Under review as submission to TMLR

An Optical Control Environment for Benchmarking
Reinforcement Learning Algorithms

Anonymous authors
Paper under double-blind review

Abstract

Deep reinforcement learning has the potential to address various scientific problems. In this
paper, we implement an optics simulation environment for reinforcement learning based
controllers. The environment captures the essence of nonconvexity, nonlinearity, and time-
dependent noise inherent in optical systems, offering a more realistic setting. Subsequently,
we provide the benchmark results of several reinforcement learning algorithms on the pro-
posed simulation environment. The experimental findings demonstrate the superiority of
off-policy reinforcement learning approaches over traditional control algorithms in navigat-
ing the intricacies of complex optical control environments.

1 Introduction

In recent years, deep reinforcement learning (RL) has been used to solve challenging problems in various
fields [Sutton & Barto| (2018]), including self-driving car Bansal et al.| (2018) and robot control |Zhang et al.
(2015). Among all applications, deep RL made significant progress in playing games on a superhuman level
Mnih et al.| (2013)); [Silver et al.| (2014; [2016)); |[Vinyals et al. (2017)). Beyond playing games, deep RL has
the potential to strongly impact the traditional control and automation tasks in the natural science, such
as control problems in chemistry |Dressler et al.| (2018]), biology [[zawa et al.| (2004), quantum physics Bukov!
et al.| (2018]), optics and photonics |Genty et al.| (2020)).

In optics and photonics, there are particular potentials for RL methods to drive the next generation of optical
laser technologies (Genty et al.| (2020). That is not only because there are increasing demands for adaptive
control and automation (of tuning and control) for optical systems Baumeister et al. (2018), but also because
many phenomena in optics are nonlinear and multidimensional [Shen| (1984]), with noise-sensitive dynamics
that are extremely challenging to model using conventional approaches. RL methods are able to control
multidimensional environments with nonlinear function approximation Dai et al.| (2018). Thus, exploring
RL controllers becomes increasingly promising in optics and photonics as well as in scientific research,
medicine, and other industries |Genty et al.| (2020); [Fermann & Hartl (2013).

In the field of optics and photonics, Stochastic Parallel Gradient Descent (SPGD) algorithm with a PID
controller has traditionally been employed to tackle control problems |Cauwenberghs| (1993); |[Zhou et al.
(2009); [Abuduweili et al.| (2020a). These problems typically involve adjusting system parameters, such as
the delay line of mirrors, with the objective of maximizing a reward, such as optical pulse energy. SPGD is a
specific case of the stochastic error descent method |(Cauwenberghs (1993); Dembo & Kailath| (1990), which
operates based on a model-free distributed learning mechanism. The algorithm updates the parameters
by perturbing each individual parameter vector, resulting in a decrease in error or an increase in reward.
However, the applicability of SPGD is limited to convex or near-convex problems, while many control
problems in optics exhibit non-convex characteristics. As a result, SPGD struggles to find the global optimum
of an optics control system unless the initial state of the system is in close proximity to the global optimum.
Traditionally, experts would manually tune the initial state of the optical system, followed by the use
of SPGD-PID to control the adjusted system. Nevertheless, acquiring such expert knowledge becomes
increasingly challenging as system complexity grows.



Under review as submission to TMLR

To enable efficient control and automation in optical systems, researchers have introduced deep reinforcement
learning (RL) techniques /Tunnermann & Shirakawa) (2019);/Sun et al.| (2020)); |Abuduweili et al.| (2020b} |2021]).
Previous studies predominantly focused on implementing Deep Q-Network (DQN) Mnih et al| (2013) and
Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al. (2015)) in simple optical control systems, aiming
to achieve comparable performance to traditional SPGD-PID controllers [Ttinnermann & Shirakawal (2019);
Valensise et al.| (2021). However, there is a lack of research evaluating a broader range of RL algorithms
in more complex optical control environments. The exploration and evaluation of RL algorithms in real-
world optical systems pose significant challenges due to the high cost and the need for experienced experts to
implement multiple optical systems with various configurations. Even for a simple optical system, substantial
efforts and resources are required to instrument and implement RL algorithms effectively.

Simulation has been widely utilized in the fields of robotics and autonomous driving since the early stages of
research |Pomerleau| (1998); [Bellemare et al.| (2013]). As the interest and application of learning-based robotics
continue to grow, the role of simulation becomes increasingly crucial in driving research advancements. We
believe that simulation holds equal importance in evaluating RL algorithms for optical control. However, to
the best of our knowledge, there is currently no open-source RL environment available for optical control
simulation.

In this paper, we present OPS (Optical Pulse Stacking), an open and scalable simulator designed for control-
ling typical optical systems. The underlying physics of OPS aligns with various optical applications, including
coherent optical inference [Wetzstein et al.| (2020)) and linear optical sampling [Dorrer et al.| (2003), which
find applications in precise measurement, industrial manufacturing, and scientific research. A typical optical
pulse stacking system involves the direct and symmetrical stacking of input pulses to multiply their energy,
resulting in stacked output pulses |Tunnermann & Shirakawa| (2017)); [Stark et al.| (2017)); |Astrauskas et al.
(2017); [Yang et al.| (2020)). By introducing the OPS optical control simulation environment, our objective is
to encourage exploration of RL applications in optical control tasks and further investigate RL controllers in
natural sciences. We utilize OPS to evaluate several important RL algorithms, including Twin Delayed Deep
Deterministic Policy Gradient (TD3) [Fujimoto et al.| (2018]), Soft Actor-Critic (SAC) [Haarnoja et al.| (2018),
and Proximal Policy Optimization (PPO) Schulman et al| (2017). Our findings indicate that in a simple
optical control environment (nearly convex), the traditional SPGD-PID controller performs admirably. How-
ever, in complex environments (non-convex optimization), SPGD-PID falls short, and RL-trained policies
outperform SPGD-PID. Following the reporting of these RL algorithm results, we discuss the potential and
challenges associated with RL algorithms in real-world optical systems. By providing the OPS simulation
environment and conducting RL algorithm experiments, we aim to facilitate research on RL applications
in optics, benefiting both the machine learning and optics communities. We will make the code publicly
available.

2 Simulation environment

2.1 Physics of the simulation

The optical pulse stacking (OPS), also known as pulse combination, system employs a recursive approach
to stack optical pulses in the time domain. The dynamics of the OPS are similar to the recurrent neural
networks (RNN) or Wavenet architecture |Oord et al.| (2016). We illustrate the dynamics of the OPS in
RNN style as shown in Fig. In the OPS system, the input consists of a periodic pulse train E| with a
repetition period of 7. Assuming the basic function of the first pulse at time step ¢ is denoted as F1 = E(t)
(a complex function), the subsequent pulses can be described as Ey = E(t+T), Es = E(t+ 2T'), and so on.
The OPS system recursively imposes time delays to earlier pulses in consecutive pairs. For instance, in the
first stage of OPS, a time-delay controller imposes the delay 71 on pulse 1 to allow it to combine (overlap)
with pulse 2. With the appropriate time delay, pulse 1 can be stacked with the next pulse, Es, resulting
in the stacked pulses E1 o = E(t + 71) + E(t + T'). Similarly, pulse 3 can be stacked with pulse 4, creating
Esy = E(t+ 2T+ )+ E(t+ 37T), and so forth. In the second stage of OPS, an additional time delay,
T2, is imposed on E o to allow it to stack with Fs 4, resulting in Ej 2 34. This stacking process continues

1The periodic pulse train is typically emitted by lasers, where each laser pulse’s wave function is nearly identical except for
the time delay.



Under review as submission to TMLR

3rd stage stacking Is
T T T
2" stage stacking Eyp|——— B34 Ese —2—’
{ [ !
15t stage stacking ’ E, ‘A’ E, ‘ ’ E; ‘A’ E, ‘ ’ Es ‘A’ Eg ‘ ’ E, ‘L>’ Eg ‘

Figure 1: Illustration of the principle of optical pulse stacking. Only 3-stage pulse stacking was plotted for
simplicity.

in each subsequent stage of the OPS controller, multiplying the pulse energy by a factor of 2V by stacking
2V pulses, where N time delays (71, 7o, ..., 7x) are required for control and stabilization. Additional details

about the system configuration are shown in appendix [A]

1.0

>
1.0 o
[
0.8 5 08
.8
) @ 07
[} 0
5 63| fos
o 0.6
) °
2 @ 05
3 4 e
° Q 04
g 2E
Q 04 0.3
£ o
S 02
\?;\ 01

0.2

-20 -16 -12 -8 -4 0 4 8 12 16 20
time delay

(a) One stage OPS (1-d) (b) Two stage OPS (2-d)

Figure 2: Function of the (a) 1-stage OPS: pulse energy P;(71) w.r.t. delay line 7. (b) 2-stage OPS: pulse
energy Ps(71,72) w.r.t. delay lines (71, 72).

2.2 Control objective and noise

The objective of controlling an OPS system is to maximize the energy of the final stacked (output) pulse
by adjusting the time delays. We denote the vector of time delays as 7 = [r1, 72, - ,7n], and Egu(t;7)
represents the final stacked pulse under the time delay configuration 7. For an N-stage OPS system, the
energy of the final stacked pulse, denoted as Py (), is computed as the integral of the norm of E,,;(t; 7) over
time. In mathematical terms, we express it as Py (7) = [ |Eyui(t; 7)|dt. To formulate the objective function
for controlling an N-stage OPS system, we aim to find the optimal set of time delays 7* that maximizes



Under review as submission to TMLR

Pn (7). The objective function can be defined as follows:

arg Hl‘IE_lX PN(T) = argmaXTl,Tz,...7TNPN(T17T27 "'7TN) (1)

When ignoring noise, the objective function of the final pulse energy, Py, with respect to the time delays, T,
can be derived based on optical coherence. Figure depicts the pulse energy function P;(71) in a 1-stage
OPS system, showing the relationship between pulse energy and the time delay 7. Similarly, Figure
displays the function surface of P»(71,72) in a 2-stage OPS system, illustrating how pulse energy varies with
the first and second stage time delays (71, 72). As evident from the figures, the control objective of the OPS
system is nonlinear and non-convex, even when noise is disregarded. This inherent complexity arises due to
factors such as optical periodicity and the nonlinearity of coherent interference. Consequently, achieving the
global optimum or better local optima becomes a challenging task for any control algorithms, particularly
when starting from a random initial state.

However, in practical scenarios, noise cannot be ignored, and the OPS system is highly sensitive to noise.
This sensitivity is primarily due to the pulse wavelength being on the order of micrometers (1um = 10~5m).
Environmental noise, including vibrations of optical devices and atmospheric temperature drift, can easily
cause shifts in the time delays, resulting in changes to the output pulses. As a result, the objective function in
real-world applications is much more complex than what is depicted in Figure [2] especially for higher-stage
OPS systems with higher dimensions. Consequently, achieving the control objective becomes even more
challenging in the presence of unknown initial states and unpredictable noise in such noise-sensitive complex
systems Genty et al.| (2020). Therefore, model-based controllers face significant difficulties in implementation.
In this paper, we primarily focus on model-free reinforcement learning approaches to address these challenges.

In this simulation, we incorporate two types of noise: fast noise arising from device vibrations and slow
noise caused by temperature drift. The fast noise is modeled as a zero-mean Gaussian random noise with
variance o2, following the simulation noise approach outlined in [Tiinnermann & Shirakawal (2019). On the
other hand, the slow noise u; accounts for temperature drift and is represented as a piecewise linear function
Ivanova et al.| (2021). To capture the combined effect of these two noise sources, we define the overall noise
e: as a random process. Specifically, we can express it as follows:

Ele:] = pt, VAR [es] = o? (2)

2.3 Reinforcement learning environment

Interactions with RL agent. An RL agent interacts with the OPS environment in discrete time steps,
as shown in Fig. |3l At each time step ¢, the RL agent receives the current state of the OPS environment,
denoted as s;. Based on this state, the agent selects an action a; to be applied to the environment. The action
could involve adjusting the time delays 7 in the OPS system. Once the action is chosen, it is transmitted
to the OPS environment, which then processes the action and transitions to a new state s;y;. The OPS
environment provides feedback to the RL agent in the form of a reward r;. The reward serves as a measure
of how well the OPS system is achieving the objective of maximizing the final stacked pulse energy. The RL
agent utilizes the experience tuple (s¢, at, S¢41,7¢) to learn and update its policy 7(a, s) over time. The goal
of the agent is to learn a policy that maximizes the expected cumulative reward over the interaction with
the OPS environment.

State space. The state space of the OPS system is a continuous and multidimensional vector space. The
state value at time step ¢, denoted as s;, corresponds to the pulse amplitude measurement of the final stacked
pulse, given by $; = |Eout(t;7)|. Therefore, s; provides a time-domain representation of the final stacked
pulse, offering direct insight into the control performance. In practical implementations, the pulse amplitude
is typically detected using a photo-detector and subsequently converted into digital time-series signals. In
our simulation, we have incorporated real-time rendering of the pulse amplitude to facilitate the monitoring
of the control process.

Action space. The action space of an N-stage OPS environment is a continuous and N-dimensional vector
space. At each time step ¢, the action a; corresponds to an additive time delay value A7(t) for the N-stage



Under review as submission to TMLR

E1,2 E3,4—

51,2,3,41 OPS Environment

RL agent Photo 7

detection ) {
GDD | i@ = L1 = L
<€ 2nd stacked ! i 1ststacked ! ! Initial pulses
reward r pulses | i puses | ; ?

i 2nd stage | 1st stage
' time delay 7z NEIECEETEY
1z, )

action a

Figure 3: Illustration of the interaction between RL agent and OPS environment. Only 2-stage OPS was
plotted for simplicity.

OPS environment: a; = A7(t) = 7(t+1) —7(¢). The OPS environment applies the additive time delay value
a(t) to transition to the next state.

Reward. As mentioned in section the objective of the OPS controller is maximizing the final stacked
pulse energy Py(7). In our simulation, we use the normalized final pulse energy as the reward value. The
reward at each time step is defined as:

o (P (T) - Pmaz)2
T (&in - P’max)Q ’ (3)

where P, is the maximum pulse energy at the global optimum, and P,,;, is the minimum pulse energy.
The maximum reward 0 achieved when P(7) = P4, (peak position of Fig. [2(b)]) .

State transition function. The environmental noise has direct impacts on the delay lines, including the
vibration and temperature-induced shift noise of the delay line devices. Therefore, in the state transition
process, the actual applied delay line value Tyeai(t + 1) is a combination of the action a; and the noise e;.
Specifically, it can be expressed as:

Treal(t + 1) = Treal(t) + a; + e;. (4)

After selecting the pulses, the real-time delay Tyea1(t + 1) is imposed on them using delay line devices, which
introduce additional time delays for the pulses. The state transition process is governed by the combination
of the current state, the action taken, and the noise present. The specific form of the state transition follows
the principles of coherent light interference [Saleh & Teich! (2019).

Then the real-time delay Tyc,1(t + 1) is imposed on some specific pulses by delay line devices (the device
introduce additional time delay for pulses). The state transition process is governed by the combination of
the current state, the action taken, and the noise present. The specific form of the state transition follows the
principles of coherent light interference [Saleh & Teich| (2019). Let f is a interference observation function.
Then the state transition can be written as:

St+1 = f(Trcal(t + 1)) = f(Trcal(t) +ap + et) = f(fil(st) + a¢ + et) (5)

It is important to note that the slow-changing noise term E [e;] = u; follows a piecewise linear function that
changes slowly over time. During episodic training for RL agents, p; can be treated as a constant value
within an episode. However, the value of p; may vary from one episode to the next. In this case, assuming
that p; changes very slowly, the OPS control process can be modeled as a Markov decision process (MDP).
If higher accuracy is required, one can include the noise term in the state definition as §; = [s;; e¢], which
transforms the control process into a partially observable Markov decision process (POMDP).



Under review as submission to TMLR

Mode Initial state . .N01se Objective from optics_env import OPS_env
E near the tlme—lndependent: env = OPS_env(stage=5, mode="medium")
asy . due convex
optimum = 0 env.reset()
: : done = False
. time-independent: }
Medium random iy B non-convex | while not done:
dt — 0 action = env.action_space.sample()
) time-dependent: observation, reward, done, info = env.step(action)

Hard random dus £0 non-convex env.render()

dt
Table 1: Different difficulty modes on OPS. Figure 4: Example code of the OPS environment.

Control difficulty of the environment. We have implemented the OPS environment to support arbitrary
stages of pulse stacking (N € 1,2,3,...). As the number of stages increases, the control task becomes more
challenging. In addition to the customizable number of stages, we have also introduced three difficulty modes
(easy, medium, and hard) for each stage of OPS, as outlined in Table [I} The difficulty mode is determined
by the initial state of the system and the distribution of noise. These difficulty modes allow for different
levels of complexity and challenge in the control task, providing flexibility for evaluating and training control
algorithms in various scenarios.

e Easy mode. In the easy mode of the OPS environment, the initial state of the system is set to
be near the global optimum. This configuration is often encountered in traditional optics control
problems where experts fine-tune the initial state to facilitate easier control. As depicted in Figure
we provide an example of the initial state for the easy mode in a 3-stage OPS environment. The
proximity of the initial state to the global optimum allows the control objective in the easy mode
to be considered convex. This means that the optimization problem in the easy mode is relatively
straightforward and can be solved more easily compared to other modes.

e Medium mode. In the medium mode of the OPS environment, the initial state of the system is ran-
domly determined, as illustrated in Figure This random initialization introduces non-convexity
into the control problem, making it more challenging to solve. However, in the medium mode, the
noise present in the system is time-independent. We model this noise as a Gaussian distribution,
where e; follows a normal distribution N (u,c). This setting aligns with classical reinforcement
learning and typical Markov Decision Process (MDP) settings, where the noise distribution remains
the same throughout each episode.

e Hard mode. In the hard mode of the OPS environment, similar to the medium mode and as shown
in Figure the initial state of the system is randomly determined. However, in contrast to the
medium mode, the behavior of the noise in the hard mode is more complex. The mean value of
the noise distribution p; becomes a time-dependent variable that slowly changes over time. This
time-dependent noise introduces additional challenges and complexity to the control problem. In this
case, the control problem deviates from a typical Markov Decision Process (MDP) setting. The hard
mode is designed to mimic real-world settings more closely. In practical applications, when deploying
the trained model in a testing environment, we often encounter temperature drift, which causes the
noise distribution of the testing environment to differ from the training environment. Therefore, the
hard mode simulates the realistic scenario where the noise distribution is not stationary and may
vary over time, making the control problem more challenging and closer to real-world conditions.

API & sample usage. The simulation in this study is based on the Nonlinear-Optical-Modeling [Hult
(2007), which provides the optical and physical fundamentals for the OPS environment. To facilitate in-
tegration and compatibility with existing frameworks and tools, the OPS environment is designed to be
compatible with the widely used OpenAI Gym API Brockman et al.| (2016]). To demonstrate the usage of
the OPS environment, we provide an example code snippet in Figure

Features of the OPS environment. We summarize the key features of the OPS environment as follows:
e Open-source optical control environment: To the best of our knowledge, this is the first open-sourced

RL environment for optical control problems. The use of open-source licenses enables researchers to
inspect the underlying code and modify the environment if necessary to test new research ideas.



Under review as submission to TMLR

-
o
=
o
-
o

o
o
=)
)
o
£

4
o
4
o
o
o

o
IS
o
>
o
IS

Intensity (normalized)
Intensity (normalized)
Intensity (normalized)

=3
N
=3
N
=3
N

e
1o
=4
1o
o
o

0 -60 -40 -20 0 20 40 60 80 0 -60 -40 -20 0 20 40 60 80 280 —60 -40 -20 0 20 40 60 80
Time Time Time

(a) Initial state: easy mode (b) Initial state: medium/hard mode (c) Target optimal state

Figure 5: Rendering examples of the (a) initial state for easy mode, (b) initial state for medium or hard
mode, (c) global optimal target state in a 2-stage OPS environment. In the initial state of the easy mode,
some parts of the pulses have already stacked, which is closer to the target state. The initial state of medium
or hard mode is random.

e Scalable and difficulty-adjustable scientific environment: Unlike many RL environments that are
easy to solve, our OPS environment allows flexible adjustment of difficulty. The dimension of the
action space can easily scale with the stage number N. Choosing a larger N with the hard mode
makes controlling the environment more challenging. Effective solutions to hard scientific control
problems can have a broad impact on various scientific control problems|Genty et al.| (2020); |Fermann
& Hartl (2013]).

e Realistic noise: In the hard mode of the OPS environment, we model the noise distribution as
a time-dependent function. This reflects the realistic scenario where the noise distribution in the
testing environment differs from the noise distribution in the training environment. Such realistic
noise modeling is particularly relevant for noise-sensitive systems |lvanova et al.| (2021]) and increases
the stochasticity of the environment.

o Extendable state and structural information: When u; changes very slowly, the OPS control process
can be formulated as an MDP. For higher accuracy requirements, the noise can be included in the
state definition, transforming the OPS control process into a POMDP. Furthermore, we can explore
the structural information or physical constraints from the function of the OPS (see Fig. [2)) and
incorporate it with RL controllers.

3 Experiments

3.1 Experimental setup

We present benchmark results for various control algorithms, including a traditional control algorithm and
three state-of-the-art reinforcement learning algorithms:

o SPGD (Stochastic Parallel Gradient Descent) algorithm with PID controller: SPGD is a widely
used approach for controlling optical systems |(Cauwenberghs| (1993); [Zhou et al.[ (2009). In SPGD,
the objective gradient estimation is achieved by applying a random perturbation to the time delay
value, denoted as 7. The update formula is 7(¢ 4+ 1) = 7(t) + n[Pn(7(¢t) + d7) — Pn(7(t))]d7, where
71 is the update step-size. The output of the SPGD algorithm is then sent to a PID controller to
control the system. In this work, we refer to the SPGD-PID controller as the SPGD controller.

o PPO (Proximal Policy Optimization) is an on-policy reinforcement learning algorithm |Schulman
et al.|(2017). It efficiently updates its policy within a trust region by penalizing KL divergence or
clipping the objective function.



Under review as submission to TMLR

o SAC (Soft Actor-Critic) is an off-policy reinforcement learning algorithm Haarnoja et al| (2018). It
learns two Q-functions and utilizes entropy regularization, where the policy is trained to maximize
a trade-off between expected return and entropy.

e« TD3 (Twin Delayed Deep Deterministic policy gradient) is an off-policy reinforcement learning
algorithm [Fujimoto et al| (2018]). It learns two Q-functions and uses the smaller of the two Q-values
to form the targets in the loss functions. Additionally, TD3 adds noise to the target action for
exploration.

We implement the RL algorithms using stable-baseline-3 [Raffin et al.| (2019)). The training procedure for an
RL agent consists of multiple episodes, and each episode consists of 200 steps. For each of the experimental
settings, we run ten random seeds and average the results. The hyperparameters of the RL algorithms used
in our experiments are provided in appendix [B1]

3.2 Results on controlling 5-stage OPS

In this section, we present the results obtained for the 5-stage OPS system, which involves stacking 32
pulses. We evaluate all four algorithms in three difficulty modes: easy, medium, and hard. It is important
to note that SPGD is a training-free method, as it relies on a fixed policy. Therefore, we only evaluate the
testing performance of SPGD. For the RL algorithms (PPO, TD3, and SAC), we assess both the training
convergence and the testing performance of the trained policy.

The training curves, depicting the reward per step during training iterations, are shown in Fig. for the
easy mode, Fig. for the medium mode, and Fig. for the hard mode. From these plots, we observe
that TD3 and SAC exhibit similar performance, which is consistently higher than that of PPO across all three
difficulty modes. Notably, in the hard mode of the environment, the convergence speed of the algorithms
slows down. Moreover, the final convergence value decreases as the difficulty of the environment increases.
For instance, in the easy mode, SAC converges to a reward value of —0.04 within 100,000 steps, while it
takes 200,000 steps to converge to a reward value of —0.1 in the hard mode.

0. 0. 0.
§-01 §-01 §-01
® ® ®
o -0.2 o -0.2 0 -0.2
= = =
@-0.3 @-0.3 @-0.3
e = =
T-04 T-04 T-04
& & &
3-05 3-05 3-05
-4 -4 o
2-06 — TD3 2-06 — TD3 2-06 — TD3
£ £ £
£ o7 saC £ 07 saC £ o7 saC
S — pPO S — pPO = — PPO
=083 50600 100000 150000 200000 250000 300000 ~0-8 3 50600 100000 150000 200000 250000 300000 ~08 3 50000 106000 150000 200000 250000 300000
Iterations Iterations Iterations
(a) Training curve: easy mode (b) Training curve: medium mode (c) Training curve: hard mode

Figure 6: Training curve for SAC, TD3, and PPO on 5-stage OPS environment for (a) easy mode, (b)
medium mode, and (c) hard mode. The dashed region shows the area within the standard deviation.

Following the training of RL agents, we proceeded to evaluate the performance of the trained policies in the
testing environment. The final pulse energy Py achieved under different iterations is depicted in Fig. [7(a)|
for the easy mode, Fig. for the medium mode, and Fig. for the hard mode. We observed that SPGD
performs admirably in the easy mode, where the control problem is close to convex. However, its performance
deteriorates significantly in the medium and hard modes, which are non-convex control problems. This
disparity arises because RL controllers are capable of learning better policies through exploration in non-
convex settings. Furthermore, the off-policy RL algorithms (TD3 and SAC) outperform the on-policy RL
algorithm (PPO) in our simulation environment. Across all methods, the testing performance in the hard
mode is lower than that in the medium mode, despite both being non-convex control problems. This
discrepancy can be attributed to the more complex and realistic noise present in the hard mode, which slows
down the convergence rate and reduces the final pulse energy in the testing environment.



Under review as submission to TMLR

— 03

SAC
— PPO
— SPGD

75 100 125 150 175 200
Iterations

(a) Testing curve: easy mode

1.0

.09
308

Yo7

206

Bos

< y

804

£ — D3
It

503 SAC
< —— PPO

i
02 m— SPGD

0.1 )

25 50 75 100 125 150 175 200

Iterations

(b) Testing curve: medium mode

Tos
g

— 03

SAC
— PPO
— SPGD

75 100 125 150 175 200
Iterations

(¢) Testing curve: hard mode

Figure 7: Evaluation of the stacked pulse power Py (normalized) of different policies in the testing environ-
ment for (a) easy mode, (b) medium mode, and (c) hard mode.

The final pulse energy Py achieved in both the training and testing environments for the trained policy
is reported in table It is important to note that the training and testing environments for the easy
and medium modes are similar, resembling the classical Atari environment, with performance differences
primarily arising from randomness. However, the hard mode exhibits different noise behavior between the
training and testing environments due to slow temperature drift, leading to a performance gap between the
two environments. The experimental results of the 4-stage and 6-stage systems can be found in appendix[B.2]

Table 2: Evaluation performance of SPGD, PPO, TD3, and SAC on three ( easy, medium, hard) modes.
Final pulse energy Py on both the training environment and testing environment was evaluated.

Mode Evaluation environment SPGD PPO SAC TD3
easy training 0.9909 + 0.0021 | 0.7684 + 0.0884 | 0.9637 £+ 0.0172 0.9610 £ 0.0189
testing 0.9909 =+ 0.0021 | 0.7553 & 0.0463 | 0.9614 &+ 0.0231 | 0.9581 £ 0.0177
medium training 0.6155 £ 0.0163 0.6210 £ 0.0828 | 0.8945 + 0.0501 | 0.9204 + 0.0351
testing 0.6155 & 0.0163 | 0.6219 4 0.0229 | 0.8873 &+ 0.0838 | 0.9185 + 0.0217
hard training 0.4821 £ 0.0248 | 0.5673 4 0.0680 | 0.8515 & 0.0375 | 0.8524 + 0.0380
testing 0.4821 £ 0.0248 0.5261 + 0.0300 | 0.8071 + 0.0164 | 0.8130 + 0.0215

3.3 Comparison of the different settings of OPS environment

In this section, we investigate the impact of different modes (easy, medium, hard) and stage numbers (N)
in an N-stage OPS environment. We evaluate the trained TD3 and SAC policies, as well as SPGD, on

1.0 h—-ﬁ‘ — _§~ *
a0.9
a':JO.B —— TD3@hard
(9] SAC@hard
8 0.7/ — spGD@hard
3 == TD3@medium
20.6 SAC@medium
2 == SPGD@medium
©0.5{ * TD3@easy

SAC@easy
0.41 % SPGD@easy

-

* * 250000{ =—— TD3@hard
* —— SAC@hard
BRRNN .200000{ ~ = TD3@medium /,/
== = SAC@medium P
* TD3@easy 7
150000 4 saC@easy / /

)

100000

50000

1 2 3 4
Stage number in OPS

(a) Testing curve (final return Ppr)

ol *

4
Stage number in OPS

(b) Training convergence step

Figure 8: (a) Final return Py of different stage OPS on testing environment controlled with TD3 or SAC.
(b) Convergence steps for the training of TD3 and SAC on different stage OPS environments.

different testing environments with varying stage numbers. Figure illustrates the final return Py in



Under review as submission to TMLR

relation to the stage number N in the N-stage OPS environment, comparing the performance of different
algorithms across different modes. From the figure, we draw the following conclusions: (1) For the easy
mode, SPGD outperforms SAC and TD3, and all methods achieve near-optimal performance regardless of
the stage number N. (2) Across both the medium and hard modes, the performance of RL methods (SAC
and TD3) is comparable. (3) As the stage number increases in the hard and medium modes, the performance
of SPGD drops significantly. Moreover, for N > 4, RL methods (SAC and TD3) outperform SPGD by a
substantial margin. Figure illustrates the training convergence steps for different stage OPS. It can
be observed that as the stage number increases, the number of steps required for training convergence also
increases significantly.

0.0 1.0
= "
5 -0.1 0.9 % e
= <
@ —0.2 20'8 * ok Kk ok ok ok Kk ok ok Kk Kk *
i W7
@-03 2
Q. 2
= g 0.6
E_O4 kel * * Kk Kk Kk Kk ok k k Kk k k k Kk Kk
© @ 0.5
2 ~
v —-0.5 %}
D; — 2-stage g 0.4
< -0.6 = 3-stage =03 = 2-stage(TD3) * 2-stage(SPGD)
£ —— 4-stage c ——3-stage(TD3) * 3-stage(SPGD)
© -0.7 iLg2 = 4-stage(TD3) =+ 4-stage(SPGD)
[ = 5-stage ' = 5-stage(TD3) * 5-stage(SPGD)

-=0. L 1

08 0 50000 100000 150000 200000 0 0 25 50 75 100 125 150 175 200

Iterations Iterations
(a) Training curve: TD3 with hard mode (b) Testing curve: TD3 with hard mode

Figure 9: Comparison of the results on hard mode N-stage OPS environment with TD3 algorithms. (a)
shows the training curve; (b) shows the evaluation of TD3 and SPGD in the testing environment.

To provide a clearer illustration of the impact of stage number N in the OPS environment, we present the
training and testing curves for TD3 and SPGD on the hard mode. Figure displays the training curve of
TD3 on different N-stage OPS systems. It can be observed that as the stage number increases, the training
convergence becomes slower. Figure showcases the testing curve of SPGD and TD3 on different N-
stage OPS systems. From the figure, we can draw the following observations: (1) With an increase in stage
number, the final return Py becomes smaller for both TD3 and SPGD, indicating a decrease in performance
as the system becomes more complex. (2) TD3 counsistently outperforms SPGD for stage numbers N > 4.
This suggests that RL methods like TD3 are more effective in handling the control challenges posed by OPS
systems with a larger number of stages.

3.4 Transferring trained policy between different modes

{

—
—
—

14
™
14
™
14
™

o
o
o
o
o
o

14
IS
14
IS
14
IS

s easy -> hard
— easy -> medium

= hard -> hard = medium -> hard
~—— hard -> medium —— medium -> medium
—— hard -> easy —— medium -> easy

Final Stacked Pulse Energy

o
o
Final Stacked Pulse Energy
o
o

Final Stacked Pulse Energy
o
o

— easy -> easy

o
o
o
o
o
o
~
o

25 50 75 100 125 150 175 200 . 25 50 75 100 125 150 175 200 50 75 100 125 150 175 200
Iterations Iterations Iterations

(a) hard trained (b) medium trained (c) easy trained

Figure 10: Demonstration of the transfer performance of the trained policy on (a) hard mode training
environment; (b) medium mode training environment; (c) easy mode training environment.

The major difference between the simulation and real-world environments is the different noise levels. In
order to investigate the transferability of trained policies between different noise levels in the OPS environ-
ment, we conducted a simulated experiment. Our simulation environment incorporates different noise levels

10



Under review as submission to TMLR

depending on the difficulty mode: "easy", "medium', and "hard". We trained policies on the "hard" mode
environment and tested their performance on "hard", "medium", and "easy" mode environments. The transfer
results are presented in Fig. As can be observed, the trained policy can be successfully transferred
to both "medium" and "easy" mode environments, achieving high performance in terms of pulse energy.
Figure [L0(b)| and Figure depict the transfer results of policies trained on the "medium" and "easy"
mode environments, respectively. It can be seen that when policies trained on easier mode environments
are transferred to a harder mode environment, their performance may drop and result in fluctuations in
pulse energy. On the contrary, policies trained in harder environments can be effectively applied to easier
environments.

These results demonstrate the transferability of policies between different noise levels in the OPS environ-
ment. Specifically, policies trained in harder environments can be effectively applied to easier environments,
while the performance of policies trained in easier environments may be compromised when transferred to
harder environments. Based on these findings, training policies in harder simulation environments that in-
troduce more noise and uncertainty can be more useful. This approach allows us to explore and develop fast
and robust control algorithms that can then be deployed on real-world physical systems.

4 Discussion

4.1 Real-world environment and simulation

Deploying RL algorithms in real-world optics systems poses several challenges, including the need for signal
conversion, time delays, and manual tuning of optical devices. In our simulation system, we have the
advantage of faster control steps and simplified initial alignment. We In real-world optics systems, the
optical signal needs to be converted to an electrical analog signal using a photo-detector (PD), which is then
further converted to a digital signal using an analog-to-digital converter (ADC). Additionally, the time-delay
introduced by the delay line device (controller) contributes to the time cost per control step, which typically
ranges from 0.1 to 1 second. However, in our simulation system, we can speed up the control step by a
factor of 10 to 100, allowing for faster training and evaluation. Furthermore, in real-world OPS systems,
manual tuning of the optical devices is required when the optical beams are misaligned, which can be a
time-consuming process taking several hours or even days. In contrast, in our simulation system, we can
easily reset the environment to achieve the initial alignment, simplifying the setup and reducing the time
required for system preparation.

Previous endeavors to directly apply RL algorithms to real-world OPS systems have encountered obstacles,
including slow training in a real environment, and unstable and non-optimal convergence of RL algorithms.
Consequently, the sim2real approach, which involves training and evaluating RL algorithms in simulation
environments before deploying them to real-world systems, has garnered considerable interest. Our objective
is to conduct comprehensive research on RL algorithms within the simulation environment and subsequently
leverage the sim2real approach to transition these algorithms into real-world applications.

To validate the correctness of our simulation, we have evaluated it through simplified pulse stacking exper-
iments, as mentioned in [Ttnnermann & Shirakawa (2019); [Yang et al.| (2020). In these studies, both real
experiments and simulations were conducted, and the authors found the simulation to be valuable. While our
simulation and experimental settings are more complex than those in |Tinnermann & Shirakawal (2019), the
underlying physics remains the same, which adds confidence to the reliability and accuracy of our simulation
environment.

4.2 RL controllers and different simulation modes

The experimental results demonstrate that off-policy RL algorithms (TD3 and SAC) outperform traditional
SPGD controllers in larger N-stage OPS systems, particularly in the challenging hard mode. In the simu-
lation, the easy mode corresponds to the traditional control approach in which experts manually fine-tune
the OPS system to achieve a state close to the global optimum (representing the real-world "easy" mode)
before employing SPGD for control. However, the future of optical control lies in automation. The hard
mode in the simulation reflects a more realistic scenario where direct control of the OPS system is performed

11



Under review as submission to TMLR

without initial expert tuning. In this context, RL controllers exhibit significant promise for optical systems.
This motivates our focus on developing OPS simulation environments, emphasizing the need for fast training
and noise-robust RL algorithms capable of handling non-stationary noise and non-convex control objectives.
Additionally, exploring the nonconvex and periodic nature of OPS objectives holds potential benefits for
real-world RL applications, incorporating valuable structural information into the control tasks in optics.

5 Conclusion

In this paper, we present OPS, an open-source simulator for controlling pulse stacking systems using RL
algorithms. To the best of our knowledge, this is the first publicly available RL environment specifically
tailored for optical control problems. We conducted evaluations of SAC, TD3, and PPO within our proposed
simulation environment. The experimental results clearly demonstrate that off-policy RL methods outper-
form traditional SPGD-PID controllers by a substantial margin, especially in challenging environments. By
offering an optical control simulation environment and providing RL benchmarks, our aim is to encourage
the exploration and application of RL techniques in optical control tasks, as well as to facilitate further
advancements of RL controllers in the field of natural sciences.

References

Abulikemu Abuduweili, Bowei Yang, and Zhigang Zhang. Modified stochastic gradient algorithms for con-
trolling coherent pulse stacking. In Conference on Lasers and Electro-Optics, pp. STh4P.1, 2020a.

Abulikemu Abuduweili, Bowei Yang, and Zhigang Zhang. Control of delay lines with reinforcement learning
for coherent pulse stacking. In Conference on Lasers and Electro-Optics, pp. JW2F.33, 2020b.

Abulikemu Abuduweili, Jie Wang, Bowei Yang, Aimin Wang, and Zhigang Zhang. Reinforcement learning
based robust control algorithms for coherent pulse stacking. Opt. Ezpress, 29(16):26068-26081, Aug 2021.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient
methods: Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22
(98):1-76, 2021.

Ignas Astrauskas, Edgar Kaksis, Tobias Flory, Giedrius Andriukaitis, Audrius Pugzlys, Andrius Baltuska,
John Ruppe, Siyun Chen, Almantas Galvanauskas, and Tadas Bal¢itnas. High-energy pulse stacking via
regenerative pulse-burst amplification. Optics letters, 42(11):2201-2204, 2017.

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

Thomas Baumeister, Steven L Brunton, and J Nathan Kutz. Deep learning and model predictive control for
self-tuning mode-locked lasers. JOSA B, 35(3):617-626, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Marin Bukov, Alexandre GR Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov, and Pankaj Mehta.
Reinforcement learning in different phases of quantum control. Physical Review X, 8(3):031086, 2018.

Gert Cauwenberghs. A fast stochastic error-descent algorithm for supervised learning and optimization.
Advances in neural information processing systems, 5:244-251, 1993.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. Sbeed: Convergent
reinforcement learning with nonlinear function approximation. In International Conference on Machine
Learning, pp. 1125-1134. PMLR, 2018.

12



Under review as submission to TMLR

Amir Dembo and Thomas Kailath. Model-free distributed learning. IEEE Transactions on Neural Networks,
1(1):58-70, 1990.

C Dorrer, DC Kilper, HR Stuart, G Raybon, and MG Raymer. Linear optical sampling. IEEE Photonics
Technology Letters, 15(12):1746-1748, 2003.

Oliver J Dressler, Philip D Howes, Jacbum Choo, and Andrew J deMello. Reinforcement learning for dynamic
microfluidic control. ACS omega, 3(8):10084-10091, 2018.

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient g-learning with function
approximation via distribution shift error checking oracle. arXiv preprint arXiv:1906.06321, 2019.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901, 2019.

Martin E Fermann and Ingmar Hartl. Ultrafast fibre lasers. Nature photonics, 7(11):868-874, 2013.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80, pp. 1587-1596. PMLR, 2018.

Goéry Genty, Lauri Salmela, John M Dudley, Daniel Brunner, Alexey Kokhanovskiy, Sergei Kobtsev, and
Sergei K Turitsyn. Machine learning and applications in ultrafast photonics. Nature Photonics, pp. 1-11,
2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 85th International Conference on Machine Learning, volume 80, pp. 1861-1870. PMLR,
10-15 Jul 2018.

Johan Hult. A fourth-order runge—kutta in the interaction picture method for simulating supercontinuum
generation in optical fibers. J. Lightwave Technol., 25(12):3770-3775, Dec 2007.

Yoanna M Ivanova, Hannah Pallubinsky, Rick Kramer, and Wouter van Marken Lichtenbelt. The influence of
a moderate temperature drift on thermal physiology and perception. Physiology € Behavior, 229:113257,
2021.

Jun Izawa, Toshiyuki Kondo, and Koji Ito. Biological arm motion through reinforcement learning. Biological
cybernetics, 91(1):10-22, 2004.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudik, and Robert Schapire. Reinforcement
learning with convex constraints. arXiv preprint arXiv:1906.09323, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016.

D Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural Information Processing

Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1998.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann.
Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

Bahaa EA Saleh and Malvin Carl Teich. Fundamentals of photonics. john Wiley & sons, 2019.

13


https://github.com/DLR-RM/stable-baselines3

Under review as submission to TMLR

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yuen-Ron Shen. The principles of nonlinear optics. New York, 1984.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pp. 387-395. PMLR, 2014. URL
http://proceedings.mlr.press/v32/silveri4.html.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Henning Stark, Michael Miiller, Marco Kienel, Arno Klenke, Jens Limpert, and Andreas Tiinnermann.
Electro-optically controlled divided-pulse amplification. Optics express, 25(12):13494-13503, 2017.

Chang Sun, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Deep reinforcement learning for optical
systems: A case study of mode-locked lasers. Machine Learning: Science and Technology, 1(4):045013,
2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Henrik Tinnermann and Akira Shirakawa. Delay line coherent pulse stacking. Opt. Lett., 42(23):4829-4832,
Dec 2017.

Henrik Tinnermann and Akira Shirakawa. Deep reinforcement learning for coherent beam combining ap-
plications. Opt. Express, 27(17):24223-24230, Aug 2019.

Carlo M Valensise, Alessandro Giuseppi, Giulio Cerullo, and Dario Polli. Deep reinforcement learning control
of white-light continuum generation. Optica, 8(2):239-242, 2021.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Kuttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A new challenge
for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Gordon Wetzstein, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk Englund, Marin Soljaci¢, Cornelia
Denz, David AB Miller, and Demetri Psaltis. Inference in artificial intelligence with deep optics and
photonics. Nature, 588(7836):39-47, 2020.

Bowei Yang, Guanyu Liu, Abuduweili Abulikemu, Yan Wang, Aimin Wang, and Zhigang Zhang. Coherent
stacking of 128 pulses from a ghz repetition rate femtosecond yb:fiber laser. In Conference on Lasers and
Electro-Optics, pp. JW2F.28, 2020.

Fangyi Zhang, Jurgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. Towards vision-based deep
reinforcement learning for robotic motion control. arXiv preprint arXiv:1511.03791, 2015.

Pu Zhou, Zejin Liu, Xiaolin Wang, Yanxing Ma, Haotong Ma, Xiaojun Xu, and Shaofeng Guo. Coherent
beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application.
IEEFE Journal of Selected Topics in Quantum FElectronics, 15(2):248-256, 20009.

14


http://proceedings.mlr.press/v32/silver14.html

Under review as submission to TMLR

A Configuration of Optical Pulse Stacking

Figure 11: Real-world optical pulse stacking system. A controller adjusts time delay values to achieve
maximum pulse energy.

The actual OPS system is depicted in Fig. [[I] A controller is responsible for determining the value of each
time delay 7 by measuring the final stacked pulse using a photodetector. Subsequently, these time delay
values are transmitted to each delay line device in order to adjust the positions of the pulses. It should be
noted that in Fig. the controller is connected to the electric signal line of the 1st, 2nd, and 3rd delay
line devices located at the bottom. Conducting real-world OPS control experiments can be both costly and
time-consuming due to the complexities involved in the process. To visually illustrate the stacking procedure
for combining two pulses, please refer to Supplemental Video 1.

B Additional details of Experiments

B.1 Experimental setting

We conducted a comprehensive evaluation of PPO, TD3, and SAC algorithms in our OPS environment. To
optimize their performance, we performed a thorough hyperparameter search for each algorithm. The search
process involved training on the 5-stage OPS environment with medium difficulty. Multiple hyperparameter
sets were tested, and each set was evaluated using 3 different random seeds. The best hyperparameter set for
each algorithm was determined based on its performance in the testing environment. Subsequently, the best
hyperparameter sets obtained from the search were utilized to conduct experiments across all scenarios. In
each experiment, we ran the algorithm with 10 different random seeds to ensure the robustness and reliability
of the results. Detailed information regarding the hyperparameter ranges and the selected values for TD3,
SAC, and PPO can be found in tables [3 to [}

Table 3: TD3: ranges used during the hyperparameter search and the final selected values.

Hyperparameter Range Best-selected
Size of the replay buffer {1000,10000,100000} 10000
Step of collect transition before training {100, 1000, 10000} 1000
Uunroll Length /n-step {1,10, 100} 100
Training epochs per update {1,10, 100} 100
Discount factor () {0.98, 0.99, 0.999} 0.98
Noise type {"normal’, ’ornstein-uhlenbeck’, None} ’normal’
Noise standard value {0.1, 0.3, 0.5, 0.7, 0.9} 0.7
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Policy network hidden layer {1, 2, 3} 2

Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

15



Under review as submission to TMLR

Table 4: SAC: ranges used during the hyperparameter search and the final selected values.

Hyperparameter

Range

Best-selected

Size of the replay buffer

Step of collect transition before training

Unroll Length /n-step
Training epochs per update
Discount factor ()

Generalized State Dependent Exploration (gSDE)
Soft update coefficient for "Polyak update" (1)

Learning rate

Policy network hidden layer
Policy network hidden dimension
Optimizer

{1000,10000,100000}
{100, 1000, 10000}

{1,10, 100}
{1,10, 100}

{0.98, 0.99, 0.999}

{True, False}

{1, 2, 3}
{64, 128, 256}
Adam

{0.002,0.005, 0.01, 0.02}
{0.0001, 0.0003, 0.001,0.003,0.01}

10000
1000
1

1

0.98
True
0.005
0.001

256
Adam

Table 5: PPO: ranges used during the hyperparameter search and the final selected values.

Hyperparameter Range Best-selected
Unroll Length/n-step {128,256,512,1024,2048} 1024
Training epochs per update {1,5,10} 10
Clipping range {0.1,0.2,0.4} 0.2
Discount factor (7) {0.98, 0.99, 0.999} 0.98
Entropy Coefficient {0, 0.001, 0.01, 0.1} 0.01
GAE (\) {0.90, 0.95, 0.98, 0.99} 0.95
Value function coefficient {0.1,0.3,0.5,0.7,0.9} 0.5
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01}  0.001
Gradient norm clipping {0.1, 0.5, 1.0, 5.0} 0.5
Policy network hidden layer {1, 2, 3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

16



Under review as submission to TMLR

B.2 Results on controlling 4-stage and 6-stage OPS environments

We present the training curves (training reward vs. iterations) and testing curves (final pulse energy Py
vs. testing iterations) for the 4-stage OPS environment in Fig. and for the 6-stage OPS environment
in Fig. From the figures, it is evident that TD3 and SAC outperform PPO in terms of performance.
Moreover, comparing Fig. (4-stage) to Fig. (6-stage), it can be observed that as the stage number
increases, the training convergence becomes slower and the final return Py becomes smaller, particularly in
the medium and hard difficulty modes.

0.1 0. 0.0
s §-01 §-01
g-02 g 8
2 $-02 8-02
E-04 g-03 g-o3
° °-04 T-04
] 5 5
506 3 -05 5 -05
-4 o o
2 — TD3 2-06 — D3 2-06
£08 —— SAC = —— SAC =
s ©-0.7 ©-0.7
= — PPO = —— PPO =
= [ 50000 100000 150000 200000 250000 300000 -0 0 50000 100000 150000 200000 250000 300000 -0 0 50000 100000 150000 200000 250000 300000
Iterations Iterations Iterations
(a) Easy mode: train curve (b) Medium mode: train curve (¢) Hard mode: train curve
1. 1 1.0
5 .09 — 5,09
B0s 3 3
@ © 0.8 @ 0.8
& & &
o 5 0.7 507
£20.6 a2 K]
E J06 J06
o o o
% 0.4 % 0.5 % 0.5
8 £04 £04
w 2 2
T02 w— TD3 0.3 w— TD3 0.3 w— TD3
hE_ === SAC uE_ 02 === SAC E 0.2 === SAC
—— PPO : —— PPO - —— PPO
o 0 25 50 75 100 125 150 175 200 01 0 25 50 75 100 125 150 175 200 01 0 25 50 75 100 125 150 175 200
Iterations Iterations Iterations
(d) Easy mode: testing curve (e) Medium mode: testing curve (f) Hard mode: testing curve

Figure 12: 4-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium mode,
and (c) hard mode. Evaluation of the stacked pulse power P; (normalized) of the testing environment was
plotted for (d) easy mode, (e) medium mode, and (f) hard mode.

B.3 Rendering the controlling results on OPS environment

Figure [T4] depicts the pulse trains on a 5-stage hard mode OPS system controlled by TD3, starting from a
random initial state. It is evident from the figure that the TD3 algorithm is capable of attaining a maximum
power within 40 iterations. For a more comprehensive visualization, please refer to supplemental video 2.

C Potential Impact and future work

Our simulation environment offers significant benefits in tackling challenging and realistic reinforcement
learning problems. Real-world reinforcement learning problems are often highly challenging due to factors
such as high-dimensionality of control, noisy behaviors, and distribution shift Dulac-Arnold et al. (2019);
[Agarwal et al.| (2021); Du et al| (2019). By selecting a large N-stage number with the hard mode in our
simulation environment, we can create high-dimensional and difficult control scenarios. The hard mode of the
OPS environment exhibits a distinct noise distribution in the testing environment compared to the training
environment, which mirrors the challenges encountered in real-world reinforcement learning problems.

In our simulation, we have access to the objective function of the OPS (ignoring noise), which provides
valuable structural information and physical constraints. This enables us to explore additional information
about the OPS function and incorporate it into RL algorithms. Rather than focusing on generic noncon-
vex problems, many real-world scenarios involve specific nonconvex control problems with known objective

17



Under review as submission to TMLR

o
=
s
©-02
]
g-04
b4
g
2-06
-4
2 — D3
‘€ -0.8
< —— SAC
= —— PPO
~10 550600 100000 150000 200000 250000 300000
Iterations
(a) Easy mode: train curve
1L
>
Sos
2
&
Q
206
S
&
Hi
%04
&
5 — TD3
s
Zoz sac
— PPO
00525 S0 75 100 135 150 175 200

Iterations

(d) Easy mode: testing curve

Training Reward (per iteration)

|
=

| | |
o o o o
o IS N

|
o
@

o o o =
ES o ®

o

Final Stacked Pulse Energy
o

o

—— TD3
= SAC
—— PPO

[ 50000 100000 150000 200000 250000 300000
Iterations

(b) Medium mode: train curve

— TD3
—— SAC
—— PPO

0 25 50 75 100 125 150 175 200
Iterations

(e) Medium mode: testing curve

0.
=
s
©-02
£
g-04
B
:
2-06
o
2 08 — 03
£ —— SAC
[ —— PPO
~1075 50600 100000 150000 200000 250000 300000
Iterations
(¢) Hard mode: train curve
1
>
Sos
2
&
[
20.6
S
&
2
%04
3
= — 03
s
z 02 sac
— PPO
00555 50 75 100 135 150 175 200
Iterations

(f) Hard mode: testing curve

Figure 13: 6-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium mode,
and (c) hard mode. Evaluation of the stacked pulse power Ps (normalized) of the testing environment was
plotted for (d) easy mode, (e) medium mode, and (f) hard mode.

1.0 iteration=0
~08
=)
@
N
206
s
£
204
2
g
=
02
0.0ka Al l | A
=300 =200 —100 0 100 200 300
Time
(a) Initial state
10 iteration=30
~08
=
&
206
s
=
204
2
g
<
0.2
0.0 A .y
=300 -200 -100 0 100 200 300
Time

(d) After 30 iterations

Intensity (normalized)

o

Intensity (normalized)

o

=
o

o
©

4

1

Iy
c

o
o

o

IS

iteration=10
6
4
2
e ]
=300 =200 —100 0 100 200 300

Time

(b) After 10 iterations

iteration=40
6
4
2
=300 -200 -100 0 100 200 300
Time

(e) After 40 iterations

1 iteration=20
~08
5
o
5
206
s
£
204
2
g
z
=02
o A4 A .
=300 -200 ~-100 0 100 200 300
Time
(c) After 20 iterations
1 iteration=50
0
~08
5
&
206
s
=
204
2
g
z
o2
00556 %00 -Too 0 100 200 300
Time

(f) After 50 iterations

Figure 14: Demonstration of the controlling 5-stage OPS hard mode testing environment by TD3 algorithm
after training. (a): initial state of pulses; (b) pulse state after 10 control iterations; (c) pulse state after 20
control iterations; (d) pulse state after 30 control iterations; (e) pulse state after 40 control iterations; (e)

pulse state after 50 control iterations.

18



Under review as submission to TMLR

functions or physical constraints Miryoosefi et al.| (2019). Exploring the nonconvex and periodic nature of
the OPS objective can greatly benefit real-world RL problems that encompass structural information.

Similar to our OPS control system, optical control problems in general are influenced by the nonlinearity and
periodicity of light interactions. This includes applications such as coherent optical interference [Wetzstein
and linear optical sampling Dorrer et al.| (2003)), which find utility in precise measurement,
industrial manufacturing, and scientific research. We consider our simulation environment to be an important
and representative optical control environment. Furthermore, RL methods have the potential to drive
advancements in optical laser technologies and the next generation of scientific control technologies

et al (2020).

19



	Introduction
	Simulation environment
	Physics of the simulation
	Control objective and noise
	Reinforcement learning environment

	Experiments
	Experimental setup
	Results on controlling 5-stage OPS
	Comparison of the different settings of OPS environment
	Transferring trained policy between different modes

	Discussion
	Real-world environment and simulation 
	RL controllers and different simulation modes 

	Conclusion
	Configuration of Optical Pulse Stacking
	Additional details of Experiments
	Experimental setting
	Results on controlling 4-stage and 6-stage OPS environments
	Rendering the controlling results on OPS environment

	Potential Impact and future work

