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Abstract

We introduce structural causal bottleneck models
(SCBMs), a novel class of structural causal mod-
els. At the core of SCBMs lies the assumption that
causal effects between high-dimensional variables
only depend on low-dimensional summary statis-
tics, or bottlenecks, of the causes. SCBMs provide
a flexible framework for task-specific dimension
reduction while being estimable via standard, sim-
ple learning algorithms in practice. In addition to
an analysis of identifiability in SCBMs, we provide
experimental results evidencing that we can esti-
mate bottlenecks in practice. We also demonstrate
the benefit of bottlenecks for effect estimation in
low-sample transfer learning settings.

1 INTRODUCTION

A fundamental aim of scientific inquiry is to uncover and
quantify causal relationships among complex phenomena,
which often span large spaces, long times, or many individu-
als. For example, neuroscientists study how neuron clusters
respond to tasks [Aoi and Pillow, 2018], while climate sci-
entists examine interactions like the El Nifio Southern Oscil-
lation, affecting global weather patterns [Timmermann et al.,
2018]. These phenomena are modeled as high-dimensional
random vectors that are consequently simplified, abstracted
or transformed.

A popular type of model to formalize causal interactions
of random variables is the structural causal model (SCM)
[Pearl, 2009]. An SCM consists of structural equations
X, = mi(Xj,,...,Xj,,n;), one for each quantity of in-
terest, that describe how each variable is brought about by
its causal parents X ,...,X;, and an exogeneous noise
term 7); through the mechanism function m;. Although in
most applications of SCMs the variables X; and noise-terms
7, are assumed to be one-dimensional, the SCM setup does

not necessitate this assumption. However, modeling interac-
tions of high-dimensional vectors X; may quickly become
infeasible in practice without additional assumptions. Even
if the mechanism functions m; are assumed linear additive,
ie. X := 30 paii) A5 X + m;, with matrices A, the as-
sociated regression tasks require large sample sizes and/or a
sufficient degree of regularization to yield reliable outcomes
in high dimensions. When estimating causal effects in an
SCM, the curse of dimensionality is particularly daunting.
The estimation may not only require as input the treatment
and outcome variables of but also confounding covariates
that need be conditioned on to remove spurious correlations
and that increase the dimension of the input space further.

In this work, we investigate SCMs of high-dimensional
random vectors in which the causal variables only depend
on their parents through low-dimensional sufficient statistics
or bottlenecks. That is to say that we assume that for any
X, and any of its parents X; there exists a deterministic
bottleneck function b’ that maps X; to a lower-dimensional
variable Z’ = b%(X;) such that

X,L' = fz(zzlyazzkvnz) (1)

depends on its parents only through their bottlenecks. For
linear mechanisms, this requirement translates to the as-
sumption that the matrices A; are of low rank compared to
the dimensions of X; and X;.

The bottleneck assumption seems reasonable when mod-
eling causal interactions between high-dimensional phe-
nomena, in which a causal child does not depend on all
information encoded in its parents but on emergent prop-
erties— captured for instance by a weighted average or
specific system states. To model rainfall patterns over West
Africa it may be sufficient to include information on whether
El Nifio Southern Oscillation (ENSO) is in an EI Nifio or
a La Nifia phase rather than modeling the full temperature
distribution over the Pacific Ocean. However, reducing di-
mensions before estimating causal effects can discard or
misidentify important information [Wahl et al., 2024, Ni-
nad et al., 2025]. Further, different children may rely on
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different aspects of a parent variable. East Asian and South
American rainfall patterns may respond to different ENSO
region anomalies, calling for farget-dependent dimension
reduction. While sufficient dimension reduction has a long
history [Izenman, 1975], most approaches focus on linear
models with single treatment-outcome pairs [Globerson and
Tishby, 2003, Li, 2007, 2018]. In addition, with the notable
exception of [Aoi and Pillow, 2018], the outcome vector
is typically one-dimensional and only the input may be of
high-dimensionality.

We formally introduce structural causal bottleneck models
(SCBMs), a class of graphical causal models that address the
aforementioned shortcomings and provide a flexible frame-
work for targeted dimension reduction for causal effects.
We discuss special cases of SCBMs that are not covered in
the standard causal inference literature, provide an identifia-
bility result showing the degree to which we can learn the
bottleneck variables from data, and establish a connection
between SCBMs and the Information Bottleneck method
of [Tishby et al., 2000]. Finally, we provide experimental
evidence to support our theoretical identifiability results,
and highlight the benefits of SCBMs in a transfer learning
setting where joint observations of all variables are rare.

2 PRELIMINARIES

Throughout this work, we fix the following notation. G =
(V, &) will refer to a directed acyclic graph (DAG) with node
set V and edge set £. The set of parents of a node 7 € V will
be denoted by pa(i), the set of its children by ch(s). The set
Vez 1s the set of exogeneous (i.e. parentless) nodes, while
Vend = V\ Ve is the set of exogeneous nodes. We reserve
the letter d to refer to dimensions of vector spaces, e.g. R?.
We will use the convention that d = 0 refers to discrete
spaces. Unless specified otherwise, we use the word space
in the sense of measurable space, i.e. a set endowed with a
o-algebra. All maps between such spaces are assumed to be
measurable.

We recall that a structural causal model (SCM) is a tuple
A =(G,X,H,n, M, X) consisting of

* aDAG G = (V,€), a family of node spaces X =
(X;)iev, and a family of noise spaces H = (H;)icy.

¢ a family of mutually independent noise terms 1 =
(n,)iev, where 1, takes values in H;.

* a family M = (m;);ev,,, of mechanism functions
mj . <Hi€pa(j) Xz) X Hj — Xj;

¢ afamily of random vectors X =
the structural assignments

(X;)iey that solves

j € Veza
j € Vend~

Xj =1y,
X; = m; ((Xi)icpa(j): 1) -

3 DEFINITION OF STRUCTURAL
CAUSAL BOTTLENECK MODELS

We first define structural causal bottleneck models in full
generality. Afterwards, we will add additional assumptions
that narrow down the model class.

Definition 1. A structural causal bottleneck model (SCBM)
isatuple € = (G, X, Z,H,n, B, F,X) consisting of

* aDAG G = (V,€), a family of node spaces X =
(X;)icy, and a family of noise spaces H = (H;)icy.

* a family of mutually independent noise vectors n =
(n,)icy. We assume that each 7, takes values in #,.

(Z)i€Vena:
* afamily B = (b;),ev,,,, of surjective bottleneck func-
tions by : [[;cpnii) X = Z;-

(fi)jeVena of effect functions f; : Z; x

* a family of bottleneck spaces Z =

* afamily F =
Hj — Xj.

¢ a family of random vectors X = (X;);cy with joint
distribution Px that solves the structural assignments

Xj = njv jeveam
X; = f; (0 (Xi)iepa(z) + 1) - J € Vena-
Any SCBM ¢ = (G, X,Z,H,n,B,F,X) straightfor-

wardly induces an SCM (¢) = (G,X,n, M,X) in
the classical sense by defining the mechanism functions

as my; ((X )zEpa(] 777]) - f_} ( J (( )iEpa(j)) 777]')- We
call this SCM the induced SCM.

Definition 2. We call two SCBMs structurally equivalent
if their induced SCMs coincide.

Since all interventional distributions and the observational
distribution of X are fully determined by the induced SCM,
structural equivalent SCBMs share the same interventional
distributions (interventional equivalence) and observational
distribution (observational equivalence).

We now introduce additional assumptions that reduce the
degrees of freedom of SBMs to render them more practical.

In Definition 1, the parents of any endogeneous node j are
allowed to mix arbitrarily in the bottleneck space Z;. A
reasonable assumption to impose on such models is that the
bottleneck can be subdivided into separate bottlenecks for
each parent.

Assumption 1. (a) Each bottleneck is factored in the
sense that Z; and b; can be decomposed as Z; =

HiEpa(j) Z(iJ) and

H X — H Z(ZJ)

i€pa(j) i€pa(j)

bj((%i)iepa(i)) = (big)(Xi))iepas)
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)

Figure 1: Examples of (a) factored bottleneck and effect
functions and (b) intrinsic bottlenecks.

(a) (b)

with dim Z; ;) < d;. In other words, we assume that
there is a separate bottleneck space for every parent of
the endogeneous node j.

(b) Each A is a vector space, and coincides with the noise
space H; = Xj;. Each effect function f; is factored in
the sense that there is a family of maps f; ; : Z(; ;) —
AX; such that

Xji= Y fig(big(Xe)) +my.

i€pa(j)

We will call SCBMs for which both (a) and (b) hold factored
SCBMs.

We illustrate Assumption 1 (a) and (b) in Figure 1(a).

Intrinsic Structural Bottleneck Models Factored bottle-
neck models are still very flexible and allow for any variable
X, to affect its children Xy, k € ch(¢) through different
bottleneck space and different bottleneck functions. In other
words, the bottleneck variables Z; 1y = b(; x)(X;) and
Z; 1y = b1y (X;) do not need to be related and can be of
different dimensions for different children k # &’. On the
other hand, we might often believe that there exists an un-
derlying low-dimensional emergent quantity that describes
the high-dimensional X; and its effect on all of its targets.
This can be captured by the following definition.

Definition 3 (Intrinsic bottlenecks). A node ¢ € V in a fac-
tored SCBM that has children admits an intrinsic bottleneck
if Z; ; = Z" and b(;,;) = b; do not depend on the child j.
The effect function f; ; is still allowed to depend on j.

We illustrate intrinsic bottlenecks in Figure 1(b).

Equivalence Relations Induced by Bottlenecks. If (i, j)
is an edge in the graph G underlying a factored SCBM €,
then the function b, ;) : X; — Z(; j) can be considered
a quotient map that induces an equivalence relation on &
by declaring two states x,x’ € X; bottleneck-equivalent
relative to child j if bi; jy(x) = b(; ;(x’). Thus, two states
of the random vector X; are bottleneck-equivalent relative

to 7 if both lead to the same state of the bottleneck for child
J- As a consequence, two bottleneck-equivalent states (w.r.t.
J) are causally equivalent w.r.t. the random vector X in the
sense of Chalupka et al. [2017], i.e. they satisfy

P(Xj | dO(Xz = X)) = P(X] ‘ dO(X1 = X/)).

If bottlenecks are assumed intrinsic, then bottleneck-
equivalence is no longer relative to a specific child, and
bottleneck-equivalent states x,x’ € X are causally equiva-
lent for any descendant of i, i.e.

P(Xy | do(X; =x)) = P(X; | do(X; =x')).
for every descendant k of 7.

Factorization of the Observational Distribution. In any
SCM, the distribution over the observed node vectors P =
Px factorizes according to the graph G as

P(x) = [ P(xilxpac)-

%

In SCBMs, since X; only depends on its parents through
the bottleneck variable Z,,;), this can be rewritten as

P(x) = [ P(xilzpaci))-

%

In addition, if the SCBM is factored, we can further decom-
pose this expression as

P(x) = [ [ P(il(z(r.0))kepagi))-
i€V

The SCM over the Bottleneck Variables. In a factored
SCBM, the bottleneck variables Z(i7 ) can be expressed as

> Fuw(Z,y) +m,
kepa(i)

Z(; 5) = bGi )

This expression no longer contains any X-vectors but de-
scribes Z; ;) fully in terms of other bottleneck nodes and
noise terms. In contrast to the model over the X-vectors the
noise terms in the equations for the Z; ;) are no longer guar-
anteed to be independent. In fact Z(; ;) and Z; 1), k # j
share the same noise term 7;.!

'This also does not imply that the shared noise terms neces-
sarily induce dependence: the noise term may be two-dimensional
and b; ;) may only depend on the first component while b(; x)
depends on the second.



4 SPECIAL CASES AND EXAMPLES

The class of SCBMs is large, hence we will present several
example models here that are typically not covered in the
standard causal inference literature where the focus is on
one-dimensional node spaces.

Modeling Interactions Between Random Fields. The
quantity of interest in geo-spatial modelling are often rep-
resented by random fields over some spatial area D. This
spatial area can be a discrete grid or a continuous domain.
The random field is a random function over D which in the
discrete case can be identified with a vector of dimension
N where N is the number of grid points. The spatial struc-
ture in such a model is reflected in the correlation structure
of the field. For instance, if D is a discrete grid, a typical
assumption is the spatial Markov property, which states
that every node X;, ¢ € D is independent of non-adjacent
nodes given its neighbors. In continuous random fields, a
standard assumption would be that the correlation between
two nodes X (y), X(2), y, 2z € D decreases when the spa-
tial distance of y and z increases. An SCBM could for
example consist of three random fields of noises 1, 175, 173
over bounded spatial domains D;, Dy, D3 where fields af-
fect each other only through a weighted spatial means, e.g.

Xy =1
Xo:=A- / a(y)Xi(y) dy +ny
Dy

Xz:=B- [ By)Xi(y)dy+C-

Dy D2

7(2)X2(2) dz +ms,

where «a, 3, are normalized to one, e.g. fDl a(y) dy = 1.
In this case, the spaces are X; are function spaces over the re-
spective domains, e.g. X; = L?(D;), the bottleneck spaces
are one dimensional Z; = R, the bottleneck functions are
given by the weighted integrals. The effect functions are
simple embeddings by multiplication with a constant, e.g.
F(172) : 2(172) — LQ(DQ) 2z Az ]].D2, where ]].D2
denotes the constant function on Ds.

Temporal Processes in the Frequency Domain. SCBMs
can also model interactions of temporal processes in the
frequency domain. For instance, X; and X» € L may be
continuous stochastic processes viewed as random variables
with values in L?(R>0). Their child process Y may be
affected by X, Xy within at most K frequency compo-
nents with frequencies wy, . .. .wg, see [Schur and Peters,
2024] for an example of this. Thus, the bottleneck maps
bi : L?>(R>0) — RX map the processes to the K Fourier
coefficients at wy, . . . .wg . And the effect function expresses
Yas Yy =5,  (bi(x1) + Aaba(xg))e ™k +
where 77 is a noise process, for instance a Brownian motion.

S IDENTIFIABILITY

The first straightforward observation is that it is always
possible to create a new, structurally equivalent SCBM from
an existing one by inserting invertible mappings on the
bottleneck spaces.

Lemma 1. Ler € = (G, X, Z,n,B,F,X) be an SBM.
Assume that there are invertible maps ; : Z; — Z]‘
for every endogeneous node j € Venq to some other
spaces Z2' = (Z])jev,,,, and consider the functions
b = jobjand fi(-, -) = fj(¥; (), -). Then € =
(G, X, 2" \n, B, F',X) with F' = (f}); and B" = (b;); is

structurally equivalent to €.

Proof. The follows directly from the fact that
the structural equations in both models coincide:

m; (Xoiepatysn;) = f7 (0 (Xi)iepae) 1)
= £i(05 (W5 (b5 (Xi)iepai))) - )s715)
= f; (b5 ((Xs)iepat)) »n;)
X.

=m; ((Xi)iepag)» N;) -

Lemma 2. Let € = (G X, Z n,B,F,X) and € =
(G,X,2",m,B,F',X) be two SBMs with additive noises,
ie. [i(Zpa(),Mj) = [i(Zpa(s)) + nj, and similarly for f]’
Assume that the functions fj 12— A, f]’ : Z]‘ — X are
almost surely injective. If € and €' are structurally equiva-
lent, there is an invertible function 1; : Z; — Z' such that

V' =voband f; = fjoy~h

Proof. Since the models are structurally equivalent and the
noise terms are the same in both models, it follows directly
that fjob; = fjob’;, Px-almost surely. In particular the maps
fi f]’, have the same range, so that the map v; = f]’._1 o Fj
is well-defined and has the desired properties.

O

Injectivity of the effect functions is a natural minimality
assumption that together with the surjectivity imposes our
bottlenecks to be as small as possible without information
loss. In the linear case, this guarantees that the rank of the
linear map f; o b; is rank(f; o b;) = dim Z; and not lower.
In other words, we can always reparametrize the bottleneck
space in a different basis if we adapt the bottleneck and
effect functions accordingly.

6 SCBMS AS INFORMATION
BOTTLENECKS

Consider two high-dimensional multivariate random vari-
ables X, Y. The idea of the information bottleneck frame-
work of Tishby et al. [2000] is to find a minimal sufficient



statistic for T = g(X) that captures as much information
about the target variable Y as possible. This is implemented
through the minimal compression optimization objective

min I(X,T).
T : I(X,Y|T)=0
The independence constraint 1(X,Y|T) = 0 is equivalent
to I(X,Y) = I(T,Y). Note also that the data processing
inequality enforces

I(9(X),Y) < I(X,Y)

for any abstraction function g, an information bottleneck
is thus nothing but an abstraction of X that maximizes
1(9(X),Y). This property is used to incorporate the inde-
pendence constraint as a soft constraint in the joint objective
with regularization parameter § > 0. Consider now an
intrinsic SCBM over variables X; with bottleneck variables
Z; = b;(X,;) for every non-sink node i. i.e.

Our goal is to produce an optimization objective and con-
straints to learn the bottleneck variables Z;. The minimal
compression requirement now means that Z, contains the
minimal necessary information about X once X’s parents
are known, i.e. Z; € argmin I(X;, Z;|Z,(;)) for all i.

Z,) +1n;

The bottleneck Z; is intended to be maximally informative
about the children of X,; provided that all backdoor paths
to these children are closed which can be achieved by con-
ditioning on the parental bottlenecks Z,(;y = {Z, k €
pa(i)}. Thus, the conditional independence constraint is

I(Xen(i), XilZi; Zpagi)) = 0.

for non-sink nodes ¢. By the chain rule for conditional mu-
tual information, this is equivalent to

Thus, writing Z = (Z;);cy,,,, we want to solve the family
of optimization objectives

I(Xivzi|zpa(i)), ) S Vns~

min
Z : I(Xen(i)»XilZiZpa(iy)=0

These objectives are linked by the fact that the i-th objective
involves not only the bottleneck Z; but also the bottlenecks
of the parent variables which may be part of other objectives
as well. Instead of solving for Z globally, it is also possible
to consider these objectives sequentially along a causal order.
To formalize this, define the causal grading V = | |, Vs
where Vy = V., and i € V, for s > 0 if and only if

i & Vg,q < sand pa(i) C |, Vy. We then fix a causal
order (i1, ...,1,) respecting the causal grading and solve
objectives

n%in (I(X“Z Zpagiy) — Bil (Xen(i) Zil Zipagi ))
sequentially along this order. For a full paper version of this
workshop submission, we plan to investigate algorithms that

solve the optimization problem, for instance those outlined
in [Hassanpour et al., 2017].

7 ESTIMATING SCBMS IN PRACTICE

General Estimation Procedure. As per Assumption 1,
we consider the case where there is a separate bottleneck
for each parent of an endogenous node. Graphically, this
means there is a bottleneck space for each edge in a model’s
graph. Since each edge between variables X; and X; can be
decomposed into a bottleneck function b;, that maps to the
corresponding bottleneck space Z; ;) and an effect function
f; that maps from the bottleneck space to X, the targets
of the estimation procedure are the bottleneck function b;
and the effect function f;. We recover the joint map m; :=
fjob; : & x H; — AXj by fitting an estimator from X;
to X ;. The conditioning sets required for this estimation
procedure are analogous to standard causal effect. As our
identifiability results presented in Section 5 tell us, from the
estimated composed map 7i2; we are able to recover both b;
and f; up to an invertible map v;, i.e., b = 1); o b; and
f‘7 = f;o0 w . How b and fj are recovered from 1 is
described in detall below

Conditioning Sets. The procedure for estimating the bot-
tleneck space corresponding to the edge X; — Xj is
analogous to estimating the direct effect of X; on Xj.
As such, we can use any conditioning set for this estima-
tion that is valid for effect estimation. Given the source
node X; and target node X, a valid conditioning set is
{Xpag) Xpa(j) }- Since bottleneck variables are determinis-
tic transforms of their parent nodes, we can equivalently
use the set of (lower dimensional) bottleneck variables

{(Z (1)) kepati)s (Zr,5))eepaj) } for conditioning.

Linear vs. Nonlinear Estimators. Let X; € R% X; €
R% and Z ;) € R4, Fitting an estimator between X
and X; results in a map 772; : R% +— R% from which we
must extract the estimates of the bottleneck function l;j :
R% +— R%» and the effect function f; : R4 ) — R%.

In the linear case, fitting an estimator returns a weight matrix
M e R% %4 which by the assumption of our data gener-
ating process has rank d; j) << d;, d;. Extractlng b and
f] amounts to finding a matrix factorization M = B; FJ,
where B] € R%*d¢.5) and Fj € R0 %45 We recover B]

by selecting d; ;) linearly independent columns from M
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Figure 2: Results of the identifiability experiments across various settings. We report the mean R? along with its standard
deviation shown as error bars. Top: The results for multiple varying parameter settings for linear SCBMs. Bottom: The
results for the same parameter settings for nonlinear SCBMs. R? scores across models and settings of close to one indicate
that we successfully learn the bottleneck variables to to a bijection. See section 8.1 for a detailed discussion of the results.

and f‘j by computing ﬁ‘j = B;FM, where ()T denotes the
Moore-Penrose inverse [Moore, 1920, Bjerhammar, 1951,
Penrose, 1955]. In the case of a nonlinear estimator we go
about this factorization by means of the chosen network ar-
chitecture. We employ an encoder-decoder structure where
we train an encoder network by, parametrized by weights
0, to map from the source node X; to the bottleneck Z(i, 7

and a decoder network f¢, parametrized by weights ¢, to
map from the bottleneck to the target node X ;.

8 EXPERIMENTS

We present experiments for the estimation of SCBMs in
practice, as well as their merit for transfer learning problems.

8.1 IDENTIFIABILITY

Setup. We generate data by first randomly sampling an
SCBM ¢ and then drawing n samples from the joint dis-
tribution induced by €. To sample an SCBM, we set the
number of vertices V, the internal dimension of the nodes
dx and the dimension of the bottleneck spaces dz. With
these fixed parameters, first the graph G is sampled from
an Erdés—Rényi model [Erdds and Rényi, 1959] with edge
probability p = 0.7. Then, for each node X; we sample
the distribution of its respective noise term from a Markov
Random Field whose joint distribution is a Gaussian and
internal dynamics are described by the Langevin diffusion
[Lauritzen and Richardson, 2002] with dimension dx . For
each edge in G, we randomly sample both a bottleneck func-
tion b;, as well as an effect function f;. For linear models,
we sample b; by sampling a random matrix B € [0, 1]9x <4z
and f; by sampling a random matrix F € [0, 1]42*9x _ both
with rank = dz. For nonlinear models, b; and f; are im-
plemented by randomly initialized, 4-layer multilayer per-

ceptrons (MLPs). Unless specified otherwise, by default
we use the parameters n = 30000, |V| = 10, dx = 5 and
dz = 2. We conduct experiments where we vary one of
these parameters while keeping all others fixed.

Since our notion of identifiability amounts to estimating the
ground truth bottlenecks up to a bijection (cf. Section 5),
we fit an estimator between each ground truth Z; ;) and its

estimate Z(i’ ) in both directions and use the average of the
R? of both fits as our metric for successful recovery of the
ground truth bottleneck variable. The final score we report is
the mean of this metric across all nodes. Fitting an estimator
in both directions is required as we wish to test equivalence
up to a bijection; a surjective map between Z; ;) and Z(i, )
would achieve a perfect score in one direction, but not in
the other. For linear models, we fit a ordinary least squares
estimator in each direction and for the nonlinear case we fit
an MLP with six hidden layers and linear last layer.

Results. In linear SCBMs, we recover bottleneck vari-
ables with high accuracy across all settings. Performance
improves quickly with sample size, saturating around n =
10000, and remains strong even as the number of nodes
increases, suggesting minimal error propagation. As node
dimension dx increases, R? scores slightly drop due to
greater compression demands. When varying bottleneck
dimension dz (with dx = 100), performance stays high
and converges to perfect as dz approaches dx, which is
expected due to reduced compression.

Compared to the linear setting, the scores for estimating bot-
tlenecks in nonlinear SCBMs are slightly lower, although
not beyond what is to expected from a harder estimation
problem. When increasing the number of nodes |V|, perfor-
mance tends to decrease, indicating larger error propagation
effects than for linear models. However, performance sta-
bilizes and error propagation does not lead to catastrophic



Figure 3: Graph of the SCBM used for the transfer learning
experiments. We assume that samples from the environment
e1, where all variables are jointly observed, are relatively
scarce compared to the number of samples of environment
es, where we only jointly observe X; and X3.

failure for larger models.” Larger internal node dimension
dx tends to diminish performance, but overall our method
still successfully manages to estimate the bottlenecks. For
the experiment where we vary the bottleneck dimension
dz, we again set the internal node dimension to dx = 100.
There is a slight dip in performance as the bottleneck dimen-
sion approaches the internal node dimension. This could
however also be an artifact of the metric in the nonlinear
case, for which fitting a neural network is required, which
for fixed network size we can expect to perform worse for
large source and target spaces.

8.2 TRANSFER LEARNING

Setup. Consider a three variable SCBM with the associ-
ated graph G depicted in Figure 3. Our query of interest is
the effect of X; on X5, which is confounded by X 3. Further,
we assume that we have access to few samples of the joint
distribution of {X;, X9, X3}, while having orders of mag-
nitude more samples of the joint distribution of {X;, X3}.
This problem is sometimes referred to as the causal marginal
problem [Gresele et al., 2022], where one has samples from
different environments, where not all variables are included
in all environments. This setting can be motivated from
ecology, where X describes rainfall in some area, X5 the
growth of vegetation in that area and X3 describes the cloud
coverage. Measurements of X; and X3 may come from a
local measurement station that can collect samples at a high
frequency, while measurements of all three variables jointly,
i.e. including the vegetation growth, are collected from a
satellite that crosses the area of interest at a much lower fre-
quency. Estimating the effect of the edge X; — X requires
conditioning on the confounder X3. Given the high dimen-

?Experiments for || = 100 exceeded our available compute,
as graphs of this size typically have ~ 3500 edges, for all of
which a neural network must be trained to estimate the bottleneck
variables. In practice, one would rarely estimate all bottlenecks of
such a large graph, but only those required for a specific query.
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Figure 4: Mean absolute error (MAE) and 95% confidence
interval of estimating the effect X; — X, using differ-
ent conditioning variables. For both linear and nonlinear
SCBMs, using the bottleneck variable is beneficial for small
samples sizes.

sionality of the nodes, paired with the small sample size
available of the joint distribution, this estimation problem is
likely ill-conditioned.

We study if we can leverage the abundant data from the
environment that contains joint observations of {X;, X3}
to improve the effect estimation in the low sample regime.
Specifically, we will use the samples of the joint distribu-
tion of {X, X3} to estimate the bottleneck variable 2(3’1),
which can be used equivalently used for conditioning as
X3, since it is a deterministic transformation of X3. Since
we assume that bottleneck variables are lower dimensional
than observed variables, we expect that using bottlenecks
as conditioning variables is particularly beneficial in set-
tings where the number of jointly observed samples of
{X1,Xs5, X3} is low, but observations of {X;,X3} are
abundant. In the joint sample, the low dimensional bottle-
necks lead to a larger effective sample size compared to
using the observed variables for conditioning directly. For
the linear case we consider a model with dx = 50 and
dz = 2, for the nonlinear case we set dx = 500. We use
n = 20000 samples to first estimate the bottleneck and then
study the performance of the resulting effect estimation for
varying number of samples of the full joint distribution.

Results. For linear models—as shown in Figure 4—in
the very low sample regime, using the bottleneck as condi-
tioning variables provides a substantial benefit in terms of
incurred error w.r.t. directly conditioning on the observed
variable. This benefit subsides as the sample size increases,
but nevertheless highlights the settings where bottleneck
variables may be useful in practice. For nonlinear models,
the same holds, however only becoming pronounced for
larger internal node dimension dx.



9 RELATED WORK

Causal Representation Learning. Although we also
learn representations of high-dimensional observations, our
approach differs from canonical causal representation learn-
ing (CRL) approaches [Scholkopf et al., 2021, Brehmer
et al., 2022, Ahuja et al., 2023, Lippe et al., 2022, 2023a,b,
Squires et al., 2023, Buchholz et al., 2023, Liang et al., 2023,
Varicr et al., 2023, Bing et al., 2024, Lachapelle et al., 2024,
von Kiigelgen et al., 2024, Yao et al., 2024] in key ways.
Instead of mapping observations to SCM nodes, we learn
multiple maps tied to mechanisms between known (vector-
valued) SCM nodes. Unlike most CRL methods that seek
latent variables up to permutation and rescaling, we allow a
broader class of invertible transformations for identifiability.
Additionally, while CRL assumes invertible maps, we focus
on surjective maps to enable true dimension reduction by
discarding irrelevant observational details.

CRL aims to recover a latent low-dimensional SCM includ-
ing its constituting variables. In contrast, learning bottle-
necks in an SCBM is focused on causal effect estimation.
We learn representations assuming a known graph and tar-
get a specific downstream causal query. Defining causal
representations by their usefulness for downstream tasks,
rather than recovering a single postulated ground-truth la-
tent model, has been proposed as a step forward for CRL
[Jgrgensen et al., 2025], and our targeted approach aligns
with this view.

Causal Abstractions. Our work is related to causal ab-
straction learning, but what we abstract is different from
existing approaches. Common approaches abstract causal
models as a whole [Zennaro et al., 2023, Felekis et al.,
2024, Xia and Bareinboim, 2024, Massidda et al., 2024,
D’ Acunto et al., 2025], while our notion of abstraction is a
within-model operation that reduces a random vector to the
essentials needed for downstream effect estimations.

An approach closely related to ours is the causal feature
learning method proposed by Chalupka et al. [2017], which
learns to partition the spaces of a pair of a cause and an
outcome variable to extract high-level features from low-
level observations. The SCBM framework extends this idea
to settings with more than two variables and allows for
continuous high-level variables (bottlenecks), as opposed to
only permitting discrete variables as a result of a clustering
operation.

The Causal Information Bottleneck (CIB) [Simoes et al.,
2024] seeks a representation for a specific causal query, but
differs from our approach in its problem setting and method.
The CIB framework focuses on a single cause-effect pair
which must be identifiable via the backdoor criterion, while
we handle arbitrary acyclic graphs. Simoes et al. [2024] ex-
tend the Information Bottleneck Lagrangian of Tishby et al.
[2000] to trade off compression and what they call “causal

control” via a constrained optimization, whereas we assume
a data generatiing process that conceptualizes optimal low-
dimensional representations directly and enables bottleneck
estimation through regression or likelihood-based losses.
The CIB method requires access to all conditional proba-
bility distributions, as it must compute p(Y | do(X = x)),
while we use only observational data and graph structure.
Additionally, CIB assumes discrete variables; we allow both
discrete and continuous. The exact relationship between
both frameworks remains unexplored.

Dimension Reduction. Principle component analysis
(PCA) [Pearson, 1901] and similar dimension reduction
techniques can be understood to represent the opposing side
of a trade-off between training effort required before appli-
cation and guarantees over retained relevant information for
a downstream task. PCA does not need to be fit to a specific
setting, but may also discard data relevant to a downstream
task. In our framework, we do require additional data to fit
an estimator of a given bottleneck, but we gain guarantees of
the compressed representation being optimal for describing
the specific mechanism of interest.

In a setting with only one regressor X and one regressand
Y, the task of finding an appropriate bottleneck variable
is known as sufficient dimension(ality) reduction [Glober-
son and Tishby, 2003, Li, 2007, 2018]. If in addition the
relationship of X and Y is assumed linear, reduced-rank
regression [Izenman, 1975] implicitly assumes the existence
of a low-dimensional bottleneck variable by restricting the
rank of the effect matrix.

10 OUTLOOK

The work presented here is still in progress, and we plan
to extend it in a number of ways. A natural first step is to
investigate learning methods for discrete bottleneck spaces
in greater detail (perhaps via clustering algorithms). We
also intend to extend our experimental results to (more)
realistic scenarios in the future. As our estimation method is
comparatively simple w.r.t. most CRL approaches (that fail
on real data [Gamella* et al., 2025]), we hope that it is more
robust to misspecifications that inevitably arise in real-world
settings. In our current experiments, we assume to know
the dimension of the estimated bottleneck spaces, which is
arguably unrealistic. We believe that this can be weakened
straightforwardly, as the actual bottleneck dimension is just
a lower bound on the dimension chosen during estimation.
In practice, one could either make a conservative (over)
estimate of the necessary dimension, or cross-validate on
a small held out dataset, slowly decreasing the bottleneck
dimension until performance begins to deteriorate. We will
examine this in a future version.
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