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Looking at a photo 
with beautiful colors 
fills me with a sense 
of happiness and joy, 

like a burst of 
sunshine on a cloudy 

day.

(a) Emotional fidelity
The person's 

isolation and the lack 
of color create a 

poignant and 
melancholic 

atmosphere that is 
impossible to ignore. 

(b) Content consistency

(c) Controllable synthesis

Original CLVA CLIPstyler AIF
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The Golden Bridge 
seems to cast a 

shadow that 
contributes to an 
overall sense of 

darkness and sadness.
AIF

The Golden Bridge at 
sunset is a place of 

respite and 
rejuvenation, where I 
can escape the chaos 
of the world and find 
a moment of peace. AIF

AIF

The sight of the 
Golden Bridge fills 
me with a sense of 
calm, like all of my 

worries have been left 
behind. AIFAIF

Original

Figure 1: Illustration of the affective image filter (AIF) task. (a) Compared with CLVA [17], our AIF model acts as a bright and highly

saturated image filter that tries to evoke specific emotional responses from human observers based on the given text. (b) Compared with

CLIPstyler [26], our AIF model could maintain the visual elements, e.g., humans and trees, while filling them with a distinct emotional

tone. (c) Given an arbitrary image and different texts, our AIF model could synthesize a wide range of filtered images, without the need

for individual fine-tuning or optimization of each input text [23, 26].

Abstract

Understanding the emotions in text and presenting them
visually is a very challenging problem that requires a deep
understanding of natural language and high-quality image
synthesis simultaneously. In this work, we propose Affective
Image Filter (AIF), a novel model that is able to understand
the visually-abstract emotions from the text and reflect them
to visually-concrete images with appropriate colors and tex-
tures. We build our model based on the multi-modal trans-
former architecture, which unifies both images and texts
into tokens and encodes the emotional prior knowledge.
Various loss functions are proposed to understand complex
emotions and produce appropriate visualization. In addi-
tion, we collect and contribute a new dataset with abundant
aesthetic images and emotional texts for training and eval-
uating the AIF model. We carefully design four quantitative
metrics and conduct a user study to comprehensively eval-

# Equal contributions. * Corresponding author.

uate the performance, which demonstrates our AIF model
outperforms state-of-the-art methods and could evoke spe-
cific emotional responses from human observers.

1. Introduction
When people share their experiences about events and

subjects on social networks (e.g., Twitter), the text is a direct

medium to express their opinions and establish emotional

connections with other users [22, 43]. Since social media is

a highly active platform with a vast amount of content being

produced every day, influencers strive to personalize their

content to evoke emotional responses from their followers.

It is well known that “a picture tells a thousand words”.

Images have powerful descriptive abilities, and they could

also become affective stimuli that enable people from var-

ious backgrounds to understand emotional intention [66].

This motivates us to think that, given written texts that

reflect personal thoughts and feelings, how we can re-

flect visually-abstract emotions from user-provided texts to

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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visually-concrete images to further enhance the visual ap-

peal of their social media posts.

In this work, we propose Affective Image Filter (AIF),

a novel task that enables users to create unique and emo-

tionally compelling images that “stand out from the crowd”.

The desired properties of a well-qualified AIF algorithm are

outlined in Fig. 1, which demonstrates AIF’s advantages if

the following three objectives are met: (i) Emotional fidelity

– The AIF model should accurately understand emotions

from the text and reflect them in an arbitrary image provided

by the user (Fig. 1 (a)). (ii) Content consistency – Since the

AIF model acts as an image filter, it is required to preserve

the overall structure and visual content of the content image

provided by the user (Fig. 1 (b)). (iii) Controllable synthe-

sis – Complementing to the above objectives (i) and (ii), the

AIF model should be capable of synthesizing results using

a variety of emotional texts (Fig. 1 (c)).

To achieve these three objectives, we build the AIF

model with the multi-modal transformer architecture which

unifies both images as well as texts into tokens and encodes

the prior knowledge of emotional words by utilizing the va-

lence, arousal, and dominance (VAD) dictionary [40]. This

prior knowledge assists our AIF model to have an in-depth

understanding of the inherent properties behind the emo-

tional words. Considering that low-level features (i.e., col-

ors and textures) of the visual content could well represent

the evoked emotion [37, 65], we train the AIF model to

learn the aesthetic style representations from famous paint-

ings. The sentiment metric loss is designed to learn rela-

tionships between emotions; anchor-based sentiment loss

and emotional distribution loss are designed to learn high-

dimensional emotional cues; and other visualization losses

are adopted to produce aesthetically pleasing images with

appropriate colors and textures.

For training and evaluating the AIF model, we col-

lect and contribute a new dataset with abundant im-

ages and corresponding text descriptions, where each

text description could be categorized into one of Mikel’s

eight emotions1 [38]. We further provide multiple quan-

titative metrics for evaluating whether the AIF model

could achieve emotion-specific concrete visualizations of

visually-abstract emotions in user-provided content images.

Our contribution could be summarized as follows:

• For the first time, we propose the AIF task to reflect

visually-abstract emotions from text to images pro-

vided by the user and further provide metrics for com-

prehensive evaluation of performance.

• We introduce the prior knowledge of visual emotion

analysis to develop the AIF model with transformer ar-

1Mikel’s eight emotions are: amusement, contentment, awe, excite-

ment, fear, sadness, disgust, and anger.

chitecture and design novel losses to comprehensively

visualize ambiguous and subjective emotions.

• An AIF dataset has been newly collected and pro-

cessed. It includes numerous aesthetic images along

with multiple emotional text descriptions associated

with the closest emotional category.

2. Related Works
To achieve the desired properties of a well-qualified AIF

solution, related work from three aspects need to be dis-

cussed: (i) visual emotion analysis, which plays an impor-

tant role in producing corresponding concrete visualization

with extracted emotional features and measuring whether

the synthesized results could evoke specific emotional re-

sponses from human observers; (ii) style transfer, which

aims to create aesthetically pleasing images based on a ref-

erence of colors and textures, while maintaining the vi-

sual content of user-provided content images, thereby shar-

ing similar goals with the AIF task; and (iii) vision trans-
former, which has been demonstrated effective in modeling

global token-to-token relationship between multi-modal in-

puts, making it a promising approach for interacting with

user-provided images and texts in the AIF task.

2.1. Visual emotion analysis

Computer vision is increasingly focused on understand-

ing emotion in context for more than two decades [27]. Be-

fore the advent of deep learning models, researchers devel-

oped a variety of handcrafted features for analyzing affec-

tive images [3, 37, 50, 61, 64, 65], which are typically vul-

nerable and difficult to generalize to out-of-distribution sce-

narios. This situation has been improved since neural net-

works are used to adaptively predict emotions [56, 62, 63],

where models could extract multi-grained emotional fea-

tures [45] or focus on local image regions [59]. On the basis

of previous works [38, 55, 57], we could design novel con-

straints to learning the inherent semantics of emotions and

makes synthesized results favorable by human observers.

2.2. Style transfer

Early works adopt the optimization-based method [19]

or design end-to-end models [21, 29] to achieve style trans-

fer for one specific style. To improve the efficiency of style

transfer, researchers explore the approach to train multiple

styles in one model [7, 16, 33], and further propose the

first arbitrary style transfer model [20]. Using self-attention

mechanisms to build long-range dependencies between re-

gions [36, 41, 53] has received considerable attention in nu-

merous studies devoted to improving the performance of

arbitrary style transfer models [2, 9, 31, 48]. Following

them, StyTr2 [11] further adopts the transformer architec-

ture to extract and maintain the global information of in-
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put images. Recently, researchers have attempted to replace

the reference image with semantic textures of text to pro-

vide more flexible and user-friendly style guidance [17, 26].

Compared to AIF algorithm, which is required to accurately

understand visually-abstract emotions from the text, image

style transfer methods aim to create images based on a ref-

erence of visually-concrete colors and textures.

2.3. Vision transformer

Transformer [49] has gained significant attention and

popularity in recent years, leading to the development of

unique feature fusion mechanisms for cross-modality tasks,

e.g., text-to-image generation [14, 44], visual grounding

[10, 42], and referring segmentation [13, 60]. Meanwhile,

researchers have explored the use of pure vision transformer

models for a wide range of vision applications to achieve

better performance, e.g. image classification [15], object

detection [4, 68], and semantic segmentation [47, 67].

Great efforts have also been made to adapt vision trans-

former models to low-level vision problems, e.g., inpainting

[30, 35], super-resolution [8, 32], and colorization [5, 6, 52].

For better concrete visualization of visually-abstract emo-

tions and an in-depth understanding of the inherent proper-

ties of emotional words, we adopt the transformer architec-

ture to interact with cross-modal inputs.

3. AIF Dataset
To train a well-qualified AIF model, we collect and pro-

cess a large-scale dataset that includes abundant aesthetic

images with diverse colors and textures, corresponding text

descriptions associated with the closest emotional category

in the Mikel’s wheel [38]. Although recently proposed

ArtEmis [1] and ArtEmis v2 [39] datasets that aim to con-

nect vision, language, and affection have similar goals to us,

we find they are not inherently appropriate for the AIF task

due to the following reasons: (i) A number of given text

descriptions focus on clarifying the visual content of the

corresponding image rather than providing detailed emo-

tional descriptions of the observed individuals (Fig. 2 (a));

(ii) numerous text descriptions contain an excessive number

of color and texture words that are useful in visualization,

distracting the models from an in-depth understanding of

the emotional words (Fig. 2 (b)). To prepare qualified data

for training and evaluating, we manually select samples to

create a new dataset tailored for the AIF task.

We begin by merging all the samples from ArtEmis [1]

and ArtEmis v2 [39], which include anchor images that pro-

vide a fixed point of visually-concrete reference for visual-

izing colors and textures from visually-abstract emotions,

as well as corresponding multiple emotional text descrip-

tions. After that, we manually discard all unqualified text

descriptions and verify that the remaining anchor images

have an average of four to five corresponding text descrip-

Everything about this 
picture is thrilling!  

The bright colors, the 
exaggerated features, 

the angular lines.

It looks manic.  I 
think I feel sad 

because the smile on 
the man's face doesn't 
look genuinely happy 

to me.

Even with the bright 
colors, there is such a 
distortion in his face, 
and a sad expression 

behind his eyes, it 
makes you sad for 
what he's going 

through.

(c) A qualified sample

The man has a 
long and wavy 

beard.

(a) Incomplete description

Yellow, black, 
white and pink 
canvas, pretty 

lame.

(b) Redundant description

Figure 2: Examples of unqualified and qualified samples for the

AIF task, where each sample includes text description(s) and a

corresponding anchor image. (a) An unqualified sample with in-

complete description, which focuses on clarifying the appearance

of the human while ignoring its solemn feeling. (b) Another un-

qualified sample with redundant description, which provides too

many color words for visualizations while distracting the models

from understanding the emotional word “pretty”. (c) A qualified

sample includes balanced description of diverse subjective emo-

tions expressed by human observers in response to the same an-

chor image.

tions (Fig. 2 (c)). As emotions have ambiguity and sub-

jectivity, we further categorize each text description into

Mikel’s eight emotions [38], which are used to measure the

emotional distribution of each anchor image and establish

inherent emotional relationships between them. As a re-

sult, the AIF dataset has emotional text descriptions with

16.3K amusement, 82.9K contentment, 43.1K awe, 22.0K

excitement, 53.2K fear, 71.3K sadness, 26.9K disgust, and

9.5K anger samples. Since the visual content of images is a

crucial feature for vision emotion analysis [37, 65], we ad-

ditionally provide a similarity list for each image based on

the VGG similarity calculation. Finally, we split the dataset

into 69.6K anchor images and 292.9K emotional text de-

scriptions for training, and 7.7K anchor images and 32.5K

emotional text descriptions for evaluating.

4. AIF Model
In this section, we first present the overview of the AIF

model, including data sampling strategy and the loaded

data that provide different supervisory signals (Sec. 4.1).

Next, we present the AIF transformer and elaborate on

the detailed designs of modules (Sec. 4.2). After that, we

show the approach to understand visually-abstract emotions

(Sec. 4.3) and create concrete visualization of emotions

(Sec. 4.4), followed by details of training settings (Sec. 4.5).

4.1. Overview

We sample text descriptions in the following steps: (i)
We randomly select a number of text descriptions from the
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It reminds me of 
traveling. Looks 
like a lively city I 

would want to visit.

Text description
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3
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It reminds me of 
traveling. Looks 
like a lively city I 

would want to visit.
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Figure 3: Overview of our proposed AIF model: (a) According to the relative position of Mikel’s wheel [38], we sample combinations of

text descriptions from the AIF dataset to reflect corresponding emotions to user-provided content images (Sec. 4.1). (b) We build the AIF

model with transformer architecture that separately encodes user-provided content images and texts with inherent emotional properties into

shared latent space and interacts them with each multi-modal transformer block (Sec. 4.2). (c) We define the distance between emotions,

and design the sentiment metric loss to learn relationships between emotions (Sec. 4.3.1). (d) We design anchoring sentiment loss and

emotional distribution loss to learn high-dimensional emotional cues (Sec. 4.3.2). (e) We apply various visualization losses so that the

AIF model could align synthesized images with user-provided texts, visualize appropriate colors and textures, and preserve original visual

content (Sec. 4.4).

AIF dataset as seed text descriptions. (ii) We categorize text

descriptions based on their location in the Mikel’s wheel

[38], where closer regions have more similar valence or

arousal. Text descriptions in the same region as the seed

text descriptions are considered positive samples, those in

adjacent regions are considered related samples, and those

in opposite regions are considered negative samples. (iii)
We refer to the similarity lists provided by the AIF dataset

to select a positive, a related, and a negative text description

for each seed text description. These selections and seed

text descriptions collectively form texts in a data batch. As

a result, we could present text descriptions in each batch as

[T sed, T pos, T rel, T neg]i where i ∈ {1, . . . , 1
4Nbatch}. This

assists our designed AIF transformer, which captures long-

range dependencies between tokens in Eqs. (1-4), to learn

relationships between emotions in Eqs. (5-6).

We further load corresponding anchor images for each

text description, enabling our AIF model to use them as ref-

erences for synthesizing images that evoke specific emo-

tional responses from human observers, as presented in

Eq. (7). Since emotions of images have ambiguity and

subjectivity, we further calculate emotional distribution by

normalizing corresponding emotional categories of text de-

scriptions for each sampled anchor image, which assists the

AIF model to reflect emotions to images more accurately, as

shown in Eq. (8). Considering that anchor images also pro-

vide the reference for visualizing colors and textures, we

further present the approach of creating concrete visualiza-

tion of emotions under their guidance in Eqs. (9-12).

During training, we randomly select images from the

MS-COCO dataset [34] as the content images. Note that

only content images and corresponding text descriptions are

fed to the AIF transformer, as shown in Fig. 3 (a); anchor

images and corresponding emotional distributions are used

as training guidance, which are not required during evaluat-

ing and inference.

4.2. AIF transformer

Instead of adopting an iterative optimization process, we

build our AIF model based on the end-to-end training multi-

modal transformer architecture to synthesize on-the-fly re-

sults. As the framework illustrated in Fig. 3 (b), our AIF

transformer could be divided into the following four parts.

Image encoder. We split content images Icnt ∈ R
3×H×W

into patches Ipat = [Ipat1 , . . . , IpatN ] ∈ R
N×P 2×3, where

(P, P ) is the patch resolution and N=HW/P 2. Following

StyTr2 [11], we use a transformer-based image encoder to

capture long-range dependencies of image patches and out-

put image embedding sequence T img=[T img
1 , . . . , T img

N ] ∈
R

N×Cimg , where Cimg is the channel number.

Text encoder. We use the pre-trained BERT [12] to encode

texts into word embeddings, and further fetch affective em-

beddings in VAD dictionary [40] to reveal the inherent emo-

tional properties (i.e., valence, arousal, and dominance) of
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each word. For words missing in the VAD dictionary, we

manually assign neural values. After that, these affective

embeddings are concatenated with word embeddings as text

tokens T tex = [T tex
1 , . . . , T tex

M ] ∈ R
M×Ctex , where M is

the number of words and Ctex is the channel number.

Multi-modal transformer. We project image tokens and

text tokens into shared latent space with MLP layers (f img

and f tex, respectively). After that, we introduce the modal-

type embedding vectors T typ
0 and T typ

1 to distinguish token

modalities following ViLT [24], which are separately added

to corresponding latent codes as:

T̂ img
i =f img(T img

i ) + T typ
0 , T̂ tex

j =f tex(T tex
j ) + T typ

1 , (1)

where i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. We denote the

initial input of the multi-modal transformer as:

Z0 = [T̂ img
1 , . . . , T̂ img

N , T̂ tex
1 , . . . , T̂ tex

M ] ∈ R
(N+M)×C0 , (2)

where C0 is the channel number. The multi-modal trans-

former consists of L standard transformer block [15], and

each block includes a multi-headed self-attention (MSA)

layer, an MLP layer, and two residual connections. We for-

mulate the process of each block as:

[Z̄i] = MSA(LN([Zi−1])) + [Zi−1], i ∈ {1, . . . , L} (3)

[Zi] = MLP(LN([Z̄i])) + [Z̄i], i ∈ {1, . . . , L} (4)

where LN means the LayerNorm.

Image decoder. Following SETR [67], we build our image

decoder as a three-layer CNN, which could alleviate the grid

artifacts caused by the patch partition of images. Finally, we

obtain the synthesized results Iout ∈ R
3×H×W .

4.3. Understanding visually-abstract emotions

By learning from the guidance in the AIF dataset, a well-

qualified AIF model should understand visually-abstract

emotions in user-provided texts and synthesize aesthetically

pleasing images that evoke specific emotional responses

from human observers. To achieve this goal, we train the

model to learn the relationships between emotions and high-

dimensional emotional cues.

4.3.1 Learning relationships between emotions

Based on the Mikel’s wheel [38], we could define the dis-

tance between emotions, and further learn their relation-

ships with our designed sentiment metric loss, as shown in

Fig. 3 (c). Specifically, we first build the sentiment extrac-

tor following Yang et al. [57], which composes of a VGG

network [46] that extracts the multi-level feature of synthe-

sized images, a convolutional layer that projects features

and multiple Gram matrices [18] that calculate the corre-

lation between each pair of projected features. Next, we

define the sentiment vector by concatenating elements as:

V = Concati∈{1,...,Ngram}∪j∈{1,...,Nlev}(Φi,j), (5)

where Φi,j means the i-th upper triangular elements in the

Gram matrix at j-th feature level, Ngram is the number of

elements, and Nlev is the number of levels. Therefore, given

combinations of texts [T sed, T pos, T rel, T neg]i (details in

Sec. 4.1), we could extract corresponding sentiment vectors

of synthesized images as [V sed, V pos, V rel, V neg]i with the

sentiment extractor. According to the Mikel’s wheel [38],

we define the distance between emotions as the minimum

number of steps from an emotion region to another, denoted

as Fdis, so that the distance between sentiment vectors could

be formulated as Fsw(Vi, Vj) =
‖Vi−Vj‖2

Fdis(Vi,Vj)
. As a result, the

AIF model learns relationships between emotions in a met-

ric learning manner as:

Lsm=max(Fsw(V
sed, V pos)−Fsw(V

sed, V rel)+α), 0)

+max(Fsw(V
sed, V rel)−Fsw(V

sed, V neg)+β), 0), (6)

where α = 0.02 and β = 0.01 are hyper-parameters that

control margins between sentiment vectors.

In practice, we employ anchor images to pre-train the

sentiment extractor using the sentiment metric loss. Once

the sentiment extractor is well-trained, its parameters are

frozen. We then extract sentiment vectors of synthesized

images with it, and optimize the distance between the sen-

timent vectors by reapplying the sentiment metric loss.

4.3.2 Learning high-dimensional emotional cues

As shown in Fig. 3 (d), we design the anchor-based senti-

ment loss and emotional distribution loss for learning high-

dimensional emotional cues. The anchor-based sentiment

loss utilizes anchor images as the reference to facilitate syn-

thesized images in evoking specific emotional responses

from human observers. Specifically, we extract sentiment

vectors of each synthesized image and the corresponding

anchor image with the well-trained sentiment extractor, de-

noted as V out and V acr, and require synthesized vectors to

be close to corresponding anchor vectors as:

Las = ‖V out − V acr‖2. (7)

Furthermore, considering that emotions have ambiguity

and subjectivity (e.g., Fig. 2 (c)), which causes each im-

age could stimulate a range of emotional reactions to even a

single person, we further design the emotional distribution

loss to estimate the distribution of emotions, instead of cat-

egorizing each image into one dominant emotion. Specif-

ically, we pre-train a distribution estimator ϕ, and use the

Kullback-Leibler (KL) [25] loss to measure the information

loss caused by the inconsistency between the estimated dis-

tribution and the ground truth as:

Led =

Ncat∑

i=1

diln
di

ϕ(Iout)i
, (8)

10814



where Ncat is the number of emotional categories, ϕ(Iout)i
and di are value of i-th category of the estimated distribu-

tion and the ground truth, respectively. This assists the AIF

model to reflect emotions from text to images accurately.

4.4. Creating concrete visualization of emotions

As shown in Fig. 3 (e), the visually-concrete images pro-

duced by the AIF model should adhere to a series of strict

constraints. As the solution, we adopt the following visual-

ization losses to meet these requirements:

GAN loss. A multi-level conditional-unconditional dis-

criminator is designed to align synthesized images with

user-provided texts, as well as to discriminate whether syn-

thesized images are aesthetically pleasing, written as:

LGAN = logD(Iacr) + log
(
1−D(G(Ipat, T tex))

)
(9)

+ logD(Iacr, T tex) + log
(
1−D(G(Ipat, T tex), T tex)

)
,

where the discriminator D consists of a stack of convolu-

tional layers that extract image features and fully connected

layers that project text tokens, and the generator G is our

AIF model to synthesize image Iout. Ipat and T tex are im-

age patches and initial text tokens, respectively (details in

Sec. 4.2). Iacr is the corresponding anchor images.

Style loss. Following style transfer models [11, 36, 41],

we use the anchor image as the reference of colors and tex-

tures. With the pre-trained VGG network [46] to extract

multi-level features of synthesized images and anchor im-

ages, style loss is adopted to narrow the style difference be-

tween extracted features as:

Ls=
∑

i

‖μ(φout
i )−μ(φacr

i )‖2+‖σ(φout
i )−σ(φacr

i )‖2,(10)

where μ and σ are the mean and variance functions, respec-

tively. φout
i and φacr

i are extracted features of synthesized

images and anchor images at i-th level, respectively.

Identity loss. We further utilize the identity loss, where we

feed anchor images as content images and corresponding

texts into the AIF model to synthesize identity images. As

such, inputs and expected synthesized results have no gap

in colors, textures, and visual contents, which encourages

the model to learn richer and more accurate representations

from input images. We require synthesized results to be

consistent with original content images as:

Lid = ‖I idt − Iacr‖2 + γ
∑

i

‖φidt
i − φacr

i ‖2, (11)

where γ = 0.01 is a hyper-parameter, I idt is identity im-

ages, and φidt
i is the corresponding extracted features.

Content loss. We present the content loss to preserve the

visual content of user-provided content images, which nar-

rows the squared error of extracted features at each level as:

Lc =
∑

i

‖φout
i − φcnt

i ‖2, (12)

where φcnt
i is the features of content images at i-th level.

4.5. Training details

We train our AIF model with full objective losses by

solving a minimax optimization problem as:

max
D

min
G

λsmLsm + λasLas + λedLed (13)

+λGANLGAN + λsLs + λidLid + λcLc,

where we set hyper-parameters as λsm = 30, λas = 600,

λed = 140, λGAN = 3, λs = 0.3, λid = 2, and λc = 5
based on experiments using a held-out validation set, which

are not sensitive to variations in a certain range.

All experiments are conducted on 4 NVIDIA TITAN

RTX GPUs and trained for 80K iterations with batch size

24 for 30 hours. We use the Adam optimizer to minimize

losses with the warm-up adjustment strategy [54], and set

the learning rate as 5× 10−4.

5. Experiment
5.1. Quantitative evaluation metrics

To comprehensively evaluate the performance of models

for the AIF task, we adopt the following four quantitative

metrics: (i) Following CLVA [17], we use Structural Sim-
ilarity Index Measure (SSIM) [51] to measure whether

synthesized images have similar visual content with content

images. (ii) Following StyTr2 [11], we calculate the Style
Difference (SD) between synthesized images and anchor

images to measure whether synthesized images have appro-

priate colors and textures. (iii) We extract sentiment vec-

tors of synthesized images and anchor images with the pre-

trained sentiment extractor [57], and calculate the Euclidean

distance between them to measure whether synthesized im-

ages could evoke specific emotional responses, denoted as

Sentiment Gap (SG). (iv) With the pre-trained distribution

estimator, we calculate the Accuracy (Acc) as Yang et al.
[58] to measure whether synthesized images accurately re-

flect visually-abstract emotions.

5.2. Comparison with state-of-the-art methods

As our model is the first trial for the AIF task, we conduct

comparison experiments with related image editing meth-

ods (i.e., ManiGAN [28] and DiffusionCLIP [23]) and style

transfer methods (i.e., CLIPstyler [26] and CLVA [17]).

Qualitative comparisons. We show visual quality compar-

isons with the methods above in Fig. 4. Among these meth-

ods, ManiGAN [28] distorts the visual content (the first row,

a sharp boundary appears in the sky); DiffusionCLIP [23]

fails to preserve image semantics (the second row, the city

street turns into the building); results of CLIPstyler [26] are

overly stylized (the third row, the train presents an unnatu-

ral color tone). CLVA [17] tends to synthesize colorless re-

sults regardless of emotional cues (the fourth row, the night
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The harsh cold of 
the sea reminds it 
of its sorrowful 

burden. 

(a) (c) (d) (e) (f) (g)(b)

Strolling through 
the bright city 

streets fills me with 
joy and optimism.

The train is driving 
in the cold wind 
and it makes me 
feel lonely and 

desolate.

The city lights 
make me feel 

festive, the night is 
like day.

Figure 4: Qualitative comparison results with state-of-the-art methods. (a) User-provided content images. (b) Texts that reflect thoughts

and feelings. (c) ManiGAN [28]. (d) DiffusioinCLIP [23]. (e) CLIPstyler [26]. (f) CLVA [17]. (g) Our results.

Table 1: Quantitative experiment results of comparison and abla-

tion. ↑ (↓) means higher (lower) is better. Best performances are

highlighted in bold.

Comparison with state-of-the-art methods

Method SSIM (%) ↑ SD ↓ SG (‰) ↓ Acc (%) ↑
ManiGAN 50.72 7.8913 1.6589 27.77
DiffusionCLIP 53.05 10.6151 1.7095 24.59
CLIPstyler 52.49 10.4493 1.5676 26.40
CLVA 50.30 6.3715 1.6707 25.64
Ours 56.15 5.4147 1.3881 29.96

Ablation study

W/o VAD 54.75 5.8416 1.4284 29.76
W/o SE 55.62 5.5876 1.4799 29.56
W/o ED 53.75 5.7672 1.3915 26.48
W/o GAN 56.07 5.5148 1.3911 29.15

scene seems being covered with grey dust). Our method

better understands emotions from the text and reflects them

to images with appropriate colors and textures.

Quantitative comparisons. We show quantitative com-

parisons in Tab. 1, where the highest scores on all metrics

demonstrate that our method outperforms compared state-

of-the-art methods. Specifically, our method well preserves

Table 2: User study results. Our method outperforms other ap-

proaches with the highest score.

Method ManiGAN DiffusionCLIP CLIPstyler CLVA Ours

Preference 9.08 13.24 10.32 12.68 54.68

the original visual content (SSIM), synthesizes appropri-

ate colors and textures (SD), evokes specific emotional re-

sponses from human observers (SG), and reflects visually-

abstract emotions more accurately (Acc).

User study. In addition to qualitative and quantitative

comparisons, we further conduct a user study experiment

to find out whether images synthesized by our model are

preferred by human observers over compared state-of-the-

art methods. Each sample shown to participant consists of a

content image, an emotional text, and five synthesized im-

ages. Participants are then asked to select the synthesized

image that best matches the emotional text. The experiment

is published on Amazon Mechanical Turk (AMT), where

100 samples from the testing set of the AIF dataset are ran-

domly selected, and experiment results are polled indepen-

dently by 25 volunteers. As a result, our model achieves

the highest preference score, which demonstrates the sub-

jective advantages of our approach. The preference scores
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(a) (c) (d) (e) (f) (g)(b)

The colors in the 
picture are very 

vivid and make me 
feel very energized.

I feel very 
depressed and 

completely lost my 
appetite.

Figure 5: Ablation study results with different variants of the proposed method. (a) User-provided content images. (b) Texts that reflect

thoughts and feelings. (c) W/o VAD. (d) W/o SE. (e) W/o ED. (f) W/o GAN. (g) Our results.

are shown in Tab. 2.

5.3. Ablation study

We discard various modules and create four baselines

to study the impact of our proposed modules and designed

losses. The evaluation scores and synthesized images of the

ablation study are shown in Tab. 1 and Fig. 5, respectively.

W/o VAD. We remove the VAD dictionary in the text en-

coder, which causes the AIF model cannot obtain the prior

knowledge of inherent emotional properties. This increases

the difficulty in synthesizing appropriate colors and textures

(higher SD score. As shown in the first row of Fig. 5, the

filter appears washed out due to low saturation and high

brightness, instead of being vivid).

W/o SE. We disable the sentiment extractor along with

all related designs (e.g., sentiment metric loss and anchor-

based sentiment loss). This leads to a wider sentiment gap

between synthesized results and anchor images (lower SG

score. As shown in the second row of Fig. 5, the food ap-

pears moldy and looks uncomfortable with the green filter,

but it does not evoke a sense of depression).

W/o ED. We discard the emotional distribution estimator

and the emotional distribution loss, which prevent the AIF

model from learning the ambiguous and subjective distri-

bution of emotions. As a result, the AIF model fails to ac-

curately reflect emotions from text to images (reduced Acc

score. As shown in the second row of Fig. 5, this filter is

unremarkable and fails to evoke clear emotional response).

W/o GAN. We remove the discriminator that aligns synthe-

sized images with user-provided texts and pushes the model

to produce aesthetically pleasing images. This degrades

the overall performance and results in text-image misalign-

ment (decreased overall scores. As shown in the first row of

Fig. 5, the dark tone makes people feel weighed down and

exhausted, instead of being energized).

6. Conclusion

We for the first time propose the AIF task to reflect emo-

tions from text to images. To capture long-range dependen-

cies between cross-modal inputs, we build our AIF model

based on the multi-modal transformer architecture. Various

novel losses are designed for better understanding complex

emotions and creating appropriate visualization. We further

collect and process a dataset tailored for the AIF task. In

addition, we carefully design four quantitative metrics and

conduct a user study to demonstrate that our AIF model out-

performs related state-of-the-art methods and could synthe-

size aesthetically pleasing results that evoke specific emo-

tional responses from human observers.

Overall, the proposed AIF task and model present a

promising avenue for future research in the field of cross-

modal emotion understanding and image synthesis. Our

dataset and metrics can serve as an evaluation protocol, for

assessing the future generative foundation models’ perfor-

mance in emotion understanding and visualization.

Limitation. The performance of the AIF model may be

limited by the suitability of the visual content provided by

the user. Specifically, if the user-provided image is not well-

suited to express the intended emotion of the text, e.g., at-

tempting to reflect sadness to a picture of a child’s innocent

smiling face, the AIF model may have difficulty in produc-

ing convincing results.
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