
(GrG

⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,tz

2
s,t =∑

(GrG
⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)s,t(Ẽr)s,tz

2
s,t =∑

(GrG
⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)s,t(Er)s,tzs,t =∑ (GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)s,t(Er)

2
s,t

(Ẽr)s,t

(96)

and ∑∑
(GrG

⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,jz

2
i,j =∑ (GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)i,j(Er)

2
i,j

(Ẽr)i,j
.

(97)

Additionally, for
∑∑

(GrG
⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,tz

2
i,j , in virtue of element transfer and
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element folding, we can get∑∑
(GrG

⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,tz

2
i,j =∑∑

(GrG
⊤
r )s,i(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)i,jz

2
i,j =∑∑

(GrG
⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,jz

2
i,j =∑∑

(GrG
⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Er)i,jzi,j .

(98)

In conjunction with the element relationship between Er and Ẽr, we can further have∑∑
(GrG

⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,tz

2
i,j =∑∑

(GrG
⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j

(Er)
2
i,j

(Ẽr)i,j
=

∑
(GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)i,j

(Er)
2
i,j

(Ẽr)i,j
.

(99)

Similarly, for the term
∑∑

(GrG
⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,jz

2
s,t, we can get

∑∑
(GrG

⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,jz

2
s,t =∑

(GrG
⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)s,t

(Er)
2
s,t

(Ẽr)s,t
.

(100)

Combined with Eqs. (93), (94), (95), (96), (97), (99) and (100), we have

Tr
(
GrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r

)
≤

1

4

∑∑
(GrG

⊤
r )i,s(Ẽr)s,t(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)t,j(Ẽr)i,j

(
z2s,t + z2i,j

)
+

1

4

∑∑
(GrG

⊤
r )s,i(Ẽr)i,j(D

⊤[PrC|Cr]
⊤[PrC|Cr]D)j,t(Ẽr)s,t

(
z2i,j + z2s,t

)
=

1

2

∑
(GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)i,j

(Er)
2
i,j

(Ẽr)i,j
+

1

2

∑
(GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)s,t

(Er)
2
s,t

(Ẽr)s,t
.

(101)

Consequently, we can obtain

Tr
(
GrG

⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]DE⊤

r

)
≤
∑ (GrG

⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)i,j(Er)

2
i,j

(Ẽr)i,j
. (102)

For the term Tr
(
GrΦrG

⊤
r Er1k1

⊤
k E

⊤
r

)
in Eq. (28), we have

Tr
(
GrΦrG

⊤
r Er1k1

⊤
k E

⊤
r

)
=
∑∑

(GrΦrG
⊤
r )i,t(Er)t,l(1k1

⊤
k )l,j(Er)i,j ≤

∑
(GrΦrG

⊤
r Ẽr1k1

⊤
k )i,j

(Er)
2
i,j

(Ẽr)i,j
.

(103)
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Combined with Eqs. (90), (91), (92), (102) and (103), therefore, we can have

F(Er, Ẽr) =a2r
∑

(GrG
⊤
r ẼrD

⊤[PrC|Cr]
⊤[PrC|Cr]D)i,j

(Er)
2
i,j

(Ẽr)i,j

− 2a2r
∑

(Ẽr)i,j(GrG
⊤
r X

⊤
r [PrC|Cr]D)i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)

− βbr
∑

(Ẽr)i,j

((
EF⊤

r

)
pos

)
i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)

+
βbr
2

∑((
EF⊤

r

)
neg

)
i,j

(Ẽr)
2
i,j + (Er)

2
i,j

(Ẽr)i,j

+
∑

(GrΦrG
⊤
r Ẽr1k1

⊤
k )i,j

(Er)
2
i,j

(Ẽr)i,j

− 2
∑

(Ẽr)i,j(GrΦ
⊤
r 1nr

1⊤
k )i,j

(
1 + log

(Er)i,j

(Ẽr)i,j

)
.

(104)

According to the bound of each branch, we have that F(Er, Ẽr) ≥ L(Er) and F(Er,Er) = L(Er). Therefore, it is an
auxiliary function of L(Er). Further, its Hessian matrix is semi-positive, and consequently it is convex. The global solution
can be acquired by setting its derivative equaling to zero. That is,

(Er)i,j =


(
a2rGrG

⊤
r X

⊤
r [PrC|Cr]D+ β

2 br
(
EF⊤

r

)
pos

+GrΦr1nr1
⊤
k

)
i,j(

a2rGrG⊤
r ẼrD

⊤[PrC|Cr]⊤[PrC|Cr]D+ β
2 br (EF⊤

r )neg +GrΦrG⊤
r Ẽr1k1

⊤
k

)
i,j


1
2

. (105)

After eliminating Φr, we can equivalently obtain the updating rule Eq. (8).

C. Proof of Theorem 2
Proof. Let E(h+1)

r = argminEr
F(Er,E(h)

r ), and then we have F(E(h+1)
r ,E

(h)
r ) ≤ F(E(h)

r ,E
(h)
r ). In conjunction with

Theorem 1, we have that F(Er,E(h)
r ) is convex and the global optimum can be achieved. Further, combined with the

definition of auxiliary function, we have

F(E(h)
r ,E(h)

r ) = L(E(h)
r ) (106)

and

F(E(h+1)
r ,E(h)

r ) ≥ L(E(h+1)
r ). (107)

Therefore, we can obtain

L(E(h+1)
r ) ≤ L(E(h)

r ), (108)

which demonstrates that it is steadily decreasing.

Accordingly, we have the following inequality holds,

J
(
E(h+1)
r ,C(h),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
≤ J

(
E(h)
r ,C(h),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
,

(109)
where J is the objective value of Eq. (6).
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D. Proof of Theorem 3
Proof. For the j-th column of PrC, we have

n∑
i=1

(PrC)i,j =

n∑
i=1

(
k∑
l=1

(Pr)i,lCl,j

)
. (110)

After exchanging the order of summation, we can obtain

n∑
i=1

(PrC)i,j =

k∑
l=1

(
n∑
i=1

(Pr)i,l

)
Cl,j . (111)

Since Pr is column-normalized, we can get that
∑n
i=1(Pr)i,l = 1 holds for any l ∈ {1, 2, · · · , k}. Therefore, we have

n∑
i=1

(PrC)i,j =

k∑
l=1

Cl,j . (112)

So, to ensure that the sum of the elements in each column of PrC is equal to 1, under column-normalized Pr, we only need

k∑
l=1

Cl,j = 1, j = [1, 2, · · · , k]. (113)

That is, C also needs to be column-normalized.

E. Proof of Theorem 4
Proof. For the objective function, according to F -norm characteristic, we have

∥∥XrGr − [PrC|Cr]DE⊤
r Gr

∥∥2
F
≥ 0.

Combined with the non-negative property of C and Cr as well as Pr, we can obtain ⟨PrC,Cr⟩ ≥ 0. Therefore, we have
that the objective function is lower-bounded by −β Tr

(
E⊤∑v

r=1 brErFr
)
.

Finding the lower bound of −Tr
(
E⊤∑v

r=1 brErFr
)

is equivalently to find the upper bound of Tr
(
E⊤∑v

r=1 brErFr
)
.

To obtain one upper bound of Tr
(
E⊤∑v

r=1 brErFr
)
, firstly, based on the linearity property of trace operator, we can

obtain

Tr

(
E⊤

v∑
r=1

brErFr

)
=

v∑
r=1

br Tr
(
E⊤ErFr

)
. (114)

Then, utilizing the cyclic property of trace, we can get

Tr
(
E⊤ErFr

)
= Tr

(
FrE

⊤Er
)
. (115)

The trace of a product of matrices is maximized when the matrices are aligned in a way that maximizes the sum of their
diagonal elements. Combined with the fact that E and Er are orthogonal, therefore, the maximum value of Tr

(
FrE

⊤Er
)

occurs when Er is aligned with E and Fr.

To demonstrate this point from theory, we firstly decompose Er as UΣV⊤ where U and V are the left singular matrix and
right singular matrix respectively, and Σ is the singular value matrix with elements greater than or equal to zero. Then we
have Tr

(
FrE

⊤Er
)
= Tr

(
FrE

⊤UΣV⊤). Further, via cyclic operation, we have

Tr
(
FrE

⊤Er
)
= Tr

(
V⊤FrE

⊤UΣ
)
. (116)

Kindly note that V, Fr, E and U are all orthogonal matrices, accordingly, V⊤FrE
⊤U is also an orthogonal matrix.

Therefore, we have
Tr
(
FrE

⊤Er
)
≤ Tr (Σ) , (117)

where the equality holds if and only if V⊤FrE
⊤U equals to an identity matrix.
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In conjunction with Tr (Σ) =
∑min{n,k}
i=1 σi(Er) where σi(Er) denotes the i-th singular value of Er, we have

Tr (Σ) ≤

min{n, k}
min{n,k}∑
i=1

σ2
i (Er)

 1
2

. (118)

Then, given the fact that σ2
i (Er) is equal to λi(E

⊤
r Er) where λi(E

⊤
r Er) denotes the i-th eigenvalue of E⊤

r Er and that∑
λi(E

⊤
r Er) is equal to Tr(E⊤

r Er), we have

Tr(E⊤
r Er) =

min{n,k}∑
i=1

σ2
i (Er). (119)

Further, considering that ∥Er∥2F is equal to Tr(E⊤
r Er) and that Er is row-normalized and non-negative, we have that∑k

j=1(Er)
2
i,j is less than or equal to 1 for any i = [1, 2, · · · , n]. Consequently, we can obtain

Tr(E⊤
r Er) ≤ n, (120)

where the equality holds if and only if each row of Er is a one-hot vector. It can be further derived that at this point Er is a
(one-sided) orthogonal matrix.

In conjunction with Eqs. (117), (118), (119) and (120), consequently, we can obtain

Tr
(
FrE

⊤Er
)
≤
√

min{n, k}n. (121)

Since the sample size n is largely greater than the cluster number k, we have

Tr
(
FrE

⊤Er
)
≤
√
nk. (122)

Combining Eqs. (114), (115) and (122) yields

Tr

(
E⊤

v∑
r=1

brErFr

)
≤
√
nk

v∑
r=1

br. (123)

Afterwards, using Cauchy inequality, we can get(
v∑
r=1

br

)2

≤

(
v∑
r=1

b2r

)(
v∑
r=1

12

)
. (124)

Accordingly, combining Eqs. (123) and (124) yields

Tr

(
E⊤

v∑
r=1

brErFr

)
≤
√
vnk. (125)

Therefore, the objective value is lower-bounded by (−β
√
vnk). That is,

v∑
r=1

a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F
+ λ⟨PrC,Cr⟩ − β Tr

(
E⊤

v∑
r=1

brErFr

)
≥ −β

√
vnk. (126)
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F. Proof of Theorem 5
Proof. ▶ During optimizing C, based on Eq. (39), we can equivalently rewrite its Lagrange function as

L (C,Ψ) = Tr

(
v∑
r=1

a2rP
⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ − 2

v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ C

⊤ + λ

v∑
r=1

P⊤
r CrC

⊤+

2

v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ +

v∑
r=1

P⊤
r 1dr1

⊤
drPrCΨrC

⊤ − 2

v∑
r=1

P⊤
r 1dr1

⊤
k ΨrC

⊤

)
.

(127)

For the matrix
∑v
r=1 a

2
rP

⊤
r XrGrG

⊤
r ErD

⊤
γ C

⊤, combined with the property of each matrix, we can get that it is element-
wisely non-negative. Meanwhile, unfolding the trace by element, we have

Tr

(
v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ C

⊤

)
=
∑(

v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ

)
i,j

Ci,j

≥
∑(

v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ

)
i,j

C̃i,j

(
1 + log

Ci,j

C̃i,j

)
.

(128)

For the term Tr(P⊤
r 1dr1

⊤
k ΨrC

⊤), similarly, we can obtain the following inequality,

Tr
(
P⊤
r 1dr1

⊤
k ΨrC

⊤) ≥∑(
P⊤
r 1dr1

⊤
k Ψr

)
i,j

C̃i,j

(
1 + log

Ci,j

C̃i,j

)
. (129)

Then, for the term Tr
(∑v

r=1 P
⊤
r CrC

⊤), we can get

Tr

(
v∑
r=1

P⊤
r CrC

⊤

)
≤ 1

2

∑(
v∑
r=1

P⊤
r Cr

)
i,j

C2
i,j + C̃2

i,j

C̃i,j

. (130)

Accordingly, for the term Tr(
∑v
r=1 a

2
rP

⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤), we have

Tr

(
v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤

)
≤ 1

2

∑(
v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,j

C2
i,j + C̃2

i,j

C̃i,j

. (131)

Afterwards, for the matrix P⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤, suppose Cs,j = fs,jC̃s,j for any s and j where fs,j is a
constant, then we have

Tr
(
P⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤) =∑∑(
P⊤
r Pr

)
s,i

Ci,t

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
t,j

Cs,j

=
∑∑(

P⊤
r Pr

)
s,i

C̃i,t

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
t,j

C̃s,jfi,tfs,j

≤ 1

2

∑∑(
P⊤
r Pr

)
s,i

C̃i,t

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
t,j

C̃s,j

(
f2
i,t + f2

s,j

)
.

(132)

Subsequently, based on the commutative property and symmetry, we can get∑∑(
P⊤
r Pr

)
s,i

C̃i,t

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
t,j

C̃s,jf
2
i,t =

∑∑(
P⊤
r Pr

)
s,i

C̃s,j

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
j,t

C̃i,tf
2
i,t

=
∑(

P⊤
r PrC̃DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,t

C̃i,tf
2
i,t

=
∑(

P⊤
r PrC̃DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,t

C2
i,t

C̃i,t

(133)
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and∑∑(
P⊤
r Pr

)
s,i

C̃i,t

(
DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
t,j

C̃s,jf
2
s,j =

∑(
P⊤
r PrC̃DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
s,j

C2
s,j

C̃s,j

. (134)

Consequently, combined with Eqs. (132), (133) and (134), we can obtain the following inequality,

Tr

(
v∑
r=1

a2rP
⊤
r PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤

)
≤

v∑
r=1

a2r
∑(

P⊤
r PrC̃DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,j

C2
i,j

C̃i,j

. (135)

For Tr
(
P⊤
r 1dr1

⊤
dr
PrCΨrC

⊤), after element unfolding, we have

Tr
(
P⊤
r 1dr1

⊤
drPrCΨrC

⊤) =∑∑(
P⊤
r 1dr1

⊤
drPr

)
i,t

Ct,l(Ψr)l,jCi,j

=
∑∑(

P⊤
r 1dr1

⊤
drPr

)
i,t

C̃t,l(Ψr)l,jC̃i,jft,lfi,j

≤ 1

2

∑∑(
P⊤
r 1dr1

⊤
drPr

)
i,t

C̃t,l(Ψr)l,jC̃i,j

(
f2
i,j + f2

t,l

)
.

(136)

For the first term, we can get∑∑(
P⊤
r 1dr1

⊤
drPr

)
i,t

C̃t,l(Ψr)l,jC̃i,jf
2
i,j =

∑(
P⊤
r 1dr1

⊤
drPrC̃Ψr

)
i,j

C2
i,j

C̃i,j

. (137)

Further, in conjunction with the fact that Ψr is a diagonal matrix, we can derive the following equality,∑∑(
P⊤
r 1dr1

⊤
drPr

)
i,t

C̃t,l(Ψr)l,jC̃i,jf
2
t,l =

∑∑(
P⊤
r 1dr1

⊤
drPr

)
t,i

C̃t,l(Ψr)j,lC̃i,jf
2
t,l

=
∑∑(

P⊤
r 1dr1

⊤
drPr

)
t,i

C̃i,j(Ψr)j,lC̃t,lf
2
t,l

=
∑(

P⊤
r 1dr1

⊤
drPrC̃Ψr

)
t,l

C̃t,lf
2
t,l

=
∑(

P⊤
r 1dr1

⊤
drPrC̃Ψr

)
t,l

C2
t,l

C̃t,l

.

(138)

Combined with Eqs. (136), (137) and (138), we can get

Tr
(
P⊤
r 1dr1

⊤
drPrCΨrC

⊤) ≤∑(
P⊤
r 1dr1

⊤
drPrC̃Ψr

)
i,j

C2
i,j

C̃i,j

. (139)

So, at this point, according to Eqs. (128), (129), (130), (131), (135) and (139), we can have

F
(
C, C̃

)
=

v∑
r=1

a2r
∑(

P⊤
r PrC̃DγE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,j

C2
i,j

C̃i,j

−2
∑(

v∑
r=1

a2rP
⊤
r XrGrG

⊤
r ErD

⊤
γ

)
i,j

C̃i,j

(
1 + log

Ci,j

C̃i,j

)

+
∑(

v∑
r=1

a2rP
⊤
r CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ

)
i,j

C2
i,j + C̃2

i,j

C̃i,j

−2
v∑
r=1

∑(
P⊤
r 1dr1

⊤
k Ψr

)
i,j

C̃i,j

(
1 + log

Ci,j

C̃i,j

)

+

v∑
r=1

∑(
P⊤
r 1dr1

⊤
drPrC̃Ψr

)
i,j

C2
i,j

C̃i,j

+
λ

2

∑(
v∑
r=1

P⊤
r Cr

)
i,j

C2
i,j + C̃2

i,j

C̃i,j

.

(140)
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Accordingly, F(C, C̃) is an auxiliary function, and under the updating rule Eq. (11), the loss is monotonically decreasing.
Therefore, we can get the following inequality,

J
(
E(h+1)
r ,C(h+1),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
≤

J
(
E(h+1)
r ,C(h),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
.

(141)

▶ During optimizing Cr, after removing irrelevant items, the Lagrange function can be simplified as

L(Cr,Ωr) = Tr
(
a2rCrDψE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r − 2a2rXrGrG

⊤
r ErD

⊤
ψC

⊤
r +

2a2rPrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r + λC⊤P⊤

r Cr +ΩrC
⊤
r 1dr1

⊤
drCr − 2ΩrC

⊤
r 1dr1

⊤
k

)
.

(142)

For the matrix XrGrG
⊤
r ErD

⊤
ψC

⊤
r , in conjunction with the non-negative property of Cr, we have

Tr
(
XrGrG

⊤
r ErD

⊤
ψC

⊤
r

)
≥
∑(

XrGrG
⊤
r ErD

⊤
ψ

)
i,j

(C̃r)i,j

(
1 + log

(Cr)i,j

(C̃r)i,j

)
. (143)

For the term Tr
(
ΩrC

⊤
r 1dr1

⊤
k

)
, according to the cyclic property of trace operation, we have

Tr
(
ΩrC

⊤
r 1dr1

⊤
k

)
= Tr

(
1dr1

⊤
k ΩrC

⊤
r

)
≥
∑(

1dr1
⊤
k Ωr

)
i,j

(C̃r)i,j

(
1 + log

(Cr)i,j

(C̃r)i,j

)
. (144)

For the matrix PrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r , we have

Tr
(
PrCDγE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r

)
≤
∑(

PrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψ

)
i,j

(C̃r)
2
i,j + (Cr)

2
i,j

2(C̃r)i,j
. (145)

For Tr
(
C⊤P⊤

r Cr

)
, combined with the transpose property of trace operation, we have

Tr
(
C⊤P⊤

r Cr

)
= Tr

(
C⊤
r PrC

)
≤
∑

(PrC)i,j
(Cr)

2
i,j + (C̃r)

2
i,j

2(C̃r)i,j
. (146)

For the matrix CrDψE
⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r , suppose that for any i and j, (Cr)i,j = wi,j(C̃r)i,j where wi,j is a constant,

after element folding, we can get

Tr
(
CrDψE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r

)
=
∑∑

(C̃r)i,t(DψE
⊤
r GrG

⊤
r ErD

⊤
ψ )t,j(C̃r)i,jwi,twi,j

≤ 1

2

∑∑
(C̃r)i,t(DψE

⊤
r GrG

⊤
r ErD

⊤
ψ )t,j(C̃r)i,j(w

2
i,t + w2

i,j).
(147)

Combined with the symmetry, we can further have∑∑
(C̃r)i,t(DψE

⊤
r GrG

⊤
r ErD

⊤
ψ )t,j(C̃r)i,jw

2
i,t =

∑∑
(C̃r)i,j(DψE

⊤
r GrG

⊤
r ErD

⊤
ψ )j,t(C̃r)i,tw

2
i,t

=
∑

(C̃rDψE
⊤
r GrG

⊤
r ErD

⊤
ψ )i,t(Cr)i,twi,t

=
∑

(C̃rDψE
⊤
r GrG

⊤
r ErD

⊤
ψ )i,t

(Cr)
2
i,t

(C̃r)i,t
.

(148)

For the second term in Eq. (147), based on the element merging, we can get∑∑
(C̃r)i,t(DψE

⊤
r GrG

⊤
r ErD

⊤
ψ )t,j(C̃r)i,jw

2
i,j =

∑
(C̃rDψE

⊤
r GrG

⊤
r ErD

⊤
ψ )i,j(C̃r)i,jw

2
i,j

=
∑

(C̃rDψE
⊤
r GrG

⊤
r ErD

⊤
ψ )i,j

(Cr)
2
i,j

(C̃r)i,j
.

(149)
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Combining Eqs. (147), (148) and (149) yields

Tr
(
CrDψE

⊤
r GrG

⊤
r ErD

⊤
ψC

⊤
r

)
≤
∑(

C̃rDψE
⊤
r GrG

⊤
r ErD

⊤
ψ

)
i,j

(Cr)
2
i,j

(C̃r)i,j
. (150)

For the term Tr
(
ΩrC

⊤
r 1dr1

⊤
dr
Cr

)
, we have

Tr
(
ΩrC

⊤
r 1dr1

⊤
drCr

)
= Tr

(
1dr1

⊤
drCrΩrC

⊤
r

)
=
∑∑(

1dr1
⊤
dr

)
i,l
(Cr)l,t(Ωr)t,j(Cr)i,j

=
∑∑(

1dr1
⊤
dr

)
i,l
(C̃r)l,t(Ωr)t,j(C̃r)i,jwl,twi,j

≤ 1

2

∑∑(
1dr1

⊤
dr

)
i,l
(C̃r)l,t(Ωr)t,j(C̃r)i,j(w

2
l,t + w2

i,j).

(151)

For the term
∑∑(

1dr1
⊤
dr

)
i,l
(C̃r)l,t(Ωr)t,j(C̃r)i,jw

2
i,j , in conjunction with the element merging property, we can obtain

∑∑(
1dr1

⊤
dr

)
i,l
(C̃r)l,t(Ωr)t,j(C̃r)i,jw

2
i,j =

∑(
1dr1

⊤
drC̃rΩr

)
i,j

(C̃r)i,jw
2
i,j =

∑(
1dr1

⊤
drC̃rΩr

)
i,j

(Cr)
2
i,j

(C̃r)i,j
.

(152)

According to the facts that 1dr1
⊤
dr

is symmetric and that Ωr is diagonal, we can get the following equality,∑∑(
1dr1

⊤
dr

)
i,l
(C̃r)l,t(Ωr)t,j(C̃r)i,jw

2
l,t =

∑∑(
1dr1

⊤
dr

)
l,i
(C̃r)l,t(Ωr)j,t(C̃r)i,jw

2
l,t. (153)

Further, in conjunction with the element commutative law, we have∑∑(
1dr1

⊤
dr

)
l,i
(C̃r)l,t(Ωr)j,t(C̃r)i,jw

2
l,t =

∑∑(
1dr1

⊤
dr

)
l,i
(C̃r)i,j(Ωr)j,t(C̃r)l,tw

2
l,t. (154)

Using element combination property yields∑∑(
1dr1

⊤
dr

)
l,i
(C̃r)i,j(Ωr)j,t(C̃r)l,tw

2
l,t =

∑∑(
1dr1

⊤
drC̃rΩr

)
l,t

(C̃r)l,tw
2
l,t

=
∑∑(

1dr1
⊤
drC̃rΩr

)
l,t

(Cr)l,twl,t

=
∑∑(

1dr1
⊤
drC̃rΩr

)
l,t

(Cr)
2
l,t

(C̃r)l,t
.

(155)

Based on Eqs. (151), (152), (153), (154) and (155), therefore, we have

Tr
(
ΩrC

⊤
r 1dr1

⊤
drCr

)
≤
∑(

1dr1
⊤
drC̃rΩr

)
i,j

(Cr)
2
i,j

(C̃r)i,j
. (156)

Combining Eqs. (143), (144), (145), (146), (150) and (156), we can get

F(Cr, C̃r) = a2r
∑(

C̃rDψE
⊤
r GrG

⊤
r ErD

⊤
ψ

)
i,j

(Cr)
2
i,j

(C̃r)i,j
− 2a2r

∑(
XrGrG

⊤
r ErD

⊤
ψ

)
i,j

(C̃r)i,j

(
1 + log

(Cr)i,j

(C̃r)i,j

)

+ a2r
∑(

PrCDγE
⊤
r GrG

⊤
r ErD

⊤
ψ

)
i,j

(C̃r)
2
i,j + (Cr)

2
i,j

(C̃r)i,j
+

λ

2

∑
(PrC)i,j

(Cr)
2
i,j + (C̃r)

2
i,j

(C̃r)i,j

+
(
1dr1

⊤
drC̃rΩr

)
i,j

(Cr)
2
i,j

(C̃r)i,j
− 2

∑(
1dr1

⊤
k Ωr

)
i,j

(C̃r)i,j

(
1 + log

(Cr)i,j

(C̃r)i,j

)
.

(157)
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F(Cr, C̃r) is an auxiliary function and with the updating rule Eq. (13), the loss value decreases monotonically. Consequently,
we can obtain the following inequality,

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
≤

J
(
E(h+1)
r ,C(h+1),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
.

(158)

▶ During optimizing D, owing to it being non-negative, we can get

Tr

(
v∑
r=1

a2r[PrC|Cr]
⊤XrGrG

⊤
r ErD

⊤

)
=
∑(

v∑
r=1

a2r[PrC|Cr]
⊤XrGrG

⊤
r Er

)
i,j

Di,j

≥
∑(

v∑
r=1

a2r[PrC|Cr]
⊤XrGrG

⊤
r Er

)
i,j

D̃i,j

(
1 + log

Di,j

D̃i,j

)
.

(159)

Suppose that for any s and t, it holds for Ds,t = ds,tD̃s,t under constant ds,t. Then, utilizing element-wise expanding, we
have

Tr
(
[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤) =∑∑(
[PrC|Cr]

⊤[PrC|Cr]
)
i,s

Ds,t

(
E⊤
r GrG

⊤
r Er

)
t,j

Di,j =∑∑(
[PrC|Cr]

⊤[PrC|Cr]
)
i,s

D̃s,t

(
E⊤
r GrG

⊤
r Er

)
t,j

D̃i,jds,tdi,j ≤
1

2

∑∑(
[PrC|Cr]

⊤[PrC|Cr]
)
i,s

D̃s,t

(
E⊤
r GrG

⊤
r Er

)
t,j

D̃i,j(d
2
i,j + d2s,t).

(160)

For the first term, we have∑∑(
[PrC|Cr]

⊤[PrC|Cr]
)
i,s

D̃s,t

(
E⊤
r GrG

⊤
r Er

)
t,j

D̃i,jd
2
i,j =∑(

[PrC|Cr]
⊤[PrC|Cr]D̃E⊤

r GrG
⊤
r Er

)
i,j

D̃i,jd
2
i,j =∑(

[PrC|Cr]
⊤[PrC|Cr]D̃E⊤

r GrG
⊤
r Er

)
i,j

D2
i,j

D̃i,j

.

(161)

Further, combining the symmetry, we have∑∑(
[PrC|Cr]

⊤[PrC|Cr]
)
i,s

D̃s,t

(
E⊤
r GrG

⊤
r Er

)
t,j

D̃i,jd
2
i,j =∑∑(

[PrC|Cr]
⊤[PrC|Cr]

)
s,i

D̃i,j

(
E⊤
r GrG

⊤
r Er

)
j,t

D̃s,td
2
s,t =∑(

[PrC|Cr]
⊤[PrC|Cr]D̃E⊤

r GrG
⊤
r Er

)
i,j

D2
i,j

D̃i,j

.

(162)

Combining Eqs. (160), (161) and (162) yields

Tr
(
[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤) ≤∑(
[PrC|Cr]

⊤[PrC|Cr]D̃E⊤
r GrG

⊤
r Er

)
i,j

D2
i,j

D̃i,j

. (163)

Therefore, we have

Tr

(
v∑
r=1

a2r[PrC|Cr]
⊤[PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤

)
≤

v∑
r=1

a2r
∑(

[PrC|Cr]
⊤[PrC|Cr]D̃E⊤

r GrG
⊤
r Er

)
i,j

D2
i,j

D̃i,j

.

(164)
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Based on Eqs. (159) and (164), we can get

F(D, D̃) =

v∑
r=1

a2r
∑(

[PrC|Cr]
⊤[PrC|Cr]D̃E⊤

r GrG
⊤
r Er

)
i,j

D2
i,j

D̃i,j

−

2

v∑
r=1

a2r
∑(

[PrC|Cr]
⊤XrGrG

⊤
r Er

)
i,j

D̃i,j

(
1 + log

Di,j

D̃i,j

)
.

(165)

So, F(C, C̃) is an auxiliary function. Under the updating rule Eq. (15), the loss is monotonically decreasing. As a result,
we have the following inequality,

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
≤

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
.

(166)

▶ During optimizing Pr, the Lagrange function can be simplified as

L(Pr,Γr) = Tr
(
a2rPrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r + 2a2rCrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r + λP⊤

r CrC
⊤

−2a2rXrGrG
⊤
r ErD

⊤
γ C

⊤P⊤
r + ΓrC

⊤P⊤
r 1dr1

⊤
drPrC− 2ΓrC

⊤P⊤
r 1dr1

⊤
k

)
.

(167)

Then, about the matrix XrGrG
⊤
r ErD

⊤
γ C

⊤P⊤
r , in conjunction with the non-negativity of elements, we can have the

following inequality,

Tr
(
XrGrG

⊤
r ErD

⊤
γ C

⊤P⊤
r

)
≥
∑(

XrGrG
⊤
r ErD

⊤
γ C

⊤)
i,j

(
P̃r

)
i,j

(
1 + log

(Pr)i,j

(P̃r)i,j

)
. (168)

For the term Tr
(
PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r

)
, after unfolding element by element, we have

Tr
(
PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r

)
=
∑∑

(P̃r)t,l(CDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)l,s(P̃r)t,s qt,lqt,s

≤
∑∑

(P̃rCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)t,s
(Pr)

2
t,s

2(P̃r)t,s
+

∑∑
(P̃r)t,l(CDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)l,s(P̃r)t,s
q2t,l
2

,

(169)

where P̃r is acquired based on the assumption that (Pr)t,l is qt,l times of (P̃r)t,l for any t and l. qt,l is a constant.

Further, for (P̃r)t,l(CDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)l,s(P̃r)t,s
q2t,l
2 , by element exchange and combining the symmetry, we can

get∑∑
(P̃r)t,l(CDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)l,s(P̃r)t,s
q2t,l
2

=
∑

(P̃rCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)t,l(P̃r)t,l
q2t,l
2

=
∑

(P̃rCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)t,l
(Pr)

2
t,l

2(P̃r)t,l
.

(170)

Therefore, for PrCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r , we can obtain the following inequality,

Tr
(
PrCDγE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r

)
≤
∑(

P̃rCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤
)
i,j

(Pr)
2
i,j

(P̃r)i,j
. (171)

For the term CrDφE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r , combining Cauchy inequality, we can get

Tr
(
CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤P⊤
r

)
≤ 1

2

∑(
CrDφE

⊤
r GrG

⊤
r ErD

⊤
γ C

⊤)
i,j

(Pr)
2
i,j + (P̃r)

2
i,j

(P̃r)i,j
. (172)

30



Bifurcate then Alienate: Incomplete Multi-view Clustering via Coupled Distribution Learning with Linear Overhead

For the term P⊤
r CrC

⊤, likewise, we have

Tr
(
P⊤
r CrC

⊤) ≤ 1

2

∑(
CrC

⊤)
i,j

(Pr)
2
i,j + (P̃r)

2
i,j

(P̃r)i,j
. (173)

Subsequently, for the term ΓrC
⊤P⊤

r 1dr1
⊤
dr
PrC , utilizing cyclic property and element-to-element expanding, we can

obtain
Tr
(
ΓrC

⊤P⊤
r 1dr1

⊤
drPrC

)
= Tr

(
1dr1

⊤
drPrCΓrC

⊤P⊤
r

)
≤
∑(

1dr1
⊤
drP̃rCΓrC

⊤
)
t,j

(Pr)
2
t,j

2(P̃r)t,j
+

∑∑(
1dr1

⊤
dr

)
t,l

(P̃r)l,s
(
CΓrC

⊤)
s,j

(P̃r)t,j
q2l,s
2

.

(174)

For the second item, combined the symmetry, we can derive the following equality,∑∑(
1dr1

⊤
dr

)
t,l

(P̃r)l,s
(
CΓrC

⊤)
s,j

(P̃r)t,j q
2
l,s =

∑∑(
1dr1

⊤
dr

)
l,t

(P̃r)t,j
(
CΓrC

⊤)
j,s

(P̃r)l,s q
2
l,s

=
∑(

1dr1
⊤
drP̃rCΓrC

⊤
)
l,s

(Pr)
2
l,s

(P̃r)l,s
.

(175)

Therefore, we have

Tr
(
ΓrC

⊤P⊤
r 1dr1

⊤
drPrC

)
≤
∑(

1dr1
⊤
drP̃rCΓrC

⊤
)
i,j

(Pr)
2
i,j

(P̃r)i,j
. (176)

Likewise, for ΓrC⊤P⊤
r 1dr1

⊤
k , we have

Tr
(
ΓrC

⊤P⊤
r 1dr1

⊤
k

)
= Tr

(
1dr1

⊤
k ΓrC

⊤P⊤
r

)
≥
∑(

1dr1
⊤
k ΓrC

⊤)
i,j

(
P̃r

)
i,j

(
1 + log

(Pr)i,j

(P̃r)i,j

)
. (177)

Hence, combining Eqs. (168), (171), (172), (173), (176) and (177), we can have

F(Pr, P̃r) =a2r
∑(

P̃rCDγE
⊤
r GrG

⊤
r ErD

⊤
γ C

⊤
)
i,j

(Pr)
2
i,j

(P̃r)i,j
+

λ

2

∑(
CrC

⊤)
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(Pr)
2
i,j + (P̃r)

2
i,j
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+
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∑(

CrDφE
⊤
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⊤
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⊤
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⊤)
i,j

(Pr)
2
i,j + (P̃r)

2
i,j

(P̃r)i,j
+
∑(

1dr1
⊤
drP̃rCΓrC

⊤
)
i,j

(Pr)
2
i,j

(P̃r)i,j

− 2a2r
∑(

XrGrG
⊤
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⊤
γ C

⊤)
i,j

(
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)
i,j

(
1 + log
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− 2
∑(

1dr1
⊤
k ΓrC

⊤)
i,j

(
P̃r

)
i,j

(
1 + log

(Pr)i,j

(P̃r)i,j

)
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(178)

Consequently, F(Pr, P̃r) is an auxiliary function, and under the updating rule Eq. (17), the loss function is monotonically
decreasing. Accordingly, we have the following inequality,

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
≤

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
.

(179)
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▶ During optimizing E, since its optimal solution can be acquired via singular value decomposition, we can get that after
each iteration, there always has

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h)

r , a(h)r , b(h)r

)
≤

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
.

(180)

▶ During optimizing Fr, its optimal solution is obtained by Eq. (76). Therefore, the objective value is decreasing when
optimizing Fr. Accordingly, we have the following inequality,

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h+1)

r , a(h)r , b(h)r

)
≤

J
(
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r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h)

r , a(h)r , b(h)r

)
.

(181)

▶ During optimizing ar, according to Eq. (82), its solution can be directly obtained. Therefore, we have

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h+1)

r , a(h+1)
r , b(h)r

)
≤

J
(
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r , a(h)r , b(h)r

)
.

(182)

▶ During optimizing br, its optimal solution is acquired by Eq. (86). Consequently, we have

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h+1)

r , a(h+1)
r , b(h+1)

r

)
≤

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h+1)

r , a(h+1)
r , b(h)r

)
.

(183)

Combining Eqs. (109), (141), (158), (166), (179), (180), (181), (182) and (183), we can obtain

J
(
E(h+1)
r ,C(h+1),C(h+1)

r ,D(h+1),P(h+1)
r ,E(h+1),F(h+1)

r , a(h+1)
r , b(h+1)

r

)
≤

J
(
E(h)
r ,C(h),C(h)

r ,D(h),P(h)
r ,E(h),F(h)

r , a(h)r , b(h)r

)
,

(184)

which indicates that the objective value is monotonically decreasing with each iteration of the algorithm.

Combining the monotonic descent characteristic (i.e., Eq. (184) ) and the lower bound characteristic (i.e., Eq. (126)), we can
conclude that the proposed method is convergent.

G. Proof of Theorem 6
G.1. Computational Complexity

Proof. The computing cost of presented algorithm primarily comes from solving Er, C, Cr, D, Pr, E, Fr, ar and br.

During optimizing Er, note that GrG
⊤
r is in Rn×n, directly computing the term GrG

⊤
r X

⊤
r [PrC|Cr]D will

require at least O(n2) cost. To decrease the computational cost, we observe that GrG
⊤
r is a diagonal ma-

trix. Specially, its diagonal elements consist of
∑nv

j=1(Gr)1,j ,
∑nv

j=1(Gr)2,j , · · · ,
∑nv

j=1(Gr)n,j . We can equiv-

alently transform the term GrG
⊤
r X

⊤
r [PrC|Cr]D as (Xr ⊙Or)

⊤
[PrC|Cr]D where Or ∈ Rdr×n is equal to

1dr

(∑nv

j=1(Gr)1,j ,
∑nv

j=1(Gr)2,j , · · · ,
∑nv

j=1(Gr)n,j

)
and ⊙ denotes the element-wise multiplication operation. Based

on this, computing GrG
⊤
r X

⊤
r [PrC|Cr]D will take O(drn+ 2ndrk + 2nk2) cost. In the similar way, we can obtain that

computing GrG
⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D will need O(nk + 2nk2 + 2nkdr) cost. In addition, computing EF⊤

r

will need O(nk2). Therefore, optimizing each Er totally requires O
(
ndrk + nk2

)
cost.

During optimizing C, adopting the element-wise multiplication technique employed on Er, we can obtain that computing
XrGrG

⊤
r ErD

⊤
γ and [PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
γ will require O(drn + drnk + drk

2) and O(2drk2 + drkn + drk
2)
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respectively. Accordingly, computing
∑v
r=1 a

2
rXrGrG

⊤
r ErD

⊤
γ and

∑v
r=1 a

2
r[PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
γ will require

O(dkn+ dk2) and O(dk2 + dkn) respectively where d is the dimension sum of all view data. Therefore, optimizing the
matrix C totally requires O

(
dk2 + dkn

)
computing cost.

During optimizing Cr, computing the term XrGrG
⊤
r ErD

⊤
ψ requiresO(drn+drnk+drk

2) computational cost. Computing
[PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
ψ requires O(nk + 2drk

2 + drnk + drk
2). Therefore, optimizing each Cr totally requires

O
(
drnk + drk

2
)

cost.

During optimizing D, computing the terms [PrC|Cr]
⊤XrGrG

⊤
r Er and [PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r Er

take O(drn + 2kdrn + 2k2n) and O(nk + 4k2dr + 4k3 + 2nk2) respectively. Consequently, computing∑v
r=1 a

2
r[PrC|Cr]

⊤XrGrG
⊤
r Er and

∑v
r=1 a

2
r[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r Er takesO(kdn+vk2n) andO(k2d+

vk3 + vnk2) respectively. Therefore, optimizing D totally requires O
(
kdn+ vk2n+ k2d+ vk3 + vnk2

)
.

During optimizing Pr, constructing XrGrG
⊤
r ErD

⊤
γ C

⊤ and CrC
⊤ require O(drn+ drnk + drk

2) and O(drk2) com-
puting costs respectively. Constructing [PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
γ C

⊤ requires O(nk + 2drk
2 + drnk). Therefore,

optimizing each Pr requires O(drnk + drk
2) cost.

During optimizing E, it involves conducting singular value decomposition on
∑v
r=1 brErFr. Constructing the term∑v

r=1 brErFr and performing singular value decomposition on it require O(vnk2) and O(nk2) respectively. Performing
U multiplying V⊤ to generate the optimal solution takes O(nk2) Therefore, optimizing E totally requires O

(
vnk2

)
cost.

During optimizing Fr, it involves conducting singular value decomposition on E⊤Er, which requires O(k3) computing
cost. Additionally, constructing the term E⊤Er requires O(nk2) cost. Therefore, optimizing each Fr totally requires
O
(
nk2 + k3

)
cost.

During optimizing ar, it involves calculating the term
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

. Note that Xr and Gr are in

Rdv×n and Rn×nv respectively. Directly computing
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

will require at least O(nnv) com-
putational cost. Especially, when the incomplete percentage is relatively small, i.e., nv is larger, the cost is almost
close to O(n2). To reduce the cost, we observe that the value of

∥∥XrGr − [PrC|Cr]DE⊤
r Gr

∥∥2
F

is the same as that of∥∥XrGrG
⊤
r − [PrC|Cr]DE⊤

r GrG
⊤
r

∥∥2
F

. In virtue of the element-wise multiplication technique adopted in analyzing Er,

we can obtain that computing the term
∥∥XrGrG

⊤
r − [PrC|Cr]DE⊤

r GrG
⊤
r

∥∥2
F

requiresO(drn+kn+2drk
2+drkn) cost.

Accordingly, computing the term
∑v
r=1

1
∥XrGr−[PrC|Cr]DE⊤

r Gr∥2
F

requires O(dn+ vkn+ 2dk2 + dkn) cost. Therefore,

optimizing all ar totally requires O(vkn+ dk2 + dkn) computing cost.

During optimizing br, computing the term Tr
(
E⊤ErFr

)
will require O(nk2 + k3) cost. Accordingly, computing∑v

r=1 Tr
(
E⊤ErFr

)
will need O(vnk2 + vk3). Therefore, optimizing all br totally requires O

(
vnk2 + vk3

)
com-

putational cost.

Based on the above analysis, we can obtain that optimizing all Er, C, Cr, D, Pr, E, Fr, ar and br will require
O
(
ndk + vnk2

)
, O

(
dk2 + dkn

)
, O

(
dnk + dk2

)
, O

(
kdn+ vk2n+ k2d+ vk3 + vnk2

)
, O(dnk + dk2), O

(
vnk2

)
,

O
(
vnk2 + vk3

)
, O(vkn+ dk2 + dkn) and O

(
vnk2 + vk3

)
respectively. Therefore, the total computing cost is O(ndk+

vnk2 + dk2 + vk3). Considering that the view number v and the cluster number k are generally greatly smaller than the
sample number n and that the dimension sum d is independent of n, we can obtain that the total computational complexity
is O(n). That is, the computing cost is linear with respect to the sample size n.

G.2. Space complexity

Proof. During optimizing Er, generating the term GrG
⊤
r X

⊤
r [PrC|Cr]D needs O(drn+ 2drk + 2k2 + 2nk) memory

cost. Similarly, generating GrG
⊤
r ErD

⊤[PrC|Cr]
⊤[PrC|Cr]D needs O(nk + 2k2 + 2kdr + 2k2dr + nkdr) cost. For

the term EF⊤
r , it needsO(nk+k2+nk2). Therefore, during optimizing the variable Er, it requiresO(k2dr+nkdr+nk2)

memory cost.

During optimizing C, generating the term XrGrG
⊤
r ErD

⊤
γ needsO(drn+nk+k2+drk) memory cost. Generating the term

[PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤
γ needsO(nk+2drk+2k2+drn) cost. Consequently, generating

∑v
r=1 a

2
rXrGrG

⊤
r ErD

⊤
γ

and
∑v
r=1 a

2
r[PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
γ will needO(dn+vnk+vk2+dk) andO(vnk+2dk+2vk2+dn) respectively.

Therefore, during optimizing C, it requires O(dn+ vnk + vk2 + dk) memory cost.
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During optimizing Cr, generating the terms XrGrG
⊤
r ErD

⊤
ψ and [PrC|Cr]DE⊤

r GrG
⊤
r ErD

⊤
ψ needs O(drn + nk +

k2 + drk) and O(2drk + 2k2 + nk + drn) memory costs respectively. Therefore, during optimizing Cr, it requires
O(drn+ nk + k2 + drk) memory cost.

During optimizing D, generating the term [PrC|Cr]
⊤XrGrG

⊤
r Er needs O(drn + 2drk + 2nk + 2k2) mem-

ory cost. Generating [PrC|Cr]
⊤[PrC|Cr]DE⊤

r GrG
⊤
r Er needs O(2drk + 4k2 + 2nk). Accordingly, generating∑v

r=1[PrC|Cr]
⊤XrGrG

⊤
r Er and

∑v
r=1[PrC|Cr]

⊤[PrC|Cr]DE⊤
r GrG

⊤
r Er will need O(dn+ 2dk + 2vnk + 2vk2)

and O(2dk + 4k2v + 2vnk) respectively. Therefore, during optimizing D, it requires O(dn+ dk + vnk + vk2) memory
cost.

During optimizing Pr, generating the terms XrGrG
⊤
r ErD

⊤
γ C

⊤ and CrC
⊤ needsO(drn+nk+k2+drk) andO(drk+k2)

memory costs respectively. Generating the term [PrC|Cr]DE⊤
r GrG

⊤
r ErD

⊤
γ C

⊤ needs O(drk + 2k2 + nk + drn).
Therefore, during optimizing Pr, it requires O(drn+ nk + k2 + drk) memory cost.

During optimizing E, generating ErFr needs O(nk + k2) memory cost. Accordingly, constructing
∑v
r=1 ErFr will need

O(vnk + vk2). Singular value decomposition and singular matrix multiplication will need O(nk + k2). Therefore, during
optimizing E, it requires O(vnk + vk2) memory cost.

During optimizing Fr, generating E⊤Er needs O(nk + k2) cost. Performing singular value decomposition needs O(k2).
Therefore, during optimizing Fr, it requires O(nk + k2) memory cost.

During optimizing ar, instead of calculating the term
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

, we equivalently calculate the term∥∥XrGrG
⊤
r − [PrC|Cr]DE⊤

r GrG
⊤
r

∥∥2
F

, which requires O(drn + kn + 2drk) memory cost. Accordingly, generating∑v
r=1

∥∥XrGrG
⊤
r − [PrC|Cr]DE⊤

r GrG
⊤
r

∥∥2
F

requires O(dn+ vkn+ 2dk) cost. Therefore, optimizing all ar requires
O(dn+ vkn+ dk) memory cost.

During optimizing br, constructing the term E⊤ErFr needs O(nk + k2) memory cost. Accordingly, constructing∑v
r=1

(
Tr
(
E⊤ErFr

))2
will need O(vnk + vk2). Therefore, optimizing all br requires O(vnk + vk2) memory cost.

Consequently, we have that during optimizing all Er, C, Cr, D, Pr, E, Fr, ar and br, it will need O(k2d+ nkd+ vnk2),
O(dn+ vnk+ vk2+dk),O(dn+ vnk+ vk2+dk),O(dn+dk+ vnk+ vk2),O(dn+ vnk+ vk2+dk),O(vnk+ vk2),
O(vnk + vk2), O(dn+ vkn+ dk) and O(vnk + vk2) memory costs respectively. Accordingly, the total memory cost is
O(k2d+ nkd+ vnk2). Owing to the data dimension sum d being independent of the sample size n and the view number v
and the cluster number being far less than n, we have that the total space complexity is O(n). That is, our memory cost is
linear with respect to the sample size n.

H. Experimental Background
H.1. Data Preprocessing

In experiments, each (observed) view data is normalized to a probability form. Specially, we first map the data to have a
mean of 0 and a variance of 1 so as to prevent certain dimensions from encountering excessively large scales, and then
employ the softmax function to transform negative elements into positive ones. Subsequently, we conduct normalization
operation and transform each view data into a probability distribution. Afterwards, all comparison algorithms are evaluated
on these preprocessed datasets.

H.2. Parameter Setting

Owing to the elements in Xr, Gr, Pr, C, Cr, D, Er, a and b being between 0 and 1, we can obtain that the terms
a2r
∥∥XrGr − [PrC|Cr]DE⊤

r Gr

∥∥2
F

and ⟨PrC,Cr⟩ ( i.e., Tr(C⊤P⊤
r Cr) ) are less than 1. Additionally, combined with

the orthogonality of E and Er, we have that the value of Tr
(
E⊤∑v

r=1 brErFr
)

is generally much larger than that
of a2r

∥∥XrGr − [PrC|Cr]DE⊤
r Gr

∥∥2
F

and that of Tr
(
C⊤P⊤

r Cr

)
. Therefore, we fine-tune λ in a wide range while

fine-tuning β in a relatively narrow range. Further, considering that Tr
(
E⊤∑v

r=1 brErFr
)

is upper-bounded by
√
vnk

and that the sample size n is largely greater than the view number v and the cluster number k, we search λ and β in
[10−2, 10−1, 100, 101, 102] and [10−2, 10−1, 100, 101, 102] · 1√

vnk
respectively.
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H.3. Implementation Details

Since PrC denotes the feature cluster, we normalize it column by column. During optimizing Pr and C, we do column
normalization on them respectively. Similarly, Cr denotes the feature cluster, and we also normalize it column by column.
Additionally, Er denotes the sample cluster, and thus we do row normalization on it. D denotes the association between
feature cluster and sample cluster, and we do distribution normalization on it.

To evaluate the clustering outcomes from various perspectives, we adopt three commonly-utilized metrics, purity(PUR),
accuracy(ACC), F-score(FSC).

I. Symbol Description
Table 7 summarizes the symbols used in this manuscript and corresponding meaning as well as the size.

Table 7. Symbol Description

Notation Description Size

Xr Data matrix on r-th view dr × n
Pr Guidance matrix on r-th view dr × k
C Perspective-shared matrix k × k
Cr Perspective-specific matrix dr × k

D
Association matrix between

feature clusters and sample clusters 2k × k

Er Feature clusters on r-th view n× k
Gr Index matrix on r-th view n× nr
E Common feature clusters n× k
Fr Space rotation matrix on r-th view k × k
a View weight vector v × 1
b Sample cluster weight vector v × 1
Dγ D1:k,: k × k
Dφ Dk+1:2k,: k × k
Φr Lagrange multiplier matrix nr × nr
Ψr Lagrange multiplier matrix k × k
Ωr Lagrange multiplier matrix k × k
Γr Lagrange multiplier matrix k × k
Hr Temporary matrix dr × nr
Jr Temporary matrix k × k
L Temporary matrix k × k
M Temporary matrix k × k

Âr Temporary matrix dr × k

B̂r Temporary matrix n× n

Ĉr Temporary matrix n× k

K̂r Temporary matrix n× k

L̂r Temporary matrix dr × 2k
dr Data dimension on r-th view -
d Data dimension sum -
v The number of views -
n The number of samples -
k The number of clusters -

nr
The number of samples

observed on view r
-

[·|·] Matrix concatenation -

(·)i,j
Element in the i-th row and
j-th column of matrix. -
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J. Hyper-parameter Sensitivity
In the paper, our model involves two hyper-parameters, λ and β. To investigate the model sensitivity about hyper-parameters,
we plot the performance changes with respect to different hyper-parameter values, as suggested in Fig. 3 where for the sake
of simplicity, we in figure omit the coefficient 1/

√
nvk. One can observe that under given β, the performance is relatively

stable with respect to λ while under given λ, the performance fluctuates within a tolerable range. Therefore, we can state
that the proposed model to a certain extent is parameter-robust.

(a) FLOEVEN (b) SYNTHREED (c) DEOLOG (d) YALTHREE

(e) BGFEA (f) AWTEN (g) HDIGTWO (h) YOUFOURV

Figure 3. Performance Changes under Different Hyper-parameter Values

K. Experimental Convergence
We have proven the convergence theoretically. Here, to confirm the convergence, we draw the objective value changes, as
presented in Fig. 4. One can observe that along with iterations, our loss value is gradually decreasing, which demonstrates
that our objective function is experimentally convergent.

L. More Ablations
L.1. The Ablation of Common Sample Clusters

In the manuscript, we utilize a common sample cluster matrix to formulate full spectral embedding. This strategy not only
facilitates view information communication during the procedure of learning but avoids the fusion between view-specific
sample clusters. To validate the effectiveness of this common sample cluster strategy, we organize relevant ablation. The
comparison results are reported in Table 8 where OCSC and WCSC represent the clustering results without/with common
sample clusters respectively. It can be observed that WCSC outperforms OCSC, illustrating that our common sample cluster
strategy is functional.
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Figure 4. Loss Changes along with Iterations

Table 8. Ablation for Common Sample Clusters

DATASET FLOEVEN SYNTHREED

A/B 0.2 0.5 0.8 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

OCSC 10.23 10.14 4.93 10.33 9.57 5.01 10.14 9.52 4.38 40.05 38.97 33.98 40.73 38.56 33.69 36.73 36.40 30.79
WCSC 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG YALTHREE

OCSC 29.06 20.82 16.62 30.29 21.87 17.79 28.75 22.85 18.51 22.19 20.98 6.75 19.31 19.42 5.59 18.59 18.97 5.19
WCSC 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA AWTEN

OCSC 18.76 19.24 19.32 20.44 21.88 19.70 20.45 20.21 19.46 18.54 11.21 9.91 18.53 11.02 9.60 18.53 10.10 9.33
WCSC 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO YOUFOURV

OCSC 9.57 9.65 9.79 8.79 10.73 9.01 10.45 9.97 9.36 13.53 8.39 8.86 14.26 9.36 8.61 13.22 9.12 8.41
WCSC 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

L.2. The Ablation of Space Rotation

We adopt a space rotation strategy to reorder sample clusters on each view so as to decrease the risk of misregistration.
To validate its effectiveness, we conduct ablation experiments, and the results are summarized in Table 9. OSR and WSR
represent the clustering results without/with our space rotation strategy respectively. As seen, after rotating, the clustering
performance is improved. This gives evidence that our rotation strategy is beneficial for performance enhancement.
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Table 9. Ablation for Space Rotation

DATASET FLOEVEN SYNTHREED

A/B 0.2 0.5 0.8 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

OSR 10.57 10.13 5.18 10.35 10.13 5.13 9.98 9.39 5.07 38.17 38.17 33.68 37.67 36.33 33.55 38.50 37.00 33.65
WSR 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG YALTHREE

OSR 30.62 21.51 17.96 30.34 21.89 18.16 30.23 22.01 18.07 22.26 21.05 5.79 20.49 18.97 5.59 20.72 19.51 6.39
WSR 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA AWTEN

OSR 21.46 21.26 19.68 21.74 21.66 19.88 21.70 21.42 19.80 19.05 11.09 10.02 19.05 11.03 9.97 19.05 11.19 10.16
WSR 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO YOUFOURV

OSR 10.27 10.19 9.22 10.34 10.17 9.42 10.60 10.27 9.42 14.27 9.01 8.75 14.21 9.27 9.27 14.25 9.24 9.27
WSR 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

L.3. The Ablation of View Weight

Orthogonal to previous techniques regarding views equally, in this manuscript we associate a variable for each view to
automatically balance the view contributions. To verify its effectiveness, we ablate the view weighting. The comparison
results are summarized in Table 10 where OVW and WVW represent the results without/with view weight respectively.
Apparently, WVW does better than OVW, illustrating that the view weighting is effective.

Table 10. Ablation for View Weight

DATASET FLOEVEN SYNTHREED

A/B 0.2 0.5 0.8 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

OVW 10.06 9.61 4.78 9.92 9.41 4.69 10.43 9.44 4.75 40.95 40.95 33.82 41.52 41.14 33.89 39.21 39.97 33.19
WVW 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG YALTHREE

OVW 30.12 20.84 17.32 30.39 21.74 17.62 31.81 22.99 17.92 22.06 20.61 7.92 19.89 19.13 5.25 19.67 18.74 6.00
WVW 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA AWTEN

OVW 20.34 20.34 18.25 20.27 20.54 18.37 20.58 20.34 18.36 19.29 11.24 10.09 19.28 10.85 10.04 19.23 11.05 10.04
WVW 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO YOUFOURV

OVW 10.78 10.54 9.13 10.86 10.77 9.22 10.88 10.78 9.24 13.65 9.56 9.16 14.17 9.50 9.14 14.03 9.45 9.15
WVW 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

L.4. The Ablation of Sample Cluster Weight

We also associate weights for the sample clusters on all views to automatically balance them. The ablation results are
presented in Table 11 where OSCW and WSCW represent the clustering results without/with the sample cluster weight
respectively. As seen, the sample cluster weights indeed facilitate the clustering performance improvement.

M. Comparison Results under Other Missing Ratios
In order to further exhibit the strengths, we conduct experiments under more missing ratios. Specially, we organize the
comparison under missing ratio being 0.3, 0.4, 0.6 and 0.7 respectively. Table 12, 13, 14 and 15 summarize relevant
clustering results. According to these tables, one can observe that under these missing ratios, our proposed model still can
provide competitive clustering results.
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Table 11. Ablation for Sample Cluster Weight

DATASET FLOEVEN SYNTHREED

A/B 0.2 0.5 0.8 0.2 0.5 0.8

PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

OSCW 10.68 10.25 5.52 10.64 9.94 5.52 10.85 10.17 5.49 40.92 40.57 33.68 40.97 41.13 33.63 39.72 39.79 33.16
WSCW 11.17 10.80 5.89 11.25 10.53 5.88 11.54 10.74 5.83 42.50 42.12 35.21 42.83 42.83 35.24 41.04 41.04 34.59

DEOLOG YALTHREE

OSCW 30.44 21.01 17.57 30.71 22.89 17.74 30.44 22.34 18.03 23.13 22.27 6.89 20.55 19.58 5.17 21.16 20.25 5.53
WSCW 31.84 22.32 18.45 31.84 23.74 18.41 31.28 24.25 19.56 24.94 23.55 7.89 21.73 20.61 6.30 21.55 20.70 6.70

BGFEA AWTEN

OSCW 20.98 20.94 18.88 21.38 21.72 19.43 21.18 20.98 19.01 19.52 11.42 10.39 19.52 11.25 10.37 19.52 11.25 10.35
WSCW 22.08 22.08 20.08 22.64 22.40 20.16 22.48 22.28 20.20 20.74 12.24 11.01 20.17 12.01 10.97 20.18 12.06 10.94

HDIGTWO YOUFOURV

OSCW 11.03 10.93 9.44 11.13 10.98 9.51 11.19 11.11 9.54 15.07 9.96 9.55 14.94 9.86 9.53 14.91 9.89 9.54
WSCW 11.73 11.51 10.03 11.75 11.60 10.11 11.79 11.70 10.22 15.99 10.91 10.48 15.95 10.85 10.47 15.95 10.80 10.47

Table 12. Clustering Comparison under Missing Ratio Being 0.3

DATASET FLOEVEN SYNTHREED DEOLOG YALTHREE

METRIC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

LRTL 10.58 10.67 8.18 38.36 39.36 32.75 27.42 20.55 16.42 20.09 20.76 7.11
TCIMC 11.31 10.21 8.26 38.74 37.72 31.43 31.74 18.43 15.48 20.63 17.65 8.31
AGCIM 9.41 8.46 8.36 33.67 33.67 28.33 31.82 21.26 17.67 21.88 18.45 7.33
LSIMV 9.06 10.13 5.32 36.43 38.83 33.27 31.74 17.88 15.88 18.47 15.73 7.23
GIMC 8.13 8.86 5.83 36.53 34.84 32.96 31.27 18.27 17.38 18.58 16.32 6.23
IMVCI 9.92 9.94 5.81 40.71 41.71 33.22 31.96 20.96 18.35 21.97 18.39 6.70
PIMVC 10.83 9.29 6.32 40.53 39.86 31.37 30.77 23.21 17.99 21.39 18.00 7.61
HCCGL 7.14 6.83 5.72 38.00 34.67 34.97 31.58 20.46 18.11 22.45 21.45 8.29
USETL 10.20 9.56 7.35 39.33 39.33 29.95 29.73 19.05 18.12 19.94 20.67 8.49
LBIMV 10.66 10.46 5.01 41.07 41.74 27.90 30.98 20.98 17.59 21.18 18.97 5.22
UIMC 10.88 10.44 6.24 36.17 39.56 33.27 33.02 19.43 15.82 20.82 18.61 5.36
OURS 11.63 10.90 5.96 42.40 42.40 34.92 32.12 22.91 18.48 22.91 21.61 6.64

BGFEA AWTEN HDIGTWO YOUFOURV

LRTL 17.57 20.16 19.02 16.79 10.18 7.88 10.25 10.63 9.07 - - -
TCIMC 18.37 20.83 17.72 16.84 11.33 10.84 10.73 10.24 8.63 - - -
AGCIM 19.43 20.16 15.89 18.33 10.37 10.57 11.67 10.77 8.72 - - -
LSIMV 17.27 19.36 19.62 20.77 11.12 10.14 11.57 9.12 8.23 - - -
GIMC 19.79 19.13 18.66 19.78 9.32 9.89 10.94 8.11 7.73 10.84 10.27 8.42
IMVCI 18.78 19.79 15.74 20.53 8.47 10.79 11.27 11.12 8.74 - - -
PIMVC 20.64 20.51 17.23 20.61 9.87 9.35 10.49 8.11 8.78 15.24 10.36 8.75
HCCGL 22.57 19.28 18.95 20.11 9.87 8.23 10.57 10.97 8.27 - - -
USETL 20.36 19.11 16.84 20.18 7.84 9.11 10.32 8.12 8.34 10.53 9.32 8.92
LBIMV 19.12 21.94 18.38 20.33 10.41 8.71 8.36 11.72 8.85 15.88 9.98 9.27
UIMC 19.87 18.27 18.46 18.69 11.37 9.36 9.26 10.43 9.17 - - -
OURS 22.16 21.88 20.06 20.85 12.14 11.02 11.81 11.57 10.07 16.02 10.82 10.48

N. Stability and Reliability
In order to demonstrate the stability and reliability of devised model, we record the standard deviations and present them in
Fig. 6 where D-1 ∼ D-8 are the alternative name of datasets in Table 1 correspondingly. According to this figure, we can
observe that even under various missing ratios’ scenarios, the value of standard deviation is fairly small relative to the mean
value. This provides evidence that our model is stable and the produced results are reliable.
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Table 13. Clustering Comparison under Missing Ratio Being 0.4

DATASET FLOEVEN SYNTHREED DEOLOG YALTHREE

METRIC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

LRTL 11.07 9.42 7.57 39.56 41.78 33.92 29.33 19.49 17.40 19.24 22.82 5.71
TCIMC 10.43 9.73 7.87 37.74 36.68 30.63 31.86 18.47 16.43 21.43 18.32 5.87
AGCIM 9.04 8.01 6.73 33.83 33.83 29.18 31.36 22.30 17.86 22.03 18.03 8.29
LSIMV 7.97 9.23 4.33 36.23 37.79 33.73 31.76 17.26 14.46 17.69 15.62 8.23
GIMC 7.84 7.73 6.74 36.74 32.57 33.26 31.26 18.32 16.47 19.47 16.57 6.73
IMVCI 10.27 9.62 5.65 41.68 39.68 34.72 30.56 21.56 18.38 19.52 20.64 7.31
PIMVC 10.71 9.38 5.12 42.17 37.17 32.87 30.88 21.77 18.22 17.79 14.79 6.11
HCCGL 7.06 6.91 5.36 40.18 37.33 32.41 30.53 20.97 17.31 19.61 20.12 7.37
USETL 9.57 8.97 6.88 38.04 37.48 29.01 29.63 19.51 17.89 20.85 19.85 7.04
LBIMV 10.96 9.04 5.47 40.51 40.53 30.24 30.18 21.18 18.51 21.33 19.32 5.52
UIMC 11.18 9.83 6.06 35.67 40.67 33.16 31.43 20.26 16.53 20.64 18.82 6.67
OURS 11.25 10.47 5.86 41.83 41.67 34.85 32.12 22.63 18.47 22.21 21.33 6.23

BGFEA AWTEN HDIGTWO YOUFOURV

LRTL 19.76 19.76 19.33 17.74 10.11 8.67 12.53 9.72 9.21 - - -
TCIMC 19.21 21.47 17.65 15.73 10.76 9.79 11.53 9.83 8.73 - - -
AGCIM 20.48 20.40 15.78 18.00 11.42 10.32 10.86 11.01 8.46 - - -
LSIMV 19.34 18.57 18.88 19.28 11.09 9.72 11.89 7.65 7.89 - - -
GIMC 17.87 18.86 20.23 20.97 10.25 10.35 11.73 8.93 8.17 11.72 9.32 8.74
IMVCI 22.03 19.68 15.33 20.56 9.20 10.05 11.83 10.98 9.03 - - -
PIMVC 22.98 20.66 16.72 20.37 10.02 9.08 10.37 9.23 9.23 15.88 10.47 9.42
HCCGL 20.52 18.36 18.57 20.17 10.21 8.14 11.53 10.26 9.74 - - -
USETL 20.61 18.12 17.21 20.13 7.39 8.97 9.43 9.21 7.87 11.32 9.74 8.77
LBIMV 19.16 21.43 17.74 20.09 9.45 8.83 8.70 10.44 8.90 15.42 10.32 9.24
UIMC 22.37 19.21 18.21 20.14 11.63 9.47 9.96 10.78 8.63 - - -
OURS 22.28 22.16 20.11 20.58 12.06 10.98 11.94 11.61 10.09 16.00 10.87 10.48
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(a) Learned View Weights

D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8
0

0.2

0.4

0.6

0.8

1

(b) Learned Sample Cluster Weights

Figure 5. Visualization of View Weights and Sample Cluster Weights

O. Weight Visualization
We associate views and sample clusters with learnable weight vectors respectively to adaptively measure their contributions.
To validate that it indeed learns different weights for views and sample clusters respectively, we visualize these weights,
as illustrated in Fig. 5. D-1 ∼ D-8 are the alternative name of datasets in Table 1. It is easy to see that on each dataset,
the view weights learned are different and the sample cluster weights learned are also different, which indicates that our
optimization procedure is functional. Additionally, in conjunction with Table 10 and 11, we have that the weight strategy
brings performance increasement. Therefore, we can state that the devised weight strategy works well with incomplete
multi-view clustering.
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Table 14. Clustering Comparison under Missing Ratio Being 0.6

DATASET FLOEVEN SYNTHREED DEOLOG YALTHREE

METRIC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

LRTL 11.05 10.47 7.34 37.83 40.83 30.68 31.42 20.70 16.26 18.06 19.82 5.98
TCIMC 10.56 10.38 6.68 36.89 35.43 30.55 31.27 20.78 16.47 20.36 18.36 8.10
AGCIM 8.97 8.24 6.95 33.67 33.67 29.41 32.91 23.07 17.55 19.98 17.03 6.22
LSIMV 8.24 8.58 7.82 35.86 35.86 34.55 32.58 17.56 15.37 17.49 15.74 6.37
GIMC 8.37 8.47 7.32 34.62 32.97 35.37 31.94 17.67 16.58 18.85 17.46 6.73
IMVCI 11.16 9.68 5.84 41.03 37.18 30.47 31.49 23.49 17.87 20.21 19.33 7.23
PIMVC 11.13 9.28 8.33 36.14 35.18 31.47 30.18 21.07 18.31 16.70 14.27 8.01
HCCGL 7.28 6.99 5.36 38.17 38.17 31.66 30.04 21.76 17.91 18.88 21.52 6.82
USETL 9.59 8.92 7.81 37.61 37.61 28.64 27.42 21.28 17.33 20.71 19.06 6.72
LBIMV 9.81 10.93 5.57 40.50 41.58 29.46 30.77 22.77 17.57 20.12 19.09 6.25
UIMC 10.81 9.29 5.93 34.67 38.33 33.09 29.94 19.89 16.53 20.64 18.42 6.86
OURS 11.54 10.74 5.98 42.50 41.50 35.08 31.28 24.02 18.53 21.33 20.36 5.87

BGFEA AWTEN HDIGTWO YOUFOURV

LRTL 19.37 21.97 21.22 17.89 10.23 8.33 10.98 10.27 9.12 - - -
TCIMC 18.67 20.42 18.92 16.83 10.31 10.32 10.63 10.42 8.45 - - -
AGCIM 20.32 20.20 16.48 19.84 9.53 10.11 11.36 9.87 9.46 - - -
LSIMV 19.35 17.92 17.97 16.47 10.64 10.33 11.32 8.58 8.27 - - -
GIMC 19.13 17.85 18.16 19.32 9.26 9.38 10.63 8.47 7.78 10.74 9.52 8.53
IMVCI 22.68 22.68 16.83 20.58 8.92 9.69 10.97 12.43 9.88 - - -
PIMVC 20.60 20.54 16.79 20.51 10.28 9.67 10.24 8.73 8.66 15.48 9.32 9.62
HCCGL 20.56 18.32 18.77 20.23 10.83 8.44 9.43 11.24 7.43 - - -
USETL 19.06 18.01 17.33 20.21 8.59 10.23 8.37 8.89 8.43 9.87 9.11 9.27
LBIMV 21.96 19.76 15.35 20.14 9.05 7.51 9.37 9.64 9.00 14.32 9.48 9.22
UIMC 21.37 18.27 18.45 19.67 10.16 8.96 10.27 9.75 8.49 - - -
OURS 22.53 22.24 20.16 20.79 12.07 10.96 11.80 11.69 10.15 15.93 10.81 10.47

Table 15. Clustering Comparison under Missing Ratio Being 0.7

DATASET FLOEVEN SYNTHREED DEOLOG YALTHREE

METRIC PUR ACC FSC PUR ACC FSC PUR ACC FSC PUR ACC FSC

LRTL 11.03 10.42 7.40 35.43 40.43 32.43 31.06 21.25 17.24 19.12 20.48 6.14
TCIMC 11.07 10.43 7.12 37.38 36.62 30.32 30.88 18.56 15.76 20.17 18.12 6.75
AGCIM 8.90 8.31 6.96 34.17 34.00 28.80 30.11 23.26 18.12 20.73 17.12 6.73
LSIMV 8.12 9.23 7.32 34.67 34.72 32.36 31.17 17.47 15.35 17.74 15.63 7.22
GIMC 7.73 8.23 6.43 34.85 31.87 33.43 32.87 18.32 16.78 19.74 15.78 7.21
IMVCI 9.70 9.95 5.66 39.58 38.74 31.59 30.24 23.24 17.38 20.16 20.79 8.62
PIMVC 11.27 8.36 7.48 34.33 32.50 31.39 30.19 21.08 18.13 16.52 13.97 7.11
HCCGL 7.13 6.78 5.76 36.00 36.00 32.97 29.57 22.17 18.38 20.67 20.27 7.14
USETL 9.41 8.85 7.33 36.51 36.51 28.13 30.41 20.38 18.88 19.88 20.06 7.89
LBIMV 9.12 10.06 5.81 39.17 36.17 27.11 30.57 20.30 17.68 21.33 18.52 5.35
UIMC 10.74 10.37 5.98 42.67 40.67 30.92 31.18 22.47 16.73 20.61 17.20 6.32
OURS 11.81 11.01 5.90 41.83 41.50 35.00 31.28 24.02 18.68 20.91 19.82 5.83

BGFEA AWTEN HDIGTWO YOUFOURV

LRTL 18.68 20.84 18.25 17.72 10.81 8.29 10.26 11.03 9.23 - - -
TCIMC 18.73 19.83 18.27 15.68 9.57 9.78 10.26 10.37 7.84 - - -
AGCIM 20.32 20.28 14.45 14.11 9.84 11.08 9.87 10.41 8.50 - - -
LSIMV 19.16 17.88 18.26 17.86 11.29 9.47 10.47 8.37 7.94 - - -
GIMC 19.72 19.53 18.13 18.37 8.97 9.63 11.33 8.86 7.43 11.28 9.32 8.43
IMVCI 18.73 20.73 17.47 20.05 8.11 10.22 11.25 11.32 8.28 - - -
PIMVC 21.74 20.74 16.38 20.36 10.11 9.25 9.39 9.51 8.47 16.36 10.89 8.94
HCCGL 21.35 18.36 18.27 20.21 10.14 7.87 9.15 9.32 7.83 - - -
USETL 19.24 19.09 15.83 20.14 8.74 9.46 8.64 8.47 8.47 9.49 8.32 9.56
LBIMV 20.84 20.47 18.36 20.07 8.34 8.61 8.11 10.49 9.03 15.23 9.74 8.72
UIMC 20.72 17.75 18.33 18.47 11.32 9.36 9.67 9.06 8.01 - - -
OURS 22.60 22.40 20.19 20.32 11.92 10.95 11.91 11.80 10.17 15.98 10.88 10.48
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(a) Standard Deviation under Missing Ratio Being 0.3
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(b) Standard Deviation under Missing Ratio Being 0.4
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(c) Standard Deviation under Missing Ratio Being 0.5
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(d) Standard Deviation under Missing Ratio Being 0.6
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(e) Standard Deviation under Missing Ratio Being 0.7
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(f) Standard Deviation under Missing Ratio Being 0.8

Figure 6. Errorbar of Standard Deviation and Mean Value
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