
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Solving a Special Type of Optimal Transport Problem by a Modified
Hungarian Algorithm

Yiling Xie YXIE350@GATECH.EDU

Yiling Luo YLUO373@GATECH.EDU

Xiaoming Huo HUO@GATECH.EDU

Georgia Institute of Technology, United States

Abstract
We observe that computing empirical Wasserstein distance in the independence test is
an optimal transport (OT) problem with a special structure. This observation inspires
us to study a special type of OT problem and propose a modified Hungarian algorithm
to solve it exactly. For an OT problem involving two marginals with m and n atoms
(m ≥ n), respectively, the computational complexity of the proposed algorithm is O(m2n).
Computing the empirical Wasserstein distance in the independence test requires solving
this special type of OT problem, where we have m = n2. The associated computational
complexity of our algorithm is O(n5), while the order of applying the classic Hungarian
algorithm is O(n6). Numerical experiments validate our theoretical results. Broader
applications of the proposed algorithm are discussed at the end.

1. Introduction

One appealing application of optimal transport (OT) and Wasserstein distance [16, 18] is the inde-
pendence test. The Wasserstein distance between two distributions µ1, µ2 ∈ Z is defined as:

W (µ1, µ2) := inf

{∫
Z2

d(z, z′)dγ(z, z′) : γ(µ1, µ2) is a distribution with marginals µ1 and µ2

}
,

where (Z, d) is a metric space (w.l.o.g., we consider 1-Wasserstein distance in this paper). Wasserstein
distance is a metric on probability measures [18]. To test the independence between variables Y ∼ ν1
and Z ∼ ν2, people utilize the Wasserstein distance between the joint distribution of Y, Z and the
product distribution of Y, Z, i.e., Wp(γ(ν1, ν2), ν1 ⊗ ν2). While the statistical properties of this
approach have been intensely investigated [11, 14, 19], there is no existing literature focusing on the
computational aspect. In this paper, we will consider ‘How to calculate the empirical Wasserstein
distance in the independence test?’

In practice, given n i.i.d. samples {(y1, z1), ..., (yn, zn)} generated from (Y,Z), we build the
statistic—Wp(γ(ν̂1, ν̂2), ν̂1 ⊗ ν̂2), where ν̂ denotes the corresponding empirical distribution—to
test the independence. We will show later that computing this statistic is equivalent to solving the

© Y. Xie, Y. Luo & X. Huo.

MODIFIED HUNGARIAN ALGORITHM

following optimization problem:

min
X◦∈Π◦

n∑
i,j,k=1

d((yi, zj), (yk, zk))X
◦
ij;k, Π◦ =

X◦
ij;k ≥ 0

∣∣∣∣ n∑
k=1

X◦
ij;k =

1

n2
,

n∑
i,j=1

X◦
ij;k =

1

n

 ,

(1)
where the metric could be chosen as d((yi, zj), (yk, zl)) = ∥yi − yk∥p + ∥zj − zl∥p, and ∥ · ∥p
denotes the lp norm.

The problem (1) is an OT problem involving two marginals. One marginal is an n-dimension uni-
form (

∑n
i,j=1X

◦
ij;k = 1/n,∀k), and the other marginal is an n2-dimension uniform (

∑n
k=1X

◦
ij;k =

1/n2,∀i, j). Per Birkhoff’s theorem [3], the solution to (1) is a vertex (whose coordinates are zeros
and ones). Consequently, we study the following special type of OT problem:

min
X′∈U ′

m∑
i=1

n∑
j=1

1

m
X ′

ijCij , U ′ =

X ′
ij = {0, 1}

∣∣∣∣ n∑
j=1

X ′
ij = 1,

m∑
i=1

X ′
ij = mj ,

n∑
j=1

mj = m

 .

(2)
where 0 < n ≤ m, i = 1, ...,m, j = 1, ..., n, and mj are positive integers. In essence, problem (1)
is a special case of problem (2) where mj = n,m = n2, seeing more details in Section 3.

Then, we focus on the question: ‘How to solve problem (2)?’ One may recall the assignment
problem, which aligns with the permutation matrix. X ′ ∈ U ′ is similar but different from the
permutation matrix: X ′ ∈ U ′ is an m× n matrix instead of a square matrix and has multiple entries
of 1 in each column instead of only one entry. In this way, we are not able to directly apply algorithms
for the assignment problem like the Hungarian algorithm [12] to solve the problem (2). An approach
to obtain the precise solution to (2) is first to duplicate the columns of C and X ′, and then apply the
Hungarian algorithm. The computational complexity of this approach is O(m3). In this paper, we
will propose a modified Hungarian algorithm. The algorithm specializes in solving the special type
of OT problem (2) with a provable lower order—O(m2n).

Back to the Wasserstein-distance-based independence test problem (1), the resulting compu-
tational complexity of applying the proposed algorithm is O(n5) while the order of applying the
classic Hungarian algorithm is O(n6).

Related work: Notice that our modified Hungarian algorithm is an exact OT solver. There are
also a bunch of approximation algorithms [4, 5, 8, 20]. Note that some scenarios may require the
precise solution of OT problems, and paper [6] demonstrates the favorable numerical performance of
the exact solutions over the approximate solutions. Therefore, developing efficient exact algorithms
is meaningful.

Our contributions: Firstly, we find out that computing the Wasserstein distance in the inde-
pendence test (1) belongs to a special type of OT problem (2). Secondly, we propose a modified
Hungarian algorithm to solve problem (2). The algorithm modifies the Hungarian algorithm to deal
with the scenario where two marginals are of different dimensions and atoms in one of the marginals
have multiple assignments. Thirdly, we adopt our algorithm to the independence test problem (1).
We further discuss other applications of the proposed algorithm, seeing Section 5.

2. Modified Hungarian algorithm

In this section, we propose a modified Hungarian algorithm to solve the problem (2).

2

MODIFIED HUNGARIAN ALGORITHM

pseudo-matching perfect pseudo-matching

B

D

A

C

B

D

A

C

pseudo-augmenting process

Figure 1: Examples when n = 3,m = 9,m1 = 2,m2 = 3,m3 = 4. The solid line means that the
edge belongs to the pseudo-matching. The dashed line indicates that the edge belongs to the equality
graph but does not belong to the pseudo-matching.

We first review the basics of the Hungarian algorithm [12, 17]. Suppose that a bipartite graph
G = (V,E), where V = V1 ∪ V2, E ⊂ V1 × V2, has weight w(·) for each edge e ∈ E. M ⊂ E is a
matching if every node of G coincides with at most one edge of M . Kuhn-Munkres theorem [12]
illustrates that solving the assignment problem is equivalent to finding a perfect matching on the
equality graph associated with some feasible labeling. (The feasible labeling is defined as a function
l : V → R satisfying l(v1) + l(v2) ≥ w(v1, v2), ∀v1 ∈ V1, v2 ∈ V2, and the equality graph w.r.t.
labeling l is G′ = (V,El), where El = {(v1, v2) : l(v1) + l(v2) = w(v1, v2)}.) Hence, Hungarian
algorithm solves the assignment problem by looking for a perfect matching on some equality graph.

In problem (2), X ′ ∈ U ′ has one entry of 1 in each row, multiple entries of 1 in each column and
0′s elsewhere. Since a permutation matrix corresponds to a (perfect) matching in the bipartite graph,
we define ‘pseudo-matching’ in the bipartite graph to describe X ′: In the bipartite graph G, where
|V1| = m, |V2| = n. PM ⊂ E is a pseudo-matching if every node of V1 coincides with at most one
edge of PM and jth node of V2 coincides with at most mj edges of PM , where

∑n
j=1mj = m.

Further, if every node of V1 coincides with one edge of PM and jth node of V2 coincides with mj

edges of PM , PM is called a perfect pseudo-matching. See examples in Figure 1.
We develop a modified Kuhn-Munkres theorem (the theorem and its proof can be found in the

Appendix). It demonstrates that we only need to find a perfect pseudo-matching on some equality
graph to solve the problem (2). In this way, we design a modified Hungarian algorithm (Algorithm
1). It improves either the feasible labeling (adding edges to the associated equality graph) or the
pseudo-matching until the pseudo-matching is perfect on some equality graph w.r.t. some feasible
labeling. The algorithm improves the pseudo-matching by generating pseudo-augmenting paths
and then exchanging the edge status along the paths. This process is called the pseudo-augmenting
process. Also, we force the pseudo-augmenting paths emanating from V2, which have a lower order
of nodes. See the relevant definitions in Definition 1 and examples in Figure 1 .

Definition 1 (Free, matched, pseudo-matched, pseudo-alternating path, pseudo-augmenting path)
Let PM be a pseudo-matching of G = (V,E). • If the node v is in V1, it is pseudo-matched if it is
an endpoint of some edge in PM ; if the node v is the jth node in V2, it is pseudo-matched if it is an
endpoint of mj edges in PM . Otherwise, the node is free. • If the node v ∈ V , we say it is matched
if it is an endpoint of some edge in PM . • A path is pseudo-alternating if its edge alternates between
PM and E − PM . A pseudo-alternating path is pseudo-augmenting if both its endpoints are free.

We now analyze the computational complexity of Algorithm 1. Similar to the Hungarian
algorithm [17], we keep track of slackv1 = minv2∈S{l(v1) + l(v2) − w(v1, v2)}, ∀v1 ̸∈ T . The
number of edges of the pseudo-matching increases by 1 after one loop, so we need O(m) loops to

3

MODIFIED HUNGARIAN ALGORITHM

Algorithm 1: Modified Hungarian Algorithm
Generate an initial feasible labeling l: ∀v2 ∈ V2, l(v2) = 0;
∀v1 ∈ V1, l(v1) = maxv2∈V2{w(v1, v2)} and initialize a pseudo-matching M in El;

1 if M is a perfect pseudo-matching then
Stop

else
Pick up a free node vfree ∈ V2. Set S = {vfree}, T = ∅;
for v1 ∈ V1 is matched to vfree do

T = T ∪ v1

end
end

2 if Nl(S)− T = ∅ then
update labeling such that forcing Nl(S)− T ̸= ∅ : αl = minv1 ̸∈T,v2∈S{l(v1) + l(v2)
− w(v1, v2)}; l(v) = l(v)− αl, v ∈ S; l(v) = l(v) + αl, v ∈ T ; l(v) = l(v), otherwise.

end
3 if Nl(S)− T ̸= ∅ then

pick v1 ∈ Nl(S)− T ;
if v1 is free then

vfree → v1 is a pseudo-augmenting path. Pseudo-augment the pseudo-matching M . Go
to Step 1;

end
if v1 is pseudo-matched to z then

extend the pseudo-matching tree: S = S ∪ {z}, T = T ∪ {v1};
for v1 ∈ V1 is matched to z do

T = T ∪ v1;
end

end
Go to Step 2.

end

form a perfect pseudo-matching. There are two subroutines in each loop: (1): updating feasible
labeling (Step 2); (2): improving pseudo-matching (Step 3). In procedure (1): Since there are n
nodes in V2, improving the labeling occurs O(n) times to build a pseudo-alternating tree. Computing
αl, updating the slacks and calculating the labeling cost O(m) each time. In procedure (2): When a
new node has been added to S, it costs O(m) to update slacks, and O(n) nodes could be added. On
the other hand, when a node has been added to T , we just remove the corresponding slackv1 .

From the above we conclude that each loop costs O(mn), so the total computational complexity
of Algorithm 1 to solve problem (2) is O(m2n). Note that the adoption of the Hungarian algorithm
has an order of O(m3). Hence, the proposed modified Hungarian algorithm will outperform,
especially when m ≫ n.

4

MODIFIED HUNGARIAN ALGORITHM

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20

ln
(#

op
er

at
io

n)
dependent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
dependent case, p = 2

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 2

modified Hungarian average modified Hungarian best modified Hungarian worst Hungarian average Hungarian best Hungarian worst

Figure 2: Results of CIFAR10

3. Independence test using the Wasserstein distance

In this section, we discuss the special case of the OT problem (2)—independence test using the
Wasserstein distance, and apply the modified Hungarian algorithm to solve it.

Suppose that we have n i.i.d. samples {(y1, z1), ..., (yn, zn)}, where (yi, zj) ∼ (Y,Z). If we
utilize the statistic Wp(γ(ν̂1, ν̂2), ν̂1 ⊗ ν̂2) to test the independence between Y and Z, we need to
solve the following optimization problem:

min
X∈Π

n∑
i,j,k,l=1

d((yi, zj), (yk, zl))Xij;kl, (3)

where

Π =

Xij;kl ≥ 0

∣∣∣∣ n∑
k,l=1

Xij;kl =
1

n2
,

n∑
i,j=1

Xij;kl =

{
1
n k = l

0 k ̸= l
, ∀i, j, k, l = 1, ..., n.

 .

It is worth noting that Xij;kl = 0, ∀k ̸= l. If we further let X◦
ij;k :=

∑n
l=1Xij;kl, problem (3)

could be reformulated as problem (1) and is equivalent to the following optimization problem: (The
proof and relevant discussions are relegated to the Appendix.)

min
X′∈Π′

n∑
i,j,k=1

d((yi, zj), (yk, zk))

n2
X ′

ij;k, Π′ =

X ′
ij;k = {0, 1}

∣∣∣∣ n∑
k=1

X ′
ij;k = 1,

n∑
i,j=1

X ′
ij;k = n

 .

(4)
Problem (4) belongs to the special type of OT problem where mj = n,m = n2. Adopting the

Hungarian algorithm to problem (4) costs O(n6) while adopting the proposed Hungarian algorithm
directly costs O(n5).

4. Numerical experiments

In this section, we carry out experiments on the independence test problem (1) on CIFAR101 [10] and
Wisconsin breast cancer2 [7] datasets. The numerical results validate the computational complexity
of the modified Hungarian algorithm and the favorability of applying the proposed algorithm over

1. https://www.cs.toronto.edu/˜kriz/cifar.html
2. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

5

https://www.cs.toronto.edu/~kriz/cifar.html
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

MODIFIED HUNGARIAN ALGORITHM

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20

ln
(#

op
er

at
io

n)
dependent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
dependent case, p = 2

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 2

modified Hungarian average modified Hungarian best modified Hungarian worst Hungarian average Hungarian best Hungarian worst

Figure 3: Results of Wisconsin breast cancer data

applying the Hungarian algorithm. The performance is evaluated by the number of numerical
operations here. We relegate the results of the running time to the Appendix.

Experiments details: We create one dependent case and one independent case with different
sample sizes: CIFAR10: Each image is a 3072-dim vector. Let X ∈ R3072 be generated uniformly
from the first 5 classes; Y ∈ R3072 be generated uniformly from other classes. We calculate the
Wasserstein distance (1) independent case: between X and Y1 (where Y1 is the first 1536 coordinates
of Y); (2) dependent case: between X and Z (where Z = X2/2 + Y1/2, X2 is the last 1536
coordinates of X , Y1 is the first 1536 coordinates of Y). Breast cancer data: Each instance is
a 30-dim vector. Let X ∈ R30 be generated uniformly from the benign class, and Y ∈ R30 be
generated uniformly from the malignant class. We calculate the Wasserstein distance (1) independent
case: between X1 and Y2 (where X1 is the first 5 coordinates of X , Y2 the last 25 coordinates of Y);
(2) dependent case: between X and Z (where Z = X1 ∗ Y1, X1 is the first 5 coordinates of X , Y1 is
the first 5 coordinates of Y , ∗ means the coordinate-wise product). We run the algorithms on each
case 10 times and plot the worst, best and average number of numerical operations.

Experiments results: The results are presented in Figure 2, 3. The figures illustrate that the
proposed algorithm gains a factor n in computational complexity when solving problem (1). To
be more specific, notice that the slope of ln(number of numerical operations) over ln(sample size)
indicates the order of the associated algorithm, and the slope of our algorithm is around 5 while the
slope of the Hungarian algorithm is around 6. This observation implies that the order of applying our
algorithm is O(n5) while the order of applying the Hungarian algorithm is O(n6). It is consistent
with our theoretical results.

5. Discussion

We propose a modified Hungarian algorithm to solve a special type of OT problem (2). The
proposed algorithm could help solve one-to-many assignment [21] and many-to-many assignment
[22] problems. In this way, our algorithm could be applied to related practical problems in service
assignment problems [13], sensor networks [2], access control [1], etc. In addition, we may apply
our algorithm to some modern machine learning models, including clustering [9] and representation
learning [15].

6

MODIFIED HUNGARIAN ALGORITHM

References

[1] Gail-Joon Ahn and Hongxin Hu. Towards realizing a formal RBAC model in real systems. In
Proceedings of the 12th ACM symposium on Access control models and technologies, pages
215–224, 2007.

[2] Manish Bhardwaj and Anantha P Chandrakasan. Bounding the lifetime of sensor networks via
optimal role assignments. In Proceedings. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 3, pages 1587–1596. IEEE, 2002.

[3] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A, 5:
147–151, 1946.

[4] Antonin Chambolle and Juan Pablo Contreras. Accelerated Bregman primal-dual meth-
ods applied to optimal transport and Wasserstein Barycenter problems. arXiv preprint
arXiv:2203.00802, 2022.

[5] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[6] Yihe Dong, Yu Gao, Richard Peng, Ilya Razenshteyn, and Saurabh Sawlani. A study of
performance of optimal transport. arXiv preprint arXiv:2005.01182, 2020.

[7] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://
archive.ics.uci.edu/ml.

[8] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm.
In International conference on machine learning, pages 1367–1376. PMLR, 2018.

[9] Aude Genevay, Gabriel Dulac-Arnold, and Jean-Philippe Vert. Differentiable deep clustering
with cluster size constraints. arXiv preprint arXiv:1910.09036, 2019.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[11] Gilles Mordant and Johan Segers. Measuring dependence between random vectors via optimal
transport. Journal of Multivariate Analysis, 189:104912, 2022.

[12] James Munkres. Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, 5(1):32–38, 1957.

[13] Vincent TY Ng, Boris Chan, Louis LY Shun, and Ringo Tsang. Quality service assignments
for role-based web services. In 2008 IEEE International Conference on Systems, Man and
Cybernetics, pages 2219–2224. IEEE, 2008.

[14] Thomas Giacomo Nies, Thomas Staudt, and Axel Munk. Transport dependency: Optimal
transport based dependency measures. arXiv preprint arXiv:2105.02073, 2021.

7

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

MODIFIED HUNGARIAN ALGORITHM

[15] Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron Van den Oord, Sergey Levine, and Pierre
Sermanet. Wasserstein dependency measure for representation learning. Advances in Neural
Information Processing Systems, 32, 2019.

[16] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[17] Subhash Suri. Bipartite matching & the Hungarian method. Notes, Department of Computer
Science, University of California, Santa Barbara, 8, 2006.

[18] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[19] Johannes CW Wiesel. Measuring association with Wasserstein distances. Bernoulli, 28(4):
2816–2832, 2022.

[20] Yiling Xie, Yiling Luo, and Xiaoming Huo. An accelerated stochastic algorithm for solving the
optimal transport problem. arXiv preprint arXiv:2203.00813, 2022.

[21] Haibin Zhu, MengChu Zhou, and Rob Alkins. Group role assignment via a Kuhn–Munkres
algorithm-based solution. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 42(3):739–750, 2011.

[22] Haibin Zhu, Dongning Liu, Siqin Zhang, Yu Zhu, Luyao Teng, and Shaohua Teng. Solving
the many to many assignment problem by improving the Kuhn–Munkres algorithm with
backtracking. Theoretical Computer Science, 618:30–41, 2016.

Appendix A. Modified Kuhn-Munkres theorem

Theorem 2 (Modified Kuhn-Munkres theorem) If l is a feasible labeling on the weighted bipar-
tite graph G = (V,E) and PM ⊂ El is a perfect pseudo-matching on the corresponding equality
graph G′ = (V,El), then PM is a maximum weighted pseudo-matching.

Proof Denote the edge e ∈ E by e = (ev1 , ev2). Let PM ′ be any perfect pseudo-matching in G (not
necessarily in the equality graph El). And vi1, i = 1, ...,m; vj2, j = 1, ..., n are nodes from V1 and
V2, respectively. Since vi1 ∈ V1 is covered exactly once by PM ′ and vj2 ∈ V2 is covered exactly mj

times by PM ′, we have

w(PM ′) =
∑

e∈PM ′

w(e) ≤
∑

e∈PM ′

(l(ev1) + l(ev2)) =

m∑
i=1

l(vi1) +

n∑
j=1

mjl(v
j
2),

where the first inequality comes from the definition of the feasible labeling.
Thus,

∑m
i=1 l(v

i
1)+

∑n
j=1mjl(v

j
2) is upper bound of the weight of any perfect pseudo-matching.

Then let PM be a perfect pseudo-matching in the equality graph El, we have

w(PM) =
∑

e∈PM

w(e) =
m∑
i=1

l(vi1) +
n∑

j=1

mjl(v
j
2).

Hence w(PM ′) ≤ w(PM) and PM is the maximum weighted pseudo-matching.

8

MODIFIED HUNGARIAN ALGORITHM

A.1. Proof and relevant discussion for Section 3

Instead of direct proving (3) ⇐⇒ (4), we prove the more general scenario first.

Proposition 3 The optimization problem (2) is equivalent to the optimization problem (5):

min
X∈U

m∑
i=1

n∑
j=1

XijCij , U =

Xij ≥ 0

∣∣∣∣ n∑
j=1

Xij =
1

m
,

m∑
i=1

Xij =
mj

m
,

n∑
j=1

mj = m

 . (5)

Proof First consider the following two optimization problems (6)-(7):

min
X†∈U†

m∑
i=1

m∑
j=1

1

m
X†

ijC
†
ij , U† =

X†
ij = {0, 1}

∣∣∣∣ m∑
j=1

X†
ij = 1,

m∑
i=1

X†
ij = 1

 , (6)

where C† is an m×m matrix generated by duplicating the jth column of C mj times:

C†
it = Cij , 1 ≤ t ≤ mj , j = 1; m1 + ...+mj−1 + 1 ≤ t ≤ m1 + ...+mj , j ≥ 2.

min
X1∈U1

m∑
i=1

m∑
t=1

X1
itC

1
it, U1 =

{
X1

it ≥ 0

∣∣∣∣ m∑
t=1

X1
it =

1

m
,

m∑
i=1

X1
it =

1

m

}
, (7)

where C1 is an m×m matrix generated by duplicating the jth column of C mj times:

C1
it = Cij , 1 ≤ t ≤ mj , j = 1; m1 + ...+mj−1 + 1 ≤ t ≤ m1 + ...+mj , j ≥ 2.

Then we denote the objective functions of the problems (2), (5), (6) and (7) by f(X), f †(X†), f ′(X ′)
and f1(X1), respectively.

Firstly, we prove (5) ⇐⇒ (7).
On the one hand, for any X1 ∈ U1, if we let

Xij =

m1∑
t=1

X1
it, j = 1,

Xij =

m1+...+mj∑
t=m1+...+mj−1+1

X1
it, j ≥ 2,

then we have
Xij ≥ 0,

n∑
j=1

Xij =

m1∑
t=1

X1
it +

m1+...+mj∑
t=m1+...+mj−1+1

X1
it =

m∑
t=1

X1
it =

1

m
,

m∑
i=1

Xij =
m∑
i=1

m1∑
t=1

X1
it =

m1

m
, j = 1,

m∑
i=1

Xij =

m∑
i=1

m1+...+mj∑
t=m1+...+mj−1+1

X1
it =

mj

m
, j ≥ 2.

9

MODIFIED HUNGARIAN ALGORITHM

Thus, X ∈ U . For the objective functions, we have the following:

f(X) =
m∑
i=1

n∑
j=1

XijCij =
m∑
i=1

m1∑
t=1

X1
itC

1
it +

m1+...+mj∑
t=m1+...+mj−1+1

X1
itC

1
it

 =
m∑
i=1

m∑
t=1

X1
itC

1
it = f1(X1).

On the other hand, for any X ∈ U , if we let

X1
it =

Xij

mj
, 1 ≤ t ≤ mj , j = 1; m1 + ...+mj−1 + 1 ≤ t ≤ m1 + ...+mj , j ≥ 2,

then we have
X1

it ≥ 0,

m∑
t=1

X1
it =

n∑
j=1

Xij

mj
mj =

n∑
j=1

Xij =
1

m
,

n∑
i=1

X1
it =

n∑
i=1

Xij

mj
=

1

mj

n∑
i=1

Xij =
1

m
.

Thus, X1 ∈ U1. For the objective functions, we have the following:

f1(X1) =
m∑
i=1

m∑
t=1

X1
itC

1
it =

m∑
i=1

n∑
j=1

Xij

mj
Citmj = f(X).

Hence, (5) ⇐⇒ (7). By Birkhoff’s theorem, we know (6) ⇐⇒ (7). Therefore, we have (5) ⇐⇒
(6).

Similarly, for any X† ∈ U†, if we let

X ′
ij =

m1∑
t=1

X†
it, j = 1,

X ′
ij =

m1+...+mj∑
t=m1+...+mj−1+1

X†
it, j ≥ 2,

then X ′ ∈ U ′ and f †(X†) = f ′(X ′).
For any X ′ ∈ U ′, if we let

X†
it =

X ′
ij

mj
, 1 ≤ t ≤ mj , j = 1; m1 + ...+mj−1 + 1 ≤ t ≤ m1 + ...+mj , j ≥ 2.

then X† ∈ U† and f †(X†) = f ′(X ′). Therefore, (6) ⇐⇒ (2).
In conclusion, we have (5) ⇐⇒ (6) ⇐⇒ (2).

Next, we apply Proposition 3 to get our main result.

Proposition 4 The optimization problem (1) is equivalent to the optimization problem (4).

10

MODIFIED HUNGARIAN ALGORITHM

Proof Applying Proposition 3 to the optimization problem (1), the optimization problem (1) is
equivalent to problem (8):

min
X′∈Π′

n2∑
h=1

n∑
k=1

1

n2
Cd
hkX

′
hk, Π

′ =

X ′
hk = {0, 1}

∣∣∣∣ n∑
k=1

X ′
hk = 1,

n2∑
h=1

X ′
hk = n

 . (8)

If we express the index h by two indices i, j and express t by k, l, one could check that (8) ⇐⇒
(4). In conclusion, (1) ⇐⇒ (4).

Appendix B. Experimental results w.r.t. running time

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

ln
(ti

m
e)

dependent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

dependent case, p = 2

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

independent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

independent case, p = 2

modified Hungarian average modified Hungarian best modified Hungarian worst Hungarian average Hungarian best Hungarian worst

Figure 4: Results of CIFAR10 w.r.t. time

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

ln
(ti

m
e)

dependent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

dependent case, p = 2

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

independent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)

10

8

6

4

2

0

independent case, p = 2

modified Hungarian average modified Hungarian best modified Hungarian worst Hungarian average Hungarian best Hungarian worst

Figure 5: Results of Wisconsin cancer data w.r.t. time

We run the Hungarian algorithm code from package ‘scipy’ in Python and implement the modified
Hungarian algorithm. We record the running time. Figure 4, 5 are experiment results w.r.t. the running
time. When the sample size is small, our algorithm may be slower than the Hungarian algorithm.
However, as the sample size increases, our algorithm becomes more efficient than the Hungarian
algorithm. In theory, our proposed algorithm will compare more favorably if both algorithms are
implemented in a low-level language, such as C++.

Appendix C. Resources

All experiments in this paper are implemented using Python 3.8 on Macbook Pro 2019 with 16 GB
memory.

11

	Introduction
	Modified Hungarian algorithm
	Independence test using the Wasserstein distance
	Numerical experiments
	Discussion
	Modified Kuhn-Munkres theorem
	Proof and relevant discussion for Section 3

	Experimental results w.r.t. running time
	Resources

