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Abstract

Exploring the intricate dynamics between muscular and skeletal structures is pivotal
for understanding human motion. This domain presents substantial challenges,
primarily attributed to the intensive resources required for acquiring ground truth
muscle activation data, resulting in a scarcity of datasets. In this work, we address
this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle
activation dataset. For the creation of MinT, we enriched existing motion capture
datasets by incorporating muscle activation simulations derived from biomechan-
ical human body models using the OpenSim platform, a common approach in
biomechanics and human motion research. Starting from simple pose sequences,
our pipeline enables us to extract detailed information about the timing of muscle
activations within the human musculoskeletal system. Muscles in Time contains
over nine hours of simulation data covering 227 subjects and 402 simulated muscle
strands. We demonstrate the utility of this dataset by presenting results on neural
network-based muscle activation estimation from human pose sequences with two
different sequence-to-sequence architectures.
Data and code are provided under https://simplexsigil.github.io/mint.

1 Introduction

Like prisoners in Plato’s cave, neural networks for human motion understanding often rely on indirect
representations rather than direct, biologically grounded data. In Plato’s allegory, prisoners in a
cave see only shadows cast on the wall, not the true objects. Similarly, neural networks trained on
accessible data, such as RGB and depth-based video recordings or motion capture, only perceive
surface-level appearance of motion in contrast to the inner mechanics of the human body.

This reliance on external visual observations provides an incomplete understanding of the true
complexities of human motion. Just as the prisoners lack a direct view of the objects casting the
shadows, current models lack exposure to the internal workings of the human body, such as the
muscle activations driving motion. This gap limits their ability to develop an in-depth understanding
of physical exertion, motion difficulty, and mass impact on the body.

Our community has progressed from capturing human motion with camera sensors and predicting
activities to pose-based recognition systems that account for the body and its motion over time. These
advances, while significant, still overlook the interplay of muscle activations, which are the root of
pose sequences and patterns.
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Figure 1: Simulation pipeline of the Muscles in Time dataset. The SMPL representation is extracted
from videos, then, the SMPL represented motions are mapped to bio-mechanically validated human
body models to simulate fine-grained muscle activation, connecting computer vision with biomechan-
ical research. Bottom right: two activation sequences for exemplary muscles. Images from [47, 15]

.

Collecting electromyographic (EMG) data or more commonly used surface electromyographic
(sEMG) data, as a measure of muscle activation, presents challenges. It is resource intensive,
requiring specialized equipment, controlled environments, and is an invasive procedure. Existing
EMG and sEMG datasets are small, limited in scope, and not representative of the variety of human
motions. These limitations hinder the development of neural networks that can generalize across
different types of motion and subjects.

While acknowledging the contributions of EMG and sEMG datasets, we identify an opportunity to
supplement this domain with a synthetic dataset that overcomes some limitations of real-world data
collection. The strength of our dataset lies in its scale and detail of muscle activation data, a feat not
achievable through conventional methods alone.

Every dataset, simulated or real, has domain-specific fidelity and relevance. Real-world recordings
offer authenticity that underpins our understanding of human biomechanics with nuances, such as
EMG measurements being subject-specific and varying over the course of one day. Simulated datasets,
like ours, offer a complementary perspective by providing comprehensive data for the understanding
of muscle activation patterns through a scalable data acquisition pipeline.

In this work, we present a comprehensive large-scale dataset incorporating muscle activation in-
formation. We enrich existing motion capture datasets with muscle activation simulations from
biomechanical models of the human body. Our pipeline uses simple pose and shape sequences
with estimated weight and mass of the human body to simulate muscle activations for individual
movements. Using this, we generate the muscles’ activation that fit the provided human motions.
Figure 1 provides an overview of our pipeline.

We showcase the utility of muscle activations as an additional data type for human motion under-
standing and gather insights by visualizing the intricate details of our data. Our dataset, the first of its
magnitude and detail, describes muscle activation across a wide array of movements. By enhancing
the current set of tools available to researchers, we expand the potential for scientific investigation
and innovation in the study of human motion.

2 Related Work

Human Motion Analysis and Datasets EMG-based muscle activation analysis is a well-established
field in biomechanical research. Still, publicly available databases including experimentally measured
muscle excitation using sEMG are often small in size or cover a small range of muscles or motion
variations [21, 30, 79, 25, 51, 46, 61, 42, 34, 50, 65]. The dataset proposed by Zhang et al. [79]
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Table 1: Comparison between recent muscle activation datasets and Muscles in Time.
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Camargo et al. [5] 2021 22 11 10 min 4 × × × ✓ × ×
Feldotto et al. [21] 2022 5 7 10 min 4 × × × ✓ × ×
KIMHu [30] 2023 20 4 10 h 3 ✓ ✓ ✓ ✓ ✓ ×
MuscleMap [55] 2023 N/A 20a ∼25 hb 135 ✓ ✓ ✓ × ✓ ×
MiA [10] 2023 10 8 12.5 h 15 ✓ ✓ × × ✓ ×
MinT (ours) 2024 227 402c,d 10 h 187 ✓d ✓d,e ✓d ✓d ✓ ✓

a Clip-wise binary labels. b Coarse estimation based on 15,004 clips of 3-9s. c Muscle strands, some
muscles represented by multiple strands. d Simulated data. e From [64]

contains 5 persons and leveraged 8 EMG sensors. The KIMHu dataset [30], for example, includes
sEMG data of four upper limb muscles measured during different arm exercises performed by 20
subjects. The MIA Dataset [10] includes sEMG signals for eight muscles in total (upper and lower
limb) across 10 subjects who performed 15 different exercises, e.g., running, jumping jacks, squats,
and elbow punches. MuscleMap is a video-based muscle activation estimation dataset, which assigns
binary muscle activation labels to action categories, involving 20 muscle groups and 135 actions [55].
In Table 1, we provide a comparison of multiple recent EMG datasets to MinT. Most notably MinT
features a significantly larger number of subjects, a larger number of activation measurements and a
diverse range of motions.

OpenSim is an open-source software platform for musculoskeletal modeling, simulation, and anal-
ysis. It is widely used in various research areas such as biomechanics research, orthopedics and
rehabilitation science, and medical device design [16, 66]. The state-of-the-art process in OpenSim
for simulating muscle activations of a certain task requires subject-specific motion and force data. In
most cases, these data are obtained through experimental studies, which can be time-consuming and
resource-intensive.

In a related field, musculoskeletal humanoid control and simulation focuses on developing computa-
tional models and control strategies for simulating human motion with musculoskeletal detail. Recent
work by Jiang et al. [35], Caggiano et al. [4], Feng et al. [23], and He et al. [83, 29] has advanced
methods for efficient and realistic simulation of muscle-actuated characters. While these approaches
differ from OpenSim’s focus, they highlight the broader interest in understanding and simulating
human musculoskeletal dynamics.

Skeleton-based Vision Models Skeleton-based action recognition [22, 1] is pivotal in decoding
human actions from video footage, providing a streamlined and insightful depiction of human poses
and movements that remains invariant to changes in appearance, illumination, and backdrop. This
approach enhances the identification of dynamic skeletal characteristics essential for precise action
recognition, finding utility across surveillance, human-computer interaction, and medical fields.
The goal of skeleton-based action recognition is to classify actions based on skeletal geometry
information [36, 44, 49, 19, 56, 74, 54, 72, 7]. Predominantly, the techniques employed are based
on graph convolutional neural networks (GCN)[38, 76, 68, 9, 77, 8], with newer methods adopting
transformer architectures [69, 58, 41, 81, 17, 73]. Chen et al. [8] proposed channel-wise topology
refinement graph convolution for skeleton-based action recognition. Yan et al. [75] proposed skeleton
masked auto encoder to achieve skeleton sequence pretraining which delivers promising benefits for
the skeleton based action recognition. Apart from the GCN and transformer based models, PoseC3D
is proposed by Duan et al. [19] to use 3D convolutional neural networks on the heat map figures
painted by the skeleton joints.

Sequence-to-sequence Models Sequence to sequence models [52, 37, 11, 80, 43, 67, 24] are a
class of deep neural network architectures designed to transform sequences from one domain into
sequences in another domain, typically used in applications such as machine translation, speech
recognition, and text summarization. These models generally consist of an encoder that processes the
input sequence and a decoder that generates the output sequence, facilitating the learning of complex
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Figure 2: The AMASS body model with specific indices mapped onto the OpenSim lower body
model by Lai et al. [40] (middle) and model of the thoracolumbar region by Bruno et al. [3] (right).
Best viewed by zooming in.

sequence mappings through recurrent neural networks (RNNs) [45, 53, 57, 33] or transformer-
based architectures [18, 32]. Chan et al. [6] proposed Imputer method by using imputation and
dynamic programming to achieve sequence modelling. Colombo et al. [13] used guiding attention
for sequence-to-sequence modelling for dialogue activities prediction. Rae et al. [60] proposed
compressed transformer architecture for long-range sequence modelling. Foo et al. [24] proposed a
unified pose sequence modelling method for human behavior understanding.

3 The Muscles In Time dataset

To develop the Muscles in Time (MinT) framework, we harnessed the comprehensive AMASS
dataset, which consolidates various marker-based motion capture (mocap) sequences into a uniform
representation using the MoSh++ method, resulting in Skinned Multi-Person Linear Model (SMPL)
parametric representations for body pose and shape. AMASS amalgamates mocap data from multiple
sources, including the KIT Whole-Body Human Motion Database [48], BMLrub, and BMLmovi [27],
encompassing over 11,000 motion captures from more than 300 subjects. This extensive collection
enables the analysis of a broad array of human movements, providing a rich basis for studying diverse
motion patterns.

The SMPL model serves as a pivotal link, translating mocap data from AMASS into mesh rep-
resentations which we use to transfer the data into a format compatible with the OpenSim [15]
platform. OpenSim is instrumental in constructing intricate biomechanical models that simulate the
musculoskeletal system’s physical and mechanical properties, allowing for an in-depth analysis of
human motion. These models are intricate, requiring precise definitions of joints, masses, inertia, and
muscle parameters, such as maximum isometric force, which act as the force-generating actuators.

In this work, we abstain from developing new biomechanical models due to the complexity and
expertise required. Instead, we utilize established, pre-validated models, specifically the lower body
model by Lai et al. [40] and the thoracolumbar region body model by Bruno et al. [3], see Figure 2.
These models simulate muscle activations for an extensive network of individual muscle strands
across various muscle groups, providing a comprehensive simulation of human musculature. A
detailed list of these muscle groups and their function in the human body is provided in the Appendix.

Tailoring body model parameters to an individual’s anatomical properties results in similar difficulties
as with the creation of new body models, therefore parameters are commonly used as specified in the
validated original models [40, 3], in the OpenSim community. We follow this approach, providing
simulation results for standard models rather than subject-specific human bodies.

To integrate human motion data from AMASS with OpenSim, we map virtual mocap markers to the
SMPL-H body mesh’s surface vertices, following the method proposed by Bittner et al. [2]. This
results in a selection of 67 strategically placed vertices that represent marker positions on the body
mesh, visualized on the left of Figure 2. We deliberately exclude soft tissue dynamics from the
SMPL-H mesh generation to maintain consistent marker positions during motion.
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Figure 3: Approximated weight and height distribution of the analysed subjects in the MinT dataset.

Despite OpenSim’s automatic scaling capabilities, manual adjustments of marker positions are some-
times necessary to reconcile differences between simulated and real-world data. These adjustments
are made on a subject-specific basis, rendering our pipeline semi-automatic. The manually adjusted
marker positions are documented and shared to ensure the reproducibility of our simulations.

AMASS lacks data on external ground reaction forces or contact forces, which are crucial for realistic
motion simulation. To address this, we integrate the OpenSimAD [20] implementation used in the
OpenCap [70] project, which calculates ground reaction forces based on kinematic data and the
musculoskeletal model. We employ a tailored parameter setup to optimize the trajectory problem,
balancing computational load and accuracy.

Kinematic data is analyzed using OpenSim’s Inverse Kinematics method. Muscle activations for
the lower body are derived from a trajectory optimization problem described in [70]. The estimated
ground reaction forces from this problem serve as inputs for the Static Optimization method, which
calculates muscle activations for the thoracolumbar region.

Due to the computational demands of the trajectory optimization problem, we process the data
in segments, ensuring manageable computation times without compromising the continuity of the
motion capture sequences. We implement overlapping buffers to mitigate inaccuracies during segment
processing, discarding data that fails to meet our stringent error tolerance criteria to maintain a high
standard of data quality. Further details on implementation and design decisions of our simulation
process are presented in the Appendix.

The Muscles in Time (MinT) dataset represents a significant contribution to the field of biomechanical
and computer vision simulation. By integrating and refining existing methodologies, we present a
robust pipeline that facilitates the accurate simulation of human muscles in motion by combining
established biomechanical models with high quality mocap data. To ensure reproducibility, we will
release all relevant data and details of our simulation process to the scientific community.

3.1 Dataset Composition

Due to missing information on external forces based on object interactions, inaccurate motion capture
recordings or non-converging simulations, the MinT dataset covers a subset of its originating datasets
in AMASS and does not follow their respective dataset statistics.

Anthropometrics While the motion capture recordings in AMASS provide gender labels, information
about subjects height and weight is approximated from the SMPL body model. Body weight is
calculated by volume resulting from average shape parameters, which follows the approach of
Bittner et al. [2]. The weight is relevant for the calculation of ground reaction forces and the
distribution of weight in the model, affecting the muscle activation in different parts of the body.

The Figure 3 shows the distribution of weight, indicating significant diversity. Underweight subjects
are slightly underrepresented in the dataset, subjects in the obese range are well represented.

Composition of Subdatasets Within AMASS, MinT is limited to the subdatasets EyesJapan, BMLrub,
KIT, BMLmovi, and TotalCapture. Figure 9 in the appendix shows the ratio of the originating
subdatasets in our final simulation results as well as the average sequence length within these
subdatasets. The short sequences in BMLmovi typically depict single activities, while the longer
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Figure 4: Prevalence of different motions in the MinT dataset.

ones for example in JapanEyes capture a more diverse range of motions within a single sequence.
Since we compute activation information for shorter segments and rejoin them afterwards, longer
sequences are more prone to gaps in the analysis due to individually failing segment computations.

Motion Diversity Figure 4 displays the frequencies of grouped activities on a logarithmic scale.
The action labels are based on the BABEL dataset, a large annotation dataset which is coupled with
AMASS. Most interesting are dynamic actions, since expected muscle activations for simple dynamic
actions are well documented and we present a short qualitative analysis based on such actions in
Section 3.2.

3.2 Data Analysis, Validation, and Visualization

In Figure 5 (left) we explore the interrelation between different activities by investigating our
simulated muscle activation time-series. To this end, we extract features from the temporal muscle
activation sequences using tsfresh [12], a commonly used framework in time series analysis that
extracts a feature vector based on time series characteristics such as mean, skewness, standard
deviation etc. We chose distinct and descriptive groups of activities from the BMLmovi subset such
as jumping, kicking, stepping and walking, the resulting features were normalized and clustered
using FINCH [62] and visualized with h-NNE [63]. It can be observed, that activities do not only
cluster together based on variations within the same category (e.g., different types of jumps, including
jumping jacks), but also align closely across different categories, when they share similar motion
patterns (e.g. sideways movements). This underlines the descriptive information contained in our
simulated muscle activation sequences for characterizing activities.

4 Motion to Muscle Activation Estimation Benchmark

While OpenSim provides a means for simulating muscle activations, it is both highly compute
intensive as well as sensitive regarding hyper parameters as described in Section 6. These properties
limit it to be used by experts in an offline manner and prevent usage in everyday applications. In this
section we explore the usage of MINT as a training dataset for the estimation of muscle activation
based on pose motion. Such networks provide muscle activation estimation in an instant and can
easily be deployed for various downstream tasks.

Given pose motion sequences, we use the preprocessing step defined by [28] which adjusts skeletal
structure to a uniform format and normalizes positions and enriches the resulting data points with
additional features. This procedure maps each input to a 263-dim descriptor, resulting in samples
of the form x = [x1, ..., xT ], xt ∈ R263. For training our models we segment the resulting data
into clips of 1.4 second sampled at 20 frames per second, resulting in T = 28 input frames. Given
a network fΘ : RT×d 7→ RT×m we predict f(x) = y with y = [y1, ..., yT ], m = 402 being the
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Figure 5: Left: Clustering of multiple activities within the BMLmovi dataset by muscle activation
features. Right: Column-wise color coded histograms of areas under muscle activation curves for
402 muscle strains, sorted by histogram medians. Log-normalized color map, best displayed in color.

number of individual muscle strain activations simulated in our dataset, consisting of 80 lower
body muscle strains from [20] and 322 muscle strains for the upper thoracolumbar region body
model [3]. Evaluation is performed by calculating Root Mean Squared Error (RMSE), Pearson
Correlation Coefficient (PCC), and Symmetric Mean Absolute Percentage Error (SMAPE). RMSE is
commonly used but highly susceptible to data scaling, resulting in significantly lower error values
for downscaled data. In practice, EMG signals vary strongly between subjects, scaling of signals
is therefore a common preprocessing step. PCC is a good indicator for muscle activation series
similarity, since it is scale and offset invariant. SMAPE allows for considering fixed offsets as error
while being less sensitive to scaling in comparison to RMSE. PCC and SMAPE are calculated for
each muscle strain individually and averaged. For our benchmark we use the train, val and test splits
defined by the BABEL dataset [59]. Evaluation results are reported separately for muscles of the
upper and lower body model.

5 Experiments

We evaluate five different architectures on MINT. Since we make use of human motion as input for
our predictor, we adapted a common architecture for motion-to-motion prediction from [78] to the
task of motion-to-muscle activation prediction by simply exchanging its prediction head. We further
evaluate a Long Short-Term Memory (LSTM) [31], a fully convolutional network (FConv) [26], a
Mamba2 Mixer model [14] and a simple transformer architecture [71] with 16 transformer layers,
results for the lower and upper body model are listed in Table 2. All models are trained from scratch
for 300k iterations with a batch size of 256 unless noted otherwise. More details on the model
implementations can be found in the supplementary.

The evaluated transformer architecture showed the best results as compared to the adapted VQ-VAE
model, LSTM, FConv and Mamba in all metrics on all evaluated motion types. The results of the
experiment also show the importance of reporting PCC and SMAPE, since the differences on RMSE
are marginal while PCC shows significant improvements as does SMAPE. We suspect this to be
the case, since many muscles in the human body are mostly relatively inactive unless required for
specific motions. For a simple analysis of this effect, we calculated the integral for each individual
ground truth muscle activation sequence in all our validation set chunks and created 402 color coded
histograms that are sorted by median and vertically displayed side by side on the right hand side of
Figure 5 (one column in the image is a single muscle activation integral area frequency histogram). A
wide range of muscles are rarely activated, resulting in the majority of activation sequences displaying
integral areas significantly below 0.1 or 0.05. This property is challenging for RMSE and SMAPE,
average RMSE reports a small error, since most activations are close to zero and SMAPE reports a
high percentage error, since a deviation from a close to zero value is more likely to result in a high
percentage deviation. For similar reasons, the upper body model displays lower RMSE and higher
SMAPE, the upper body model contains a larger number of small and rarely activated muscles in
contrast to the lower body model.
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Table 2: Human motion-to-muscle activation prediction results for the lower- and upper body model.
Act VQ-VAE [78] FConv [26] LSTM [31] Mamba2 [14] Transformer [71]

R↓ S↓ P↑ R↓ S↓ P↑ R↓ S↓ P↑ R↓ S↓ P↑ R↓ S↓ P↑
Lower body model

all 0.058 59.7 0.40 0.052 66.0 0.49 0.052 57.8 0.48 0.051 55.4 0.49 0.048 45.1 0.54
jump 0.062 66.7 0.52 0.053 68.1 0.66 0.052 62.2 0.67 0.051 60.8 0.68 0.051 52.3 0.71
kick 0.069 69.1 0.38 0.057 74.9 0.55 0.058 66.5 0.55 0.059 67.6 0.55 0.053 54.8 0.62
stand 0.056 60.0 0.42 0.049 64.4 0.51 0.050 58.2 0.51 0.049 55.1 0.52 0.046 45.0 0.58
walk 0.053 57.7 0.66 0.046 61.7 0.73 0.045 53.7 0.73 0.045 50.4 0.74 0.044 42.4 0.77
jog 0.059 64.8 0.58 0.052 69.1 0.66 0.050 61.5 0.68 0.047 58.2 0.69 0.046 51.1 0.71
dance 0.070 71.4 0.40 0.064 76.0 0.59 0.063 71.5 0.57 0.063 70.2 0.57 0.057 58.5 0.65

Upper body model

all 0.041 115.3 0.32 0.034 114.8 0.47 0.035 111.1 0.48 0.034 112.2 0.50 0.033 107.7 0.55
jump 0.064 118.1 0.38 0.052 119.6 0.54 0.054 115.4 0.56 0.053 117.2 0.58 0.052 112.7 0.63
kick 0.058 122.2 0.35 0.048 121.5 0.55 0.048 118.1 0.57 0.048 119.4 0.58 0.044 114.8 0.65
stand 0.039 117.6 0.34 0.031 118.2 0.48 0.031 114.2 0.49 0.030 114.9 0.51 0.028 110.5 0.55
walk 0.028 110.2 0.43 0.021 109.8 0.55 0.022 105.6 0.57 0.020 106.8 0.59 0.019 102.6 0.63
jog 0.040 117.1 0.52 0.034 118.5 0.64 0.032 113.9 0.66 0.031 115.4 0.66 0.029 110.8 0.71
dance 0.046 127.3 0.29 0.041 129.5 0.48 0.044 126.7 0.48 0.039 128.2 0.49 0.036 121.8 0.59

R: RSME S: SMAPE P: PCC

To provide a more detailed analysis we list the results on the collection of all available muscle strains
in the main paper, but list further evaluations on carefully chosen subsets of major motion inducing
body muscles in the appendix. We recommend future users of our dataset to consider actively
evaluating on either the full range of provided muscle activations or choosing one of these muscle
strand subsets depending on their specific application. Please also see the appendix for additional
experiments as well as a comparison to the work of [10].

5.1 Qualitative Results

Figure 6: Example lower body muscle activations (split in left and right muscle strands) for the
actions kick and jumping jacks. It is clearly visible that the kick is performed with the left leg. During
jumping jacks, gluteus medius and rectus femoris are activated alternatingly for both legs.

In Figure 6 we list two examples from our dataset, one displaying the action kick, the other displaying
the action jumping jacks, predictions are calculated with the 8-layer transformer architecture. The
figure displays four key muscles essential for lower body locomotion; biceps femoris long head (knee
flexion and hip extension), gluteus maximus (hip extension and external rotation), gluteus medius
(abduction and medial rotation of the hip), and rectus femoris (hip flexion and knee extension), each
for the left and right body half. The kick is clearly executed with the left leg with rectus femoris
providing the force for the swing in the second half of the motion and the other muscles of the
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left leg preparing it in the first half. During jumping jacks, gluteus medius and rectus femoris are
activated alternatingly for both legs. Predicted muscle activations closely follow the ground truth
from our dataset, with slight underestimation at the activation peaks. Similar estimation quality can
be observed across the test set and we refer the reader to the appendix where we provide a larger
number of randomly selected results for qualitative analysis.

6 Discussion

We believe that enhancing models through detailed muscle activation data aligned with human motion
is a worthwhile direction to explore in the future, which is now made possible by the presented MinT
dataset. The dataset offers a large amount of intricately simulated data, based on real human motions,
and utilizing bio-mechanically validated musculoskeletal models. By showing that neural models
can learn to connect motion input to muscle activation sequences, we broaden the pathway towards
models which understand the nuanced interplay between motion and muscles.

Societal Impact While the dataset has a good balance in terms of gender distribution, ethnicity is not
distributed equally, and some body-weight types are less represented, impacting the dataset diversity.

Limitations MinT is a simulation dataset, and despite careful design of our pipeline and rigorous data
analysis, a synthetic-to-real domain gap remains inevitable. Researchers should be mindful of these
limitations and consider their potential impact on real-world applications. Any models or analysis
based on MinT require appropriate validation, ideally with real-world experiments.

Our simulations are a computationally intensive process. Given the potential for non-convergence
in complex movement data, we imposed an iteration limit, discarding samples which do not meet a
predefined error tolerance within this range. This potentially creates a category distribution shift in
comparison to AMASS, since some motion categories might generally be harder to simulate.

Furthermore, the dataset is mostly restricted to motion types limited to foot-ground contact alone;
motions with environment contact by other body parts or interactions with external objects were
mostly excluded due to missing information about such reaction forces. We included certain object-
related motions, such as lifting and throwing, as these motions are especially valuable for examining
back muscle activation. Since we miss information about object mass, we assume interaction with
very small, lightweight objects of negligible weight in these cases.

More extensive descriptions of these design decisions and preprocessing steps are provided in the
appendix, including details on runtime distribution and error handling, to offer transparency for
researchers seeking to adapt or expand upon our approach.

7 Conclusion

The quest to analyze human motion necessitates a critical component that has been notably absent:
a comprehensive biomechanical dataset. Our contribution, the Muscles in Time (MinT) dataset,
addresses this gap by providing an unprecedented collection of synthetic muscle activation data.
This dataset encompasses 402 distinct simulated muscle strains, all derived from authentic human
movements, thus offering a vital resource for human motion research. Our methodology entails
a scalable pipeline that utilizes cutting-edge musculoskeletal models to derive muscle activations
from recorded human motion sequences. The culmination of this process is the MinT dataset, which
also contains 9.8 hours of time series data representing muscle activations. We demonstrate that
neural networks can effectively utilize this muscle activation data to discern patterns linking motion
to muscle activation. This represents a significant stride towards a deeper comprehension of human
motion from a biomechanical standpoint. The MinT dataset enables the research community in
exploration of human motion and muscular dynamics through a data-centric approach. Our work not
only enriches the field of biomechanical studies but also paves the way for future advancements in
understanding the complex interplay of muscles in human movement.
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A Appendix

A.1 Dataset Information

The main entry point to interact with our work is our project page under
https://simplexsigil.github.io/mint.

License The MINT dataset is built on top of the KIT Whole-Body Human Motion Database,
BMLmovi, BMLrub, the EyesJapan dataset and TotalCapture. We make use of AMASS to map from
the motions of these original datasets to virtual marker positions in OpenSim.

All of these datasets allow usage of their data for non-commercial scientific research:

• The license of AMASS can be found under https://amass.is.tue.mpg.de/license.html

• The License of BMLmovi and BMLrub can be found under
https://www.biomotionlab.ca/movi/

• The KIT Whole-Body Human Motion Database can be used upon citation of the original
work as explained here https://download.is.tue.mpg.de/amass/licences/kit.html

• The license for the EyesJapan dataset can be found under
http://mocapdata.com/Terms_of_Use.html

• The license for the Total Capture dataset can be found under
https://cvssp.org/data/totalcapture/

The Muscles in Time dataset is published under a CC BY-NC 4.0 license as defined under
https://creativecommons.org/licenses/by-nc/4.0/. Researchers making use of this dataset must also
agree to the licenses mentioned above which can add additional restrictions depending on the individ-
ual sub-dataset.

Our data generation pipeline is licensed under Apache License Version 2.0 as defined under
https://apache.org/licenses/LICENSE-2.0.

Code for training our muscle activation estimation networks is licensed under the MIT license as
defined under https://opensource.org/license/mit.

Author statement The authors of this work bear the responsibility for publishing the MinT dataset
and related code and data.

Data structure The structure of the provided MinT data is intentionally kept simple. All data is
saved in CSV files or pandas DataFrames stored in pickle files. In Listing 1 we display how data for
an individual sample can be loaded with minimal dependencies (joblib and pandas). We provide
muscle activations in a range of [0, 1], ground reaction forces and effective muscle forces. Data
is provided with 50 fps, each dataframe is indexed by fractional timestamps. Columns are named
meaningfully, the first 80 muscles belong to the lower body model, the following 322 muscles belong
to the upper body model. The first and last 0.14 seconds are cut off since the muscle activation
analysis is unstable towards the beginning and end of data. Since the data is generated in chunks of
1.4 seconds and muscle activation analysis can fail to succeed due to various factors, the provided
data may contain gaps identified by missing data for certain time ranges.

The musint package To further facilitate the usage of the MinT dataset, we provide the musint
package, a Python package that allows data to be loaded into a predefined torch dataset and allows
simplified cross-referencing with BABEL dataset labels. Additionally, it includes functionality for
sampling a sub-window of the data at a given framerate as well as identifying and handling any gaps
in the data. A short example on the musint package usage is displayed in Listing 2.

The musint package can be installed via pip install musint. Additional insight can be found on
the musint github page where we also provide a Jupyter notebook for displaying the data as well as
additional information on muscle subsets:
https://github.com/simplexsigil/MusclesInTime
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1 >>> # First download and extract the dataset.
2 >>> # Example for sample
3 >>> #’BMLmovi/BMLmovi/Subject_11_F_MoSh/Subject_11_F_10_poses ’
4 >>> import joblib
5 >>> joblib.load("muscle_activations.pkl")
6 LU_addbrev_l ... TL_TR4_r TL_TR5_r
7 0.14 0.016 ... 0.003 0.061
8 0.16 0.028 ... 0.005 0.070
9 0.18 0.033 ... 0.002 0.080

10 ... ... ... ... ...
11 3.74 0.024 ... 0.020 0.028
12 3.76 0.016 ... 0.009 0.004
13 3.78 0.011 ... 0.003 0.000
14

15 [183 rows x 402 columns]
16

17 >>> joblib.load("grf.pkl")
18 ground_force_right_vx ... ground_torque_left_z
19 0.14 15.962 ... 0.0
20 0.16 10.596 ... 0.0
21 0.18 3.422 ... 0.0
22 ... ... ... ...
23 3.72 20.337 ... 0.0
24 3.74 21.572 ... 0.0
25 3.76 22.546 ... 0.0
26

27 [182 rows x 18 columns]
28

29 >>> joblib.load("muscle_forces.pkl")
30 LU_addbrev_l ... TL_TR4_r TL_TR5_r
31 0.14 8.430 ... 0.153 11.652
32 0.16 15.345 ... 0.283 13.240
33 0.18 19.127 ... 0.143 15.240
34 ... ... ... ... ...
35 3.72 14.437 ... 1.320 3.661
36 3.74 13.993 ... 1.270 5.330
37 3.76 9.346 ... 0.577 0.847
38

39 [182 rows x 402 columns]

Listing 1: Simplified loading of MinT samples with joblib and pandas.

A.2 Additional Statistics and Information

In Figure 9 we provide additional information on the data analyzed provided with Muscles in Time.
Total Capture makes up a small part of the dataset with exceptionally long sequences. The Eyes Japan
Dataset provides the largest contribution with 3.2h of analyzed recordings.

In Tables 3 and 4, we list larger muscle groups in the lower and upper body model as well as their
function for human motion. Muscle groups or larger muscles can be represented by multiple simulated
muscles, e.g. since such muscles are attached to multiple muscle locations or exert forces in varying
directions. The Gluteus Medius muscle is an example with three simulated activations on each side
of the body.
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1 >>> # First download and extract the dataset.
2 >>> import os
3 >>> from musint.datasets.mint_dataset import MintDataset
4

5 >>> md = MintDataset(os.path.expandvars("$MINT_ROOT"))
6

7 >>> md.by_path("TotalCapture/TotalCapture/s1/acting2_poses")
8 MintData(path_id=’s1/acting2 ’, babel_sid =12906 , dataset=’

TotalCapture ’, amass_dur =61.7 , num_frames =1114, fps=50.0,
analysed_dur =22.26 , analysed_percentage =0.36, data_path=’
TotalCapture/TotalCapture/s1/acting2_poses ’, weight =72.1 ,
height =169.2 , subject=’s1’, sequence=’acting2_poses ’,
gender=’male’, has_gap=False , dtype=object))

9

10 >>> md.by_path("TotalCapture/TotalCapture/s1/acting2_poses").
get_muscle_activations(time_window =(0.3 ,1.),
target_frame_count=int (0.7*20.))

11 LU_addbrev_l ... TL_TR4_r TL_TR5_r
12 0.30 0.094 ... 0.000 0.020
13 0.36 0.094 ... 0.003 0.042
14 0.40 0.091 ... 0.000 0.027
15 ... ... ... ... ...
16 0.90 0.093 ... 0.000 0.008
17 0.94 0.093 ... 0.000 0.000
18 1.00 0.094 ... 0.001 0.009
19

20 [14 rows x 402 columns]

Listing 2: Loading the MinT dataset with the python musint package.

A.3 Design Choices and More Detailed Limitations

The muscle-driven simulation, based on the approach by Falisse et al. [20], aims to ensure that muscle
and skeletal dynamics align closely with given kinematic data while minimizing muscle effort. This
process involves finding a solution within the problem space that satisfies an error tolerance and the
number of collocation points, which depend on the dynamics of the kinematic data. Collocation
points are used to discretize the continuous kinematic and dynamic equations into a finite set of points,
making the optimization problem computationally feasible. To mitigate the risk of non-convergent
or non-meaningful solutions, we implemented safeguards by restricting the deviation between the
kinematic information before and after the optimization problem converges.

Given the computational complexity, we decided to use 50 collocation points per second and an
error tolerance of 10−3. On an Intel Xeon Gold 6230 with 96 GB RAM, processing 6 subsequences
of 1.68 seconds (including 0.14 second buffers at start and end) in parallel took approximately a
median time of 45 minutes. Figure 10 displays a distribution of sample-wise runtimes in a violin
plot. Non-converging samples tend to have higher runtimes and can be found on the long tail on
the right. To manage the impact of unsuccessful simulations on the overall runtime, we limited the
optimization problem to 2500 iterations and discard a sample if the optimization does not fall within
error tolerance after this time. The AMASS sequences were divided into 1.4-second segments to
mitigate a nonlinearly increasing runtime associated with longer motion sequences. After simulation,
these segments were recombined into the original sequences, with muscle values smoothed at the
connection points to ensure seamless transitions.

A challenge arose from minor variable distances between the AMASS body model and the ground,
since the contact spheres provided by the OpenCap simulation are susceptible to changes in foot-
ground distance. To provide similar foot-ground distances over all AMASS subjects, our pipeline
automatically offsets the AMASS model depending on the lowest body marker over the time of the
sequence.
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Figure 7: Virtual marker placement for transferring motions to OpenSim, enlarged from Figure 2.

Figure 8: Lower body and upper body model, enlarged from Figure 2.
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Figure 9: Average number of labels per sequence, composition of sub datasets and average sequence
length.

Figure 10: Analysis runtime distribution of the optimal trajectory problem described by Falisse et
al. [20]. Subset of 10k runs.

Mapping AMASS motions to OpenSim models presented difficulties due to the numerous degrees
of freedom in the Thoracolumbar model, complicating kinematic analysis. To safeguard the ver-
tebral joints against aberrant movements, we constrained the range of motion for each vertebra,
approximating the natural degrees of freedom in the vertebrae joints.

The MinT dataset was restricted to motions involving foot-ground contact only. Motions involving
ground contact of other body parts or involving objects were excluded, except for motions that
included throwing and lifting, which are particularly relevant for analyzing back muscle activation. In
these cases, we assumed the objects’ mass to be negligible, as the AMASS dataset does not provide
this information.

A.4 Results for Additional Muscle Subsets

To facilitate comparability to real world recordings as well as to other datasets, we define two muscle
subsets of the lower body model, containing either 16 or eight of the most important lower body
muscles for human locomotion. The subset LAI_ARNOLD_LOWER_BODY_16 contains left gluteus
medius 1, left adductor magnus ischial part, left gluteus maximus 2, left iliacus, left rectus femoris,
left biceps femoris long head, left gastrocnemius medial head, left tibialis anterior, right gluteus
medius 1, right adductor magnus ischial part, right gluteus maximus 2, right iliacus, right rectus
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Table 3: List of muscle groups modelled in the model by Lai et al. [40], which are analysed in the
presented approach, and their functions [82].

Muscle Function
Gluteus Maximus Extension and rotation of the hip.

Gluteus Medius Abduction and rotation of the thigh.

Gluteus Minimus Abduction and rotation of the thigh.

Adductor Brevis Adduction, flexion, and rotation of the thigh.

Adductor Longus Adduction and flexion of the thigh.

Adductor Magnus Adduction, flexion and rotation of the thigh.

Gracilis Adduction, flexion and rotation of the thigh.

Semitendinosus Flexion and rotation of the knee, as well as extension of the
hip.

Semimembranosus Flexion and rotation of the knee, as well as extension of the
hip.

Tensor Fasciae Latae Abduction and rotation of the thigh, as well stabilisation of
the pelvis.

Piriformis Rotation and extension of the thigh and abduction of thigh.

Sartorius Flexion, abduction, and rotation of the hip and flexion of the
knee.

Iliacus Flexion of the hip.

Psoas Flexion and rotation of the hip.

Rectus Femoris Flexion of hip and extension of knee.

Biceps Femoris Flexion of knee and extension of hip.

Medial Gastrocnemius Flexion of foot and flexion of knee.

Lateral Gastrocnemius Plantar flexion and knee flexion.

Tibialis Anterior Dorsiflexion and inversion of the foot.

Vastus Extension of the knee.

Extensor Digitorum Longus Extension of toes and dorsiflexion of the foot.

Extensor Hallucis Longus Extension of the big toe and dorsiflexion of the foot.

Flexor Digitorum Longus Flexion of toes, as well as plantar flexion and inversion of
the foot.

Flexor Hallucis Longus Flexion of toes, as well as plantar flexion and inversion of
the foot.

Peroneus (Fibularis) Plantar flexion and eversion of the foot.

Soleus Plantar flexion of the foot.

femoris, right biceps femoris long head, right gastrocnemius medial head and right tibialis anterior
while the muscle subset LAI_ARNOLD_LOWER_BODY_8 contains left gluteus medius 1, left gluteus
maximus 2, left rectus femoris, left biceps femoris long head, right gluteus medius 1, right gluteus
maximus 2, right rectus femoris and right biceps femoris long head. These subsets are also defined
within the musint package.

In Table 5 we list the results of our 16 layer transformer model on these subsets.
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Table 4: List of muscle groups modelled in the model by Bruno et al. [3], which are analysed in the
presented approach, and their functions [82].

Muscle Function
Longissimus Extension and rotation of the vertebrae.

Iliocostalis Extension and flexion of the neck.

Semispinalis Extension and rotation of the vertebrae.

Splenius Extension and rotation of the vertebrae.

Sternocleidomastoid Flexion and rotation of the head.

Scalenus Elevation of ribs and flexion of the neck.

Longus Colli Flexion of the neck and stabilisation of the cervical spine.

Levator Scapulae Elevation and adduction of the scapula.

Quadratus Lumborum Flexion the vertebral column.

Multifidus Stabilisation cervical vertebrae.

Rectus Abdominis Flexion of the lumbar spine.

External Oblique Flexion and rotation of the trunk.

Internal Oblique Flexion and rotation of the trunk.

Transversus Abdominus Stabilisation of the trunk.

Table 5: Human motion-to-muscle activation prediction results for the lower body model.
Motion All muscles Lower Body Subset 16 Subset 8

RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓
overall 0.036 0.55 95.3 0.048 0.54 45.1 0.066 0.56 47.7 0.060 0.56 45.0
jump 0.052 0.64 100.7 0.051 0.71 52.3 0.059 0.71 55.5 0.056 0.70 54.2
kick 0.046 0.64 102.8 0.053 0.62 54.8 0.068 0.63 57.0 0.067 0.67 57.4
stand 0.033 0.56 97.5 0.046 0.58 45.0 0.062 0.61 47.5 0.052 0.59 43.6
walk 0.026 0.65 90.7 0.044 0.77 42.4 0.060 0.77 43.3 0.057 0.77 43.4
jog 0.033 0.71 99.0 0.046 0.71 51.1 0.063 0.75 51.8 0.062 0.71 52.7
dance 0.041 0.60 109.2 0.057 0.65 58.5 0.073 0.66 59.6 0.072 0.67 59.5

A.5 Training on Muscles in Action

We evaluate the generalizability of MinT by fine-tuning our 16-layer transformer architecture exclu-
sively on the first and last transformer block and comparing the results with full training from scratch
on Muscles in Action [10]. The motions in MIA were obtained with VIBE [39], a 3D pose estimation
method performed on 2D images. The resulting motions are very noisy in contrast to the motions in
AMASS which are the result of motion capture, inducing a significant domain gap. Table 6 shows
our results. We find that limiting our training to the first and last transformer block results in very
similar RMSE values compared to full fine-tuning, while PCC and SMAPE clearly displays a small
but significant advantage of the full fine-tuning strategy. Still, finetuning the first and last layer only
affects some 8% of all trainable weights, and we see this as an indication for the transferability of the
knowledge obtained by training on MinT.

A.6 Additional Qualitative Examples for MinT

Figure 6, in the main paper, lists two qualitative examples to display the muscle activation estimation
quality of our best model. Additionally, Figures 11 to 17 show 48 randomly chosen samples from the
test set.
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Table 6: Human motion-to-muscle activation prediction results on Muscles in Action [10].
Motion Full Fine-tuning First and last layer

RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓
Overall 15.11 0.27 37.0 15.15 0.21 41.6
ElbowPunch 15.66 0.25 43.6 15.48 0.19 48.8
FrontKick 8.49 0.19 34.5 8.20 0.14 41.0
FrontPunch 8.47 0.38 29.8 8.22 0.36 36.3
HighKick 13.09 0.35 37.0 12.94 0.29 39.7
HookPunch 13.18 0.32 37.1 13.28 0.28 44.6
JumpingJack 13.79 0.27 28.5 13.42 0.23 29.5
KneeKick 12.32 0.25 37.3 12.26 0.16 43.0
LegBack 11.70 0.32 37.3 11.91 0.18 44.4
LegCross 13.89 0.17 42.7 13.84 0.11 48.9
RonddeJambe 15.81 0.20 39.5 15.50 0.17 42.6
Running 7.53 0.30 26.3 7.25 0.24 27.4
Shuffle 9.79 0.21 28.0 9.56 0.13 30.5
SideLunges 26.13 0.29 45.9 26.66 0.22 51.7
SlowSkater 20.15 0.26 42.1 20.81 0.19 47.2
Squat 22.68 0.26 44.9 22.76 0.21 48.2
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Figure 11: Muscle activation estimation with our 16 layer transformer model.
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Figure 12: Muscle activation estimation with our 16 layer transformer model.
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Figure 13: Muscle activation estimation with our 16 layer transformer model.
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Figure 14: Muscle activation estimation with our 16 layer transformer model.
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Figure 15: Muscle activation estimation with our 16 layer transformer model.

27



Figure 16: Muscle activation estimation with our 16 layer transformer model.
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Figure 17: Muscle activation estimation with our 16 layer transformer model.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Appendix.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The dataset is described in Section 3, utility experiments
in Section 5.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] The paper complies with the guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical
results.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide a
link to the code repository in the appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We define the set of hyperparameters specifying the dataset
generation pipeline in Section 3. Hyperparameters chosen to run the time-series
prediction experiments are partly defined in Section 5 and partly shown in the appendix.
On top, we release the code ensuring reproducibility.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] We experiment with multiple architectures and found
that these yielded consistent results. We thus did not execute experiments repeatedly to
determine error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We dedicate a section in the
appendix to discuss the used computational environment and resources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, the used assets
are cited in Section 3

(b) Did you mention the license of the assets? [Yes] We dedicate a section in the appendix
to mention the licenses.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We provide the proposed MinT dataset in this work, available via a URL in the
appendix.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Generally, we make use of preexisting datasets based on their
open license and rely on their discussion of obtaining the consent of the participants
which was part of the original publications. On top, we dedicate a section in the
appendix to discuss this in more detail.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Generally, we make use of preexisting datasets
based on their open license and rely on the anonymity or ethics approvals of the original
works. On top, we dedicate a section in the appendix to discuss these details.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No crowdsourcing or research with human subjects has been done
in this work.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or research with human
subjects has been done in this work.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or research with human
subjects has been done in this work.
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