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ABSTRACT

Oversmoothing has been claimed as a primary bottleneck for multi-layered graph
neural networks (GNNs). Multiple analyses have examined how and why over-
smoothing occurs. However, none of the prior work addressed how optimization is
performed under the oversmoothing regime. In this work, we show the presence of
gradient oversmoothing preventing optimization during training. We further ana-
lyze that GNNs with residual connections, a well-known solution to help gradient
flow in deep architecture, introduce gradient expansion, a phenomenon of the gra-
dient explosion in diverse directions. Therefore, adding residual connections can-
not be a solution for making a GNN deep. Our analysis reveals that constraining
the Lipschitz bound of each layer can neutralize the gradient expansion. To this
end, we provide a simple yet effective normalization method to prevent the gradi-
ent expansion. An empirical study shows that the residual GNNs with hundreds
of layers can be efficiently trained with the proposed normalization without com-
promising performance. Additional studies show that the empirical observations
corroborate our theoretical analysis.

1 INTRODUCTION

Increasing depths of layers is recognized as a key reason for the success of many deep neural net-
works. Despite this widely believed claim, the graph neural network (GNN) does not necessarily
benefit from deeper architectures. In fact, increasing the number of layers in GNNs often leads to
problems such as oversmoothing, where node representations from different classes become indis-
tinguishable, resulting in a degradation of performance. Although residual connections contribute
to the success of deep architectures in many types of neural networks, they are generally ineffective
at resolving the oversmoothing in GNNs.

To provide a deeper understanding of the oversmoothing, several studies have addressed the mech-
anism behind the oversmoothing. Li et al. (2018) explain that the graph convolutional network
(GCN) is a special form of Laplacian smoothing. Chamberlain et al. (2021) show that GNN can be
interpreted as a discretization of the heat diffusion process, implying the diffusion of the node rep-
resentation to reach equilibrium. Cai & Wang (2020) and Oono & Suzuki (2020) theoretically show
that oversmoothing occurs exponentially when piling the layers in GCN under certain conditions.
Wu et al. (2023a) show Graph Attention Networks (GATs), a generalization of GCN, also lose their
expressive power exponentially with the number of layers. However, none of the previous work on
oversmoothing investigates the gradient flow of the deep GNNs.

In this work, we investigate gradient flows under the oversmoothing regime. Understanding the
exact characteristics of gradients can help mitigate the oversmoothing problem. To do this, we
first analyze the gradients with the graph convolutional network (GCN). The analysis shows the
presence of gradient oversmoothing, which implies a gradient of node features are similar to each
other. We then investigate the effect of the residual connections in GNNs, which is known to make
the optimization work with many variants of the neural networks. Interestingly, we show that the
opposite effect, named gradient expansion, outbreaks as a side effect of the residual connection.
When the gradient expansion occurs, the gradients of node features explode in diverse directions. We
find that the gradient expansion is tightly connected with the upper bound of the Lipschitz constants
of GNN layers. To relax the gradient expansion, we propose a simple weight normalization that
controls the Lipschitz upper bound.
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Empirical studies on node classification tasks corroborate our theoretical analysis, showing that gra-
dient smoothing and gradient expansion happen with deep GNNs and deep residual GNNs, respec-
tively. We also show that the similarity between gradients better represents the test performance than
the similarity between node representations, a commonly used oversmoothing measure. Finally, we
present how the deep GNNs perform with the Lipschitz constraints. With the Lipschitz constraints,
we can successfully train the GNNs with residual connections without sacrificing the test accuracy
on node classification tasks.

2 RELATED WORK

Recently, many studies have investigated the reason for performance degradation in deep GNNs.
Oversmoothing, the phenomenon where the representations of neighboring nodes become similar
as the number of GNN layers increases, has been identified as one of the main reasons. Several
studies have theoretically demonstrated that oversmoothing occurs due to the structural character-
istics of message-passing GNNs. Li et al. (2018) reveal that GCN is a special form of Laplacian
smoothing and points out that repeated applications lead to convergence to the same value. Oono
& Suzuki (2020) demonstrate that, as the depth of the GCN architecture increases, the distance be-
tween representations and invariant spaces decays exponentially, leading to oversmoothing. Keriven
(2022) show that, in linear GNNs whose aggregation matrix takes the form of a stochastic matrix,
the output converges to the average value of the training labels as the depth approaches infinity. Wu
et al. (2023b) analyze the mixing and denoising effects of GNN layers on graphs sampled from the
contextual stochastic block model, providing insight into why oversmoothing can occur even before
depth approach infinity. Wu et al. (2023a) prove that oversmoothing occurs exponentially even in
the graph attention network architectures with non-linear activations.

Based on these analyses, many studies try to mitigate oversmoothing to stack multiple layers without
performance degradation. PairNorm (Zhao & Akoglu, 2020) keeps the total pairwise representation
distances constant by normalization. DropEdge (Rong et al., 2020) randomly drops edges from the
graph to slow down oversmoothing. Energetic graph neural networks (Zhou et al., 2021) utilize
the Dirichlet energy term, which measures oversmoothing in the loss function to regularize over-
smoothing. Ordered GNN (Song et al., 2023) preserves aggregated representation within specific
hops separately. Gradient Gating (Rusch et al., 2023b) proposes a mechanism to stop learning in
a node-wise fashion before local oversmoothing occurs. Park et al. (2024) propose to reverse the
aggregation process. Some studies propose to change the dynamics of GNN, based on the findings
of Chamberlain et al. (2021), which shows that classical GNN resembles diffusion-like dynam-
ics. GRAND++ (Thorpe et al., 2022) proposes to add a source term to prevent oversmoothing.
PDE-GCN (Eliasof et al., 2021) proposes wave-like GNN architecture. Graph-coupled oscillator
networks (Rusch et al., 2022) propose a network based on non-linear oscillator structures.

Some studies propose to improve the optimization process for multi-GNN layer stacking. Li et al.
(2018) adopt residual connection to improve the training process. Zhang et al. (2022) also point out
model degradation as a main reason for the performance degradation of deep GNNs and proposes
an adaptive initial residual to improve optimization. However, no studies explain the exact reason
for model degradation and residual connection’s effectiveness.

3 PRELIMINARY

3.1 GRAPH CONVOLUTIONAL NETWORKS

We begin by considering undirected graphs G = (V, E ,X), where V represents the set of N ∈ N
nodes, E ⊆ V × V forms the edge set, a symmetric relation, and X ∈ RN×d is a collection of
d-dimensional feature matrix for each node. We use Xi ∈ Rd to represent the feature vector of
node i. The connectivity between nodes can also be represented through an adjacency matrix A ∈
{0, 1}N×N . We focus on a graph convolutional network (GCN) (Kipf & Welling, 2017) and its
variants. With an initial input feature matrix X(0) := X, at each layer 0 ≤ ℓ < L, the representation
of nodes X(ℓ) is updated as follows:

X(ℓ+1) := σ(ÂX(ℓ)W(ℓ)), (1)
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where Â = D̃− 1
2 ÃD̃− 1

2 is an normalized adjacency matrix with Ã = A + I, diagonal matrix
D̃ii =

∑
j Ãij , σ is non-linear activation function, and W(ℓ) a layer specific learnable weight

matrix. Linear Graph Neural networks (LGN) represent the GCN without an activation function.

There are several variations of GCN through different definitions of the normalized adjacency ma-
trix. For example, Graph Attention Networks (GATs) use a learnable adjacency matrix through
an attention layer (Veličković et al., 2018). Regardless of the precise formulation of the normal-
ized matrix, most variations share similar characteristics; the node representations are updated by
aggregating the neighborhood representations.

The residual connections can be incorporated into the GNN to help the gradient flow with many
layers. The update rule of the node representation with the residual connection is as follows:

X(ℓ+1) := σ(ÂX(ℓ)W(ℓ)) +X(ℓ). (2)

3.2 SIMILARITY MEASURE

We follow the definition of node similarity measure of node feature matrix X defined in Wu et al.
(2023a) as

µ (X) := ∥X− 1γX∥F , where γX =
1⊤X

N
, (3)

and ∥·∥F indicates Frobenius norm. Considering B ∈ R(N−1)×(N−1), the orthogonal projection
into the space perpendicular to span1, the definition of µ satisfies µ (X) = ∥BX∥F . This definition
of node similarity satisfies the following two axioms (Rusch et al., 2023a):

1. ∃c ∈ Rd such that Xi = c for all node i if and only if µ(X) = 0, for X ∈ RN×d;
2. µ(X+Y) ≤ µ(X) + µ(Y), for all X,Y ∈ RN×d.

Representation oversmoothing with respect to µ is then characterized as the layer-wise convergence
of the node similarity measure µ to zero, i.e.,

lim
ℓ→∞

µ
(
X(ℓ)

)
= 0.

The node similarity measure can further be used to compute the similarity between the gradients of
node features. Let ∂L

∂X(ℓ) ∈ RN×d be the partial derivatives w.r.t some loss function L given input
feature matrix and output labels. With the same measure µ, the gradient similarity at layer ℓ can be
computed by µ

(
∂L

∂X(ℓ)

)
. Gradient smoothing can happen when the gradient similarity converges to

zero. We further characterize the gradient expansion, which describes the cases where the gradient
similarity of the first layer diverges, i.e.,

lim
L→∞,ℓ→1

µ

(
∂L

∂X(L−ℓ)

)
=∞.

Since ∥X∥2F = µ (X)
2
+ ∥X−BX∥2F , gradient expansion implies a gradient explosion. We note

that, however, gradient expansion and gradient explosion are not the same concept. The gradient ex-
pansion occurs when there is a gradient explosion in diverse directions and differs from the gradient
explosion where we only measure the magnitude of the gradients.

4 GRADIENT OVERSMOOTHING AND EXPANSION

It is widely recognized that increasing the depth of graph neural networks (GNNs) typically results
in performance degradation. While oversmoothing has been identified as a key cause, questions
remain about why this issue cannot be resolved through optimization. One possible explanation is
that optimization is inherently tricky in GNNs, such as gradient vanishing and exploding, commonly
observed in the earlier stages of neural networks. However, it is also observed that the performance
of deep GNNs has limitations with the more advanced techniques known to improve optimization,
such as the residual connections (He et al., 2016).

To answer these questions, we thoroughly analyze the gradient of the linear GCNs with and without
residual connections first. The analysis shows the presence of gradient oversmoothing that is similar

3
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to the representation oversmoothing but a fundamental reason why the training is incomplete with
deep GCNs. Our analysis further identifies that gradient expansion is a more common problem
with the residual connections, explaining the failure of the residual connections in deep GCNs. We
then extend our analysis of the GNNs with a non-linear activation through empirical experiments
to show that gradient oversmoothing and expansion can also be observed in practice. We conduct
our experiment also on GATs, showing that gradient oversmoothing and expansion is not the only
problem in GCN, although our theoretical analyses are limited to GCN.

4.1 THEORETICAL ANALYSIS

To understand how the optimization is performed withGCNs, we first analyze the gradients of the
GCN during training. First, let us show the exact gradients of the parameter matrix at each layer
during training.

Lemma 1. (Blakely et al., 2021) Let LGN be L-layered linear GCN without an activation func-
tion, and LLGN(W,X,y) be a loss function of the linear GCN with a set of parameters W =
(W(0), · · · ,W(L−1)) and input feature matrix X and output label y. The gradient of the parame-
ter at layer ℓ, i.e., W(ℓ), with respect to the loss function is

∂LLGN

∂W(ℓ)
= (ÂX(ℓ))⊤

∂LLGN

∂X(ℓ+1)
,

where
∂LLGN

∂X(ℓ)
= (Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤ .

Lemma 1 shows that the formulation of gradient ∂LLGN

∂W(ℓ) resembles the forward propagation steps of
the LGN. Specifically, ∂LLGN

∂X(ℓ) can be interpreted as the update equation of (L− ℓ)-layered LGN with
∂LLGN

∂X(L) as an input feature matrix, and Â⊤ and W(ℓ)⊤ as a normalized adjacency and weight matrix
at layer ℓ, respectively. Consequently, following the general analysis of the oversmoothing in node
representations, we can show the oversmoothing in gradients of the GNN. The following theorem
characterized the upper bound on the similarity between the gradient of different nodes in a deeper
layer.

Theorem 1 (Gradient oversmoothing in LGN). With the same assumptions used in Lemma 1 and a
additional assumption that the graph G is connected and non-bipartite, there exists 0 < q < 1 and
constant Cq > 0 such that

µ

(
∂LLGN

∂X(ℓ)

)
≤ Cq

(
q∥W(∗)∥2

)(L−ℓ)

, 0 ≤ ℓ < L , (4)

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ.

Theorem 1 implies that the similarity measure of the gradient decreases exponentially while ap-
proaching to the first layer if q∥W(∗)∥2 < 1. In other words, as the number of depths increases,
the gradient information required to update the layers closer to the input becomes oversmoothed
regardless of the input feature. When q∥W(∗)∥2 > 1, a gradient expansion occurs. As a result,
optimization becomes extremely difficult in GNNs with deeper layers due to the structural charac-
teristics.

Although Theorem 1 shows the challenges in GCN training, similar challenges are also prevalent in
any neural network architectures. The skip connection or residual connection is the off-the-shelf so-
lution to improve the gradient flows in deep architectures (He et al., 2016). The residual connections
are also suggested in previous studies to improve the performance of GNNs with multiple layers (Li
et al., 2018). Although they successfully stacked 56 layers, this is relatively shallow compared to
ResNet, which stacks more than 152 layers. To better understand the gradient flow with the residual
connections in GCN, we first state the exact gradients of the parameter matrix at each layer.

Lemma 2. Let resLGN be a linear graph neural network with residual connections at each
layer, and LresLGN(W,X,y) be a loss function of resLGN with a set of parameters W =

4
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(W(0), · · · ,W(L−1)) and input feature matrix X and output label y. The gradient of the parameter
at layer ℓ, i.e., W(ℓ), with respect to the loss function is

∂LresLGN

∂W(ℓ)
=
(
ÂX(ℓ)

)⊤ ∂LresLGN

∂X(ℓ+1)
,

where
∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)

+

L−ℓ∑
p=1


∑

{i1:i1≥ℓ}

∑
{i2:i2>i1}

· · ·
∑

{ip:ip−1<ip<L}︸ ︷︷ ︸
all possible length-p paths in back-propagation

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
 .

(5)

Compared to Lemma 1, the gradient of resLGN is expressed as the summation of L− ℓ+ 1 terms,
each of which considers all possible length p back-propagation paths. Each path resembles the
forward propagation rule of the LGN similar to Lemma 1. As a result, the gradients are unlikely to be
oversmoothed, as terms with shorter path lengths that are not oversmoothed still remain. However,
the issue of gradient explosion still exists as the number of layers L increases.

The following theorem states the upper bound of the gradient similarity w.r.t. node representation at
layer ℓ.
Theorem 2 (Gradient expansion in resLGN). With the same assumptions used in Lemma 2, there
exists 0 < q < 1 and constant Cq > 0, such that

µ

(
∂LresGNN(W)

∂X(ℓ)

)
≤ µ

(
∂LresGNN(W)

∂X(L)

)
+ Cq

((
1 + q∥W(∗)∥2

)L−ℓ

− 1

)
, 0 ≤ ℓ < L ,

(6)
where ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ.

Theorem 2 implies that the gradients can expand with the residual connections when q∥W(∗)∥2 > 0.
However, unlike in LGNs, the upper bound on gradient similarity cannot converge to zero unless
q∥W(∗)∥2 is zero. Therefore, with the residual connection, the gradient oversmoothing is less of a
concern than the gradient expansion.

Lipschitz upper bound constraint. The Lipschitz upper bound of a GCN layer is ∥W∥2 since
renormalization trick makes ∥Ã∥2 = 1 (Kipf & Welling, 2017). Therefore, Theorem 2 implies
that we can stabilize the training procedure and mitigate the gradient explosion by controlling the
Lipschitz constant of the GCN layer. The exact ∥W∥2 is the largest singular value of the parameter
matrix, which is often difficult to compute. In this work, we use a simple alternative to control
the upper bound on the Lipschitz constant by normalizing the weight through its Frobenius norm,
i.e., W ←− cW/∥W∥F , where c is a hyperparameter controlling the upper bound of the Lipschitz
constant as shown in Park et al. (2024). We note that since the largest singular value of the right
stochastic matrix corresponds to one, we can apply the same approach in GAT. In our experiments,
we normalize the weight matrices at each training iteration. The efficiency of the normalization is
shown in Section 6.

4.2 EMPIRICAL STUDIES

We conduct an empirical study to show that the theoretical findings of linear GNNs can also be
observed in non-linear GNNs. For the experiments, we use GCN and GAT and their residual coun-
terparts, resGCN, and resGAT, respectively, as baseline models. To train the models, we use two
homophilic datasets, Cora and CiteSeer, and one heterophilic dataset, Chameleon. For each dataset,
we train 64- and 128-layer GCN, GAT, resGCN, and resGAT. We consider three activation functions:
ReLU, LeakyReLU with 0.8 negative slope values, and GeLU. We measure the gradient similarity
when the test performance is measured through validation. All experiments are repeated five times,
and their average values are reported. The band indicates min-max values.
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Figure 1: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over different layers and activation functions

of 128-layer GCN and GAT in three datasets: Cora, CiteSeer, and Chameleon.
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Figure 2: Gradient similarity measure µ
(

∂LresGNN(W)
∂X(ℓ)

)
over different layers of 64-layer GCN and

GAT with residual connections in three datasets: Cora, CiteSeer, and Chameleon. The similarity
measures with ”NaN” value are not indicated in the plot.

GNNs without residual connections Figure 1 illustrates that the gradients of node representations
are getting exponentially close to each other over the back-propagation paths for both 128-layer
GCN and GAT, independent of the activation functions and datasets. In other words, all nodes are
likely to have the same gradient signals near the input layers. Among three activation functions,
GELU leads to the most severe oversmoothing in gradients, followed by ReLU and LeakyReLU.
The experimental results align with the one with node representations but in the other direction (Wu
et al., 2023a). Additionally, we report the results with 64-layer GCN and GAT in Appendix C.

û In deep GNNs, the node representations are getting similar near the final layers (represen-
tation oversmoothing), and the node gradients are getting similar near the input layers due
to the oversmoothing effects (gradient oversmoothing).
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Figure 3: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the Cora dataset.

GNNs with residual connections We visualize the gradient similarity of 64-layer resGCN and
resGAT in Figure 2 with varying activation functions. The results show that, with the residual
connection, the gradients expand regardless of the activations, datasets, and models, while the ex-
pansion rate differs depending on the choice of activation, model, and dataset. Note that gradient
expansion happens when the magnitude of the gradient is large, and the gradient diverges in direc-
tions. However, among all experiments, we could not find any gradient smoothing, showing that
gradient expansion is a more severe problem with residual connections. In conclusion, these results
corroborate the theoretical analysis in Theorem 2. Additional results with 128-layer resGCN and
resGAT are provided in Appendix C.

û With residual connections, the gradients of GNN expand as the depth of the layer in-
creases (gradient expansion). The gradient oversmoothing is barely observed with residual
connections.

To explore the training behavior of GNN models, we trained 4-, 16-, and 64-layer GCN, GAT,
resGCN, and resGAT models on three datasets: Cora, Citeseer, and Chameleon, with a fixed learning
rate of 0.001 for 1, 000 epochs. Visualizations of the training accuracy and training loss are provided
in Appendix D. We observe that both GCN and GAT, with and without residual connections, suffer
from more severe underfitting as the number of layers increases. We infer that this phenomenon is
related to the presence of gradient oversmoothing and gradient expansion.

5 ANALYSIS ON GRADIENT SIMILARITY

We have seen gradients exhibit oversmoothing or expansion based on the model architecture. In this
section, we further analyze the relationship between representation similarity and gradient similarity
and the changes in the gradient similarity over the training.

5.1 WHICH SIMILARITY MEASURE BETTER REPRESENTS TEST PERFORMANCE?

To obtain a deeper insight into the representation and gradient similarities and their implications on
model performances, we train GCN, GAT, resGCN, and resGAT with varying numbers of layers on
the Cora and Chameleon datasets and observe empirical similarities and model performances. The
node similarity is measured from the representation of the last layer, and the gradient similarity is
measured from the first layer of the model. All similarities are measured when the test performances
are measured through validation. We plot the empirical relation between 1) representation similarity,
2) gradient similarity, and 3) accuracy on the test set in Figure 3 through scatter plots.

Figure 3(a) shows the relationship between the representation similarity and the gradient similarity.
We observe that, in general, there are positive correlations between these two similarities, but they
cannot fully explain each other in all regions. For example, when the number of layers is relatively
low, the gradient similarity ranges around one while the node similarity ranges between 102 and
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Figure 4: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over training with 4-, 16-, 64- layered GCN

and GAT. We report the similarity measures over two datasets: Cora and Chameleon. The dashed
and solid lines represent the similarity measured at the start and end of the training, respectively.
The shaded area represents the maximum and minimum similarities over training.
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Figure 5: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over training with 4-, 16-, 64- layered resGCN

and resGAT. The dashed and solid lines represent the similarity measured at the start and end of the
training, respectively. The shaded area represents the maximum and minimum similarities over
training. Residual connections with deep layers introduce gradient expansion.

1011. When both similarities are close to zero, then the correlation is weak, and we cannot estimate
one from the other. It is worth noting that the high gradient similarity can only be observed from
the models with residual connections, corroborating the findings in Theorem 2. Similarly, the node
representation expansion occurs with the residual connections.

If two similarities are not the same, which better represents the model performance on the test set?
In Figure 3(b,c), we plot the relationship between each measure and test accuracy to answer this
question. In Figure 3(b), we observe that when the model achieves relatively good test accuracy, the
representation similarity ranges between 102 and 1011. Since this range is quite broad, cases with
low accuracy are also observed in this area. In addition, test accuracy is generally relatively low
when the node similarity is too high or too low. To compare, we find that the range of gradient sim-
ilarity is narrow when the model performs well in Figure 3(c). Specifically, the gradient similarity
ranges between 10−2 and 1 when the test performance is relatively high. More importantly, there is
no case with relatively low performance in this range, showing that the gradient similarity is a more
reliable estimate of the test performance. We provide the results on the CiteSeer and Chameleon
dataset in Appendix E, where a similar trend was observed.

5.2 HOW DOES THE GRADIENT SIMILARITY CHANGE OVER TRAINING?

We investigate how the gradient similarity changes over the training to check whether the optimiza-
tion can mitigate the gradient expansion over time. With the similar experimental settings used in
Section 5.1, we plot how the gradient similarity changes with different models and layers in Fig-
ures 4 and 5. We apply early stopping for all experiments.

Figure 4 shows the changes in gradient similarity without residual connections. For all experiments,
the similarity increases over training, showing that some level of smoothing happens at the early
stage of training. The results show that mild oversmoothing with 16 layers can be overcome through

8
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Figure 6: Performance of resGCN and resGAT on Cora, CiteSeer, Chameleon and Squirrel datasets
with varying coefficient values. The solid curve indicates the average over five runs and the shaded
area represents one standard deviation around the average.

training, but hard oversmoothing with 64 layers cannot be overcome for both models. Figure 5
shows the changes in gradient similarity with the residual connections. The gradient expansion can
be observed with 64-layered models. Similar to the oversmoothing, once the expansion happens, the
training process cannot be done properly (cf., Figure 3).

6 EFFECTIVENESS OF LIPTSCHITZ UPPER BOUND ON DEEP GNNS

We propose a Lipschitz upper bound constraint on each layer of GNN through the weight normaliza-
tion in Section 4.1. In this section, we show the effectiveness of a Lipschitz upper bound constraint
in improving test performance and training behavior in deep GNNs.

To evaluate test performance, we train resGCN and resGAT on Cora, CiteSeer, Chameleon, and
Squirrel datasets with varying numbers of layers from 1 to 512. For the weight normalization, we
test three different Lipschitz upper bound c: 4, 1, 0.25. All experiments are conducted with early
stopping and learning rates of 0.001, 0.005, 0.01. We report average values of five repeated runs.

The test accuracy of resGCN is reported in Figure 6 with and without weight normalization. For
all datasets, we can observe a significant performance drop when the depth exceeds 32 without the
weight normalization. Similar patterns are observed when a loose Lipschitz upper bound of c = 4
is applied. With the tight upper bounds of c = 1, 0.25, the test accuracy remains relatively consis-
tent over 512 layers. Specifically, when c = 0.25, the accuracy of resGCN consistently improves
over a hundred layers, reaching the best performance at a depth of 512 layers on Squirrel datasets.
However, small upper bounds can limit the expressive power of each layer. As a consequence, test
accuracy with a small upper bound requires more layers to reach a similar level of accuracy that can
be achieved by a small number of layers without weight normalization.

In the case of homophilic datasets, despite the multiple layers, the highest accuracy is similar re-
gardless of the upper bound constraints. For example, resGCN without normalization achieves the
best performance of 85.43 when the number of layers is 16. In contrast, resGCN with an upper
bound of 0.25 achieves the best performance of 85.14 when the number of layers is 128. However,
in heterophilic datasets, deep models with weight normalization outperform the models without the
upper bound constraints. For instance, in the Chameleon dataset, without normalization, the best
accuracy of 43.75 is achieved at a depth of 32. In contrast, the best accuracy of 47.04 is achieved
at a depth of 64 with an upper bound of 4. It is claimed that the heterophilic node classification
requires capturing long-range dependencies via multiple layers (Rusch et al., 2023a). Our results
also support this claim with carefully designed multi-layered GNNs.
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Figure 7: Training curves with Lipschitz upper bound constraint applied 64-layer resGCN over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001. The solid line indicates the
average over five runs and the shaded area represents maximum and minimum value.

To demonstrate the training process, we train 64—and 128—layer resGCN and resGAT on Cora,
CiteSeer, and Chameleon datasets with 1, 000 epochs and a fixed learning rate of 0.001. For the
weight normalization, we test three different Lipschitz upper bound c: 4, 1, 0.25. The visualized
training accuracy and loss on 64-layered resGCN are provided in Figure 7. We observe that applying
the Lipschitz upper bound mitigates the underfitting problem of resGCN in all datasets. Specifically,
resGCN with c = 0.25 achieves 100% training accuracy in all datasets with the fastest convergence
rate. Our results show that applying the Lipschitz upper bound effectively resolves the gradient
expansion problem and helps optimization. We provide the results for 128—layer resGCN, and
64—and 128—layer resGAT in Appendix F.

7 CONCLUSION

In this work, we explored the challenges associated with optimizing deep GNNs. Until now, the
oversmoothing has focused on the representation space. However, we demonstrate that oversmooth-
ing also occurs in the gradient space, a major cause making the training process complicated. We
further analyze the effect of the residual connections in the gradients of deepGNNs, revealing that
the residual connection causes gradient expansion. To alleviate the gradient expansion during train-
ing, we constrain the Lipschitz upper bound on each layer through the Frobenius normalization.
Experimental results show that the training procedure can be stabilized with the normalization over
several hundred layers.

Limitation. The theoretical analysis is based on linear GCNs. Although we have shown that
similar patterns are observable with non-linear GCNs and GATs through empirical studies, the non-
linearity can introduce subtle differences compared with our analysis. We propose a weight nor-
malization to restrict the Lipschitz constant. There are, however, several normalization approaches,
such as the batch normalization (Ioffe & Szegedy, 2015) and the layer normalization (Ba, 2016). In
a previous study, these normalizations are not helpful in deepGNNs (Chen et al., 2022). To investi-
gate the reason further, we need to study the gradients of these normalizations in GNNs. We leave
this future work.
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A MISSING PROOFS IN SECTION 4.1

In this section, we provide missing proofs in Section 4.1.

A.1 PROOF OF LEMMA 1

Proof. We recap the derivation of the gradient of LGN, which is originally shown in Blakely et al.
(2021). Using the chain rule, we can compute:

∂LLGN

∂W(ℓ)
=

∂LLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂W(ℓ)

=
∂LLGN

∂X(ℓ+1)

∂

∂W(ℓ)

(
ÂX(ℓ)W(ℓ)

)
= (ÂX(ℓ))⊤

∂LLGN

∂X(ℓ+1)
.
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Again, by using the chain rule, we have:

∂LLGN

∂X(ℓ)
=

∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

∂X(ℓ+1)

∂X(ℓ)

=

(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

)
∂

∂X(ℓ)
ÂX(ℓ)W(ℓ)

= Â⊤
(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

)
(W(ℓ))⊤

= (Â⊤)2
(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+3)

∂X(ℓ+2)

)
(W(ℓ+1))⊤(W(ℓ))⊤

= · · ·

= (Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤ .

A.2 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we recap and use the following definitions and lemmas from Wu et al.
(2023a).

Definition 1 (Ergodicity). Let B ∈ R(N−1)×N be the orthogonal projection onto the space orthog-
onal to span{1}. A sequence of matrices {M (n)}∞n=1 is ergodic if

lim
t→∞

B

t∏
n=0

M(n) = 0.

By using the projection matrix B, we can express µ(X) as ∥BX∥F . We want to show that {Â}∞n=1

is ergodic. Since Â = D̃− 1
2 ÃD̃− 1

2 and D̃−1Ã have a same spectrum, {Â}∞n=1 is ergodic if
{D̃−1Ã}∞n=1 is ergodic. Using Lemma 3 in (Wu et al., 2023a), {D̃−1Ã}∞n=1 is ergodic.

Next, we need notion of joint spectral radius to show the convergence rate.

Definition 2 (Joint Spectral Radius). For a collection of matricesA, the joint spectral radius JSR(A)
is defined to be

JSR(A) = lim sup
k→∞

sup
A1,A2,...,Ak∈A

∥A1A2 · · ·Ak∥
1
k

and it is independent of the norm used.

By the definition, it is straight forward that if JSR(A) < 1, for any JSR(A) < q < 1, there exists a
C for which satisfies ||A1A2 · · ·Aky|| ≤ Cqk||y|| for A1,A2, · · · ,Ak ∈ A. Let Â = {Â} and
Ã = {D̃−1Ã}. Similar to Ergodicity, we can get JSR(Â) < 1 if JSR(Ã) < 1. Using Lemma 6 in
(Wu et al., 2023a), JSR(Ã) < 1.

Now, we can derive:

µ

(
∂LLGN

∂X(ℓ)

)
= ∥B∂LLGN

∂X(ℓ)
∥F

= ∥B(Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤∥F

≤ ∥∂LLGN

∂X(L)
∥F ∥B(Â⊤)L−ℓ∥2∥W(∗)∥L−ℓ

2 ,

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ. By
using JSR(Â) < 1, we can result in to Theorem 1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 PROOF OF LEMMA 2

Proof. By applying the chain rule, we can obtain:

∂LresLGN

∂W(ℓ)
=

∂LresLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂W(ℓ)

=
∂LresLGN

∂X(ℓ+1)

∂

∂W(ℓ)

(
X(ℓ) + ÂX(ℓ)W(ℓ)

)
=
(
ÂX(ℓ)

)⊤ ∂LresLGN

∂X(ℓ+1)
.

We have:
∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)

∂X(L)

∂X(L−1)

∂X(L−1)

∂X(L−2)
· · · ∂X

(ℓ+1)

∂X(ℓ)
. (7)

We will show Equation (5) holds inductively. First two components of Equation (7) can be derived
as follows:

∂LresLGN

∂X(L)

∂X(L)

∂X(L−1)
=

∂LresLGN

∂X(L)

∂

∂X(L−1)
(X(L−1) + ÂX(L−1)W(L−1))

=
∂LresLGN

∂X(L)
+ (Â)⊤

∂LresLGN

∂X(L)
(W(L−1))⊤ , (8)

which satisfies Equation (5) with ℓ = L− 1. Suppose we have ∂LresLGN

∂X(ℓ+1) which satisfies Equation (5).
We can derive:

∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂X(ℓ)

=
∂LresLGN

∂X(ℓ+1)

∂

∂X(ℓ)
(X(ℓ) + ÂX(ℓ)W(ℓ))

=
∂LresLGN

∂X(ℓ+1)
+ Â⊤ ∂LresLGN

∂X(ℓ+1)
(W(ℓ))⊤

=
∂LresLGN

∂X(L)
+ Â⊤ ∂LresLGN

∂X(L)
(W(ℓ))⊤

+

L−ℓ−1∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+

L−ℓ−1∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p+1 ∂LresLGN

∂X(L)

(
p−1∏
k=0

(
W(ip−k)

)⊤)
(W(ℓ))⊤


=

∂LresLGN

∂X(L)
+ Â⊤ ∂LresLGN

∂X(L)
(W(ℓ))⊤ +

∑
ℓ+1≤i1<L

Â⊤ ∂LresLGN

∂X(L)
(W(i1))⊤

+

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+

L−ℓ−2∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p+1 ∂LresLGN

∂X(L)

(
p−1∏
k=0

(
W(ip−k)

)⊤)
(W(ℓ))⊤


+
(
Â⊤
)L−ℓ ∂LresLGN

∂X(L)

(
L−ℓ∏
i=1

(W(L−i))⊤

)
.

The fourth term and the fifth term can be merged into:

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤ ,
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since
(
L−ℓ−1
p+1

)
+
(
L−ℓ−1

p

)
=
(
L−ℓ
p+1

)
. Therefore,

∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)
+

∑
ℓ≤i1<L

Â⊤ ∂LresLGN

∂X(L)
(W(i1))⊤

+

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+
(
Â⊤
)L−ℓ ∂LresLGN

∂X(L)

(
L−ℓ∏
i=1

(W(L−i))⊤

)

=
∂LresLGN

∂X(L)
+

L−ℓ∑
p=1

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤ ,

which satisfies Equation (5).

A.4 PROOF OF THEOREM 2

Proof. We can obtain:

µ

(
∂LresGNN(W)

∂X(ℓ)

)
= ∥B∂LresGNN(W)

∂X(ℓ)
∥F

≤ ∥B∂LresLGN

∂X(L)
∥F

+

L−ℓ∑
p=1

∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

∥B
(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
∥F .

Since there are
(
L−ℓ
p

)
sets of (i1, ...ip) which satisfies ℓ ≤ i1 < i2 < · · · < ip < L,∑

{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

∥B
(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
∥F

≤
(
L− ℓ

p

)
∥∂LLGN

∂X(L)
∥F ∥B(Â⊤)L−ℓ∥2∥W(∗)∥L−ℓ

2 ,

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ. By
using JSR(Â) < 1, there exists 0 < q < 1 and Cq > 0 such that

µ

(
∂LresGNN(W)

∂X(ℓ)

)
≤ µ

(
B
∂LresLGN

∂X(L)

)
+

L−ℓ∑
p=1

Cq

(
L− ℓ

p

)
(q∥W(∗)∥2)L−ℓ

= µ

(
B
∂LresLGN

∂X(L)

)
+ Cq

((
1 + q∥W(∗)∥2

)L−ℓ

− 1

)
.

B DATASET STATISTICS

Statistics of datasets used in our experiments can be found in Table 1. We note that the filtering
process proposed by Platonov et al. (2023) was adopted in the case of Chameleon and Squirrel
datasets.

C SUPPLEMENTARY VISUALIZATIONS OF GRADIENT SIMILARITY
EVALUATIONS

Supplementary visualizations for the analysis in Section 4.2 are provided below. We did not plot
gradient similarity measure of 128-layer GAT, as the measures yielded ”NaN” values in all layers
except on last layer because of expansion.
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Dataset Type # nodes # edges # classes avg degree

Cora homophilic 2,708 5,278 7 3.90
CiteSeer homophilic 3,327 4,552 6 2.74

Squirrel heterophilic 2,223 46,998 5 42.28
Chameleon heterophilic 890 8,854 5 19.90

Table 1: Statistics of the dataset utilized in the experiments.

1 2 4 8 16 32 64

10 15

10 12

10 9

10 6

10 3

( X
)

Cora GCN

1 2 4 8 16 32 64
layer number

10 20

10 16

10 12

10 8

10 4

( X
)

Cora GAT
1 2 4 8 16 32 64

10 15

10 12

10 9

10 6

10 3

CiteSeer GCN

1 2 4 8 16 32 64
layer number

10 20

10 16

10 12

10 8

10 4

100
CiteSeer GAT

1 2 4 8 16 32 64

10 17

10 14

10 11

10 8

10 5

10 2

Chameleon GCN

1 2 4 8 16 32 64
layer number

10 19

10 15

10 11

10 7

10 3

Chameleon GAT

ReLU
GeLU
LeakyReLU (0.8)

Figure 8: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over different layers and activation functions.

We report the oversmoothing measures of 64-layer GCN and GAT over three datasets: Cora, Cite-
Seer, and Chameleon.
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Figure 9: Gradient similarity measure µ
(

∂LresGNN(W)
∂X(ℓ)

)
over different layers of 128-layer GCN with

residual connections.

D VISUALIZATIONS OF TRAINING CURVES

Supplementary visualizations for the 4-, 16-, 64- layer GCN, GAT, resGCN and resGAT are provided
below.

E SUPPLEMENTARY SCATTER PLOTS

Scatter plots for the analysis in Section 5.1 are provided below.
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Figure 10: Training curves 4-, 16-, 64- layer GCN and resGCN over three datasets: Cora, Citeseer,
and Chameleon with learning rate 0.001. The dashed lines represent the existence of residual con-
nection while solid lines represent the vanilla model.
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Figure 11: Training curves 4-, 16-, 64- layer GAT and resGAT over three datasets: Cora, Citeseer,
and Chameleon with learning rate 0.001. The dashed lines represent the existence of residual con-
nection, while solid lines represent the vanilla model.
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Figure 12: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the CiteSeer dataset.
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Figure 13: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the Chameleon dataset.
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Figure 14: Training curves with Lipschitz upper bound constraint applied 128-layer resGCN over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.

F SUPPLEMENTARY VISUALIZATIONS OF TRAINING CURVES WITH
LIPSCHITZ UPPER BOUND CONSTRAINT

Supplementary visualizations of training curves with Lipschitz upper bound constraint for Section 6
are provided below.
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Figure 15: Training curves with Lipschitz upper bound constraint applied 64-layer resGAT over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.
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Figure 16: Training curves with Lipschitz upper bound constraint applied 128-layer resGAT over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.
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