Published in Transactions on Machine Learning Research (1/2026)

Vejde: A Framework for Inductive Deep Reinforcement Learn-
ing Based on Factor Graph Color Refinement

Jakob Nyberg jaknyb@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Stockholm, Sweden

Pontus Johnson pontusj@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Stockholm, Sweden

Reviewed on OpenReview: https: //openreview. net/ forum? id=EFSZmLI1W1Z

Abstract

We present and evaluate VEJDE; a framework which combines data abstraction, graph
neural networks and reinforcement learning to produce inductive policy functions for decision
problems with richly structured states, such as object classes and relations. MDP states
are represented as data bases of facts about entities, and VEJDE converts each state to a
bipartite graph, which is mapped to latent states through neural message passing. The
factored representation of both states and actions allows VEJDE agents to handle problems
of varying size and structure. We tested VEJDE agents on eight problem domains defined in
RDDL, with ten problem instances each, where policies were trained using both supervised
and reinforcement learning. To test policy generalization, we separate problem instances in
two sets, one for training and the other solely for testing. Test results on unseen instances
for the VEJDE agents were compared to MLP agents trained on each problem instance,
as well as the online planning algorithm PROST. Our results show that VEJDE policies in
average generalize to the test instances without a significant loss in score. Additionally, the
inductive agents received scores on unseen test instances that on average were close to the
instance-specific MLP agents.

1 Introduction

We are interested in two topics: Deep reinforcement learning (RL) for problem domains that fit relational
data models, and agents that can generalize to classes of problems. This interest mainly stems from our
experiences in researching automated network incident response, where both of the aforementioned qualities
are important for practical use, though not always prioritized (Wolk et al.| 2022} Nyberg & Johnson, [2024;
Thompson et al., [2024]). The two topics are interleaved, in that incorporating structure to the traditional
Markov decision process (MDP) formalism typically used in RL is in itself a method for improving agent
generalization (Van Otterlol |2009; [Mohan et al., [2024; Kirk et al., 2023)), though neither topic necessitates the
other. To this end, we have developed a small reinforcement learning library which we have named VEJ DEE]
VEJDE combines graph neural networks and reinforcement learning to incorporate data structures which can
be observed or defined in different problem areas, and to produce neural policy functions that can be used for
classes of problems defined with a shared data description language.

A decision agent policy is a function which takes the state of a decision problem, usually modeled as a MDP
or partially observable MDP, as input and produces a probability distribution over actions that are possible

1Vejde is the Swedish name of the flower Isatis tinctoria, traditionally refined to produce indigo dye for textiles.

https://openreview.net/forum?id=EFSZmL1W1Z

Published in Transactions on Machine Learning Research (1/2026)

in the given state. An optimal policy will produce actions that maximize the expected reward; the assigned
metric of success at the task the MDP models. Our aim is to find inductive policies that can perform well
across a domain, or class, of problems. This has long been a goal within the realm of relational RL (Dzeroski
et al., [2001; [Van Otterlo, |2009), which combines reinforcement learning with elements of symbolic logic, but
ideas for improving RL generalization have also come from more recent sources in deep learning research (Kirk
et al., 2023).

Relational database systems and data modeling remains a popular option for data storage in several areasﬂ
which motivates investigating machine learning methods that can utilize the structure relational databases
provide. Relational databases use SQL (Chamberlin & Boycel 1974)) and to varying degrees conform with a
formal relational model (Codd, [1970). Previous work has investigated methods for applying supervised learning
to relational databases (Fey et al.l |2024b) using graph neural networks (GNNs). From that perspective, this
work concerns instead using RL and GNNs with relational databases. Another way of regarding a relational
database is as a set of facts about entities described using a typed first-order logical language, where every
possible set of facts given the language is a discrete state of some problem domain.

One way of describing a policy for such a logical state representation is as a decision list. Each entry in the
decision list defines a set of logical conditions, defined in the same language or data model as the database,
that when fulfilled leads to an agent choosing an action (Fern et al.,|2006). There exists approaches, both
symbolic (Fern et al., 2006) and neuro-symbolic (Hazra & Raedt], |2023]) which aim to find and represent
the decision list in an explicit and human-readable form. We instead opt to use message-passing neural
networks (MPNNs) to implicitly encode the rules of a decision list. This choice trades interpretability for
flexibility and ease of numerical optimization, as is typical with deep learning methods. The abilities, and
limitations, of MPNNs to express logical classifiers has been covered by |Barcelé et al. (2020)) and |Grohe
(2021).

Thus, in our implementation, the state of the problem consists of a set of known, true, facts about entities
expressed in predicate logic. The set of facts is then represented as a bipartite factor graph, and encoded
using neural graph color refinement. The color refinement algorithm generates vector embeddings for nodes
in the graph through iterative message-passing, where at each step the vector representations of each node
is updated by a combination of itself and the graph neighborhood vectors (Morris et al., [2019). A policy
head, also using neural networks, predicts the probability of action components from the embedding vectors.
The implementation lets VEIDE agents, like a symbolic decision list, handle states with varying numbers of
entities and possible actions.

We evaluate VEIDE with eight decision problem domains defined in the Relational Dynamic Influence Diagram
Language (RDDL). Each RDDL domain shares a common description language and state transition dynamics,
from which ten problem instances with varying parameter values per domain have been defined. The problem
domains we include for our evaluation include deterministic and probabilistic state transitions, as well as both
discrete and continuous state variables. To test the inductive qualities of the VEJDE policies, we separate
problem instances into two sets, where one is used for training and the other for testing. As all problem
instances share the same reward and state transition functions, an inductive policy should receive in the same
average score on test set as it does on the training set.

We performed two main experiments. One in which we trained VEJDE policies in a supervised manner, using
actions provided by another agent as labels, to test if VEIDE can encode an inductive policy for the problem
domains. In the second experiment, we trained policies using RL, using the actor-critic algorithm proximal
policy optimization (PPO), to test if an inductive policy can be found without labeled data.

We compare VEJDE policies with two other adaptive decision agent types. The first are policies parametrized
using fully-connected multi-layer perceptrons (MLPs). Unlike the VEJDE policies, based on GNNs, these
take constant-sized and instance-specific vector inputs, and can not generalize across multiple instances.
The MLPs encodes policies which are specially developed for a particular problem instance, and which they
ideally should be optimal for. Our other point of comparison is the online planning algorithm PROST. PROST
represents a different problem-solving methodology than RL, and uses a tree-search algorithm based on

2According to https://db-engines.com/en/ranking.

https://db-engines.com/en/ranking

Published in Transactions on Machine Learning Research (1/2026)

repeated simulated trials to estimate an optimal action for each encountered state. PROST, for most problems,
serves as an upper bound of scores in our evaluation. We also set a lower performance bound for each problem,
in the form of random and do-nothing policies, to determine if the learned policies are better than a trivial
policy.

The results from the supervised learning experiment showed that VEJDE policies in average generalized to
the unseen test set problems without a statistically significant drop in score. The mimic policies are receiver
higher scores than the trivial policies on all domains, but the differences to the PROST scores are larger on
some problem domains than others. From the reinforcement learning experiment, we observed that the scores
of the VEJDE policies in average were not statistically different from those of the MLP policies. However, we
also noted that the scores of the RL policies varied a lot between problem domains, with the VEJDE agent not
outperforming the trivial policies on two domains. As expected, the RL policies of both types consistently
received lower scores than PROST, though on one domain the VEJDE agent received a higher average score
than PROST.

Our work builds upon previous work in the area of symbolic, and neuro-symbolic, decision learning, both
within the realm of automated planning through machine learning (Stahlberg et al., 2023} |Chen & Thiébaux,
2024) and deep relational reinforcement learning (Janisch, 2024; [Sharma et al.| |2023). Unlike problems
common in symbolic planning research, we focus on problems with uncertain outcomes, formalized as MDPs,
and which we assume may include continuous variables.

The source code for VEIDE and the RDDL extension both available publiclym to facilitate application to
new problem domains.

Contributions We present and evaluate the framework VEJDE. The contributions of this work can be
summarized as follows:

e A methodology to use deep reinforcement learning with problem areas where relational data is
observed or can be defined.

e A neural architecture to encode and parametrize an inductive decision policy for relational data.

e We show that for all the decision problems we evaluate with, the architecture can parametrize an
inductive policy and that it can mimic the near-optimal performance of a planning algorithm on
some problems.

e We show that for a majority of problems we evaluate with, an inductive policy parametrized using
the neural architecture that is better than trivial policies and close to instance-specific policies can
be found through reinforcement learning.

e A Python library, named VEJDE, with generic interfaces so that it can be applied to problem domains
not defined in RDDL.

2 Background

This section covers topics related to knowledge representation, graph neural networks and reinforcement
learning relevant to this work. We emphasize that our focus is not on how to design or learn data abstractions
for a problem domain, and assume that for a given problem there already exists a data model of object
classes, attributes and relations.

2.1 Knowledge Representation

Predicate logic, or first-order logic, has long been used to describe situations and dynamics of decision
problems (Reiter} |2001; |Russell & Norvig, 2010)). Through this text, we will use components of first-order

Shttps://github.com/kasanari/vejde
4https://github.com/kasanari/vejde-rddl

https://github.com/kasanari/vejde
https://github.com/kasanari/vejde-rddl

Published in Transactions on Machine Learning Research (1/2026)

logic to describe the states of problems. We thus use the following definitions: Predicates are used to represent
properties or relations. We will denote predicate symbols with capital letters such as P or Q. An atom is a
predicate symbol combined with tuple of variables, denoted with lowercase letters. Predicate symbols have
an arity which defines the length of tuples it can be applied to. We will use the term object when referring
to instantiations of variables, denoted with lowercase letters and a subscript, like z1 or y1. A fact refers
to a ground atom where all variables have been substituted by objects, as in P(z1) or Q(z1,y1). Function
symbols map objects or tuples of objects to other elements in the language. Given a function symbol Z, we
could for instance make the statement Z(z1) = 30. Lastly, we assume a typed logic. This means that each
predicate is also associated with a tuple that specifies the types of the variables. Each object thus has a type
or class. Any ground atom that is the result of combining a predicate symbol with a tuple of objects with
mismatched types is defined as false. We will simply use the letter used to identify the object to indicate its
type, meaning that x; and y; can be read as belonging to different object classes. All the definitions form a
language, which can be specific to a particular problem domain.

2.2 Markov Decision Processes

We choose to represent decision problems as Markov decision processs (Puterman) 1994). A MDP is a
formalization of a system where an agent makes sequential decisions, under the assumption of potential
uncertainty about the decision outcomes. A reward or cost value defines a measure of success at the task the
agent should perform. MDPs are assumed to have the Markov property that the state and reward dynamics
are dependent only on the immediate previous state and action. The agent is assumed to follow a policy, =,
by which it selects actions given the state it observes. For a finite MDP, an optimal policy maximizes the
expected discounted return, G; = EiT:t ~ir;. The term relational MDP has been used by several authors
to describe MDPs where the problem state is structured, factored or explicitly represented using symbolic
logic (Guestrin et al.l 2003; [Diuk et al., [2008; [Dzeroski et al., |2001; |Van Otterlo, |2009; Kersting & Driessens),
2008). A relational MDP can be described as collection of problems, each individually a MDPs, which all
share a common description language.

2.3 Reinforcement Learning

To search for an optimal policy, we use PPO; a model-free actor-critic reinforcement learning (RL) algo-
rithm (Schulman et al.| [2017). Reinforcement learning (RL) constitutes a class of methods to find, or at least
search for, the optimal policy of a MDP (Sutton & Bartol 2018]). Different RL approaches mainly alter the
methods of selecting actions, what data is used to gather or update the policy and the step intervals between
updates. Model-free RL learns policy through selecting actions from the agent policy and updating it solely
based the resulting transitions of the MDP. This means that model-free methods requires little to no prior
knowledge of the problem dynamics, at the expense of requiring more data than model-based methods, which
instead incorporate system knowledge to improve the policy. Value-based RL methods uses data to generate
estimates of the state-value v™(s) = E; [G¢|S; = s] or action-value Q7 (s, a) = E; [G¢|S; = s, A = a] functions
of the MDP, which the policy is then based on. Policy gradient algorithms instead use data to directly
optimize a differentiable function towards the optimal policy. Actor-critic methods combines elements of
value estimation with policy gradient methods to improve optimization stability, where an “actor” component
produces action probabilities, 7(a|s;), and a “critic” component produces a state value estimate, (s;). PPO
is a policy gradient algorithm that enforces a hard limit on how much the policy can change per update.
The actor loss for PPO is calculated as Ly(s¢, a¢, §) = min (r(0) - A(s¢,a¢), clip (r(0),1 —e€,1+¢€) - A(se, ar))
it
A is the action advantage, which may be calculated in different ways, but is typically defined as the difference
between the state-value and action-value for the action.

where 7 (s, at,0) = , a ratio between the old and updated policy output which is used to clip the loss.

2.4 Message-Passing Neural Networks

In order to use policy gradient methods we need a differentiable function that can go from the data contained
in the state, which we assume to be relational by design, to action probabilities. We use GNNs for this purpose,
specifically MPNNs. The properties of MPNNs are closely related to those of the Weisfehler-Lehman (WL)

Published in Transactions on Machine Learning Research (1/2026)

algorithm, and we will use that algorithm as the basis for this explanation. The WL algorithm is designed to
test if two graphs are isomorphic. The algorithm can also be used to generate graph or node representations
for graph similarity and classification tasks. At each iteration, the WL algorithm updates a label of each node
to a hash value calculated from the old label and labels from the node neighborhood. This is also known as
a graph color refinement algorithm (Grohe, |2021)), as nodes are assigned metaphorical “colors” which are
continuously mixed with neighboring node colors. MPNNs follow the same general color refinement algorithm,
but use neural networks rather than hash functions to calculate node “colors”, which are represented using
high-dimensional vectors. This allows for parameterizing differentiable functions on graphs that can be
optimized through gradient descent for common machine learning tasks such as classification or regression.
A useful feature of MPNNs is that the model parameters are shared across nodes, meaning that the size
of the neural network does not need to change with the size of the input graph. It has been shown that
MPNNSs can not be more expressive than the WL algorithm (Wang & Zhang, 2022; Morris et al., [2019). As
such, if the WL test fails to distinguish two graphs, so will a MPNN. From this result, it follows that a
classifier based on MPNNs will always produce the same results if the WL algorithm fails to distinguish two
graphs, or subgraphs. This result has been elaborated on in the context of logical classifiers by [Barcelo et al.
(2020) as well as |Grohe| (2021), showing that a GNN without global a readout are as expressive as a graded
first-order classiﬁerﬂ A common categorization in graph learning is transductive and inductive graph learning.
Transductive graph learning aims find a model for a task based on a single graph. If the graph structure
changes, or a new graph is introduced, a new model has to be trained. Inductive graph learning instead focuses
on solving a task for classes of graphs that share some common underlying data distribution. On a practical
level, inductive graph learning typically implies that node representations can not be calculated based on
identifiers that do not convey meaning outside the particular graph instance.

3 Implementation

VEJDE is formed by four primary components described in this section: Representing the problem state
using predicate logic, representing the data base as a bipartite graph, encoding the graph using a graph
neural network and lastly using the object encoding vectors to produce action probabilities and a state value
estimation. A key implementation detail is that the sizes of both the agent input and output is not fixed,
and dependent on the number of facts and entities in the state.

3.1 States & Actions

We represent the state of the MDP in a given time step as a set of facts expressed in the domain languagdﬂ
To reduce the size of the state data base, facts that are explicitly known to be false are not included. No
information is lost through this choice if we maintain the assumption of full observability in the environment,
as there is no need to distinguish between a fact being false or missing from the data base (Reiter, |1977).
Actions in the MDP are represented as ground atoms from the same language as the state by assigning a
subset of predicates in the domain language as action symbols, A C P. An example state with actions is
shown in Appendix [A]

3.1.1 Bipartite State Graph

In order to generate object representations through graph color refinement, we first represent the state
database as a biparitite graph, which consists of two distinct sets of nodes, V and U. V is a set of all facts
in the state and U is a set of observed objects. A set of edges E relate facts in V' to objects in U. Each
edge is formed by an object being present in the object tuple of a fact. Following the representation in |Chen
et al.| (2024)), each edge between an object u and a literal v is associated with the position of w in the tuple of
objects of v. A rendering of the state graph representation is shown in along with possible actions

in [Figuro TH]

5Graded” in this context meaning that a path between two entities needs to exist in the graph.
6Since the truthiness and values of literals are assumed to be variable, it would be more correct to denote each fact with a
time or step. We do not, however, since our calculations only ever involve the current state.

Published in Transactions on Machine Learning Research (1/2026)

Ay Ay
12 Z =5
(1) 2 o) Aa(e)
e m(A1,z1) = 04| [r(As,z1) =0.1
: 0
Ax(z2) As(22)
T
o Q(ml, yl) 1 Y1 2 m(A1,z2) = 0.1| (A2, z2) = 0.2
1
Ai(y1) Aa(y1)
o m(A1,y1) =0.2| [7(A2,y1) = 0.0
o Q(z1,91)

(a) Bipartite graph representation of the set (b) Rendering of action combinations for the state, along
{P(z1), Q(z1,v1), Z(y1) =5, Q(z2,y1), C}. Squares with hypothetical action probabilities as assigned by an
denote ground expressions, circles objects and rhombuses agent policy.

the position of objects in atoms.

Figure 1: Renderings of factored state and action representations.

3.2 Vector Encoding

All elements of the state are encoded into the vector space RP using embedding vectors. The encoded elements
form two multisets of initial node embeddings K = {{k, : v € V}} and H = {{h, : u € U}}, corresponding
to the factor nodes in V' and object nodes in U. We also encode the positions of objects in the argument list
of facts by mapping the positions to vectors in RP.

3.2.1 Literals

Two types of ground expressions are included in our data model; ground atoms, e.g. P(z1),Q(z1,y1), and
grounded function symbols that map objects to a real value e.g. Z(y1) = 1. Ground atoms are encoded
by the embedding vector of the predicate symbol. Function atoms are encoded as a linear scaling of the
function symbol’s embedding vector by the value it is equal tcﬂ We can represent the encoding of both
types in a single expression by defining the function v : V- — R that maps all elements of V' to a value from
R. If the element is a ground atom, the value is defined to be 1, and it is an expression with a function
symbol it returns the value of the function. Thus, we define the embedding vector k, for a literal v as
k, = V(’U) . Ep(fvg,p(v)), Ep:P— RP.

Expressions with nullary atoms are handled with an additional step. We denote the set of these literals as
G C V, and assume that nullary literals influence all objects. The encoding vectors of the nullary literals are
aggregated and added to the initial embedding vector of each object. We use the function

9(G) = Softmax ([¢1(v')] e, - @2(v)
veG

to aggregate the vectors, where ¢; : RP — R and ¢ : RP? — RP are implemented using neural networks as
by |Li et al.| (2016]).

7As a simplifying delimitation, function symbols are assumed to always map objects to singular values in R.

Published in Transactions on Machine Learning Research (1/2026)

3.2.2 Objects

To avoid using object identifiers as features, objects are mapped to their respective types through a function
fu—r : U — T, where T is the set of types defined in the language. The type identifiers are then mapped to
vectors in RP”. The embedding vector h,, for an object u is thus defined as h, = Er(fy_7r(u)), Er : T — RP.

3.2.3 Positions

Edge embeddings are defined as ey, = En(fuvon(u,v)), En: N — RP. The function fuvon takes a fact
and an object, and maps them to the set of arities for predicates in the language, N.

3.3 Message Passing

The message-passing scheme we use for color refinement is similar to previous work on neural message passing
on factor graphs (Satorras & Welling), [2021]). A single iteration of message passing consists of nodes in K
sending messages to neighboring nodes in H. H is updated and sends messages back to K which is then
also updated. Each step of message passing uses a unique set of four neural networks, which we denote
with ¢. Incoming messages to a node are aggregated by taking the element-wise maximum over the node
neighborhood, max,cn(, : D — D. While a max aggregation is theoretically less expressive than a sum
aggregation (Xu et al., [2019)), it has been found to work well in practice in previous work (Janischl 2024;
Stahlberg et al., [2023). Messages from U to V are defined as mity = qbgj)_)U(th) | Iﬁ(,i)) , and the reverse
as m\) = 8)_,\/(]@1(,2) I R |l euv) - Representation vectors for object nodes in U are calculated at each
iteration as

e = L — o9 (0)| o ()) swe v}
vEN (u)
where || to denotes vector concatenation and {{}} a multiset. Updates to factor nodes in V are defined as

o) = Lo <0+ 00 (k9] e (2) e v}

uEN (v)

3.4 Policy

A policy function can in a more general view be regarded as classifier, which takes a state representation and
assigns a probability to each action that is possible given the state. In this setting, the state is represented as
a set of facts, which are encoded using embedding vectors and message passing to a latent state H of object
embeddings. Thus, from the multiset H, the policy function should assign a probability to each action that is
possible given the objects in U and the action symbols A, as described in Section Since we limit action
symbols to be nullary or unary, all actions contain a predicate symbol, a € A C P, and a single object, u € U.
Nullary actions have no arguments by definition, but for ease of implementation we define a null object, &,
which is the only selectable object for nullary actions. We denote the joint probability over action symbols
and entities as 7(a, u|H), such that 7(a1,u1|H) would be the probability of the action a;(u;) given the set of
object embeddings, H. The joint action probability can be predicated in full, or factorized in three different
ways, which lead to different agent properties (Nyberg & Johnson, 2024)E| For this work, we solely evaluate
the factorization 7(a,u|H) = wa(a|H) - 7y (ula, H), which corresponds to first sampling a predicate symbol,
followed by an object. The conditional of H will be omitted from here onward, for notation brevity. We
calculate the action symbol probability, 74 (a), as a weighted sum of conditional action probabilities over
objects

U
ma(a) = malalu) - 7o (u)

8The main property that changes is the dependency on global readouts. Sampling an object first and then an action symbol
based on that choice can be done without considering the entire graph.

Published in Transactions on Machine Learning Research (1/2026)

where 74 (alu) ;= Softmax®(W - hy, a), W € RIAIXP and 7y (u) := Softmax? (W - H,u), W € RP.

The probability of selecting an object given an action symbol, 7y (ula), is calculated as 7wy (ula) =
Softmax" (H - W,,u), W e RP*IAl where W, is the column vector in W identified by a. We use
Softmax” (x,i) = ez’/ZJD ¢ to denote the i-th element of a vector z where the softmax function is ap-
plied over dimension D.

3.5 Value Estimate

As a part of the actor-critic framework, the architecture should produce an estimate, 0™, of the state value.
We calculate 9™ as an expectation over the action probabilities and an action-value estimate,

" = Z mala) Z 7y (ula) @(u,a)

acA uelU

where é(u, a) =hy Wy, We RP*IAl ., € H. This formulation can be regarded as dividing a single step
in the MDP into two sub-steps, where the first consists of the agent choosing a predicate symbol. If we were
to extend the number of object arguments for actions, the number of sub-steps would increase to account for
the additional choices.

4 Evaluation

We evaluate VEJDE using a set of problems defined with the Relational Dynamic Influence Diagram Language
(RDDL) and executed in the Python library PyRDDLGynﬂ (Taitler et al., 2024). RDDL is a description
language that can be used for specifying Markov decision problems as dynamic Bayesian networks (Sanner,
2010). We test the ability of VEJDE to model inductive decision policies in two ways: supervised learning
from examples and reinforcement learning.

We compare VEJDE policies with policies parametrized using MLPs, and a planning algorithm named
ProstT (Keller & Helmert), |2013), the winner of the probabilistic track of the 2014 International Probabilistic
Planning Competition (IPPC) (Vallati et al., [2015). PROST uses a tree-search algorithm framework to find
an optimal action for each state based on a series of simulations initiated from the state. As such, for each
state PROST runs thousands of trials to construct the search-tree. We think it should be noted that this is a
fundamentally different problem-solving approach than the reinforcement learning method used to train the
VEJDE and MLP policy functions. With RL, a simulator is only used during training to find the parameters
of the policies, whereas PROST always needs access to a simulator of the problem in order to perform searches.

We use an existing interface for PROST to PyRDDLGym for all experimentsE For the MLP policies, we used
the implementation included in the pyRDDLGym set of libraries, which in turn is based on Stable Baselines
SE In the MLP implementation, the state is represented as a vector over all possible facts, the length of
which is dependent on the language and number of objects in the problem instance. This means that the
total parameter count of the MLPs input and output layers varies between instances and domains, but all
use two hidden layers with 64 latent parameters each. The MLP policies are transductive, and can not be
used for multiple problem instances due to the varying input and output shapes. We thus train one MLP
agent for each domain and instance combination.

Including an inductive agent from previous works would have been useful, but we were unable to find a single
method that cover the set of problem domains as we are evaluating on. We should note, however, that there
is overlap with previous works on subsets of the domains we include (Janischl [2024} |Garg et al.| [2019; Sharma)
et al., [2023)). We did evaluate an alternative encoding method, however, based on graph attention. The main
difference between this approach and the message passing method described in Section [3.3]is that the graph
attention method incorporates information from the entire graph in a single step of message passing. We
ultimately found that the graph attention method did not perform significantly better than the message

9https://github.com/pyrddlgym-project/pyRDDLGym/commit/£7dd1dd
Ohttps://github.com/pyrddlgym-project/pyRDDLGym-prost/commit/248d5d2
Hhttps://github.com/pyrddlgym-project/pyRDDLGym-rl/commit /9714392

https://github.com/pyrddlgym-project/pyRDDLGym/commit/f7dd1dd
https://github.com/pyrddlgym-project/pyRDDLGym-prost/commit/248d5d2
https://github.com/pyrddlgym-project/pyRDDLGym-rl/commit/9714392

Published in Transactions on Machine Learning Research (1/2026)

passing method, at a significantly higher computational cost. An extended description of the graph attention
method, together with evaluation results, is shown in Appendix [H]

4.1 Problem Selection

RDDL defines problems as a combination of a domain description file and an instance description file. The
domain file primarily defines state transition dynamics and object classes, whereas instance files declares object
instances, ground values and parameters to instantiate problems in the domain. VEJDE can be used with
the different domains with no modifications other than adjusting the input and output sizes based on each
domain description, meaning that we train one agent per domain. RDDL is similar to the Planning Domain
Definition Language (PDDL) in that it is a formal description language used to describe decision problems,
but adds modeling features such as probabilities, continuous state variables and partial observability.

PyRDDLGym hosts a repository of RDDL problem deﬁnitionﬂ We evaluated VEJIDE on the following problem
domains from previous IPPCs: Elevators (2014), SysAdmin, Navigation, Traffic (2014), SkillTeaching (2014),
AcademicAdvising (2014), CrossingTraffic (2014) and Tamam’skﬂ Each problem domain has ten instances
which vary initial values and the number of entities. All problems have a time horizon of 40 steps, after which
the MDP is terminated, and all problems have the option for the agent to do nothing. We selected domains
based on a set of exclusionary criteria that filter out problems that define continuous actions, action literals
with an arity greater than one, state-dependent conditions on actions and lastly problems that implement
partial observability. For example, the IPPC 2014 problem Wildfire were excluded since it contains the action
fluent put_ out(x,y), which has arity of two. Modifying domains specifications to include more problems is
possible, but we considered it out of scope for this work. While we did not modify the domains, we edited
all instance specifications that allow for concurrent agent actions to only permit one action per timestep.
This includes subsets of instances in SkillTeaching, AcademicAdvising, Elevators and all instances in Traffic.
Removing concurrent actions allows us to compare the GNN policy against the pyRDDLGym MLP policy
on all instances, at the expense of slightly changing the problem premisesE The conditions used to select
problems are discussed further in Appendix

The included domains cover two general types of decision problems: SysAdmin, Elevators, SkillTeaching,
Tamarisk and Traffic are reward maximization, or cost minimization, tasks. CrossingTraffic, Navigation and
AcademicAdvising are goal-oriented, where the agent actions should lead to a given condition being fulfilled.
Based on the arities of the action literals defined for the problems, we can also separate the eight problem
domains into three categories. Ignoring the “do nothing” action, SysAdmin, Traffic and AcademicAdvising
have only one unary action and no nullary actions. Elevators, SkillTeaching and Tamarisk have multiple
unary actions and no nullary actions. CrossingTraffic, Navigation have four nullary actions that represent
cardinal directions for the agent to move, but no unary actions. The maximum predicate arity in all domains
is two. This fact was not part of our inclusion criteria, but came as a consequence of the selected problems.

4.2 Data Generation

A RDDL problem instance defines a constant number of objects. As we are interested in use-cases where the
total number of objects vary, or is unknown, we sample transitions evenly from multiple problem instances
as if they constitute a single relational MDP. To test that the policy generalizes, we divide the 10 problem
instances of each domain into two sets by random selection and use one for training and the other for testing,
as per common practice in supervised learning. The object counts are not evenly distributed, so to reduce
bias we sample five train/test splits and repeat experiments for each split, and calculate the final results as
an average over them. For the other agents, PROST and the MLPs, considering a “test” set of problems is
not possible, as PROST always performs searches and each MLP agent is tied to a problem instance.

2https://github.com/pyrddlgym-project/rddlrepository/commit/1a2d3b5

13The parenthesized year denotes the version used where multiple are available.

MWithout concurrent actions for Elevators, an agent has to prioritize moving one of two elevators at each time step rather
than controlling both simultaneously.

https://github.com/pyrddlgym-project/rddlrepository/commit/1a2d3b5

Published in Transactions on Machine Learning Research (1/2026)

4.3 Experiments

To evaluate VEJDE, we performed two main experiments. One experiment in which agents are trained by
examples generated from PROST, and one where agents are trained without examples through reinforcement
learning. We then compare the scores of VEIJDE agents against baseline policies, and other approximate
policy methods. Both experiments use the same splits of training and test problems.

4.3.1 Imitation Learning

We tested the capability of VEJDE to encode a near-optimal policy by having agents mimic the actions of the
planning algorithm PROST on the training set of problems. The resulting mimic policy was then scored on
the test set of problems. To collect training data for each domain, we ran PROST on every instance in the
training set for ten episodes, each consisting of 40 state-action transitions with the recommended “IPC2014”
configuration. This resulted in 2000 samples for each domain, each of which consists of a state and an action
taken by PROST. The mimic agent was then trained through imitation learning, where the policy is optimized
to simply maximize the probability of actions selected by PROST. This procedure was repeated five times,
once for each train/test split. The results of this experiment can be found in Section

4.3.2 Reinforcement Learning

As we do not wish to assume access to labeled data or an expert policy, the primary interest for us with this
work is to find decision policies using RL. While we solely used PPO for RL, other policy gradient algorithms
could be used in theory. In training the agent, we maximize the loss L = —L, — ¢.L. + ¢, H(w) through
stochastic gradient ascent, where L, is the actor loss, L. the critic prediction loss (¢ — Rt)2 and H(m) the
entropy of the action distribution given the state. The entropy term serves as a regularization parameter
and encourages exploration. Each VEJDE policy was trained with a total of 1500000 samples from problem
instances in the training set. All MLP policies were trained with 400000 samples per instance with the same
hyperparameters for all problems. Though both the MLLP and VEJDE agents are trained as stochastic policies,
we evaluated them deterministically by picking the most probable action from the action distribution for
a given state, rather than sampling the distribution. This choice was made to lower the variance of the
results, but it ignores that the policy may assign nearly equal probabilities to some actions. The results of
this experiment can be found in Section [5.2}

5 Results

Our primary evaluation metric is the average return for agents on problem instances in the test set, which
VEJDE agents were not trained on. For transductive agents, i.e. PROST and the MLP agents, we only count
scores on problems that are in the test set, averaged over the respective train/test splits.

Each RDDL domain uses rewards with different scales and magnitudes. We thus present returns normalized
to the range [0, 1], calculated using the method from IPPC 2014 (Vallati et al., [2015). Raw return values
for each domain, instance and agent can be obtained from our GitHub repositorylE All experiments were
done on a machine equipped with 32 GB of RAM, an Intel Xeon Silver CPU with 24 cores and an NVIDIA
Quadro RTX 4000 GPU.

5.1 Imitation Learning

Running PROST on the 90 problems for ten episodes each to collect training data took approximately 6 hours.
We then ran PROST for 100 episodes on all 90 problems for scores to use in evaluation, which took roughly
two days. Each mimic policy was trained for 1000 epochs over the training data, which was fed to the agent
in single batches of 2000 samples. Training mimic policies for all domains took approximately 30 minutes,
repeated five times with different train-test splits for a total of 2.5 hours. The mimic policy was then tested
on all problem instances for 100 episodes. To summarize the differences between the agents, we performed a

Bhttps://github.com/kasanari/vejde-rddl-eval

10

https://github.com/kasanari/vejde-rddl-eval

Published in Transactions on Machine Learning Research (1/2026)

Table 1: Differences in average normalized scores for imitation learning policies. Comparing PROST scores,
VEJDE scores on test instances, and scores on train instances. py,g; is probability according to null distribution
produced by permutation testing that P(|X| > |u1 — pal).

Comparison M1 — H2 Pnull
Test - Train 0.01 0.82
Test - PROST -0.26 0.00
Train - PROST -0.28 0.00

Table 2: Average normalized score per domain on test instances for PROST and VEJDE policies trained with

imitation learning.

Domain VEIDE p+0 PROST pu=+o
SysAdmin 0.99 + 0.03 0.87 £ 0.12
SkillTeaching 0.91 + 0.22 0.98 + 0.02
Tamarisk 0.88 + 0.06 1.00 £ 0.01
Elevators 0.87 £ 0.13 0.99 £ 0.02
Traffic 0.73 £ 0.16 1.00 £ 0.00
CrossingTraffic 0.63 + 0.31 1.00 + 0.00
Navigation 0.33 £+ 0.48 0.99 £+ 0.03
AcademicAdvising 0.21 4+ 0.42 0.75 + 0.44

permutation test to compare average mimic scores on train and test instances, as well as PROST SCOYBSE The
test calculates a distribution of a selected metric, in our case the difference in means, under the hypothesis
that the compared sample distributions are equal. It does so by pooling all the samples and calculating the
metric for permutations of the samples for a given number of repetitions. If the observed metric is unlikely
given the resulting distribution of metrics, then the null hypothesis of the samples have equal means can
be rejected. We observed a difference of 0.01 between the agent scores on test problems compared to train
problems, which according to the null distribution has a probability of occurring by 83%. We thus have more
confidence in the means being equal than not according to the test. The differences between PROST and
both the training and test sets are significantly larger, with a difference of -0.26 between PROST and the
VEJDE scores on the test set. The differences in mean with the p-values from the permutation test is shown
in and a plot of the null distribution from the test is shown in Appendix [F]

From the average test scores per domain, we observed varying differences to PROST between problem domains.
On some domains, such as SkillTeaching and SysAdmin there was not a significant difference between
the scores of PROST and the mimic policy. Two VEJDE scores fall under and average of 0.5, those for
AcademicAdvising and Navigation. We noted that PROST barely performs better than the lower bound return
on certain instances of AcademicAdvising, which is a possible cause of the low mimic performance on this
domain. Mimic test scores for each domain are shown in [Table 21

5.2 Reinforcement Learning

Training VEJDE policies for all domains using reinforcement learning took approximately 5 hours, which
repeated five times took a total of 35 hours. Training one MLP policy for each of the 90 problem instances
took approximately 24 hours. After training, all policies were executed on each of the problem instances
for 100 episodes, and the average return per instance was recorded. We used the same evaluation data for
PROST as was used in the imitation learning experiment. To create a summary score for over all domains, we
performed a permutation test with 10 samples to compare the test problem scores of the VEJDE agents with
the scores of the MLP policies and PROST on the same problems, with the null hypothesis that the agents
have equal average scores. If we assume that we can reject the null hypothesis with p < 0.05, we can not do

16We used https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html to run the test.

11

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html

Published in Transactions on Machine Learning Research (1/2026)

Table 3: Difference in average score between VEIJDE RL agents, instance-specific MLP agents and PROST
on test instances, averaged across all problem domains. p,.; is probability according to null distribution
produced by permutation testing that P(|X| > |u1 — pal).

Comparison 1 — M2 Pnull
VEJDE - MLP 0.05 0.17
VEJDE - PROST -0.43 0.00
MLP - ProsT -0.48 0.00

Table 4: Average normalized scores on test instances for agents trained using RL and PROST, per problem

domain.

Domain VEIDE p+0 MLP u4+o PROSTpu+o
SkillTeaching 0.84 £ 0.10 0.83 +£0.12 0.99 + 0.02
AcademicAdvising 0.77 +£0.39 0.19 £ 0.39 0.41 £ 0.46
SysAdmin 0.75 £0.23 0.89 £ 0.11 0.94 £ 0.09
Traffic 0.61 +£0.24 0.11 +0.12 1.00 £ 0.00
Tamarisk 0.56 £ 0.26 0.61 +0.11 1.00 £ 0.00
CrossingTraffic 0.42 £0.19 0.45+0.25 1.00 £ 0.00
Navigation 0.01 £0.03 0.13+0.33 1.00 = 0.00
Elevators 0.00 £0.00 0.21 £0.19 1.00 = 0.00

so for the difference between the mean scores of the MLP and VEJDE agents, but we can for the difference
between PROST and the other agents. There was thus, in average, not a significant statistical difference
between the average scores of the VEJDE agents and the MLP agents, which we consider good given that the
VEJDE agents were not trained on the considered instances. Both RL agents have significantly worse scores
than PROST in average. The statistics of the test are shown in and we have included a plot of the
resulting null distribution from running the test in Appendix [E]

We observed the VEJDE agent achieved significantly higher scores than the MLP agents on the domain Traffic,
and on one domain, AcademicAdvising, the VEIDE agent had higher scores than both PROST and the MLPs.
On the domain Navigation and Elevators the VEIDE agents had significantly worse scores than the other
agents, as well as their imitation learning counterparts. The scores of the MLP agents on these domains,
though slightly higher than those of the VEJDE agents, are also relatively low, indicating a general difficulty
in finding policies for these domains using reinforcement learning. Normalized test scores for each domain are

shown in [Table 4]

12

Published in Transactions on Machine Learning Research (1/2026)

6 Related Work

There have been a number of previous works that combine machine learning on graphs with decision problems,
and VEJDE piece-wise overlaps with several of these. We summarize the primary differences and overlapping
features with a non-exhaustive selection of related works in [Table 3l

There exists a large body of work in the realm of relational reinforcement learning. The book by [Van Otterlo
(2009) covers much of research in the area prior to the 2010s, which is composed of both purely symbolic
and non-neural machine learning methods for both value-based and policy-based relational reinforcement
learning. The survey by [Mohan et al.[(2024)) covers more recent works, as well as some older, from a more
general perspective of incorporating structure in RL. They use the term “side information” to refer to various
forms of structural information provided to agents to improve learning, but which is not part of the typical
MDP formalism. Side information used by various works include data abstractions, information about system
dynamics and goal formulations, which typically improve data efficiency or policy generalization at the cost of
requiring more prior knowledge about the problem or computational power. By their categorization, the only
side information we use in VEJDE is data abstraction, where we assume that there exists a data description
language that can describe object classes and relations from a given problem domain. This is, in our opinion,
a significantly lighter assumption than for instance Sharma et al.| (2023]) makes, which is full knowledge of
the dynamic Bayesian network in order to construct the input graph for the policy.

An alternate method of inductive policy generation which we consider interesting is decision list learning.
The state is represented with symbolic logic, but rules for action selection are represented explicitly in a
human-readable manner rather than implicitly encoded as weights in a neural network. |Fern et al.| (2006)
presents a symbolic method that searches for a policy through a combination of beam-searching and policy
iteration. Neural methods for decision list rule generation that incorporate numeric optimization have also
been proposed (Hazra & Raedt) 2023; [Delfosse et al.l |2023), which in some cases assign numeric weights to
the rules in order to make the policy probabilistic. Representing rules in a human-readable manner has an
immediate benefit of being able to manually analyze and interpret the policy, which is good for transparency,
but requires a method for searching a potentially large space of possible rules. We also recognize the possibility
to extract explicit rules from a trained MPNN policy post-hoc.

The topic of generalization in reinforcement learning for classes of problems has also been covered from
the perspective of deep learning. In their survey of RL generalization, Kirk et al.| (2023]) separate learning
problems into three categories: singleton problems where the training and test environments are the same;
Independent and Identically Distributed (IID) generalization problems, where the test environments are
different but sampled from the same distribution as the train environments; Out of Distribution (OOD)
generalization problems, where the test environments are sampled from a different distribution. An example of
such problems is the collection “ProcGen”, which define problems using distributions over variables such that
randomly generated problem instances can be sampled from them (Cobbe et al.| [2020). By their classification,
we are focusing on IID generalization of the agent in our evaluation.

6.1 Deep Relational Reinforcement Learning

The works which we consider closest in type to ours are those which use graph-based state representations to
predict action probabilities in a model-free learning context. The sequential method we use to sample actions
is influenced by |Janisch| (2024)), who presents an autoregressive decoding scheme to sample the components
of actions, which allows for both nullary and higher-order actions. For actions with an arity greater than
one, additional rounds of message-passing are executed after sampling an object, marking objects that have
already been selected with an additional feature. Unlike us, they use simple graphs to represent the facts of
the state, which limits the method to problems with binary relations. Agents are trained using policy gradient
optimization in an unsupervised manner. They evaluate their method on implementations of SysAdmin,
Blockworld and a modified version of the game Sokoban.

Garg et al.|(2019), like us, use reinforcement learning to train policies based on the RDDL domains SysAdmin,
Game of Life and Academic Advising. These are all represented as a simple graph of binary relations between
objects, with a single unary action. While this work use a similar evaluation as us, we can not compare our

13

Published in Transactions on Machine Learning Research (1/2026)

results directly with them, as they too present normalized scores but have not calculated them in relation to
any baseline policies. Therefore, we can not determine if their method performs better than a random or null
policy on these domains. Additionally, they train and test on hand-picked subsets of instances, rather than
all instances.

Ammanabrolu & Ried]| (2019)) offers a somewhat different perspective, coming from a natural language
processing context. Agents are evaluated on a text-based game, where an agent has to navigate a simulated
space and solve puzzles. They represent observations using a simple graph, which use word embeddings as
node features, and select actions as Resource Description Framework (RDF) triplets, on the form (subject,
verb, object).

We also wish to highlight a set of works we refer to as object-oriented reinforcement learning, which includes
works by |Guestrin et al.| (2003), Diuk et al.| (2008) and more recently |Zambaldi et al. (2019). We categorize
these works by the fact that they model the state using conditionally independent objects, but without
explicit relationships. Mohan et al.| (2024) classifies these works as factored representations, as opposed to
relational representations that include relations, as we do. A number of works in the context of multi-agent
reinforcement learning, such as [Foerster et al.| (2018]), arguably fit this category when the complete system
state is factorized into discrete states or observations for each individual agent. The object-oriented approach
is practical in the sense that one does not have to define or observe relationships between objects, but tends to
have worse scaling properties since approaches typically compares every entity to one another. It is, however,
less sensitive to violations of the homophily assumptions which MPNNs rely on, .e. that things which are
connected in the graph are related.

6.2 Automated Planning

Many works that use symbolic logic to represent problems operate in the research area of planning, which
tends to assume deterministic system models, as opposed to MDPs with probabilistic state transitions.
Nevertheless, we share features with multiple works within this research area. For instance, |Chen & Thiébaux
(2024) and |Stahlberg et al.| (2023) both use factor graph state representations, but predict heuristic scores over
subsequent states rather than probabilities over actions. |(Chen et al.| (2024]) use the WL algorithm to generate
latent states, which are then used to produce heuristic scores. In a subsequent work, |Chen & Thiébaux
(2024) extends the WL algorithm to incorporate numeric features, and evaluate their method on a single
deterministic goal-oriented problem, Blockworld. They train their models in a supervised manner based on
pre-calculated optimal plans. We find this pair of works interesting in that they show that a computationally
simpler representation can be used to generate latent states, at least for the singular problem they investigated.
In Stahlberg et al.| (2023)) agents are trained in an unsupervised manner using reinforcement learning, as well
as a value function using supervised learning. They evaluate their method on several problems defined in
PDDL. In a subsequent work, |Stahlberg et al.| (2025]) focuses on methods for higher-order action selection,
but these are only evaluated with supervised learning.

14

Published in Transactions on Machine Learning Research (1/2026)

Table 5: Summary of features in a selection of related works in graph-based decision policy learning compared
to VEJDE. Only works that base their states on observations, rather than environment dynamics, are included.
The “KG” column tells if the state is bounded to only include binary relations, and the “action arity” column
shows the number of arguments of actions, when actions are used rather than heuristics.

Work Supervised Probabilistic Continous KG Action
learning problems features arity
Ammanabrolu & Riedl| (2019) No No No Yes 2
Garg et al.| (2019) No Yes No Yes 1
Stahlberg et al.| (2023) No No No No N/A
Chen & Thiébaux! (2024) Yes No Yes No N/A
Janisch| (2024) No Yes No Yes [0, 1, 2]
Stahlberg et al. (2025) Yes No No No 2
Vejde (Our work) No Yes Yes No [0, 1]

15

Published in Transactions on Machine Learning Research (1/2026)

7 Discussion

This section covers our thoughts on the results, the design decisions made with VEJDE and the problem
selection.

7.1 Agent Performance
7.1.1 Vejde

The VEJDE agent trained with RL received average scores higher than the trivial policies on 8/10 domains.
We consider this a positive indication that VEJDE can be used to represent policies that can generalize to
unseen problem instances within a class of problems. We observed a negative difference in score between the
mimic policy and RL policy for most problem domains. FElevators has the most significant difference, with
an 87 percent unit drop between the experiments. Since the problems and VEJDE architectures were the
same for both experiments, we attribute this difference to PPO not discovering a set of policy parameters
that work and those found when imitating PROST. It remains an open question as to how this difference
can be reduced. Navigation and CrossingTraffic occur in the set of problems the VEJDE policies receive the
lowest scores in, both in the reinforcement and imitation learning experiments. They are both grid-based,
with discrete cartesian coordinates represented as objects and only nullary actions. These are arguably not
the kinds of problems that we would choose to use VEJDE with, in that representing a uniform grid as a
graph is needlessly complicated and the number of possible actions is constant regardless of the grid size.
Nevertheless, they fit the selection criteria we set, so we feel that it would be unfairly selective to exclude
them. They are arguably a good test of the architectures ability to generate whole-graph embeddings, in
that they can be regarded as graph classification tasks, but the hypothesis that a whole graph aggregation is
needed to solve these problems remains untested.

7.1.2 MLP

The transductive MLP policies received higher average scores than VEJDE agents for individual instances,
meaning that they represent a good alternative to VEJDE if generalization is not a priority. If the number
of entities in the problem changes, additional policies need to be trained to account for the different input
spacem or an input space that is agnostic to the number of entities need to be used. In theory, a VEIDE
policy can only be as good as a MLP policy on a given instance, assuming that the MLP policy is optimal,
and the inductive policy is also optimal for all problem instances. If the inductive policy can not be optimal
for all instances due to problem complexity, we would expect a score of the inductive policy to occur between
those for the optimal policy for the instance and the trivial policies. We observe, on average, that the scores
of the VEJDE agents were statistically close to the scores of the MLP agents. In practice, due to the somewhat
unstable optimization that deep RL constitutes, both the MLP and GNN may converge to local minima.
This is our primary explanation as to why VEJDE policies scored higher than MLP policies on some domains.
We could strengthen our evaluation by training five copies of MLP policies with some variation, such as
different initialization values, to pair with the five VEJDE agents using different training sets. However, given
the long training time required to train the 90 MLP policies, we opted against this. We hypothesize that our
primary takeaway, that the scores of the inductive VEJDE policies is correlated with the transductive MLP
policies, will still hold.

7.1.3 Prost

PROST receives the highest scores on most problems, showing its strong capability to search for optimal
actions. However, the main drawback of PROST is that it is always dependent on an accurate generative
model of the problem during test-time inference. This can be difficult to accommodate for use-cases where
an accurate system model is not available, or the execution environment does not have the resources to
perform continuous simulations. In contrast, the RL policies only need the simulator during training but
do not perform any planning when choosing actions. The cost of the high scores with PROST is also paid
with a much higher inference time, which we had to count in days, as opposed to minutes for the RL policies.

17The practical benefits of having to handle one agent per domain as opposed to ten is hard to quantify, but not insignificant.

16

Published in Transactions on Machine Learning Research (1/2026)

Despite a strong overall performance, PROST performs little better than the do-nothing policy on certain
problem instances, most notably from the domain AcademicAdvising. We are unsure if this is caused by
PROST not being well-adapted for this particular problem, or the instances being defined such that doing
nothing is indeed the optimal course of action. The higher average scores of the VEJDE agents suggests the
latter may not be the case, however. The low scores of PROST on this domain is also reflected in the mimic
policy, which are significantly worse on the problem compared to its RL counterpart.

7.2 Alternative State Representations

The maximum arity of facts across the problems we evaluate with is two. We could therefore represent the
state for all included problems as a simple graph consisting of only nodes and edges, as|Janisch| (2024]) or |Garg
et al| (2019). This is a format which is also known as Knowledge graphs (KGs), or RDF graphs, within
certain research contexts (Ammanabrolu & Riedl, 2019). However, it is not common for works that handle
KGs to incorporate numeric features, or object-specific features at all, which we require. [Fey et al.| (2024a)
presents a graph representation directly influenced by relational databases, which extends simple graphs to
include heterogeneous data. They group unary attributes of entities into fixed-sized vectors, analogous to the
table columns in relational databases, forming a heterogeneous graph. The bipartite representation we use is
more flexible in that entities can be represented with variably-sized sets of unary attributes. Being able to
ignore missing or unseen attributes without padding is practical for problems where there are many possible
object attributes, but only a small subset are present at a given time. We may, for instance, want to define
many possible alerts for hosts in a network intrusion detection system, while only including the alerts that
have actually been observed in the agent input.

In addition to changing the graph structure, there are also alternate methods for encoding the information in
the graph, such as the graph attention method we describe in Appendix [H]l The conceptually simpler WL
algorithm can be used instead of neural message-passing to encode the nodes and graph into latent states.
However, for domains with continuous state variables the number of possible states becomes infinite, and
we lose the ability to interpolate between latent states. Modifications can be made to the WL to allow for
continuous representations (Chen & Thiébaux] 2024). We have also noted methods for belief propagation on
factor graphs which incorporate neural networks, such as the one by [Kuck et al.| (2020), which could provide
a different method for message-passing compared to the WL algorithm.

7.3 Limits to Generalization

Problems defined in RDDL arguably represent an ideal situation for structural generalization. The dynamics
and reward are specified in a factored and lifted manner, meaning that we can map objects to their respective
types and not lose instance-specific information. The dynamics are also constant across problem instances and
the observations use the exact same predicates that are given to the agent, meaning that the value function
and optimal policy can be defined using the language. In a realistic setting, there may be a disconnect
between the data abstractions and the system they represent. This arguably forms a partially observable
MDP, or a “context” MDP as described by Kirk et al.| (2023) which each require more complex solutions
methods than for the fully observable problems we consider in this evaluation.

17

Published in Transactions on Machine Learning Research (1/2026)

8 Conclusion

We have developed and evaluated a framework that combines graph learning with model-free RL to find
inductive policies for structured MDPs, which we call VEJDE. The design allows policies to handle states
which vary in both size and structure, as well as variable amounts of possible actions. We evaluated VEIDE
policies on eight problem domains defined with the Relational Dynamic Influence Diagram Language, training
policies both by examples provided by the planner PROST, and with reinforcement learning. From our results,
we found that the VEJDE policies had, in average, a test performance on unseen instances not significantly
different to MLP policies trained on each individual instance We also found that on some problem domains,
policies trained with RL performed significantly worse than the corresponding policies trained with imitation
learning. This leads us to a conclusion that different optimization procedures may be needed, such as improved
exploration, to close this difference. Given that we as a society store much of our data using relational
databases, we see a need to explore methods that allow us to apply neural networks to the data in the way it
is stored. Previous work has explored the use of neural graph learning on databases for supervised learning,
and in this work we show that a similar methodology can be used for reinforcement learning. Incorporating
structure like relational databases provides in the design of the architecture facilitates structural generalization
of agent policies, which we believe improves the real-world usability of reinforcement learning solutions.

Acknowledgments

The authors would like to thank the authors of the pyRDDLGym library for making the problem domains,
the MLP policy and Prost easily accessible for evaluation, and for responding to questions that arose during
the work.

18

Published in Transactions on Machine Learning Research (1/2026)

References

Prithviraj Ammanabrolu and Mark O. Riedl. Playing text-adventure games with graph-based deep rein-
forcement learning. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 3557-3565. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1358.
URL https://doi.org/10.18653/v1/n19-1358.

Pablo Barcel6, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva. The
logical expressiveness of graph neural networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview|
net/forum?id=r11Z7AEKvB.

Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured english query language. In Proceedings of
the 197/ ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
74, pp. 249-264, New York, NY, USA, 1974. Association for Computing Machinery. ISBN 9781450374156.
doi: 10.1145/800296.811515. URL https://doi.org/10.1145/800296.811515.

Dillon Z. Chen and Sylvie Thiébaux. Graph learning for numeric planning. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouwver, BC, Canada, December 10 — 15, 2024, 2024. URL http://papers.nips.cc/
paper_files/paper/2024/hash/abc47clb7adf19e8dc633812a4acf6d2-Abstract-Conference.html,

Dillon Z. Chen, Felipe W. Trevizan, and Sylvie Thiébaux. Return to tradition: Learning reliable heuristics
with classical machine learning. In Sara Bernardini and Christian Muise (eds.), Proceedings of the
Thirty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2024, Banff,
Alberta, Canada, June 1-6, 2024, pp. 68-76. AAAT Press, 2024. doi: 10.1609/ICAPS.V3411.31462. URL
https://doi.org/10.1609/icaps.v34i1.31462.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 2048-2056. PMLR, 2020. URL http://proceedings.mlr.press/v119/cobbe20a.htmll

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377-387, June
1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL https://doi.org/10.1145/362384.362685.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable and explainable
logical policies via neurally guided symbolic abstraction. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems
86: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
9f42106ab54ce3b709ad78d34c73e4363-Abstract-Conference.html,

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient re-
inforcement learning. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008, volume 307 of ACM International Conference Proceeding Series, pp. 240-247. ACM, 2008. doi:
10.1145/1390156.1390187. URL https://doi.org/10.1145/1390156.1390187.

Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Mach. Learn., 43(1/2):
7-52, 2001. doi: 10.1023/A:1007694015589. URL https://doi.org/10.1023/A:1007694015589.

Alan Fern, Sung Wook Yoon, and Robert Givan. Approximate policy iteration with a policy language bias:
Solving relational markov decision processes. J. Artif. Intell. Res., 25:75-118, 2006. doi: 10.1613/JAIR.1700.
URL https://doi.org/10.1613/jair.1700.

19

https://doi.org/10.18653/v1/n19-1358
https://openreview.net/forum?id=r1lZ7AEKvB
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.1145/800296.811515
http://papers.nips.cc/paper_files/paper/2024/hash/a5c47c1b7adf19e8dc633812a4acf6d2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a5c47c1b7adf19e8dc633812a4acf6d2-Abstract-Conference.html
https://doi.org/10.1609/icaps.v34i1.31462
http://proceedings.mlr.press/v119/cobbe20a.html
https://doi.org/10.1145/362384.362685
http://papers.nips.cc/paper_files/paper/2023/hash/9f42f06a54ce3b709ad78d34c73e4363-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9f42f06a54ce3b709ad78d34c73e4363-Abstract-Conference.html
https://doi.org/10.1145/1390156.1390187
https://doi.org/10.1023/A:1007694015589
https://doi.org/10.1613/jair.1700

Published in Transactions on Machine Learning Research (1/2026)

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex Ying,
Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph representation learning
on relational databases. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?id=
BIMSHniyCP.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex Ying,
Jiaxuan You, and Jure Leskovec. Position: Relational Deep Learning - Graph Representation Learning
on Relational Databases. In Proceedings of the 41st International Conference on Machine Learning, pp.
13592-13607. PMLR, July 2024b. URL https://proceedings.mlr.press/v235/fey24a.html. ISSN:
2640-3498.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence, AAAT18/TAAT18/EAAT’18. AAAT Press,
2018. ISBN 978-1-57735-800-8.

Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural transfer for RDDL planning. In
J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth Srivastava (eds.), Proceedings of
the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2019, Berkeley,
CA, USA, July 11-15, 2019, pp. 631-636. AAAT Press, 2019. URL https://ojs.aaai.org/index.php/
ICAPS/article/view/3530.

Martin Grohe. The logic of graph neural networks. In Proceedings of the 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’21, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781665448956. doi: 10.1109/LICS52264.2021.9470677. URL https:
//doi.org/10.1109/LICS52264.2021.9470677.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new environments
in relational mdps. In Georg Gottlob and Toby Walsh (eds.), IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pp. 1003—
1010. Morgan Kaufmann, 2003. URL http://ijcai.org/Proceedings/03/Papers/144.pdf.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through
world models. Nature, 640(8059):647 — 653, 2025. doi: 10.1038/s41586-025-08744-2.

Rishi Hazra and Luc De Raedt. Deep explainable relational reinforcement learning: A neuro-symbolic
approach. In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi
(eds.), Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference,
ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part IV, volume 14172 of Lecture
Notes in Computer Science, pp. 213-229. Springer, 2023. doi: 10.1007/978-3-031-43421-1_13. URL
https://doi.org/10.1007/978-3-031-43421-1_13.

Jaromir Janisch. Applications of Deep Reinforcement Learning in Practical Sequential Information Acquisition
Problems. PhD thesis, Czech Technical University, 2024.

Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon MDPs. In Proceedings
of the Twenty-Third International Conference on Automated Planning and Scheduling (ICAPS 2013), pp.
135-143. AAAI Press, 2013.

Kristian Kersting and Kurt Driessens. Non-parametric policy gradients: a unified treatment of propositional
and relational domains. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008, volume 307 of ACM International Conference Proceeding Series, pp. 456-463. ACM, 2008. doi:
10.1145/1390156.1390214. URL https://doi.org/10.1145/1390156.1390214.

20

https://openreview.net/forum?id=BIMSHniyCP
https://openreview.net/forum?id=BIMSHniyCP
https://proceedings.mlr.press/v235/fey24a.html
https://ojs.aaai.org/index.php/ICAPS/article/view/3530
https://ojs.aaai.org/index.php/ICAPS/article/view/3530
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1109/LICS52264.2021.9470677
http://ijcai.org/Proceedings/03/Papers/144.pdf
https://doi.org/10.1007/978-3-031-43421-1_13
https://doi.org/10.1145/1390156.1390214

Published in Transactions on Machine Learning Research (1/2026)

Mitchell Kiely, Metin Ahiskali, Etienne Borde, Benjamin Bowman, David Bowman, Dirk Van Bruggen,
KC Cowan, Prithviraj Dasgupta, Erich Devendorf, Ben Edwards, Alex Fitts, Sunny Fugate, Ryan Gabrys,
Wayne Gould, H. Howie Huang, Jules Jacobs, Ryan Kerr, Isaiah J. King, Li Li, Luis Martinez, Christopher
Moir, Craig Murphy, Olivia Naish, Claire Owens, Miranda Purchase, Ahmad Ridley, Adrian Taylor, Sara
Farmer, William John Valentine, and Yiyi Zhang. Exploring the efficacy of multi-agent reinforcement
learning for autonomous cyber defence: A CAGE challenge 4 perspective. In Toby Walsh, Julie Shah, and
Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence,
February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 28907-28913. AAAT Press, 2025. doi: 10.1609/
AAAILV39128.35158. URL https://doi.org/10.1609/aaai.v39i28.35158|

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktédschel. A survey of zero-shot generalisation
in deep reinforcement learning. J. Artif. Intell. Res., 76:201-264, 2023. doi: 10.1613/JAIR.1.14174. URL
https://doi.org/10.1613/jair.1.14174l

Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal, and
Stefano Ermon. Belief propagation neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
07217414eb3fbe24d4ebb6cafb91cal8—Abstract.html.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural networks.
In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in deep reinforcement learning: A survey and
open problems. J. Artif. Int. Res., 79, April 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15703. URL
https://doi.org/10.1613/jair.1.15703|

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 4602-4609.
AAAT Press, 2019. doi: 10.1609/AAAI.V33101.33014602. URL https://doi.org/10.1609/aaai.v33i01,
33014602.

Jakob Nyberg and Pontus Johnson. Structural generalization in autonomous cyber incident response with
message-passing neural networks and reinforcement learning. In IEEFE International Conference on Cyber
Security and Resilience, CSR 2024, London, UK, September 2-4, 2024, pp. 282-289. IEEE, 2024. doi:
10.1109/CSR61664.2024.10679456. URL https://doi.org/10.1109/CSR61664.2024.10679456.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series
in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/9780470316887. URL
https://doi.org/10.1002/9780470316887.

Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker (eds.), Logic and Data Bases,
Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977, Advances
in Data Base Theory, pp. 55-76, New York, 1977. Plemum Press. doi: 10.1007/978-1-4684-3384-5\ 3.
URL https://doi.org/10.1007/978-1-4684-3384-5_3.

Raymond Reiter. Knowledge in action: logical foundations for specifying and implementing dynamical systems.
MIT Press, 2001. ISBN 978-0-262-52700-2 978-0-262-28231-4 978-0-585-44830-5 978-0-262-18218-8.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition, 2010.
Scott Sanner. Relational dynamic influence diagram language (rddl): Language description, 2010. URL
https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf|

21

https://doi.org/10.1609/aaai.v39i28.35158
https://doi.org/10.1613/jair.1.14174
https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://doi.org/10.1613/jair.1.15703
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1109/CSR61664.2024.10679456
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-1-4684-3384-5_3
https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

Published in Transactions on Machine Learning Research (1/2026)

Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs. In Arindam
Banerjee and Kenji Fukumizu (eds.), The 2/th International Conference on Artificial Intelligence and
Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning
Research, pp. 685-693. PMLR, 2021. URL http://proceedings.mlr.press/v130/garcia-satorras2la,
html.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Yoshua Bengio and Yann LeCun (eds.), 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Vishal Sharma, Daman Arora, Mausam, and Parag Singla. Symnet 3.0: Exploiting long-range influences
in learning generalized neural policies for relational mdps. In Robin J. Evans and Ilya Shpitser (eds.),
Uncertainty in Artificial Intelligence, UATI 2023, July 31 — 4 August 2023, Pittsburgh, PA, USA, volume 216
of Proceedings of Machine Learning Research, pp. 1921-1931. PMLR, 2023. URL https://proceedings/|
mlr.press/v216/sharma23c.html.

Simon Stahlberg, Blai Bonet, and Hector Geffner. Learning more expressive general policies for classical
planning domains. In Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), 2025.

Simon Stéhlberg, Blai Bonet, and Hector Geffner. Learning general policies with policy gradient methods. In
Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner (eds.), Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece, September
2-8, 2023, pp. 647-657, 2023. doi: 10.24963/KR.2023/63. URL https://doi.org/10.24963/kr.2023/63.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2023.127063. URL https://www.sciencedirect.com/science/
article/pii/S0925231223011864.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ayal Taitler, Michael Gimelfarb, Jihwan Jeong, Sriram Gopalakrishnan, Martin Mladenov, Xiaotian Liu, and
Scott Sanner. pyrddlgym: From rddl to gym environments, 2024. URL https://arxiv.org/abs/2211,
05939.

Isaac Symes Thompson, Alberto Caron, Chris Hicks, and Vasilios Mavroudis. Entity-based reinforcement
learning for autonomous cyber defence. In Ali Dehghantanha, Reza M. Parizi, and Gregory Epiphaniou
(eds.), Proceedings of the Workshop on Autonomous Cybersecurity, AutonomousCyber 2024, Salt Lake
City, UT, USA, October 14-18, 2024, pp. 56-67. ACM, 2024. doi: 10.1145/3689933.3690835. URL
https://doi.org/10.1145/3689933.3690835.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu, Manuel
Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard interface for
reinforcement learning environments, 2024. URL https://arxiv.org/abs/2407.17032.

Mauro Vallati, Lukas Chrpa, Marek Grze$, Thomas Leo McCluskey, Mark Roberts, Scott Sanner, and
Managing Editor. The 2014 international planning competition: Progress and trends. Al Magazine, 36(3):
90-98, Sep. 2015. doi: 10.1609/aimag.v36i3.2571. URL https://ojs.aaai.org/aimagazine/index.php/
aimagazine/article/view/2571,

Martijn Van Otterlo (ed.). The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for
Adaptive Sequential Decision Making under Uncertainty in First-Order and Relational Domains. Number v.
192 in Frontiers in Artificial Intelligence and Applications. Ios Press, Amsterdam Washington, D.C, 2009.
ISBN 978-1-60750-406-1 978-1-4416-1686-9.

22

http://proceedings.mlr.press/v130/garcia-satorras21a.html
http://proceedings.mlr.press/v130/garcia-satorras21a.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v216/sharma23c.html
https://proceedings.mlr.press/v216/sharma23c.html
https://doi.org/10.24963/kr.2023/63
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://arxiv.org/abs/2211.05939
https://arxiv.org/abs/2211.05939
https://doi.org/10.1145/3689933.3690835
https://arxiv.org/abs/2407.17032
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2571
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2571

Published in Transactions on Machine Learning Research (1/2026)

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvéri, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pp. 23341-23362. PMLR, 2022. URL https://proceedings.mlr.press/
v162/wang22am.html.

Melody Wolk, Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina Moskowitz, Harold Nguyen, Nicole
Nichols, Nicole Park, Paul Rachwalski, Frank Rau, and Adrian Webster. Beyond cage: Investigating
generalization of learned autonomous network defense policies. In International Conference on Machine
Learning Workshop, ML/ Cyber. International Conference on Machine Learning Workshop, ML4Cyber,
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 28877-28888, 2021. URL https://proceedings.neurips|
cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html,

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan
Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep reinforcement learning with
relational inductive biases. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HkxaFoC9KQ.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via graph
biconnectivity. In The FEleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=r9hNv76KoT3|

23

https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.mlr.press/v162/wang22am.html
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
https://openreview.net/forum?id=HkxaFoC9KQ
https://openreview.net/forum?id=HkxaFoC9KQ
https://openreview.net/forum?id=r9hNv76KoT3

Published in Transactions on Machine Learning Research (1/2026)

9 Appendices

A Example State and Actions

Given the predicates {P, @, Z,C} and objects {x1,y1,¥y2}, a particular state can be described as the set
{P(z1),Q(z1,y1),Z(y1) = 5,Q(x2,y1),C}. Given the action symbols {Ay, A2}, which can have different
arities and type restrictions, a possible set of actions for the state may be {A;(x1), A1(x2), A2(x1)}. In the
resulting bipartite graph, U = {z1,y1, 22} and V = {P(z1), Q(z1,v1), Z(v1) =5, Q(z2,v1), C}.

B Implementation Details

This appendix contains details which are less important in theory, but are relevant to the practical aspects of
the implementation.

B.1 Batching

Since each sample can vary in size, the common batching method of stacking vectors can not be used unless
padding is added. We opt for the batching method used by graph learning code libraries such as PyTorch
Geometric (Fey & Lenssen, [2019)), where the adjacency matrix of the graph is stored in a COO matrix format.
Thus, the node and adjacency vectors for each graph are concatenated in order to produce a single, albeit
disconnected, graph.

B.2 Action Masking

We calculate the probability of each action symbol for every object in the state, leading to the joint probability
function including literals that are not possible according to the argument types of the action symbols. Under
the assumption that taking invalid actions is equivalent to doing nothing, this leads to unnecessary exploration
during training, as the agent has to explore a potentially large number of parameter combinations that will
never be viable. We thus mask out parameter combinations that are incorrect according to the types of the
action symbol. In practice, this means that the weights of invalid predicate-object combinations are assigned
large negative values, so that the corresponding probabilities becomes zero.

B.3 Code Library Design

VEJDE is designed to be domain-agnostic, and is built upon the Gymnasium interface (Towers et al.| [2024)).
The heart of the implementation is a relational data model class, where predicate symbols, action symbols
and object types of the particular problem domain are specified. This class is then used to shape the GNN
and construct the graph representation of the state. We use a RDDL-specific instance of this class for our
evaluation, which pulls the required information from a RDDL domain specification. In order to apply the
library to a new problem domain, a relational data model for that domain has to be defined.

B.4 Score Normalization

Returns are normalized according to the method used in IPPC 2014 (Vallati et al.l |2015): For each instance,
a lower bound return, R;,,, is the maximum average return received from taking random actions or doing
nothing. A maximum return, Ry,,,, for an instance is the highest return obtained among the evaluated
methods. The score of an agent on a given instance is then max(R—Riow,0)/(Rpax—Roase), Where R is the average
return over a given number of episodes. Thus, a score of 0 means that an agent performs worse or equal to
acting at random or doing nothing, and 1 represents always having the highest score among the compared
agents. We emphasize that a score of 1 does not imply that the agent follows the optimal policy of the MDP,
which we do not have access to for comparison.

24

Published in Transactions on Machine Learning Research (1/2026)

Parameter Name Value
Graph Neural Network

Embedding size 16
Activation function tanh
Message passing layers 4
Critic prediction heads 2
Aggregation function max
Proximal Policy Optimization

Policy ratio clip factor 0.2
Entropy loss coefficient 0.1/0.001/0.0001
Critic loss coefficient 1.0
GAE X 0.95
Rollout steps 1024
Update epochs 10
General Optimization

Optimizer Amsgrad
Max. grad.2-norm 1.0
Total steps 1500000
Batch size 16
Number of parallel envs. 16
Discount factor 0.99
Learning rate 1073/1074/107°
Exponential average « 0.99

Table 6: Hyperparameters for reinforcement learning of VEJDE policies. Learning rate and entropy coefficient
was lowered every 500000 steps.

C Hyperparameters

We used the same set of hyperparameters while training the GNN for all domains, which were chosen manually
based on training time and returns observed in preliminary experiments on the training set. A rudimentary
annealing scheme was used while training VEIJDE agents, where the learning rate was lowered by a factor of
10 for every 500000 samples. The coefficient of the entropy term was also lowered after 500000 samples, to
guard against the policy converging to local minima early.

A source of difficulty in assigning a single set of hyperparameters was that the return values of the different
domains, and even instances within the same domain, can have vastly different magnitudes. To improve
the robustness of the optimization, we used two tricks from Dreamer (Hafner et all |2025)). The first is to
scale R; and the value estimate ¥ by the symlog function, and the second is to scale the advantage A; by an
exponential moving average of the return value range. The advantage A; was calculated using generalized
advantage estimation (GAE) (Schulman et all 2016)), as is common in implementations of PPO.

summarizes hyperparameters used in VEJDE during experiments .

D Problem Selection & Extensions

In selecting the domains for evaluation, we excluded problems based on a set of filters, which we comment on
in this appendix as stepping stones for extensions to the work.

D.0.1 Continuous Actions

Since the policy is parameterized by neural networks, and PPO has previously used for continuous action
selection, including actions with continuous values is theoretically straightforward but would require changing

25

Published in Transactions on Machine Learning Research (1/2026)

the formulas for action probabilities and value estimations to account for the additional choice that the action
value represents. Currently, the value for all actions is assumed to be a logical “True”.

D.0.2 Higher-Order Actions

We define higher-order actions as actions which involve more than one object. If we set the limit to at
most binary actions, predicting the action is roughly equivalent to link prediction in the greater context of
graph learning. Implementations of higher-order actions tend to require that tuples of objects are compared,
which scales poorly if done naively (Stahlberg et al., 2025; |Ammanabrolu & Riedl, 2019; Morris et al., [2019)).
For binary actions, the number of argument combinations scales quadratically, trinary cubically and so
on. Autoregressive sampling of action arguments, as done by [Janisch| (2024)), is an alternative method for
producing higher-order actions which scales better than evaluating every possible tuple, but requires a solution
for representing partial actions to the decoding model.

D.0.3 Concurrent Actions

The decentralized nature of MPNNs makes them suitable for implementing concurrent action selection, i.e.
agents performing more than one action in a given timestep. |Janisch (2024) demonstrated this with the
SysAdmin domain, where the problem is changed to the agent selecting a subset of hosts rather than a
single hosts. Having the agent select one action for each object, or a subset of objects, moves us closer
to a cooperative multi-agent reinforcement learning formulation (Foerster et al.,|2018), where we can view
the graph as consisting of an arbitrary number of conditionally independent policies that should act in a
cooperative manner.

D.0.4 Partial Observability

Including problems with partial observability, or hidden context variables as defined by Kirk et al.| (2023)
would, in our opinion, improve the practical usability of VEJDE. Finding inductive solutions to problems
with partial observability would likely require the addition of memory to the agent, or a temporal component
to the database.

D.0.5 Action Preconditions

This filter came about as a consequence of how pyRDDLGym handles action constraints. Certain domains in
rddlrepository define logical constraints that limit what actions an agent is allowed to execute given the
current state. If an agent executes an action which violates a constraint, the options in the simulator are
to either crash, or put the simulator into an undefined state. A naive solution to this problem is to check
if actions violate a constraint, and replace them with a default action, but not all domains define default
actions. Another solution is to repeatedly sample the policy until a legal action is picked, but this requires a
tighter coupling of the policy and environment than the Gymnasium interface typically defines.

D.0.6 Nullary Domains

Though we did not formally include it in our results, we also tested VEJDE with the RDDL definition of the
classic control problem CartPole with discrete actions. In this relational context CartPole becomes somewhat
of an edge-case, as it is defined with only nullary predicates and actions. The policy decision is thus solely
based on the aggregation of nullary predicates, described in While recognizing that it constitutes a
somewhat overcomplicated solution to the problem, we anecdotally found that VEJDE was able to find a
satisfactory policy for the domain.

D.1 Problems not Defined in RDDL

While we do not focus on problems not defined in RDDL in this paper, our implementation is designed to be
used for other, yet relational, problem areas. We chose to use RDDL for our evaluation as it allows us to
evaluate VEJDE on a varied selection of abstracted problem types without much additional implementation
work. For the purpose of developing policies for automated defense, incident response has been simulated in

26

Published in Transactions on Machine Learning Research (1/2026)

4.0

——- Test Statistic: 0.0495, p-value: 0.1682

3.51

3.01

Density (%)
N N
=} wn

-
u
L

1.01

0.5

0.0 -

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Mean Score Difference (score - mip)

Figure 2: Null distribution from permutation test between average scores of VEJDE and MLP agent on all
problems. p-value is calculated as P(X > 0.0495) - 2.

a number of works, often as a two-agent game between an attacking and defending agent (Wolk et al. [2022)).
One of the more prominent examples of network incident response simulation is the CAGE set of problems,
of which CAGE 4 is the most recent instance (Kiely et al.,2025). The problem state in both simulated and
real-world incident response is often derived from log and system data, which tends to be relational by design
and thus fits the relational reinforcement learning paradigm fairly well, as demonstrated by [Thompson et al.|

(2024)) for instance.

E Notes on Navigation

The goal of Navigation is for the agent to reach a given location, at which point a reward of 0 is given for
each step. All IPPC problems uses 40 timesteps, meaning that if the agent reaches the end early the optimal
action is for the agent to do nothing. This leads to a significant number of state-action tuples in the data
collected from Prost consisting of Prost doing nothing. This skewed data distribution seems to impact mimic
training negatively. With an extended amount of epochs over the training data, mimic performance improved
significantly. Improved results was also obtained when all state-action tuples from after the agent has reached
the goal were removed from the training data. This does not explain the RL agent’s poor performance on
Navigation, but it does answer the question of whether the architecture can encode a policy that does well on
the problem.

F Plots from Permutation Test
Figures [2] and [3] show null distributions produced by sampling permutations of the pooled data and calculating

the average score, with the observed average score marked with a red line. 10° permutations were used. Null
distributions from PROST comparisons are not included as the probability of the test statistic is 0.

G Box plots of scores per domain

shows box plots of average scores for each agent type for each domain.

27

Published in Transactions on Machine Learning Research (1/2026)

4.0

——- Test Statistic: 0.0086, p-value: 0.8191

Density (%)

-0.05 0.00 0.05
Mean Score Difference (test - train)

Figure 3: Null distribution from permutation test between average scores on test and train set problems for
imitation learning agents. p-value is calculated as P(X > 0.0086) - 2.

28

Published in Transactions on Machine Learning Research (1/2026)

Score

Score

Score

Score

AcademicAdvising 2014 CrossingTraffic 2014
1.0 1 5 1.0
T o
. 0.8 1 -
o 0.6 1
o
1%
8
0.2 A
0.0 . . = 0.0 ; ; &
prost mlp vejde prost mlp vejde
Model Model
Elevators 2014 Navigation 2011
1.0 1.0 O
0.8 A 0.8 A
0.6 o 0.6 1
o
@
0.4 4 0.4 1
0.2 4 0.2 1
(o] o
0.0 T u T 0.0 T T T
prost mlip vejde prost mlp vejde
Model Model
SkillTeaching 2014 SysAdmin 2011
1.0 g 1.0 q
0.8 A 0.8 A
8
0.6 v 0.6
o
19
0.4 9 0.4 1
0.2 A 0.2
0.0 T T T 0.0 T T T
prost mlp vejde prost mlip vejde
Model Model
Tamarisk 2014 Traffic 2014
1.0 1.0
0.8 1 0.8 1
0.6) 0.6
o
19
0.4 9 0.4 4
0.2 A 0.2 A
0.0 T T T 0.0 T T
prost mlp vejde prost mip vejde
Model Model

Figure 4: Box plots of normalized scores of VEJDE agents, MLP agents and PROST for each domain.

29

Published in Transactions on Machine Learning Research (1/2026)

H Graph Attention

H.1 Introduction

In addition to the message passing procedure described in Section we also implemented and evaluated an
encoder based on graph attention mechanisms. The primary difference between the local message-passing
and attention-based graph representation methods is that the latter typically incorporates information
from the entire graph at each step rather than the local node neighborhood. The attention function is
technically message-passing over a fully connected graph, but for the purposes of this evaluation we will
distinguish between graph attention and message-passing, with the latter referring to aggregations over node
neighborhoods.

Dot-product attention does not incorporate the graph structure, meaning that locality information is lost (Ying
et al 2021)). For instance, given the example shown in a policy using only dot-product attention can not
distinguish between x; and x4, assuming both are of the same type. This means that the naive application
of a transformer in this context is bound to perform poorly in this context, which we also confirmed in
preliminary experiments.

A remediation to the position invariance of attention is to explicitly include positional information with the
input sequence. For sequential data, such as natural language, sinusoidal vectors derived from the element
positions or relative distances have been used (Su et all 2024). This approach fails for graphs, however, as
graphs do not have a natural ordering. Instead, various properties that is derived from the adjacency matrix
has been used, such as the degree, pairwise distances or graph Laplacian (Ying et all 2021} [Zhang et al.l
2023)).

H.2 Implementation
Given that the state graph is bipartite, we chose to define the attention function
al(X,Y) = Softmax (W X)(WPY)T)

as a function of the two node sets, meaning that the resulting attention matrix consists of one weight for each
pair in the cartesian product of the two sets. The attention function alone do not capture any graph structure,
so in line with [Zhang et al.| (2023) we add the pairwise shortest-path distances between the objects and facts
to the attention matrix. In line with previous work, distances are treated as indices that are mapped to
learnable scalars. The embedded distance matrix is then multiplied element-wise with the attention matrix.
The infinite distance, such as between disconnected nodes, is assigned a learnable scalar as well. The resulting,
augmented, attention matrix is thus defined as

1(X,Y) = aD(X,Y)® 6 (D)

where ® denotes element-wise multiplication. Updates to the both node sets are done analogously to the
message-passing method, but with 7 replacing the adjacency matrix:

U+ — ¢§Ji) (' (KD, HOY K@ | 7H®)
K+ — ¢§;’) (ni(H(iH)’K(i))H(iJrl) I K(i)) + K

H.3 Experiments

We conduct the experiments with the graph attention policy with the same hyperparameters as for the
message passing policy. The two architectures have roughly the same number of parameters (= 12000). The
transformer theoretically requires less message-passes, as information is distributed across the entire graph
in one step, but still benefits from additional layers. The imitation learning and reinforcement learning
experiments was conducted in the way as described in Section [£:3.1] Due to the higher memory requirements

30

Published in Transactions on Machine Learning Research (1/2026)

Table 7: Average normalized score per domain on test instances for PROST and graph attention policies
trained with imitation learning.

Domain GAputo PrROSTu+to
SysAdmin 0.71 +£ 0.41 0.85 +0.39
SkillTeaching 0.60 + 0.22 0.99 + 0.31
Tamarisk 0.42 + 0.22 1.00 + 0.31
CrossingTraffic 0.31 +0.42 1.00 4+ 0.32
Traffic 0.12+0.34 1.00 £ 0.15
Elevators 0.10 £0.75 1.00 £ 0.51
AcademicAdvising 0.00 £ 0.44 0.80 + 0.66
Navigation 0.00 + 0.00 1.00 + 0.61

of the graph transformer, we were forced to train the mimic with mini-batches rather than with the full
dataset as with the message-passing neural network. The number of epochs over the data was kept the same,
however.

H.4 Results

We found that the graph attention policy produced produced significantly lower scores than the message-
passing policy in both the imitation learning and reinforcement learning experiments. In addition to the
lower scores, the training time of the attention-based policy was significantly higher for some domains, owing
to the quadratic scaling of the attention function. The training times compared to the message passing policy
are shown in The scores of the message passing agent and transformer agents for each domain are

also shown side-by-side in
The full results of the imitation learning agent is shown in and the RL agent in is shown in

H.5 Discussion

The somewhat poor results of the graph attention method is consistent with results we have observed
in previous work, where the method that incorporated graph-wide information had worse generalization
properties than the entirely local method Nyberg & Johnson! (2024). The message passing policy is not
entirely localized either, however, as the first action is made based on information from the entire graph, but
the message passing is local.

The graph attention implementation adds two major compute costs. One is in calculating pairwise distances,
which we do for each steﬂ The second additional compute cost is memory. Due to the dot-product in the
aforementioned dot-product attention, the resulting attention matrix will scale quadratically with the number
of nodes in the graph.

We recognize that the graph attention method we evaluated is a somewhat basic implementation. Additional
steps could be added, such as a self-attention step, and different graph metrics can be added to the attention
matrix, but we opted for a simple initial approach that still incorporates the main components of Transformer-
esque models.

18With caching, the worst case is every unique state. However, our attempts to cache the distances for each state led to system
memory running out for problems with large state spaces.

31

Published in Transactions on Machine Learning Research (1/2026)

Table 8: Average normalized scores on test instances for graph attention agents trained using RL and PROST,

per problem domain.

w w »
IS o o

N
wn

=
5}

Training Time for 250,000 Timesteps (hours)

Domain GAputo MLPufto PrOSTpuLo
SkillTeaching 0.58 £ 0.34 0.83 +£0.23 0.99 £ 0.31
Tamarisk 0.32 £0.18 0.61 +£0.18 1.00 £ 0.31
CrossingTraffic 0.27 &+ 0.47 0.46 = 0.50 1.00 = 0.32
SysAdmin 0.26 £ 0.37 0.93 +£0.34 0.95 £ 047
Traffic 0.14 £0.39 0.124+0.27 1.00 £ 0.15
Navigation 0.01 £0.25 0.12+0.29 1.00 £ 0.61
AcademicAdvising 0.00 £ 0.39 0.29 £ 0.09 0.80 £ 0.66
Elevators 0.00 £ 0.57 0.20 £ 0.52 1.00 £ 0.51

Training Time Comparison: Graph Attention vs Message Passing

g
o
L

I Graph Attention

| W Message Passing

1.0
) ; L L
0.0 A h h
< & © &) & o
64.@\“ & & q@“o 0&\0 vo&\ ((@‘\9
) @ N a,
& 99@ <& %’[’4 §e 2 <
bef‘(\ o)
K
(XS
Domain

Figure 5: A bar chart showing training times in hours for message passing agents and graph attention agents

on each domain. Times were averaged over five runs.

32

Published in Transactions on Machine Learning Research (1/2026)

10 Normalized Score: Graph Attention vs Message Passing

I Graph Attention
m Message Passing

0.8 1

o
o
|

Normalized Mean Score
o
iy
.

0.21

0.0- T ¥

S
& A& <
4 2 L
b?’& @"‘ oF

Figure 6: A bar chart showing normalized scores for message passing agents and graph attention agents on
each domain. Scores were averaged over five runs.

33

	Introduction
	Background
	Knowledge Representation
	Markov Decision Processes
	Reinforcement Learning
	Message-Passing Neural Networks

	Implementation
	States & Actions
	Bipartite State Graph

	Vector Encoding
	Literals
	Objects
	Positions

	Message Passing
	Policy
	Value Estimate

	Evaluation
	Problem Selection
	Data Generation
	Experiments
	Imitation Learning
	Reinforcement Learning

	Results
	Imitation Learning
	Reinforcement Learning

	Related Work
	Deep Relational Reinforcement Learning
	Automated Planning

	Discussion
	Agent Performance
	Vejde
	MLP
	Prost

	Alternative State Representations
	Limits to Generalization

	Conclusion
	Appendices
	Example State and Actions
	Implementation Details
	Batching
	Action Masking
	Code Library Design
	Score Normalization

	Hyperparameters
	Problem Selection & Extensions
	Continuous Actions
	Higher-Order Actions
	Concurrent Actions
	Partial Observability
	Action Preconditions
	Nullary Domains

	Problems not Defined in RDDL

	Notes on Navigation
	Plots from Permutation Test
	Box plots of scores per domain
	Graph Attention
	Introduction
	Implementation
	Experiments
	Results
	Discussion

