Under review as submission to TMLR

Vejde: A Framework for Inductive Deep Reinforcement Learn-
ing Based on Factor Graph Color Refinement

Anonymous authors
Paper under double-blind review

Abstract

We present and evaluate VEJDE; a framework which combines data abstraction, graph
neural networks and reinforcement learning to produce inductive policy functions for decision
problems with richly structured states, such as object classes and relations. MDP states
are represented as data bases of facts about entities, and VEJDE converts each state to a
bipartite graph, which is mapped to latent states through neural message passing. The
factored representation of both states and actions allows VEJDE agents to handle problems
of varying size and structure. We tested VEJDE agents on eight problem domains defined in
RDDL, with ten problem instances each, where policies were trained using both supervised
and reinforcement learning. To test policy generalization, we separate problem instances in
two sets, one for training and the other solely for testing. Test results on unseen instances
for the VEJDE agents were compared to MLP agents trained on each problem instance,
as well as the online planning algorithm PrROST. Our results show that VEJDE policies in
average generalize to the test instances without a significant loss in score. Additionally, the
inductive agents received scores on unseen test instances that on average were close to the
instance-specific MLP agents.

1 Introduction

We are interested in two topics: Deep reinforcement learning (RL) for problem domains that fit relational
data models, and agents that can generalize to classes of problems. This interest mainly stems from our
experiences in researching automated network incident response, where both of the aforementioned qualities
are important for practical use, though not always prioritized (Wolk et al.| 2022} Nyberg & Johnson, [2024;
Thompson et al., [2024]). The two topics are interleaved, in that incorporating structure to the traditional
Markov decision process (MDP) formalism typically used in RL is in itself a method for improving agent
generalization (Van Otterlol |2009; [Mohan et al., |2024; Kirk et al., 2023)), though neither topic necessitates the
other. To this end, we have developed a small reinforcement learning library which we have named VEJDEEI
VEJDE combines graph neural networks and reinforcement learning to incorporate data structures which can
be observed or defined in different problem areas, and to produce neural policy functions that can be used for
classes of problems defined with a shared data description language.

A decision agent policy is a function which takes the state of a decision problem, usually modeled as a MDP
or partially observable MDP, as input and produces a probability distribution over actions that are possible
in the given state. An optimal policy will produce actions that maximize the expected reward; the assigned
metric of success at the task the MDP models. Our aim is to find inductive policies that can perform well
across a domain, or class, of problems. This has long been a goal within the realm of relational RL (Dzeroski
et al., [2001; [Van Otterlo, |2009), which combines reinforcement learning with elements of symbolic logic, but
ideas for improving RL generalization have also come from more recent sources in deep learning research (Kirk
et al., 2023).

1Vejde is the Swedish name of the flower Isatis tinctoria, traditionally refined to produce indigo dye for textiles.

Under review as submission to TMLR

Relational database systems and data modeling remains a popular option for data storage in several areasﬂ
which motivates investigating machine learning methods that can utilize the structure relational databases
provide. Relational databases use SQL (Chamberlin & Boycel [1974)) and to varying degrees conform with a
formal relational model (Codd}|1970)). Previous work has investigated methods for applying supervised learning
to relational databases (Fey et al.l |2024b) using graph neural networks (GNNs). From that perspective, this
work concerns instead using RL and GNNs with relational databases. Another way of regarding a relational
database is as a set of facts about entities described using a typed first-order logical language, where every
possible set of facts given the language is a discrete state of some problem domain.

One way of describing a policy for such a logical state representation is as a decision list. Each entry in the
decision list defines a set of logical conditions, defined in the same language or data model as the database,
that when fulfilled leads to an agent choosing an action (Fern et al.l |2006). There exists approaches, both
symbolic (Fern et al., 2006) and neuro-symbolic (Hazra & Raedt], |2023]) which aim to find and represent
the decision list in an explicit and human-readable form. We instead opt to use message-passing neural
networks (MPNNs) to implicitly encode the rules of a decision list. This choice trades interpretability for
flexibility and ease of numerical optimization, as is typical with deep learning methods. The abilities, and
limitations, of MPNNs to express logical classifiers has been covered by |Barceld et al. (2020)) and |Grohe
(2021).

Thus, in our implementation, the state of the problem consists of a set of known, true, facts about entities
expressed in predicate logic. The set of facts is then represented as a bipartite factor graph, and encoded
using neural graph color refinement. The color refinement algorithm generates vector embeddings for nodes
in the graph through iterative message-passing, where at each step the vector representations of each node
is updated by a combination of itself and the graph neighborhood vectors (Morris et al., [2019). A policy
head, also using neural networks, predicts the probability of action components from the embedding vectors.
The implementation lets VEIJDE agents, like a symbolic decision list, handle states with varying numbers of
entities and possible actions.

We evaluate VEIDE with eight decision problem domains defined in the Relational Dynamic Influence Diagram
Language (RDDL). Each RDDL domain shares a common description language and state transition dynamics,
from which ten problem instances with varying parameter values per domain have been defined. The problem
domains we include for our evaluation include deterministic and probabilistic state transitions, as well as both
discrete and continuous state variables. To test the inductive qualities of the VEJDE policies, we separate
problem instances into two sets, where one is used for training and the other for testing. As all problem
instances share the same reward and state transition functions, an inductive policy should receive in the same
average score on test set as it does on the training set.

We performed two main experiments. One in which we trained VEJDE policies in a supervised manner, using
actions provided by another agent as labels, to test if VEIJDE can encode an inductive policy for the problem
domains. In the second experiment, we trained policies using RL, using the actor-critic algorithm proximal
policy optimization (PPO), to test if an inductive policy can be found without labeled data.

We compare VEJDE policies with two other adaptive decision agent types. The first are policies parametrized
using fully-connected multi-layer perceptrons (MLPs). Unlike the VEJDE policies, based on GNNs, these
take constant-sized and instance-specific vector inputs, and can not generalize across multiple instances.
The MLPs encodes policies which are specially developed for a particular problem instance, and which they
ideally should be optimal for. Our other point of comparison is the online planning algorithm PROST. PROST
represents a different problem-solving methodology than RL, and uses a tree-search algorithm based on
repeated simulated trials to estimate an optimal action for each encountered state. PROST, for most problems,
serves as an upper bound of scores in our evaluation. We also set a lower performance bound for each problem,
in the form of random and do-nothing policies, to determine if the learned policies are better than a trivial
policy.

The results from the supervised learning experiment showed that VEJDE policies in average generalized to
the unseen test set problems without a statistically significant drop in score. The mimic policies are receiver

2According to https://db-engines.com/en/ranking.

https://db-engines.com/en/ranking

Under review as submission to TMLR

higher scores than the trivial policies on all domains, but the differences to the PROST scores are larger on
some problem domains than others. From the reinforcement learning experiment, we observed that the scores
of the VEJDE policies in average were not statistically different from those of the MLP policies. However, we
also noted that the scores of the RL policies varied a lot between problem domains, with the VEJDE agent not
outperforming the trivial policies on two domains. As expected, the RL policies of both types consistently
received lower scores than PROST, though on one domain the VEJDE agent received a higher average score
than PROST.

Our work builds upon previous work in the area of symbolic, and neuro-symbolic, decision learning, both
within the realm of automated planning through machine learning (Stahlberg et al., 2023; |Chen & Thiébaux,
2024) and deep relational reinforcement learning (Janisch) 2024; [Sharma et al.| |2023). Unlike problems
common in symbolic planning research, we focus on problems with uncertain outcomes, formalized as MDPs,
and which we assume may include continuous variables.

The source code for VEIJDE and the RDDL extension both available publiclym to facilitate application to
new problem domains.

Contributions We present and evaluate the framework VEJDE. The contributions of this work can be
summarized as follows:

e A methodology to use deep reinforcement learning with problem areas where relational data is
observed or can be defined.

e A neural architecture to encode and parametrize an inductive decision policy for relational data.

e We show that for all the decision problems we evaluate with, the architecture can parametrize an
inductive policy and that it can mimic the near-optimal performance of a planning algorithm on
some problems.

e We show that for a majority of problems we evaluate with, an inductive policy parametrized using
the neural architecture that is better than trivial policies and close to instance-specific policies can
be found through reinforcement learning.

e A Python library, named VEJDE, with generic interfaces so that it can be applied to problem domains
not defined in RDDL.

2 Background

This section covers topics related to knowledge representation, graph neural networks and reinforcement
learning that are relevant to this work. We should note that the focus of this work is not on how to design, or
learn, data abstractions for a problem domain. We recognize the importance of this work in creating agents,
but assume that for a given problem there exists a data model of object classes, attributes and relations.

2.1 Knowledge Representation

Predicate logic, or first-order logic, has long been used to describe situations and dynamics of decision
problems (Reiter} [2001; |Russell & Norvig, 2010)). Through this text, we will use components of first-order
logic to describe the states of problems. We thus use the following definitions: Predicates are used to represent
properties or relations. We will denote predicate symbols with capital letters such as P or Q). An atom is a
predicate symbol combined with tuple of variables, denoted with lowercase letters. Predicate symbols have
an arity which defines the length of tuples it can be applied to. We will use the term object when referring
to instantiations of variables, denoted with lowercase letters and a subscript, like 1 or y;. A fact refers
to a ground atom where all variables have been substituted by objects, as in P(z1) or Q(z1,y1). Function
symbols map objects or tuples of objects to other elements in the language. Given a function symbol Z, we

3See code appendix for review period
4See code appendix for review period

Under review as submission to TMLR

could for instance make the statement Z(z1) = 30. Lastly, we assume a typed logic. This means that each
predicate is also associated with a tuple that specifies the types of the variables. Each object thus has a type
or class. Any ground atom that is the result of combining a predicate symbol with a tuple of objects with
mismatched types is defined as false. We will simply use the letter used to identify the object to indicate its
type, meaning that x; and y; can be read as belonging to different object classes. All the definitions form a
language, which can be specific to a particular problem domain.

2.2 Markov Decision Processes

We choose to represent decision problems as Markov decision processs (Puterman| [1994). A MDP is a
formalization of a system where an agent makes sequential decisions, under the assumption of potential
uncertainty about the decision outcomes. A reward or cost value defines a measure of success at the task the
agent should perform. MDPs are assumed to have the Markov property that the state and reward dynamics
are dependent only on the immediate previous state and action. The agent is assumed to follow a policy, =,
by which it selects actions given the state it observes. For a finite MDP, an optimal policy maximizes the
expected discounted return, G; = Zith v'r;. The term relational MDP has been used by several authors
to describe MDPs where the problem state is structured, factored or explicitly represented using symbolic
logic (Guestrin et al.l |2003; [Diuk et al.l |2008; [Dzeroski et al., [2001; [Van Otterlol, 2009; |Kersting & Driessens),
2008). A relational MDP can be described as collection of problems, each individually a MDPs, which all
share a common description language.

2.3 Reinforcement Learning

To search for an optimal policy, we use PPO; a model-free actor-critic reinforcement learning (RL) algo-
rithm (Schulman et al.| [2017). Reinforcement learning (RL) constitutes a class of methods to find, or at least
search for, the optimal policy of a MDP (Sutton & Bartol 2018]). Different RL approaches mainly alter the
methods of selecting actions, what data is used to gather or update the policy and the step intervals between
updates. Model-free RL learns policy through selecting actions from the agent policy and updating it solely
based the resulting transitions of the MDP. This means that model-free methods requires little to no prior
knowledge of the problem dynamics, at the expense of requiring more data than model-based methods, which
instead incorporate system knowledge to improve the policy. Value-based RL methods uses data to generate
estimates of the state-value v (s) = E; [G¢|S; = s] or action-value Q7 (s, a) = E; [G¢|S; = s, A = a] functions
of the MDP, which the policy is then based on. Policy gradient algorithms instead use data to directly
optimize a differentiable function towards the optimal policy. Actor-critic methods combines elements of
value estimation with policy gradient methods to improve optimization stability, where an “actor” component
produces action probabilities, 7(a|s;), and a “critic” component produces a state value estimate, ©(s;). PPO
is a policy gradient algorithm that enforces a hard limit on how much the policy can change per update. The
actor loss for PPO is calculated as

L,(st,a¢,0) = min (r(0) - A(sg,ar), clip(r(0),1—e,1+¢€)- A(se, ar))

o (at|st)
mo(at|st)
A is the action advantage, which may be calculated in different ways, but is typically defined as the difference

between the state-value and action-value for the action.

where r(s¢, at,0) = , a ratio between the old and updated policy output which is used to clip the loss.

2.4 Message-Passing Neural Networks

In order to use policy gradient methods we need a differentiable function that can go from the data contained
in the state, which we assume to be relational by design, to action probabilities. We use GNNs for this purpose,
specifically MPNNs. The properties of MPNNs are closely related to those of the Weisfehler-Lehman (WL)
algorithm, and we will use that algorithm as the basis for this explanation. The WL algorithm is designed to
test if two graphs are isomorphic. The algorithm can also be used to generate graph or node representations
for graph similarity and classification tasks. At each iteration, the WL algorithm updates a label of each node
to a hash value calculated from the old label and labels from the node neighborhood. This is also known as
a graph color refinement algorithm (Grohe, |2021)), as nodes are assigned metaphorical “colors” which are

Under review as submission to TMLR

continuously mixed with neighboring node colors. MPNNs follow the same general color refinement algorithm,
but use neural networks rather than hash functions to calculate node “colors”, which are represented using
high-dimensional vectors. This allows for parameterizing differentiable functions on graphs that can be
optimized through gradient descent for common machine learning tasks such as classification or regression.
A useful feature of MPNNSs is that the model parameters are shared across nodes, meaning that the size
of the neural network does not need to change with the size of the input graph. It has been shown that
MPNNSs can not be more expressive than the WL algorithm (Wang & Zhang, |2022; Morris et al., [2019). As
such, if the WL test fails to distinguish two graphs, so will a MPNN. From this result, it follows that a
classifier based on MPNNs will always produce the same results if the WL algorithm fails to distinguish two
graphs, or subgraphs. This result has been elaborated on in the context of logical classifiers by [Barcelo et al.
(2020) as well as |Grohe| (2021)), showing that a GNN without global a readout are as expressive as a graded
first-order classiﬁerﬂ A common categorization in graph learning is transductive and inductive graph learning.
Transductive graph learning aims find a model for a task based on a single graph. If the graph structure
changes, or a new graph is introduced, a new model has to be trained. Inductive graph learning instead focuses
on solving a task for classes of graphs that share some common underlying data distribution. On a practical
level, inductive graph learning typically implies that node representations can not be calculated based on
identifiers that do not convey meaning outside the particular graph instance.

3 Implementation

VEJDE is formed by four primary components: First is representing data in the problem state using predicate
logic, second is the representation of the data base as a bipartite graph, third is the graph neural network
and lastly a prediction head which uses the object “colors” to produce action probabilities and a state value
estimation. A key implementation detail is that the size of both the input and the number of actions can
change between steps.

3.1 States & Actions

We represent the state of the MDP in a given time step as a set of facts expressed in the domain language. A
particular state could thus be described as the set

{P(1‘1),Q($1,y1)72(y1) = 5,Q(x2,y1),0}

given the predicates {P, @, Z, C'} and objects {x1,y1, yg}ﬁ As a delimitation, function symbols are assumed
to always map objects to singular values in R. Facts that are explicitly known to be false are not included
in the state data base. If we maintain the assumption of full observability in the environment, there is no
information lost by making this choice, as we do not need to distinguish between a fact being negative or
missing from the data base (Reiter} [1977)). This choice makes the state description significantly smaller than if
negative literals are included. Actions in the MDP are represented as ground atoms from the same language
as the state by assigning a subset of predicates in the domain language as action symbols, A C P. As an
example, given the action symbols {47, A3}, which can have different arities and type restrictions, a possible
set of actions in the above state may be {A;(x1), A1 (x2), A2(x1)}.

3.1.1 State Graph

In order to generate object representations through graph color refinement, we first represent the state
database as a biparitite graph, which consists of two distinct sets of nodes, V and U. V is a set of all facts in
the state and U is a set of observed objects. Thus, for the state shown in Section U={x1,y1,22} and
V ={P(z1), Q(z1,y1), Z(11) =5, Q(x2,y1), C}. A set of edges E relate facts in V to objects in U. Each
edge is formed by an object being present in the object tuple of a fact. Following the representation in |[Chen
et al.| (2024)), each edge between an object u and a literal v is associated with the position of u in the tuple of

5Graded” in this context meaning that a path between two entities needs to exist in the graph.
6Since the truthiness and values of literals are assumed to be variable, it would be more correct to denote each fact with a
time or step. We do not, however, since our calculations only ever involve the current state.

Under review as submission to TMLR

Ay A,
12 Z =5
(1) 2 o) Aa(e)
e m(A1,z1) = 04| [r(As,z1) =0.1
: 0
Ax(z2) As(2)
T
o Q(ml, yl) 1 Y1 2 m(A1,z2) = 0.1| (A2, z2) = 0.2
1
Ai(y1) Aa(y1)
. m(A1,y1) =0.2| [7(A2,y1) = 0.0
o Q(mh yl)

(a) Bipartite graph representation of the set (b) Rendering of action combinations for the state, along
{P(z1), Q(z1,v1), Z(y1) =5, Q(z2,y1), C}. Squares with hypothetical action probabilities as assigned by an
denote ground expressions, circles objects and rhombuses agent policy.

the position of objects in atoms.

Figure 1: Renderings of factored state and action representations.

objects of v. A rendering of the state graph representation is shown in along with possible actions

in [Figuro TH)
3.2 Vector Encoding

All elements of the state are encoded into the vector space RP using embedding vectors. The encoded
elements form two multisets of node embeddings K = {{k, : v € V}} and H = {{h,, : u € U}}, corresponding
to the factor nodes in V' and object nodes in U. These form the initial set of node colors.

3.2.1 Literals

We include two types of ground expressions in our data model; ground atoms, e.g. P(z1),Q(z1,y1), and
grounded function symbols that map objects to a real value e.g. Z(y;) = 1. Ground atoms are encoded by
the embedding vector of the predicate symbol. Function atoms are encoded as a linear scaling of the function
symbol’s embedding vector by the value it is equal to.

We can represent this in a single expression by defining the function v : V' — R that maps all elements of V'
to a value from R. If the element is a ground atom, the value is defined to be 1, and it is an expression with
a function symbol it returns the value of the function. Thus, we can define the embedding vector k, for a
literal v as

kv = I/(’U) 'EP(fV_).P(/l})), Ep P — RD.

Expressions with nullary atoms are treated with an additional step. We denote the set of these literals as
G C V, and assume that nullary literals influence all objects. The encoding vectors of the nullary literals are

Under review as submission to TMLR

aggregated and added to the initial embedding vector of each object. We use the function

9(G) = Softmax ([¢1(v')] e, - @2(v)

veG

to aggregate the vectors, where ¢; : RP? — R and ¢, : RP? — R” are implemented using neural networks as
by |Li et al.|(2016).

3.2.2 Objects

To avoid using object identifiers as features, objects in the database are mapped to their respective types
through a function fy_,r: U — T, where T is the set of types defined in the language. The type identifiers
are then mapped to vectors in R”. The embedding vector h, for an object u is thus defined as

hu = ET(fU_g“(u)), ET T — RD.

3.2.3 Positions

We encode the positions of terms in literals by mapping argument positions to vectors in R”. The function
fuv—n takes a fact and an object, and maps them to the set of arities for predicates in the language, N.

Cuv = EN(fU,V—)N(uvv))v EN N —]RD-

3.3 Message Passing

The message-passing scheme we use for color refinement is similar to previous work on neural message passing
on factor graphs (Satorras & Welling, 2021)). A single iteration of message passing consists of nodes in K
sending messages to neighboring nodes in H. H is updated and sends messages back to K which is then
also updated. Each step of message passing uses a unique set of four neural networks, which we denote
with ¢. Incoming messages to a node are aggregated by taking the element-wise maximum over the node
neighborhood, max,cn(,) : D — D. While a max aggregation is theoretically less expressive than a sum
aggregation (Xu et al., [2019)), it has been found to work well in practice in previous work (Janisch 2024;
Stahlberg et al. 2023). Messages from U to V, and the reverse, are defined as

mi4) = o0 (hY || k)
mi%) = opLy (R 1T AG | ews)
and representation vectors for object nodes in U as

HU+D = {{ R+ = gD (th’ | max (meiB)) u €U }}

vEN (u)

where || to denotes vector concatenation and {{}} a multiset. Updates to factor nodes in V are defined as
e = L0 =94 o) (W0) e ()) sve v
ue N (v

3.4 Policy

A policy function can in a more general view be regarded as classifier, which takes a state representation and
assigns a probability to each action that is possible given the state. In this setting, the state is represented
as a set of facts, which are encoded using embedding vectors and message passing to a latent state H of
object embeddings. Thus, from the multiset H, the policy function should assign a probability to each action
that is possible given the objects in U and the action symbols A, as described in Section Since we limit
action symbols to be nullary or unary, all actions contain a predicate symbol, a € A C P, and a single object,
u € U. Nullary actions have no arguments by definition, but for ease of implementation we define a null

Under review as submission to TMLR

object, @, which is always selected for nullary actions. We denote the joint action probability as w(a, u|H),
such that 7(ay,u1|H) would be the probability of the action a1 (u1) given the set of object embeddings, H.
The full joint action probability can be predicated as is, or factorized in three different ways, which lead to
different agent properties (Nyberg & Johnson, 2024)E] For this work, we solely evaluate the factorization
m(a,u|H) = wa(a|H) - 7y (u|a, H), which corresponds to first sampling a predicate symbol, followed by an
object. For notation brevity, we will omit the conditional of H from here onward. We calculate the action
symbol probability, m4(a), as a weighted sum of conditional action probabilities over objects

wala) = Zﬂ'A(a|u) -y (u)

where
ma(alu) := Softmax™(W - hy, a), W € RAIXD
and

7y (u) := Softmax? (W - H,u), W € RP.

The probability of selecting an object given an action symbol, 7y (ula), is calculated as
7 (ula) := Softmax" (H - W,,u), W e RP*4l

where W, is the column vector in W identified by a. We use Softmax” (z,i) = /3 7 e to denote the i-th
element of a vector x where the softmax function is applied over dimension D.

3.5 Value Estimate

As a part of the actor-critic framework, the architecture should produce an estimate, 0™, of the state value.
We calculate ™ as an expectation over the action probabilities and an action-value estimate,

5 = 3 mala) 3 o (ula) O(u, 0)
acA uelU

where
@(u,a) =hy Wy We RDXW, h, € H.

. This formulation can be seen as dividing a single step in the MDP into two sub-steps, where the first
sub-step solely consists of the agent choosing a predicate symbol. If we were to extend the number of object
arguments for actions, the number of sub-steps would increase to account for the additional choices.

3.6 Implementation Details

This subsection contains details which are less important in theory, but are relevant to the practical aspects
of the implementation.

3.6.1 Batching

Since each sample can vary in size, unless padding is used batching for gradient descent can not be done in
the common way of stacking vectors. We opt for the batching method used by graph learning code libraries
such as PyTorch Geometric (Fey & Lenssen, |2019), where the adjacency matrix of the graph is stored in
a COO matrix format. Thus, the node and adjacency vectors for each graph are concatenated in order to
produce a single, albeit disconnected, graph.

"The main property that changes is the dependency on global readouts. Sampling an object first and then an action symbol
based on that choice can be done without considering the entire graph.

Under review as submission to TMLR

3.6.2 Action Masking

We calculate the probability of each action symbol for every object in the state, leading to the joint probability
function including literals that are not possible according to the argument types of the action symbols. Under
the assumption that taking invalid actions is equivalent to doing nothing, this leads to unnecessary exploration
during training, as the agent has to explore a potentially large number of parameter combinations that will
never be viable. We thus mask out parameter combinations that are incorrect according to the types of the
action symbol. In practice, this means that the weights of invalid predicate-object combinations are assigned
large negative values, so that the corresponding probabilities becomes zero.

3.6.3 Code Library Design

VEJIDE is designed to be domain-agnostic, and is built upon the Gymnasium interface (Towers et al., [2024]).
The heart of the implementation is a relational data model class, where predicate symbols, action symbols
and object types of the particular problem domain are specified. This class is then used to shape the GNN
and construct the graph representation of the state. We use a RDDL-specific instance of this class for our
evaluation, which pulls the required information from a RDDL domain specification. In order to apply the
library to a new problem domain, a relational data model for that domain has to be defined.

4 Evaluation

We evaluate VEJDE using a set of problems defined with the Relational Dynamic Influence Diagram Language
(RDDL) and that are executed in the Python library PyRDDLGynﬁ (Taitler et al., 2024). RDDL is a description
language that can be used for specifying Markov decision problems as dynamic Bayesian networks (Sanner,
2010). We test the ability of VEJIDE to model inductive decision policies in two ways: supervised learning
from examples and reinforcement learning.

We compare VEJDE policies with policies parametrized using MLPs, and a planning algorithm named
Prost (Keller & Helmert), |2013), the winner of the probabilistic track of the 2014 International Probabilistic
Planning Competition (IPPC) (Vallati et al., [2015). PROST uses a tree-search algorithm framework to find
an optimal action for each state based on a series of simulations initiated from the state. As such, for each
state PROST encounters it needs to be able to run thousands of trials to construct a search-tree. We think
it should be noted that this is a fundamentally different problem-solving approach than the reinforcement
learning method used to train the VEIJDE and MLP policy functions. A policy function takes a state, which
can be represented purely as data, and maps it to actions. A simulator is only used during training to find
the parameters of the policy, whereas PROST always needs access to a simulator of the problem in order to
perform searches. We use an existing interface for PROST to PyRDDLGym for all experimentsﬂ For the MLP
policies, we used the implementation included in the pyRDDLGym set of libraries, which in turn is based on
Stable Baselines SE In the implementation, the state is represented as a vector over all possible grounded
atoms, the length of which is dependent on the language and number of objects in the problem instance. This
means that the total parameter count of the MLPs input and output layers varies between instances and
domains, but all use two hidden layers with 64 latent parameters each. The MLP policies are transductive,
and can not be used for multiple problem instances due to the varying input and output shapes. We thus
train one MLP agent for each domain and instance combination. Including another inductive agent for
comparison would have been useful, but we were unable to find a single method that cover the set of problem
domains as we are evaluating on. We should note, however, that there is overlap with previous works on
subsets of the domains we include (Janischl |2024; |Garg et al., |2019; Sharma et al.| [2023]).

8https://github.com/pyrddlgym-project/pyRDDLGym/commit/£7dd1dd
9https://github.com/pyrddlgym-project/pyRDDLGym-prost/commit/248d5d2
Ohttps://github.com/pyrddlgym-project/pyRDDLGym-rl/commit /9714392

https://github.com/pyrddlgym-project/pyRDDLGym/commit/f7dd1dd
https://github.com/pyrddlgym-project/pyRDDLGym-prost/commit/248d5d2
https://github.com/pyrddlgym-project/pyRDDLGym-rl/commit/9714392

Under review as submission to TMLR

4.1 Problem Selection

PyRDDLGym provides an archive of problem definitions written in RDDLB RDDL defines problems as a
combination of a domain description file and an instance description file. The domain file defines state
transition dynamics and object classes, as well as default values. The instance file declares object instances,
ground values and parameters to construct a specific problem instance. RDDL is similar to the Planning
Domain Definition Language (PDDL) in that it is a formal description language used to describe decision
problems, but adds modeling features such as probabilities, continuous state variables and partial observability.

We evaluated VEIDE on the following problem domains from previous IPPCs: Elevators (2014), SysAdmin,
Navigation, Traffic (2014), SkillTeaching (2014), AcademicAdvising (2014), CrossingTraffic (2014) and
Tamarisk. The parenthesized year denotes the version we used where multiple are available. Each domain
has ten problem instances with variations to initial values and the number of entities. All problems have a
time horizon of 40 steps, after which the MDP is terminated, and all problems have the option for the agent
to do nothing. We selected domains based on a set of exclusionary criteria, that filter out problems that
define continuous actions, action literals with an arity greater than one, state-dependent conditions on actions
and lastly problems that implement partial observability. For example, the IPPC 2014 problem Wildfire
were excluded since it contains the action fluent put_ out(z,y), which has arity of two. Modifying domains
specifications to include more problems is possible, but we considered it out of scope for this work. While we
did not modify the domains, we edited all instance specifications that allow for concurrent agent actions to
only permit one action per timestep. This includes subsets of instances in SkillTeaching, AcademicAdvising,
FElevators and all instances in Traffic. Removing concurrent actions allows us to compare the GNN policy
against the pyRDDLGym MLP policy on all instances, at the expense of slightly changing the problem
premisesE The filter conditions used to select problems are discussed further in Section

The included domains cover two general types of decision problems: SysAdmin, Elevators, SkillTeaching,
Tamarisk and Traffic are reward maximization, or cost minimization, tasks. CrossingTraffic, Navigation and
AcademicAdvising are goal-oriented, where the agent actions should lead to a given condition being fulfilled.
Based on the arities of the action literals defined for the problems, we can also separate the eight problem
domains into three categories. Ignoring the “do nothing” action, SysAdmin, Traffic and AcademicAdvising
have only one unary action and no nullary actions. FElevators, SkillTeaching and Tamarisk have multiple
unary actions and no nullary actions. CrossingTraffic, Navigation have four nullary actions that represent
cardinal directions for the agent to move, but no unary actions. The maximum predicate arity in all domains
is two. This fact was not part of our inclusion criteria, but came as a consequence of the selected problems.
VEJDE can be used with the different domains with no modifications other than adjusting the input and
output sizes for each domain, meaning that we train one agent per domain. The input and output sizes are
dependent on the number of predicate symbols and action symbols in the domain respectively.

4.2 Data Generation

A RDDL problem instance defines a constant number of objects. Since we are interested in problems where
the total number of objects vary, or is unknown, we sample transitions evenly from multiple problem instances
as if they constitute a single relational MDP. To verify that the policy is inductive, we divide the 10 problem
instances of each domain into two sets by random selection and use one for training and the other for testing,
as per common practice in supervised learning.

By the classification of [Kirk et al.| (2023) we are thus focusing on Independent and Identically Distributed (IID)
generalization of the agent. The number of objects in the problem instances are not evenly distributed; to
reduce result bias caused by the selection of instances for the training set, we sample five train/test splits and
repeat experiments for each split, and calculate the final results as an average over them. For the other agents,
PROST and the MLPs, the notion of a “test” set of problems does not work, as PROST always performs
searches and the MLP agents are tied to particular problem instances.

Mhttps://github.com/pyrddlgym-project/rddlrepository/commit/1a2d3b5
12Without concurrent actions for Elevators, an agent has to prioritize moving one of two elevators at each time step rather
than controlling both simultaneously.

10

https://github.com/pyrddlgym-project/rddlrepository/commit/1a2d3b5

Under review as submission to TMLR

4.3 Experiments

To evaluate VEJDE, we performed two main experiments. One experiment in which agents are trained by
examples generated from PROST, and one where agents are trained without examples through reinforcement
learning. We then compare the scores of VEJDE agents against baseline policies, and other approximate
policy methods. Both experiments use the same splits of training and test problems.

4.3.1 Imitation Learning

We tested the capability of VEJDE to encode a near-optimal policy by having agents mimic the actions of the
planning algorithm PROST on the training set of problems. The resulting mimic policy was then run against
the test set of problems. To collect training data for each domain, we ran PROST on every instance in the
training set for ten episodes, each consisting of 40 state-action transitions with the recommended “IPC2014”
configuration. This resulted in 2000 samples for each domain, each of which consists of a state and an action
taken by PROST. The mimic agent was then trained through imitation learning, where the policy is optimized
to simply maximize the probability of actions selected by PROST. This procedure was repeated five times,
once for each train/test split. The results of this experiment can be found in Section

4.3.2 Reinforcement Learning

As we do not wish to assume access to labeled data or an expert policy, the primary interest for us with this
work is to find decision policies using RL. While we solely used PPO for RL, other policy gradient algorithms
could be used in theory. In training the agent, we maximize the loss

L=—-L,—c.Lc+ cpH(m)

through stochastic gradient ascent, where L, is the actor loss, L. the critic prediction loss (0 — Rt)2 and
H(m) the entropy of the action distribution given the state. The entropy term serves as a regularization
parameter and encourages exploration. Each VEJDE policy was trained with a total of 1500000 samples
from problem instances in the training set. All MLP policies were trained with 400000 samples per instance
with the same hyperparameters for all problems. Though both the MLP and VEJDE agents are trained as
stochastic policies, we evaluated them deterministically by picking the most probable action from the action
distribution for a given state, rather than sampling the distribution. This choice was made to lower the
variance of the results, but it ignores that the policy may assign nearly equal probabilities to some actions.

We used the same set of hyperparameters while training the GNN for all domains, which were chosen manually
based on training time and returns observed in preliminary experiments on the training set. A rudimentary
annealing scheme was used while training VEJDE agents, where the learning rate was lowered by a factor
of 10 for every 500 000 samples. The coefficient of the entropy term was also lowered after 500 000 samples,
to guard against the policy converging to local minima early. The full set of hyperparameters is listed in
Appendix [A]

A source of difficulty in assigning a single set of hyperparameters was that the return values of the different
domains, and even instances within the same domain, can have vastly different magnitudes. To improve
the robustness of the optimization, we used two tricks from Dreamer (Hafner et al.; [2025). The first is to
scale R; and the value estimate ¥ by the symlog function, and the second is to scale the advantage A; by an
exponential moving average of the return value range. The advantage A; was calculated using generalized
advantage estimation (GAE) (Schulman et al., |2016]), as is common in implementations of PPO. The results
of this experiment can be found in Section

5 Results

Our main metric of success is the average return the agents receive on the problem instances in the test set,
which the VEJDE agents were not trained on. For the agents that are not inductive, i.e. PROST and the MLP
agents, we only count scores on problems that are in the test set, averaged over the respective train/test
splits.

11

Under review as submission to TMLR

Table 1: Differences in average normalized scores for imitation learning policies. Comparing PROST scores,
VEJDE scores on test instances, and scores on train instances. py,g; is probability according to null distribution
produced by permutation testing that P(|X| > |u1 — pal).

Comparison M1 — H2 Pnull

Test - Train 0.01 0.82
Test - PROST -0.26 0.00
Train - PROST -0.28 0.00

Each RDDL domain uses rewards with different scales and magnitudes, which makes comparing results across
domains, or instances, difficult. We thus present our results as scores normalized to the range [0,1]. Returns
are normalized according to the method used in IPPC 2014 (Vallati et al., |2015): For each instance, a lower
bound return, Rjy, is the maximum average return received from taking random actions or doing nothing.
A maximum return, Ry,.x, for an instance is the highest return obtained among the evaluated methods. The
score of an agent on a given instance is then max(R—Riow:0)/(Rpmax—Rpase), Where R is the average return over
a given number of episodes. Thus, a score of 0 means that an agent performs worse or equal to acting at
random or doing nothing, and 1 represents always having the highest score among the compared agents. We
emphasize that a score of 1 does not imply that the agent follows the optimal policy of the MDP, which we
do not have access to for comparison. Raw return values for each domain, instance and agent can be obtained
from our GitHub repositoryEAll experiments were done on a machine equipped with 32 GB of RAM, an
Intel Xeon Silver CPU with 24 cores and an NVIDIA Quadro RTX 4000 GPU.

5.1 Imitation Learning

Running PROST on the 90 problems for ten episodes each to collect training data took approximately 6 hours.
We then ran PROST for 100 episodes on all 90 problems for scores to use in evaluation, which took roughly
two days. Each mimic policy was trained for 1000 epochs over the training data, which was fed to the agent
in single batches of 2000 samples. Training mimic policies for all domains took approximately 30 minutes,
repeated five times with different train-test splits for a total of 2.5 hours. The mimic policy was then tested
on all problem instances for 100 episodes. To summarize the differences between the agents, we performed a
permutation test to compare average mimic scores on train and test instances, as well as PROST scoresE The
test calculates a distribution of a selected metric, in our case the difference in means, under the hypothesis
that the compared sample distributions are equal. It does so by pooling all the samples and calculating the
metric for permutations of the samples for a given number of repetitions. If the observed metric is unlikely
given the resulting distribution of metrics, then the null hypothesis of the samples have equal means can
be rejected. We observed a difference of 0.01 between the agent scores on test problems compared to train
problems, which according to the null distribution has a probability of occurring by 83%. We thus have more
confidence in the means being equal than not according to the test. The differences between PROST and
both the training and test sets are significantly larger, with a difference of -0.26 between PROST and the
VEJDE scores on the test set. The differences in mean with the p-values from the permutation test is shown
in and a plot of the null distribution from the test is shown in Appendix

From the average test scores per domain, we observed varying differences to PROST between problem domains.
On some domains, such as SkillTeaching and SysAdmin there was not a significant difference between
the scores of PROST and the mimic policy. Two VEJDE scores fall under and average of 0.5, those for
AcademicAdvising and Navigation. We noted that PROST barely performs better than the lower bound return
on certain instances of AcademicAdvising, which is a possible cause of the low mimic performance on this
domain. Mimic test scores for each domain are shown in [Table 21

13See code appendix for data during review period.
4\We used https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html to run the test.

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html

Under review as submission to TMLR

Table 2: Average normalized score per domain on test instances for PROST and VEJDE policies trained with

imitation learning.

Domain VEIDE p+0 PROST pt+o
SysAdmin 0.99 + 0.03 0.87 £ 0.12
SkillTeaching 0.91 + 0.22 0.98 + 0.02
Tamarisk 0.88 + 0.06 1.00 + 0.01
Elevators 0.87 £ 0.13 0.99 £ 0.02
Traffic 0.73 + 0.16 1.00 £ 0.00
CrossingTraffic 0.63 £+ 0.31 1.00 + 0.00
Navigation 0.33 £ 0.48 0.99 £ 0.03
AcademicAdvising 0.21 4+ 0.42 0.75 + 0.44

5.2 Reinforcement Learning

Training VEJDE policies for all domains using reinforcement learning took approximately 5 hours, which
repeated five times took a total of 35 hours. Training one MLP policy for each of the 90 problem instances
took approximately 24 hours. After training, all policies were executed on each of the problem instances
for 100 episodes, and the average return per instance was recorded. We used the same evaluation data for
PROST as was used in the imitation learning experiment. To create a summary score for over all domains, we
performed a permutation test with 10 samples to compare the test problem scores of the VEJDE agents with
the scores of the MLP policies and PROST on the same problems, with the null hypothesis that the agents
have equal average scores. If we assume that we can reject the null hypothesis with p < 0.05, we can not do
so for the difference between the mean scores of the MLP and VEJDE agents, but we can for the difference
between PROST and the other agents. There was thus, in average, not a significant statistical difference
between the average scores of the VEJDE agents and the MLP agents, which we consider good given that the
VEJIDE agents were not trained on the considered instances. Both RL agents have significantly worse scores
than PROST in average. The statistics of the test are shown in and we have included a plot of the
resulting null distribution from running the test in Appendix [B]

We observed the VEJIDE agent achieved significantly higher scores than the MLP agents on the domain Traffic,
and on one domain, AcademicAdvising, the VEJDE agent had higher scores than both PROST and the MLPs.
On the domain Nawvigation and Elevators the VEJDE agents had significantly worse scores than the other
agents, as well as their imitation learning counterparts. The scores of the MLP agents on these domains,
though slightly higher than those of the VEJDE agents, are also relatively low, indicating a general difficulty
in finding policies for these domains using reinforcement learning. Normalized test scores for each domain are

shown in [Table 4]

13

Under review as submission to TMLR

Table 3: Difference in average score between VEIJDE RL agents, instance-specific MLP agents and PROST
on test instances, averaged across all problem domains. p,.; is probability according to null distribution
produced by permutation testing that P(|X| > |u1 — pal)-

Comparison M1 — M2 Prull
VEJIDE - MLP 0.05 0.17
VEJIDE - PROST -0.43 0.00
MLP - Prost -0.48 0.00

Table 4: Average normalized scores on test instances for agents trained using RL and PROST, per problem
domain.

Domain VEIDE pu£0 MLP u+o PROSTuxo
SkillTeaching 0.84 £0.10 0.83+0.12 0.99 4+ 0.02
AcademicAdvising 0.77 + 0.39 0.19 +0.39 0.41 £+ 0.46
SysAdmin 0.75 £0.23 0.89 £0.11 0.94 £ 0.09
Traffic 0.61 £0.24 0.11 £0.12 1.00 £ 0.00
Tamarisk 0.56 £ 0.26 0.61 £0.11 1.00 = 0.00
CrossingTraffic 0.42 £0.19 0.45+0.25 1.00 £ 0.00
Navigation 0.01 £0.03 0.134+£0.33 1.00 + 0.00
Elevators 0.00 £ 0.00 0.21 £0.19 1.00 £ 0.00

14

Under review as submission to TMLR

6 Related Work

There have been a number of previous works that combine methods of machine learning on graphs with
decision problems, and VEJDE piece-wise overlaps with several of these. We summarize the primary differences
and overlapping features with a non-exhaustive selection of related works in

There exists a large body of work that falls into the category of relational reinforcement learning. The book
by [Van Otterlo| (2009)) covers much of research in the area prior to the 2010s, which is composed of both
purely symbolic and non-neural machine learning methods for both value-based and policy-based relational
reinforcement learning. The survey by Mohan et al.| (2024)) covers more recent works, from the more generic
perspective of utilizing structure in RL, as well as some older works. They use the term “side information’
to refer to various forms of structural knowledge provided to agents to improve learning, but which are
not part of the typical MDP formalism. Side information used by various works include data abstractions,
information about system dynamics and goal formulations, which typically improve data efficiency or policy
generalization at the cost of requiring more prior knowledge about the problem or computational power. By
their categorization, the only side information we use in VEJDE is data abstraction, where we assume that
there exists a data description language that can describe object classes and relations from a given problem
domain. This is, in our opinion, a significantly lighter assumption than for instance [Sharma et al.| (2023)
makes, which is full knowledge of the dynamic Bayesian network in order to construct the input graph for
the policy.

)

An alternate method of inductive policy generation which we consider interesting is decision list learning. The
state is represented with symbolic logic, but rules for actions are represented explicitly in a human-readable
manner rather than implicitly encoded as weights in a neural network. |Fern et al.| (2006]) presents a symbolic
method that searches for a policy through a combination of beam-searching and policy iteration. Neural
methods for decision list rule generation that incorporate numeric optimization have also been proposed (Hazra,
& Raedt), 2023} Delfosse et al., |2023), which in some cases assign numeric weights to the rules in order to
make the policy probabilistic. Representing rules in a human-readable manner has an immediate benefit of
being able to interpret the policy, which is good for transparency, but requires a method for searching a
potentially large space of possible rules. We also recognize the possibility of using a trained MPNN policy to
extract explicit rules post-hoc.

The topic of generalization in reinforcement learning for classes of problems has also been covered from
the perspective of deep learning. In their survey of RL generalization, [Kirk et al.| (2023)) separate learning
problems into three categories: singleton problems where the training and test environments are the same; 11D
generalization problems, where the test environments are different but sampled from the same distribution as
the train environments; Out of Distribution (OOD) generalization problems, where the test environments are
sampled from a different distribution. An example of such problems is the collection “ProcGen”; which define
problems using distributions over variables such that randomly generated problem instances can be sampled
from them (Cobbe et al., 2020).

6.1 Deep Relational Reinforcement Learning

The works which we consider closest in type to ours are those which use graph-based state representations
to predict action probabilities in a model-free learning context. The method we use to sample actions is
influenced by [Janisch| (2024). They use an autoregressive decoding scheme to sample the components of
actions, which allows for both nullary and higher-order actions. For actions with an arity greater than one,
additional rounds of message-passing are executed after sampling an object, marking objects that have already
been selected with an additional feature. Unlike us, they use simple graphs to represent the facts of the
state, which limits the method to problems with binary relations. Agents are trained using policy gradient
optimization in an unsupervised manner. They evaluate their method on implementations of SysAdmin,
Blockworld and a modified version of the game Sokoban.

Garg et al.|(2019), like us, use reinforcement learning to train policies based on the RDDL domains SysAdmin,
Game of Life and Academic Advising. These are all represented as a simple graph of binary relations between
objects, with a single unary action. While this work use a similar evaluation as us, we can not compare our

15

Under review as submission to TMLR

results directly with them, as they too present normalized scores but have not calculated them in relation to
any baseline policies. Therefore, we can not determine if their method performs better than a random or null
policy on these domains. Additionally, they train and test on hand-picked subsets of instances, rather than
all instances.

Ammanabrolu & Ried]| (2019)) offers a somewhat different perspective, coming from a natural language
processing context. Agents are evaluated on a text-based game, where an agent has to navigate a simulated
space and solve puzzles. They represent observations using a simple graph, which use word embeddings as
node features, and select actions as Resource Description Framework (RDF) triplets, on the form (subject,
verb, object).

We also wish to highlight a set of works we refer to as object-oriented reinforcement learning, which includes
works by |Guestrin et al.| (2003), Diuk et al.| (2008) and more recently |Zambaldi et al. (2019). We categorize
these works by the fact that they model the state using conditionally independent objects, but without
explicit relationships. Mohan et al.| (2024) classifies these works as factored representations, as opposed to
relational representations that include relations, as we do. A number of works in the context of multi-agent
reinforcement learning, such as [Foerster et al.| (2018]), arguably fit this category when the complete system
state is factorized into discrete states or observations for each individual agent. The object-oriented approach
is practical in the sense that one does not have to define or observe relationships between objects, but tends to
have worse scaling properties since approaches typically compares every entity to one another. It is, however,
less sensitive to violations of the homophily assumptions which MPNNs rely on, .e. that things which are
connected in the graph are related.

6.2 Automated Planning

Many works that use symbolic logic to represent problems operate in the research area of planning, which
tends to assume deterministic system models, as opposed to MDPs with probabilistic state transitions.
Nevertheless, we share features with multiple works within this research area. For instance, |Chen & Thiébaux
(2024) and |Stahlberg et al. (2023) both use factor graph state representations, but predict heuristic scores over
subsequent states rather than probabilities over actions. |[Chen et al.[(2024]) use the WL algorithm to generate
latent states, which are then used to produce heuristic scores. In a subsequent work, |Chen & Thiébaux
(2024) extends the WL algorithm to incorporate numeric features, and evaluate their method on a single
deterministic goal-oriented problem, Blockworld. They train their models in a supervised manner based on
pre-calculated optimal plans. We find this pair of works interesting in that they show that a computationally
simpler representation can be used to generate latent states, at least for the singular problem they investigated.
In Stahlberg et al.| (2023)) agents are trained in an unsupervised manner using reinforcement learning, as well
as a value function using supervised learning. They evaluate their method on several problems defined in
PDDL. In a subsequent work, |Stahlberg et al.| (2025]) focuses on methods for higher-order action selection,
but these are only evaluated with supervised learning.

7 Discussion

This section covers our thoughts on the results, the design decisions made with VEJDE and the problem
selection.

7.1 Agent Performance

7.1.1 Vejde

The VEJDE agent trained with RL received average scores higher than the trivial policies on 8/10 domains.
We consider this a positive indication that the method can be used for developing policies generalize to
unseen problem instances within a class of problems. We observed a negative difference in score between the
mimic policy and RL policy for most problem domains. Elevators has the most significant difference, with
an 87 percent unit drop between the experiments. Since the problems and VEJDE architectures were the
same for both experiments, we attribute this difference to PPO not discovering a set of policy parameters

16

Under review as submission to TMLR

Table 5: Summary of features in a selection of related works in graph-based decision policy learning compared
to VEJDE. Only works that base their states on observations, rather than environment dynamics, are included.
The “KG” column tells if the state is bounded to only include binary relations, and the “action arity” column
shows the number of arguments of actions, when actions are used rather than heuristics.

Work Supervised Probabilistic Continous KG Action
learning problems features arity
Ammanabrolu & Riedl (2019)) No No No Yes 2
Garg et al.| (2019) No Yes No Yes 1
Stahlberg et al.| (2023) No No No No N/A
Chen & Thiébaux| (2024]) Yes No Yes No N/A
Janisch| (2024]) No Yes No Yes [0, 1, 2]
Stahlberg et al.| (2025) Yes No No No 2
Vejde (Our work) No Yes Yes No [0, 1]

that work and those found when imitating PROST. It remains an open question as to how this difference
can be reduced. Nawvigation and CrossingTraffic occur in the set of problems the VEIDE policies receive the
lowest scores in, both in the reinforcement and imitation learning experiments. They are grid-based problems,
with discrete cartesian coordinates represented as objects and only nullary actions. These are not the kinds
of problems that we otherwise would choose to use VEJDE with, in that representing a uniform grid as a
graph is needlessly complicated and the number of possible actions is constant regardless of the grid size.
Nevertheless, they fit the selection criteria we set, so we feel that it would be unfairly selective to exclude
them. They are arguably a good test for the ability of the architecture to generate graph embeddings, in that
they are essentially graph-classification tasks, but the hypothesis that a whole graph aggregation is needed to
solve these problems remains untested.

7.1.2 MLP

The transductive MLP policies received higher average scores than VEJDE agents for individual instances,
which means that they represent a good option if structural generalization is not a priority. If the number of
entities in the problem changes, more models need to be trained to account for the different input spaceE or
an input space that is agnostic to the number of entities need to be used. In theory, a VEIDE policy can
only be as good as a MLP policy on a given instance, assuming that the MLP policy is optimal, and the
inductive policy is also optimal for all problem instances. If the inductive policy can not be optimal for all
instances due to problem complexity, we would expect a score of the inductive policy to occur between those
for the optimal policy for the instance and the trivial policies. We observe, on average, that the scores of
the VEJDE agents were statistically close to the scores of the MLP agents. In practice, due to the somewhat
unstable optimization that deep RL constitutes, both the MLP and GNN may converge to local minima.
This is our primary explanation as to why VEJDE policies scored higher than MLP policies on some domains.
We could strengthen our evaluation by training five copies of MLP policies with some variation, such as
different initialization values, to pair with the five VEIJDE agents using different training sets. However, given
the long training time required to train the 90 MLP policies, we opted against this. We hypothesize that our
primary takeaway, that the scores of the inductive VEJDE policies is correlated with the transductive MLP
policies, will still hold.

7.1.3 Prost

PROST receives the highest scores on most problems, showing its strong capability to search for optimal
actions. However, the main drawback of PROST is that it is always dependent on an accurate generative
model of the problem during test-time inference. Depending on the use case, this can be difficult to accomplish
due to not having an accurate model available for the problem instance, or that the execution environment

15The practical benefits of having to handle one agent per domain as opposed to ten is hard to quantify, but not insignificant.

17

Under review as submission to TMLR

does not have the resources to perform continuous simulations. By comparison, the RL policies only need
the simulator during training but do not perform any planning when choosing actions. The cost of the high
scores with PROST is also paid with a much higher inference time, which we had to count in days, as opposed
to minutes for the RL policies. Despite its strong overall performance, PROST performs little better than
the do-nothing policy on certain problem instances, most notably from the domain AcademicAdvising. We
are unsure if this is caused by PROST not being well-adapted for this particular problem, or the instances
being defined such that doing nothing is indeed the optimal course of action. The higher average scores
of the VEJDE agents suggests the latter may not be the case, however. The low scores of PROST on this
domain is also reflected in the mimic policy, which are significantly worse on the problem compared to its RL
counterpart.

7.2 Structured State Spaces

The maximum arity of facts across the problems we evaluate with is two. We could therefore represent
the state for all included problems as a simple graph consisting of only nodes and edges, as |Janisch| (2024)
or (Garg et al.| (2019). This is a format which is also known as Knowledge graphs (KGs), or RDF graphs,
within certain research contexts (Ammanabrolu & Riedl, 2019). It is not common for works that handle
KGs to incorporate numeric features, or object-specific features at all, which we assume to have available.
Fey et al.|(2024a)) presents a graph representation directly influenced by relational databases, which extends
simple graphs to include heterogeneous data. They do, however, represent unary attributes as fixed-sized
vectors, analogous to the table columns in relational databases. The bipartite representation we use is flexible
in that entities can be represented with variably-sized sets of unary attributes. Being able to ignore missing
attributes without padding is useful for problems where there are many possible object attributes, but only a
small subset are present at a given time. We may, for instance, want to define many possible alerts for entities
in a network intrusion detection system, where only the observed alerts are included in the agent input.

In addition to changing the graph structure, there are also alternate methods for encoding the information
in the graph which we considered. The conceptually simpler WL algorithm can be used instead of neural
message-passing to encode the nodes and graph into latent states. However, for domains with continuous state
variables the number of possible states becomes infinite, and we lose the ability to interpolate between latent
states. Modifications can be made to the WL to allow for continuous representations (Chen & Thiébaux,
2024). We have also noted methods for belief propagation on factor graphs which incorporate neural networks,
such as the one by |Kuck et al.| (2020), which could provide a different method for message-passing compared
to the WL algorithm.

There are methods for generating object factored embeddings which eschew message-passing altogether. Deep
sets (Zaheer et all |2017) and Transformers (Vaswani et al.| [2017)) are both methods based on neural networks
that can be used for factored representations without explicit relations. Both methods have the benefit that
information from the entire state can be incorporated in the action selection, which also means that nullary
facts can be incorporated without additional steps. However, they also possess worse scaling properties than
MPNN;, since every entity is compared with the others.

7.3 Problem Selection & Extensions

In selecting the domains for evaluation, we excluded problems based on a set of filters, which we comment on
in this subsection as stepping stones for extensions to the work. The problems defined in RDDL constitute
an ideal situation for structural generalization. There are two main points which constitute this ideal: The
first is that the dynamics and reward are specified in a factored and lifted manner, meaning that we can map
objects to their respective types and not lose instance-specific information. The dynamics are also constant
across problem instances. The second point is that the observations use the exact same predicates that are
given to the agent, meaning that the value function and optimal policy can be defined using the language. In
a more realistic setting, there may be a disconnect between the data abstractions and the underlying system.
This arguably forms a partially observable MDP, or a “context” MDP as described by |Kirk et al.| (2023)
which each require more complex solutions methods than for the fully observable problems we consider in
this evaluation.

18

Under review as submission to TMLR

7.3.1 Continuous Actions

Since the policy is parameterized by neural networks, and PPO has previously used for continuous action
selection, including actions with continuous values is theoretically straightforward but would require changing
the formulas for action probabilities and value estimations to account for the additional choice that the action
value represents. Currently, the value for all actions is assumed to be a logical “True”.

7.3.2 Higher-Order Actions

We define higher-order actions as actions which involve more than one object. If we set the limit to at
most binary actions, predicting the action is roughly equivalent to link prediction in the greater context of
graph learning. Implementations of higher-order actions tend to require that tuples of objects are compared,
which scales poorly if done naively (Stahlberg et al., 2025; |Ammanabrolu & Riedl, 2019; Morris et al., [2019)).
For binary actions, the number of argument combinations scales quadratically, trinary cubically and so
on. Autoregressive sampling of action arguments, as done by [Janisch| (2024)), is an alternative method for
producing higher-order actions which scales better than evaluating every possible tuple, but requires a solution
for representing partial actions to the decoding model.

7.3.3 Concurrent Actions

The decentralized nature of MPNNs makes them suitable for implementing concurrent action selection, i.e.
agents performing more than one action in a given timestep. |Janisch| (2024) demonstrated this with the
SysAdmin domain, where the problem is changed to the agent selecting a subset of hosts rather than a
single hosts. Having the agent select one action for each object, or a subset of objects, moves us closer
to a cooperative multi-agent reinforcement learning formulation (Foerster et al., [2018), where we can view
the graph as consisting of an arbitrary number of conditionally independent policies that should act in a
cooperative manner.

7.3.4 Partial Observability

Including problems with partial observability, or hidden context variables as defined by |Kirk et al.| (2023))
would, in our opinion, improve the practical usability of VEJDE. Finding inductive solutions to problems
with partial observability would likely require the addition of memory to the agent, or a temporal component
to the database.

7.3.5 Action Preconditions

This filter came about as a consequence of how pyRDDLGym handles action constraints. Certain domains in
rddlrepository define logical constraints that limit what actions an agent is allowed to execute given the
current state. If an agent executes an action which violates a constraint, the options in the simulator are
to either crash, or put the simulator into an undefined state. A naive solution to this problem is to check
if actions violate a constraint, and replace them with a default action, but not all domains define default
actions. Another solution is to repeatedly sample the policy until a legal action is picked, but this requires a
tighter coupling of the policy and environment than the Gymnasium interface typically defines.

7.3.6 Nullary Domains

Though we did not formally include it in our results, we also tested VEJDE with the RDDL definition of the
classic control problem CartPole with discrete actions. In this relational context CartPole becomes somewhat
of an edge-case, as it is defined with only nullary predicates and actions. The policy decision is thus solely
based on the aggregation of nullary predicates, described in While recognizing that it constitutes a
somewhat overcomplicated solution to the problem, we anecdotally found that VEJDE was able to find a
satisfactory policy for the domain.

19

Under review as submission to TMLR

7.4 Problems not Defined in RDDL

While we do not focus on problems not defined in RDDL in this paper, our implementation is designed to be
used for other, yet relational, problem areas. We chose to use RDDL for our evaluation as it allows us to
evaluate VEJDE on a varied selection of abstracted problem types without much additional implementation
work. For the purpose of developing policies for automated defense, incident response has been simulated in
a number of works, often as a two-agent game between an attacking and defending agent (Wolk et al., 2022).
One of the more prominent examples of network incident response simulation is the CAGE set of problems,
of which CAGE 4 is the most recent instance (Kiely et al. 2025)). The problem state in both simulated and
real-world incident response is often derived from log and system data, which tends to be relational by design
and thus fits the relational reinforcement learning paradigm fairly well, as demonstrated by [Thompson et al.
(2024) for instance.

8 Conclusion

We have developed and evaluated a framework that combines graph learning with model-free RL to find
inductive policies for structured MDPs, which we call VEJDE. The design allows policies to handle states
which vary in both size and structure, as well as variable amounts of possible actions. We evaluated VEJDE
policies on eight problem domains defined with the Relational Dynamic Influence Diagram Language, training
policies both by examples provided by the planner PROST, and with reinforcement learning. From our results,
we found that the VEJDE policies had, in average, a test performance on unseen instances not significantly
different to MLP policies trained on each individual instance We also found that on some problem domains,
policies trained with RL performed significantly worse than the corresponding policies trained with imitation
learning. This leads us to a conclusion that different optimization procedures may be needed, such as improved
exploration, to close this difference. Given that we as a society store much of our data using relational
databases, we see a need to explore methods that allow us to apply neural networks to the data in the way it
is stored. Previous work has explored the use of neural graph learning on databases for supervised learning,
and in this work we show that a similar methodology can be used for reinforcement learning. Incorporating
structure like relational databases provides in the design of the architecture facilitates structural generalization
of agent policies, which we believe improves the real-world usability of reinforcement learning solutions.

20

Under review as submission to TMLR

References

Prithviraj Ammanabrolu and Mark O. Riedl. Playing text-adventure games with graph-based deep rein-
forcement learning. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 3557-3565. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1358.
URL https://doi.org/10.18653/v1/n19-1358.

Pablo Barcel6, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva. The
logical expressiveness of graph neural networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview|
net/forum?id=r11Z7AEKvB.

Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured english query language. In Proceedings of
the 197/ ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
74, pp. 249-264, New York, NY, USA, 1974. Association for Computing Machinery. ISBN 9781450374156.
doi: 10.1145/800296.811515. URL https://doi.org/10.1145/800296.811515.

Dillon Z. Chen and Sylvie Thiébaux. Graph learning for numeric planning. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouwver, BC, Canada, December 10 — 15, 2024, 2024. URL http://papers.nips.cc/
paper_files/paper/2024/hash/abc47clb7adf19e8dc633812a4acf6d2-Abstract-Conference.html,

Dillon Z. Chen, Felipe W. Trevizan, and Sylvie Thiébaux. Return to tradition: Learning reliable heuristics
with classical machine learning. In Sara Bernardini and Christian Muise (eds.), Proceedings of the
Thirty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2024, Banff,
Alberta, Canada, June 1-6, 2024, pp. 68-76. AAAT Press, 2024. doi: 10.1609/ICAPS.V3411.31462. URL
https://doi.org/10.1609/icaps.v34i1.31462.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 2048-2056. PMLR, 2020. URL http://proceedings.mlr.press/v119/cobbe20a.htmll

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377-387, June
1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL https://doi.org/10.1145/362384.362685.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable and explainable
logical policies via neurally guided symbolic abstraction. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems
86: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
9f42106ab54ce3b709ad78d34c73e4363-Abstract-Conference.html,

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient re-
inforcement learning. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008, volume 307 of ACM International Conference Proceeding Series, pp. 240-247. ACM, 2008. doi:
10.1145/1390156.1390187. URL https://doi.org/10.1145/1390156.1390187.

Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Mach. Learn., 43(1/2):
7-52, 2001. doi: 10.1023/A:1007694015589. URL https://doi.org/10.1023/A:1007694015589.

Alan Fern, Sung Wook Yoon, and Robert Givan. Approximate policy iteration with a policy language bias:
Solving relational markov decision processes. J. Artif. Intell. Res., 25:75-118, 2006. doi: 10.1613/JAIR.1700.
URL https://doi.org/10.1613/jair.1700.

21

https://doi.org/10.18653/v1/n19-1358
https://openreview.net/forum?id=r1lZ7AEKvB
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.1145/800296.811515
http://papers.nips.cc/paper_files/paper/2024/hash/a5c47c1b7adf19e8dc633812a4acf6d2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a5c47c1b7adf19e8dc633812a4acf6d2-Abstract-Conference.html
https://doi.org/10.1609/icaps.v34i1.31462
http://proceedings.mlr.press/v119/cobbe20a.html
https://doi.org/10.1145/362384.362685
http://papers.nips.cc/paper_files/paper/2023/hash/9f42f06a54ce3b709ad78d34c73e4363-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9f42f06a54ce3b709ad78d34c73e4363-Abstract-Conference.html
https://doi.org/10.1145/1390156.1390187
https://doi.org/10.1023/A:1007694015589
https://doi.org/10.1613/jair.1700

Under review as submission to TMLR

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex Ying,
Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph representation learning
on relational databases. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?id=
BIMSHniyCP.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex Ying,
Jiaxuan You, and Jure Leskovec. Position: Relational Deep Learning - Graph Representation Learning
on Relational Databases. In Proceedings of the 41st International Conference on Machine Learning, pp.
13592-13607. PMLR, July 2024b. URL https://proceedings.mlr.press/v235/fey24a.html. ISSN:
2640-3498.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence, AAAT18/TAAT18/EAAT’18. AAAT Press,
2018. ISBN 978-1-57735-800-8.

Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural transfer for RDDL planning. In
J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth Srivastava (eds.), Proceedings of
the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2019, Berkeley,
CA, USA, July 11-15, 2019, pp. 631-636. AAAT Press, 2019. URL https://ojs.aaai.org/index.php/
ICAPS/article/view/3530.

Martin Grohe. The logic of graph neural networks. In Proceedings of the 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’21, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781665448956. doi: 10.1109/LICS52264.2021.9470677. URL https:
//doi.org/10.1109/LICS52264.2021.9470677.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new environments
in relational mdps. In Georg Gottlob and Toby Walsh (eds.), IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pp. 1003—
1010. Morgan Kaufmann, 2003. URL http://ijcai.org/Proceedings/03/Papers/144.pdf.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through
world models. Nature, 640(8059):647 — 653, 2025. doi: 10.1038/s41586-025-08744-2.

Rishi Hazra and Luc De Raedt. Deep explainable relational reinforcement learning: A neuro-symbolic
approach. In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi
(eds.), Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference,
ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part IV, volume 14172 of Lecture
Notes in Computer Science, pp. 213-229. Springer, 2023. doi: 10.1007/978-3-031-43421-1_13. URL
https://doi.org/10.1007/978-3-031-43421-1_13.

Jaromir Janisch. Applications of Deep Reinforcement Learning in Practical Sequential Information Acquisition
Problems. PhD thesis, Czech Technical University, 2024.

Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon MDPs. In Proceedings
of the Twenty-Third International Conference on Automated Planning and Scheduling (ICAPS 2013), pp.
135-143. AAAI Press, 2013.

Kristian Kersting and Kurt Driessens. Non-parametric policy gradients: a unified treatment of propositional
and relational domains. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008, volume 307 of ACM International Conference Proceeding Series, pp. 456-463. ACM, 2008. doi:
10.1145/1390156.1390214. URL https://doi.org/10.1145/1390156.1390214.

22

https://openreview.net/forum?id=BIMSHniyCP
https://openreview.net/forum?id=BIMSHniyCP
https://proceedings.mlr.press/v235/fey24a.html
https://ojs.aaai.org/index.php/ICAPS/article/view/3530
https://ojs.aaai.org/index.php/ICAPS/article/view/3530
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1109/LICS52264.2021.9470677
http://ijcai.org/Proceedings/03/Papers/144.pdf
https://doi.org/10.1007/978-3-031-43421-1_13
https://doi.org/10.1145/1390156.1390214

Under review as submission to TMLR

Mitchell Kiely, Metin Ahiskali, Etienne Borde, Benjamin Bowman, David Bowman, Dirk Van Bruggen,
KC Cowan, Prithviraj Dasgupta, Erich Devendorf, Ben Edwards, Alex Fitts, Sunny Fugate, Ryan Gabrys,
Wayne Gould, H. Howie Huang, Jules Jacobs, Ryan Kerr, Isaiah J. King, Li Li, Luis Martinez, Christopher
Moir, Craig Murphy, Olivia Naish, Claire Owens, Miranda Purchase, Ahmad Ridley, Adrian Taylor, Sara
Farmer, William John Valentine, and Yiyi Zhang. Exploring the efficacy of multi-agent reinforcement
learning for autonomous cyber defence: A CAGE challenge 4 perspective. In Toby Walsh, Julie Shah, and
Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence,
February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 28907-28913. AAAT Press, 2025. doi: 10.1609/
AAAILV39128.35158. URL https://doi.org/10.1609/aaai.v39i28.35158|

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktédschel. A survey of zero-shot generalisation
in deep reinforcement learning. J. Artif. Intell. Res., 76:201-264, 2023. doi: 10.1613/JAIR.1.14174. URL
https://doi.org/10.1613/jair.1.14174l

Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song, Ashish Sabharwal, and
Stefano Ermon. Belief propagation neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
07217414eb3fbe24d4ebb6cafb91cal8—Abstract.html.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural networks.
In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in deep reinforcement learning: A survey and
open problems. J. Artif. Int. Res., 79, April 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15703. URL
https://doi.org/10.1613/jair.1.15703|

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 4602-4609.
AAAT Press, 2019. doi: 10.1609/AAAI.V33101.33014602. URL https://doi.org/10.1609/aaai.v33i01,
33014602.

Jakob Nyberg and Pontus Johnson. Structural generalization in autonomous cyber incident response with
message-passing neural networks and reinforcement learning. In IEEFE International Conference on Cyber
Security and Resilience, CSR 2024, London, UK, September 2-4, 2024, pp. 282-289. IEEE, 2024. doi:
10.1109/CSR61664.2024.10679456. URL https://doi.org/10.1109/CSR61664.2024.10679456.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series
in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/9780470316887. URL
https://doi.org/10.1002/9780470316887.

Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker (eds.), Logic and Data Bases,
Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977, Advances
in Data Base Theory, pp. 55-76, New York, 1977. Plemum Press. doi: 10.1007/978-1-4684-3384-5\ 3.
URL https://doi.org/10.1007/978-1-4684-3384-5_3.

Raymond Reiter. Knowledge in action: logical foundations for specifying and implementing dynamical systems.
MIT Press, 2001. ISBN 978-0-262-52700-2 978-0-262-28231-4 978-0-585-44830-5 978-0-262-18218-8.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition, 2010.
Scott Sanner. Relational dynamic influence diagram language (rddl): Language description, 2010. URL
https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf|

23

https://doi.org/10.1609/aaai.v39i28.35158
https://doi.org/10.1613/jair.1.14174
https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://doi.org/10.1613/jair.1.15703
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1109/CSR61664.2024.10679456
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-1-4684-3384-5_3
https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

Under review as submission to TMLR

Victor Garcia Satorras and Max Welling. Neural enhanced belief propagation on factor graphs. In Arindam
Banerjee and Kenji Fukumizu (eds.), The 2/th International Conference on Artificial Intelligence and
Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning
Research, pp. 685-693. PMLR, 2021. URL http://proceedings.mlr.press/v130/garcia-satorras2la,
html.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Yoshua Bengio and Yann LeCun (eds.), 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Vishal Sharma, Daman Arora, Mausam, and Parag Singla. Symnet 3.0: Exploiting long-range influences
in learning generalized neural policies for relational mdps. In Robin J. Evans and Ilya Shpitser (eds.),
Uncertainty in Artificial Intelligence, UATI 2023, July 31 — 4 August 2023, Pittsburgh, PA, USA, volume 216
of Proceedings of Machine Learning Research, pp. 1921-1931. PMLR, 2023. URL https://proceedings|
mlr.press/v216/sharma23c.html.

Simon Stahlberg, Blai Bonet, and Hector Geffner. Learning more expressive general policies for classical
planning domains. In Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), 2025.

Simon Stahlberg, Blai Bonet, and Hector Geffner. Learning general policies with policy gradient methods. In
Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner (eds.), Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece, September
2-8, 2023, pp. 647-657, 2023. doi: 10.24963/KR.2023/63. URL https://doi.org/10.24963/kr.2023/63.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ayal Taitler, Michael Gimelfarb, Jihwan Jeong, Sriram Gopalakrishnan, Martin Mladenov, Xiaotian Liu, and
Scott Sanner. pyrddlgym: From rddl to gym environments, 2024. URL https://arxiv.org/abs/2211,
05939.

Isaac Symes Thompson, Alberto Caron, Chris Hicks, and Vasilios Mavroudis. Entity-based reinforcement
learning for autonomous cyber defence. In Ali Dehghantanha, Reza M. Parizi, and Gregory Epiphaniou
(eds.), Proceedings of the Workshop on Autonomous Cybersecurity, AutonomousCyber 2024, Salt Lake
City, UT, USA, October 14-18, 2024, pp. 56-67. ACM, 2024. doi: 10.1145/3689933.3690835. URL
https://doi.org/10.1145/3689933.3690835.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu, Manuel
Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard interface for
reinforcement learning environments, 2024. URL https://arxiv.org/abs/2407.17032,

Mauro Vallati, Lukas Chrpa, Marek Grzes, Thomas Leo McCluskey, Mark Roberts, Scott Sanner, and
Managing Editor. The 2014 international planning competition: Progress and trends. AI Magazine, 36(3):
90-98, Sep. 2015. doi: 10.1609/aimag.v36i3.2571. URL https://ojs.aaai.org/aimagazine/index.php/
aimagazine/article/view/2571.

Martijn Van Otterlo (ed.). The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for
Adaptive Sequential Decision Making under Uncertainty in First-Order and Relational Domains. Number v.
192 in Frontiers in Artificial Intelligence and Applications. Ios Press, Amsterdam Washington, D.C, 2009.
ISBN 978-1-60750-406-1 978-1-4416-1686-9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural

24

http://proceedings.mlr.press/v130/garcia-satorras21a.html
http://proceedings.mlr.press/v130/garcia-satorras21a.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v216/sharma23c.html
https://proceedings.mlr.press/v216/sharma23c.html
https://doi.org/10.24963/kr.2023/63
https://arxiv.org/abs/2211.05939
https://arxiv.org/abs/2211.05939
https://doi.org/10.1145/3689933.3690835
https://arxiv.org/abs/2407.17032
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2571
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2571

Under review as submission to TMLR

Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998-6008, 2017. URL https://proceedings.neurips,
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvéri, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pp. 23341-23362. PMLR, 2022. URL https://proceedings.mlr.press/
v162/wang22am.html.

Melody Wolk, Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina Moskowitz, Harold Nguyen, Nicole
Nichols, Nicole Park, Paul Rachwalski, Frank Rau, and Adrian Webster. Beyond cage: Investigating
generalization of learned autonomous network defense policies. In International Conference on Machine
Learning Workshop, ML/ Cyber. International Conference on Machine Learning Workshop, ML4Cyber,
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Pdczos, Ruslan Salakhutdinov, and Alexan-
der J. Smola. Deep sets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 3391-3401, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/f22e4747dalaa27e363d86d40ff442fe-Abstract.html.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan
Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep reinforcement learning with
relational inductive biases. In International Conference on Learning Representations, 2019. URL https!
//openreview.net/forum?id=HkxaFoC9KQ.

25

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.mlr.press/v162/wang22am.html
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://openreview.net/forum?id=HkxaFoC9KQ
https://openreview.net/forum?id=HkxaFoC9KQ

Under review as submission to TMLR

Parameter Name Value
Graph Neural Network

Embedding size 16
Activation function tanh
Message passing layers 4
Critic prediction heads 2
Aggregation function max
Proximal Policy Optimization

Policy ratio clip factor 0.2
Entropy loss coefficient 0.1/0.001/0.0001
Critic loss coefficient 1.0
GAE X 0.95
Rollout steps 1024
Update epochs 10
General Optimization

Optimizer Amsgrad
Max. grad.2-norm 1.0
Total steps 1500000
Batch size 16
Number of parallel envs. 16
Discount factor 0.99
Learning rate 1073/1074/107°
Exponential average « 0.99

Table 6: Hyperparameters for reinforcement learning of VEJDE policies. Learning rate and entropy coefficient
was lowered every 500000 steps.

9 Appendices
A Hyperparameters

Table 6] summarizes hyperparameters used in VEJDE during experiments.

B Plots from Permutation Test

Figures[2|and [3| show null distributions produced by sampling permutations of the pooled data and calculating
the average score, with the observed average score marked with a red line. 10 permutations were used. Null
distributions from PROST comparisons are not included as the probability of the test statistic is 0.

C Box plots of scores per domain

Figure 4] shows box plots of average scores for each agent type for each domain.

26

Under review as submission to TMLR

4.0

——-=- Test Statistic: 0.0495, p-value: 0.1682

3.5 1

3.0 1

Density (%)
N N
o]

-
v

1.0 1

0.5 1

0.0 -
-0.15 -0.10 —0.05 0.00 0.05 0.10 0.15
Mean Score Difference (score - mip)

Figure 2: Null distribution from permutation test between average scores of VEIDE and MLP agent on all
problems. p-value is calculated as P(X > 0.0495) - 2.

4.0

—=—- Test Statistic: 0.0086, p-value: 0.8191

Density (%)

—0.05 0.00 0.05
Mean Score Difference (test - train)

Figure 3: Null distribution from permutation test between average scores on test and train set problems for
imitation learning agents. p-value is calculated as P(X > 0.0086) - 2.

27

Under review as submission to TMLR

Score

Score

Score

Score

AcademicAdvising 2014 CrossingTraffic 2014
1.0 1 5 1.0
T o
. 0.8 1 -
o 0.6 1
o
1%
8
0.2 A
0.0 . . = 0.0 ; ; &
prost mlp vejde prost mlp vejde
Model Model
Elevators 2014 Navigation 2011
1.0 1.0 O
0.8 A 0.8 A
0.6 o 0.6 1
o
@
0.4 4 0.4 1
0.2 4 0.2 1
(o] o
0.0 T u T 0.0 T T T
prost mlip vejde prost mlp vejde
Model Model
SkillTeaching 2014 SysAdmin 2011
1.0 g 1.0 q
0.8 A 0.8 A
8
0.6 v 0.6
o
19
0.4 9 0.4 1
0.2 A 0.2
0.0 T T T 0.0 T T T
prost mlp vejde prost mlip vejde
Model Model
Tamarisk 2014 Traffic 2014
1.0 1.0
0.8 1 0.8 1
0.6) 0.6
o
19
0.4 9 0.4 4
0.2 A 0.2 A
0.0 T T T 0.0 T T
prost mlp vejde prost mip vejde
Model Model

Figure 4: Box plots of normalized scores of VEJDE agents, MLP agents and PROST for each domain.

28

	Introduction
	Background
	Knowledge Representation
	Markov Decision Processes
	Reinforcement Learning
	Message-Passing Neural Networks

	Implementation
	States & Actions
	State Graph

	Vector Encoding
	Literals
	Objects
	Positions

	Message Passing
	Policy
	Value Estimate
	Implementation Details
	Batching
	Action Masking
	Code Library Design

	Evaluation
	Problem Selection
	Data Generation
	Experiments
	Imitation Learning
	Reinforcement Learning

	Results
	Imitation Learning
	Reinforcement Learning

	Related Work
	Deep Relational Reinforcement Learning
	Automated Planning

	Discussion
	Agent Performance
	Vejde
	MLP
	Prost

	Structured State Spaces
	Problem Selection & Extensions
	Continuous Actions
	Higher-Order Actions
	Concurrent Actions
	Partial Observability
	Action Preconditions
	Nullary Domains

	Problems not Defined in RDDL

	Conclusion
	Appendices
	Hyperparameters
	Plots from Permutation Test
	Box plots of scores per domain

