
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TAMING GRADIENT OVERSMOOTHING AND EXPAN-
SION IN GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Oversmoothing has been claimed as a primary bottleneck for multi-layered graph
neural networks (GNNs). Multiple analyses have examined how and why over-
smoothing occurs. However, none of the prior work addressed how optimization is
performed under the oversmoothing regime. In this work, we show the presence of
gradient oversmoothing preventing optimization during training. We further ana-
lyze that GNNs with residual connections, a well-known solution to help gradient
flow in deep architecture, introduce gradient expansion, a phenomenon of the gra-
dient explosion in diverse directions. Therefore, adding residual connections can-
not be a solution for making a GNN deep. Our analysis reveals that constraining
the Lipschitz bound of each layer can neutralize the gradient expansion. To this
end, we provide a simple yet effective normalization method to prevent the gradi-
ent expansion. An empirical study shows that the residual GNNs with hundreds
of layers can be efficiently trained with the proposed normalization without com-
promising performance. Additional studies show that the empirical observations
corroborate our theoretical analysis.

1 INTRODUCTION

Increasing depths of layers is recognized as a key reason for the success of many deep neural net-
works. Despite this widely believed claim, the graph neural network (GNN) does not necessarily
benefit from deeper architectures. In fact, increasing the number of layers in GNNs often leads to
problems such as oversmoothing, where node representations from different classes become indis-
tinguishable, resulting in a degradation of performance. Although residual connections contribute
to the success of deep architectures in many types of neural networks, they are generally ineffective
at resolving the oversmoothing in GNNs.

To provide a deeper understanding of the oversmoothing, several studies have addressed the mech-
anism behind the oversmoothing. Li et al. (2018) explain that the graph convolutional network
(GCN) is a special form of Laplacian smoothing. Chamberlain et al. (2021) show that GNN can be
interpreted as a discretization of the heat diffusion process, implying the diffusion of the node rep-
resentation to reach equilibrium. Cai & Wang (2020) and Oono & Suzuki (2020) theoretically show
that oversmoothing occurs exponentially when piling the layers in GCN under certain conditions.
Wu et al. (2023a) show Graph Attention Networks (GATs), a generalization of GCN, also lose their
expressive power exponentially with the number of layers. However, none of the previous work on
oversmoothing investigates the gradient flow of the deep GNNs.

In this work, we investigate gradient flows under the oversmoothing regime. Understanding the
exact characteristics of gradients can help mitigate the oversmoothing problem. To do this, we
first analyze the gradients with the graph convolutional network (GCN). The analysis shows the
presence of gradient oversmoothing, which implies a gradient of node features are similar to each
other. We then investigate the effect of the residual connections in GNNs, which is known to make
the optimization work with many variants of the neural networks. Interestingly, we show that the
opposite effect, named gradient expansion, outbreaks as a side effect of the residual connection.
When the gradient expansion occurs, the gradients of node features explode in diverse directions. We
find that the gradient expansion is tightly connected with the upper bound of the Lipschitz constants
of GNN layers. To relax the gradient expansion, we propose a simple weight normalization that
controls the Lipschitz upper bound.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Empirical studies on node classification tasks corroborate our theoretical analysis, showing that gra-
dient smoothing and gradient expansion happen with deep GNNs and deep residual GNNs, respec-
tively. We also show that the similarity between gradients better represents the test performance than
the similarity between node representations, a commonly used oversmoothing measure. Finally, we
present how the deep GNNs perform with the Lipschitz constraints. With the Lipschitz constraints,
we can successfully train the GNNs with residual connections without sacrificing the test accuracy
on node classification tasks.

2 RELATED WORK

Recently, many studies have investigated the reason for performance degradation in deep GNNs.
Oversmoothing, the phenomenon where the representations of neighboring nodes become similar
as the number of GNN layers increases, has been identified as one of the main reasons. Several
studies have theoretically demonstrated that oversmoothing occurs due to the structural character-
istics of message-passing GNNs. Li et al. (2018) reveal that GCN is a special form of Laplacian
smoothing and points out that repeated applications lead to convergence to the same value. Oono
& Suzuki (2020) demonstrate that, as the depth of the GCN architecture increases, the distance be-
tween representations and invariant spaces decays exponentially, leading to oversmoothing. Keriven
(2022) show that, in linear GNNs whose aggregation matrix takes the form of a stochastic matrix,
the output converges to the average value of the training labels as the depth approaches infinity. Wu
et al. (2023b) analyze the mixing and denoising effects of GNN layers on graphs sampled from the
contextual stochastic block model, providing insight into why oversmoothing can occur even before
depth approach infinity. Wu et al. (2023a) prove that oversmoothing occurs exponentially even in
the graph attention network architectures with non-linear activations.

Based on these analyses, many studies try to mitigate oversmoothing to stack multiple layers without
performance degradation. PairNorm (Zhao & Akoglu, 2020) keeps the total pairwise representation
distances constant by normalization. DropEdge (Rong et al., 2020) randomly drops edges from the
graph to slow down oversmoothing. Energetic graph neural networks (Zhou et al., 2021) utilize
the Dirichlet energy term, which measures oversmoothing in the loss function to regularize over-
smoothing. Ordered GNN (Song et al., 2023) preserves aggregated representation within specific
hops separately. Gradient Gating (Rusch et al., 2023b) proposes a mechanism to stop learning in
a node-wise fashion before local oversmoothing occurs. Park et al. (2024) propose to reverse the
aggregation process. Some studies propose to change the dynamics of GNN, based on the findings
of Chamberlain et al. (2021), which shows that classical GNN resembles diffusion-like dynam-
ics. GRAND++ (Thorpe et al., 2022) proposes to add a source term to prevent oversmoothing.
PDE-GCN (Eliasof et al., 2021) proposes wave-like GNN architecture. Graph-coupled oscillator
networks (Rusch et al., 2022) propose a network based on non-linear oscillator structures.

Some studies propose to improve the optimization process for multi-GNN layer stacking. Li et al.
(2018) adopt residual connection to improve the training process. Zhang et al. (2022) also point out
model degradation as a main reason for the performance degradation of deep GNNs and proposes
an adaptive initial residual to improve optimization. However, no studies explain the exact reason
for model degradation and residual connection’s effectiveness.

3 PRELIMINARY

3.1 GRAPH CONVOLUTIONAL NETWORKS

We begin by considering undirected graphs G = (V, E ,X), where V represents the set of N ∈ N
nodes, E ⊆ V × V forms the edge set, a symmetric relation, and X ∈ RN×d is a collection of
d-dimensional feature matrix for each node. We use Xi ∈ Rd to represent the feature vector of
node i. The connectivity between nodes can also be represented through an adjacency matrix A ∈
{0, 1}N×N . We focus on a graph convolutional network (GCN) (Kipf & Welling, 2017) and its
variants. With an initial input feature matrix X(0) := X, at each layer 0 ≤ ℓ < L, the representation
of nodes X(ℓ) is updated as follows:

X(ℓ+1) := σ(ÂX(ℓ)W(ℓ)), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where Â = D̃− 1
2 ÃD̃− 1

2 is an normalized adjacency matrix with Ã = A + I, diagonal matrix
D̃ii =

∑
j Ãij , σ is non-linear activation function, and W(ℓ) a layer specific learnable weight

matrix. Linear Graph Neural networks (LGN) represent the GCN without an activation function.

There are several variations of GCN through different definitions of the normalized adjacency ma-
trix. For example, Graph Attention Networks (GATs) use a learnable adjacency matrix through
an attention layer (Veličković et al., 2018). Regardless of the precise formulation of the normal-
ized matrix, most variations share similar characteristics; the node representations are updated by
aggregating the neighborhood representations.

The residual connections can be incorporated into the GNN to help the gradient flow with many
layers. The update rule of the node representation with the residual connection is as follows:

X(ℓ+1) := σ(ÂX(ℓ)W(ℓ)) +X(ℓ). (2)

3.2 SIMILARITY MEASURE

We follow the definition of node similarity measure of node feature matrix X defined in Wu et al.
(2023a) as

µ (X) := ∥X− 1γX∥F , where γX =
1⊤X

N
, (3)

and ∥·∥F indicates Frobenius norm. Considering B ∈ R(N−1)×(N−1), the orthogonal projection
into the space perpendicular to span1, the definition of µ satisfies µ (X) = ∥BX∥F . This definition
of node similarity satisfies the following two axioms (Rusch et al., 2023a):

1. ∃c ∈ Rd such that Xi = c for all node i if and only if µ(X) = 0, for X ∈ RN×d;
2. µ(X+Y) ≤ µ(X) + µ(Y), for all X,Y ∈ RN×d.

Representation oversmoothing with respect to µ is then characterized as the layer-wise convergence
of the node similarity measure µ to zero, i.e.,

lim
ℓ→∞

µ
(
X(ℓ)

)
= 0.

The node similarity measure can further be used to compute the similarity between the gradients of
node features. Let ∂L

∂X(ℓ) ∈ RN×d be the partial derivatives w.r.t some loss function L given input
feature matrix and output labels. With the same measure µ, the gradient similarity at layer ℓ can be
computed by µ

(
∂L

∂X(ℓ)

)
. Gradient smoothing can happen when the gradient similarity converges to

zero. We further characterize the gradient expansion, which describes the cases where the gradient
similarity of the first layer diverges, i.e.,

lim
L→∞,ℓ→1

µ

(
∂L

∂X(L−ℓ)

)
=∞.

Since ∥X∥2F = µ (X)
2
+ ∥X−BX∥2F , gradient expansion implies a gradient explosion. We note

that, however, gradient expansion and gradient explosion are not the same concept. The gradient ex-
pansion occurs when there is a gradient explosion in diverse directions and differs from the gradient
explosion where we only measure the magnitude of the gradients.

4 GRADIENT OVERSMOOTHING AND EXPANSION

It is widely recognized that increasing the depth of graph neural networks (GNNs) typically results
in performance degradation. While oversmoothing has been identified as a key cause, questions
remain about why this issue cannot be resolved through optimization. One possible explanation is
that optimization is inherently tricky in GNNs, such as gradient vanishing and exploding, commonly
observed in the earlier stages of neural networks. However, it is also observed that the performance
of deep GNNs has limitations with the more advanced techniques known to improve optimization,
such as the residual connections (He et al., 2016).

To answer these questions, we thoroughly analyze the gradient of the linear GCNs with and without
residual connections first. The analysis shows the presence of gradient oversmoothing that is similar

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to the representation oversmoothing but a fundamental reason why the training is incomplete with
deep GCNs. Our analysis further identifies that gradient expansion is a more common problem
with the residual connections, explaining the failure of the residual connections in deep GCNs. We
then extend our analysis of the GNNs with a non-linear activation through empirical experiments
to show that gradient oversmoothing and expansion can also be observed in practice. We conduct
our experiment also on GATs, showing that gradient oversmoothing and expansion is not the only
problem in GCN, although our theoretical analyses are limited to GCN.

4.1 THEORETICAL ANALYSIS

To understand how the optimization is performed withGCNs, we first analyze the gradients of the
GCN during training. First, let us show the exact gradients of the parameter matrix at each layer
during training.

Lemma 1. (Blakely et al., 2021) Let LGN be L-layered linear GCN without an activation func-
tion, and LLGN(W,X,y) be a loss function of the linear GCN with a set of parameters W =
(W(0), · · · ,W(L−1)) and input feature matrix X and output label y. The gradient of the parame-
ter at layer ℓ, i.e., W(ℓ), with respect to the loss function is

∂LLGN

∂W(ℓ)
= (ÂX(ℓ))⊤

∂LLGN

∂X(ℓ+1)
,

where
∂LLGN

∂X(ℓ)
= (Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤ .

Lemma 1 shows that the formulation of gradient ∂LLGN

∂W(ℓ) resembles the forward propagation steps of
the LGN. Specifically, ∂LLGN

∂X(ℓ) can be interpreted as the update equation of (L− ℓ)-layered LGN with
∂LLGN

∂X(L) as an input feature matrix, and Â⊤ and W(ℓ)⊤ as a normalized adjacency and weight matrix
at layer ℓ, respectively. Consequently, following the general analysis of the oversmoothing in node
representations, we can show the oversmoothing in gradients of the GNN. The following theorem
characterized the upper bound on the similarity between the gradient of different nodes in a deeper
layer.

Theorem 1 (Gradient oversmoothing in LGN). With the same assumptions used in Lemma 1 and a
additional assumption that the graph G is connected and non-bipartite, there exists 0 < q < 1 and
constant Cq > 0 such that

µ

(
∂LLGN

∂X(ℓ)

)
≤ Cq

(
q∥W(∗)∥2

)(L−ℓ)

, 0 ≤ ℓ < L , (4)

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ.

Theorem 1 implies that the similarity measure of the gradient decreases exponentially while ap-
proaching to the first layer if q∥W(∗)∥2 < 1. In other words, as the number of depths increases,
the gradient information required to update the layers closer to the input becomes oversmoothed
regardless of the input feature. When q∥W(∗)∥2 > 1, a gradient expansion occurs. As a result,
optimization becomes extremely difficult in GNNs with deeper layers due to the structural charac-
teristics.

Although Theorem 1 shows the challenges in GCN training, similar challenges are also prevalent in
any neural network architectures. The skip connection or residual connection is the off-the-shelf so-
lution to improve the gradient flows in deep architectures (He et al., 2016). The residual connections
are also suggested in previous studies to improve the performance of GNNs with multiple layers (Li
et al., 2018). Although they successfully stacked 56 layers, this is relatively shallow compared to
ResNet, which stacks more than 152 layers. To better understand the gradient flow with the residual
connections in GCN, we first state the exact gradients of the parameter matrix at each layer.

Lemma 2. Let resLGN be a linear graph neural network with residual connections at each
layer, and LresLGN(W,X,y) be a loss function of resLGN with a set of parameters W =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(W(0), · · · ,W(L−1)) and input feature matrix X and output label y. The gradient of the parameter
at layer ℓ, i.e., W(ℓ), with respect to the loss function is

∂LresLGN

∂W(ℓ)
=
(
ÂX(ℓ)

)⊤ ∂LresLGN

∂X(ℓ+1)
,

where
∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)

+

L−ℓ∑
p=1

∑

{i1:i1≥ℓ}

∑
{i2:i2>i1}

· · ·
∑

{ip:ip−1<ip<L}︸ ︷︷ ︸
all possible length-p paths in back-propagation

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
 .

(5)

Compared to Lemma 1, the gradient of resLGN is expressed as the summation of L− ℓ+ 1 terms,
each of which considers all possible length p back-propagation paths. Each path resembles the
forward propagation rule of the LGN similar to Lemma 1. As a result, the gradients are unlikely to be
oversmoothed, as terms with shorter path lengths that are not oversmoothed still remain. However,
the issue of gradient explosion still exists as the number of layers L increases.

The following theorem states the upper bound of the gradient similarity w.r.t. node representation at
layer ℓ.
Theorem 2 (Gradient expansion in resLGN). With the same assumptions used in Lemma 2, there
exists 0 < q < 1 and constant Cq > 0, such that

µ

(
∂LresGNN(W)

∂X(ℓ)

)
≤ µ

(
∂LresGNN(W)

∂X(L)

)
+ Cq

((
1 + q∥W(∗)∥2

)L−ℓ

− 1

)
, 0 ≤ ℓ < L ,

(6)
where ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ.

Theorem 2 implies that the gradients can expand with the residual connections when q∥W(∗)∥2 > 0.
However, unlike in LGNs, the upper bound on gradient similarity cannot converge to zero unless
q∥W(∗)∥2 is zero. Therefore, with the residual connection, the gradient oversmoothing is less of a
concern than the gradient expansion.

Lipschitz upper bound constraint. The Lipschitz upper bound of a GCN layer is ∥W∥2 since
renormalization trick makes ∥Ã∥2 = 1 (Kipf & Welling, 2017). Therefore, Theorem 2 implies
that we can stabilize the training procedure and mitigate the gradient explosion by controlling the
Lipschitz constant of the GCN layer. The exact ∥W∥2 is the largest singular value of the parameter
matrix, which is often difficult to compute. In this work, we use a simple alternative to control
the upper bound on the Lipschitz constant by normalizing the weight through its Frobenius norm,
i.e., W ←− cW/∥W∥F , where c is a hyperparameter controlling the upper bound of the Lipschitz
constant as shown in Park et al. (2024). We note that since the largest singular value of the right
stochastic matrix corresponds to one, we can apply the same approach in GAT. In our experiments,
we normalize the weight matrices at each training iteration. The efficiency of the normalization is
shown in Section 6.

4.2 EMPIRICAL STUDIES

We conduct an empirical study to show that the theoretical findings of linear GNNs can also be
observed in non-linear GNNs. For the experiments, we use GCN and GAT and their residual coun-
terparts, resGCN, and resGAT, respectively, as baseline models. To train the models, we use two
homophilic datasets, Cora and CiteSeer, and one heterophilic dataset, Chameleon. For each dataset,
we train 64- and 128-layer GCN, GAT, resGCN, and resGAT. We consider three activation functions:
ReLU, LeakyReLU with 0.8 negative slope values, and GeLU. We measure the gradient similarity
when the test performance is measured through validation. All experiments are repeated five times,
and their average values are reported. The band indicates min-max values.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128

10 20

10 16

10 12

10 8

10 4

(X
)

Cora GCN

1 2 4 8 16 32 64 128
layer number

10 19

10 16

10 13

10 10

10 7

10 4

(X
)

Cora GAT
1 2 4 8 16 32 64 128

10 20

10 16

10 12

10 8

10 4

CiteSeer GCN

1 2 4 8 16 32 64 128
layer number

10 19

10 16

10 13

10 10

10 7

10 4

CiteSeer GAT
1 2 4 8 16 32 64 128

10 19

10 15

10 11

10 7

10 3

Chameleon GCN

1 2 4 8 16 32 64 128
layer number

10 19

10 15

10 11

10 7

10 3

Chameleon GAT

ReLU
GeLU
LeakyReLU (0.8)

Figure 1: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over different layers and activation functions

of 128-layer GCN and GAT in three datasets: Cora, CiteSeer, and Chameleon.

1 2 4 8 16 32 64

10 1

101

103

105

107

(X
)

Cora resGCN

1 2 4 8 16 32 64
layer number

100

104

108

1012

1016

(X
)

Cora resGAT
1 2 4 8 16 32 64

10 2

100

102

104

CiteSeer resGCN

1 2 4 8 16 32 64
layer number

10 1

101

103

105

107
CiteSeer resGAT

1 2 4 8 16 32 64

10 1

101

103

105

107

Chameleon resGCN

1 2 4 8 16 32 64
layer number

100

104

108

1012

1016

1020 Chameleon resGAT
ReLU
GeLU
LeakyReLU (0.8)

Figure 2: Gradient similarity measure µ
(

∂LresGNN(W)
∂X(ℓ)

)
over different layers of 64-layer GCN and

GAT with residual connections in three datasets: Cora, CiteSeer, and Chameleon. The similarity
measures with ”NaN” value are not indicated in the plot.

GNNs without residual connections Figure 1 illustrates that the gradients of node representations
are getting exponentially close to each other over the back-propagation paths for both 128-layer
GCN and GAT, independent of the activation functions and datasets. In other words, all nodes are
likely to have the same gradient signals near the input layers. Among three activation functions,
GELU leads to the most severe oversmoothing in gradients, followed by ReLU and LeakyReLU.
The experimental results align with the one with node representations but in the other direction (Wu
et al., 2023a). Additionally, we report the results with 64-layer GCN and GAT in Appendix C.

û In deep GNNs, the node representations are getting similar near the final layers (represen-
tation oversmoothing), and the node gradients are getting similar near the input layers due
to the oversmoothing effects (gradient oversmoothing).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 13 10 6 101 108

(X(1))

10 4

10 1

102

105

108

1011

1014

(X
(L

))

(a)

10 2 103 108 1013

(X(L))

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(%

)

(b)

10 13 10 6 101 108

(X(1))

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(%

)

(c)
GAT
resGAT
GCN
resGCN

20

40

60

80

100

120

th
e

nu
m

be
r o

f l
ay

er
s

Figure 3: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the Cora dataset.

GNNs with residual connections We visualize the gradient similarity of 64-layer resGCN and
resGAT in Figure 2 with varying activation functions. The results show that, with the residual
connection, the gradients expand regardless of the activations, datasets, and models, while the ex-
pansion rate differs depending on the choice of activation, model, and dataset. Note that gradient
expansion happens when the magnitude of the gradient is large, and the gradient diverges in direc-
tions. However, among all experiments, we could not find any gradient smoothing, showing that
gradient expansion is a more severe problem with residual connections. In conclusion, these results
corroborate the theoretical analysis in Theorem 2. Additional results with 128-layer resGCN and
resGAT are provided in Appendix C.

û With residual connections, the gradients of GNN expand as the depth of the layer in-
creases (gradient expansion). The gradient oversmoothing is barely observed with residual
connections.

To explore the training behavior of GNN models, we trained 4-, 16-, and 64-layer GCN, GAT,
resGCN, and resGAT models on three datasets: Cora, Citeseer, and Chameleon, with a fixed learning
rate of 0.001 for 1, 000 epochs. Visualizations of the training accuracy and training loss are provided
in Appendix D. We observe that both GCN and GAT, with and without residual connections, suffer
from more severe underfitting as the number of layers increases. We infer that this phenomenon is
related to the presence of gradient oversmoothing and gradient expansion.

5 ANALYSIS ON GRADIENT SIMILARITY

We have seen gradients exhibit oversmoothing or expansion based on the model architecture. In this
section, we further analyze the relationship between representation similarity and gradient similarity
and the changes in the gradient similarity over the training.

5.1 WHICH SIMILARITY MEASURE BETTER REPRESENTS TEST PERFORMANCE?

To obtain a deeper insight into the representation and gradient similarities and their implications on
model performances, we train GCN, GAT, resGCN, and resGAT with varying numbers of layers on
the Cora and Chameleon datasets and observe empirical similarities and model performances. The
node similarity is measured from the representation of the last layer, and the gradient similarity is
measured from the first layer of the model. All similarities are measured when the test performances
are measured through validation. We plot the empirical relation between 1) representation similarity,
2) gradient similarity, and 3) accuracy on the test set in Figure 3 through scatter plots.

Figure 3(a) shows the relationship between the representation similarity and the gradient similarity.
We observe that, in general, there are positive correlations between these two similarities, but they
cannot fully explain each other in all regions. For example, when the number of layers is relatively
low, the gradient similarity ranges around one while the node similarity ranges between 102 and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64
layer number

10 11

10 8

10 5

10 2

(X
)

Cora GCN

1 2 4 8 16 32 64
layer number

10 13

10 10

10 7

10 4

10 1

Cora GAT

1 2 4 8 16 32 64
layer number

10 12

10 10

10 8

10 6

10 4

10 2

Chameleon GCN

1 2 4 8 16 32 64
layer number

10 11

10 9

10 7

10 5

10 3

10 1
Chameleon GAT

4
16
64

Figure 4: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over training with 4-, 16-, 64- layered GCN

and GAT. We report the similarity measures over two datasets: Cora and Chameleon. The dashed
and solid lines represent the similarity measured at the start and end of the training, respectively.
The shaded area represents the maximum and minimum similarities over training.

1 2 4 8 16 32 64
layer number

10 1

101

103

105

107

(X
)

Cora resGCN

1 2 4 8 16 32 64
layer number

10 1

102

105

108

Cora resGAT

1 2 4 8 16 32 64
layer number

10 1

101

103

105

107
Chameleon resGCN

1 2 4 8 16 32 64
layer number

100

103

106

109

Chameleon resGAT
4
16
64

Figure 5: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over training with 4-, 16-, 64- layered resGCN

and resGAT. The dashed and solid lines represent the similarity measured at the start and end of the
training, respectively. The shaded area represents the maximum and minimum similarities over
training. Residual connections with deep layers introduce gradient expansion.

1011. When both similarities are close to zero, then the correlation is weak, and we cannot estimate
one from the other. It is worth noting that the high gradient similarity can only be observed from
the models with residual connections, corroborating the findings in Theorem 2. Similarly, the node
representation expansion occurs with the residual connections.

If two similarities are not the same, which better represents the model performance on the test set?
In Figure 3(b,c), we plot the relationship between each measure and test accuracy to answer this
question. In Figure 3(b), we observe that when the model achieves relatively good test accuracy, the
representation similarity ranges between 102 and 1011. Since this range is quite broad, cases with
low accuracy are also observed in this area. In addition, test accuracy is generally relatively low
when the node similarity is too high or too low. To compare, we find that the range of gradient sim-
ilarity is narrow when the model performs well in Figure 3(c). Specifically, the gradient similarity
ranges between 10−2 and 1 when the test performance is relatively high. More importantly, there is
no case with relatively low performance in this range, showing that the gradient similarity is a more
reliable estimate of the test performance. We provide the results on the CiteSeer and Chameleon
dataset in Appendix E, where a similar trend was observed.

5.2 HOW DOES THE GRADIENT SIMILARITY CHANGE OVER TRAINING?

We investigate how the gradient similarity changes over the training to check whether the optimiza-
tion can mitigate the gradient expansion over time. With the similar experimental settings used in
Section 5.1, we plot how the gradient similarity changes with different models and layers in Fig-
ures 4 and 5. We apply early stopping for all experiments.

Figure 4 shows the changes in gradient similarity without residual connections. For all experiments,
the similarity increases over training, showing that some level of smoothing happens at the early
stage of training. The results show that mild oversmoothing with 16 layers can be overcome through

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 8 32 128 512

20

40

60

80

te
st

 a
cc

ur
ac

y
(%

)

Cora resGCN

2 8 32 128 512

20

40

60

80 CiteSeer resGCN

2 8 32 128 512

25

30

35

40

45

50
Chameleon resGCN

2 8 32 128 512
32.5

35.0

37.5

40.0

42.5

45.0

47.5

Squirrel resGCN

2 8 32 128 512
the number of layers

20

40

60

80

te
st

 a
cc

ur
ac

y
(%

)

Cora resGAT

no constraint
||W||F 4
||W||F 1
||W||F 0.25

2 8 32 128 512
the number of layers

20

40

60

80 CiteSeer resGAT

2 8 32 128 512
the number of layers

25

30

35

40

45

50
Chameleon resGAT

2 8 32 128 512
the number of layers

34

36

38

40

42

Squirrel resGAT

Figure 6: Performance of resGCN and resGAT on Cora, CiteSeer, Chameleon and Squirrel datasets
with varying coefficient values. The solid curve indicates the average over five runs and the shaded
area represents one standard deviation around the average.

training, but hard oversmoothing with 64 layers cannot be overcome for both models. Figure 5
shows the changes in gradient similarity with the residual connections. The gradient expansion can
be observed with 64-layered models. Similar to the oversmoothing, once the expansion happens, the
training process cannot be done properly (cf., Figure 3).

6 EFFECTIVENESS OF LIPTSCHITZ UPPER BOUND ON DEEP GNNS

We propose a Lipschitz upper bound constraint on each layer of GNN through the weight normaliza-
tion in Section 4.1. In this section, we show the effectiveness of a Lipschitz upper bound constraint
in improving test performance and training behavior in deep GNNs.

To evaluate test performance, we train resGCN and resGAT on Cora, CiteSeer, Chameleon, and
Squirrel datasets with varying numbers of layers from 1 to 512. For the weight normalization, we
test three different Lipschitz upper bound c: 4, 1, 0.25. All experiments are conducted with early
stopping and learning rates of 0.001, 0.005, 0.01. We report average values of five repeated runs.

The test accuracy of resGCN is reported in Figure 6 with and without weight normalization. For
all datasets, we can observe a significant performance drop when the depth exceeds 32 without the
weight normalization. Similar patterns are observed when a loose Lipschitz upper bound of c = 4
is applied. With the tight upper bounds of c = 1, 0.25, the test accuracy remains relatively consis-
tent over 512 layers. Specifically, when c = 0.25, the accuracy of resGCN consistently improves
over a hundred layers, reaching the best performance at a depth of 512 layers on Squirrel datasets.
However, small upper bounds can limit the expressive power of each layer. As a consequence, test
accuracy with a small upper bound requires more layers to reach a similar level of accuracy that can
be achieved by a small number of layers without weight normalization.

In the case of homophilic datasets, despite the multiple layers, the highest accuracy is similar re-
gardless of the upper bound constraints. For example, resGCN without normalization achieves the
best performance of 85.43 when the number of layers is 16. In contrast, resGCN with an upper
bound of 0.25 achieves the best performance of 85.14 when the number of layers is 128. However,
in heterophilic datasets, deep models with weight normalization outperform the models without the
upper bound constraints. For instance, in the Chameleon dataset, without normalization, the best
accuracy of 43.75 is achieved at a depth of 32. In contrast, the best accuracy of 47.04 is achieved
at a depth of 64 with an upper bound of 4. It is claimed that the heterophilic node classification
requires capturing long-range dependencies via multiple layers (Rusch et al., 2023a). Our results
also support this claim with carefully designed multi-layered GNNs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

25

50

75

100

tra
in

in
g

ac
cu

ra
cy

 (%
)

Cora resGCN

0 200 400 600 800 1000

25

50

75

100
CiteSeer resGCN

0 200 400 600 800 1000

25

50

75

100
Chameleon resGCN

0 200 400 600 800 1000
epoch

10 2

100

102

104

106

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

10 1

101

103

105

107

0 200 400 600 800 1000
epoch

10 3

10 1

101

103

105

107 no constraint
||W||F 4.0
||W||F 1.0
||W||F 0.25

Figure 7: Training curves with Lipschitz upper bound constraint applied 64-layer resGCN over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001. The solid line indicates the
average over five runs and the shaded area represents maximum and minimum value.

To demonstrate the training process, we train 64—and 128—layer resGCN and resGAT on Cora,
CiteSeer, and Chameleon datasets with 1, 000 epochs and a fixed learning rate of 0.001. For the
weight normalization, we test three different Lipschitz upper bound c: 4, 1, 0.25. The visualized
training accuracy and loss on 64-layered resGCN are provided in Figure 7. We observe that applying
the Lipschitz upper bound mitigates the underfitting problem of resGCN in all datasets. Specifically,
resGCN with c = 0.25 achieves 100% training accuracy in all datasets with the fastest convergence
rate. Our results show that applying the Lipschitz upper bound effectively resolves the gradient
expansion problem and helps optimization. We provide the results for 128—layer resGCN, and
64—and 128—layer resGAT in Appendix F.

7 CONCLUSION

In this work, we explored the challenges associated with optimizing deep GNNs. Until now, the
oversmoothing has focused on the representation space. However, we demonstrate that oversmooth-
ing also occurs in the gradient space, a major cause making the training process complicated. We
further analyze the effect of the residual connections in the gradients of deepGNNs, revealing that
the residual connection causes gradient expansion. To alleviate the gradient expansion during train-
ing, we constrain the Lipschitz upper bound on each layer through the Frobenius normalization.
Experimental results show that the training procedure can be stabilized with the normalization over
several hundred layers.

Limitation. The theoretical analysis is based on linear GCNs. Although we have shown that
similar patterns are observable with non-linear GCNs and GATs through empirical studies, the non-
linearity can introduce subtle differences compared with our analysis. We propose a weight nor-
malization to restrict the Lipschitz constant. There are, however, several normalization approaches,
such as the batch normalization (Ioffe & Szegedy, 2015) and the layer normalization (Ba, 2016). In
a previous study, these normalizations are not helpful in deepGNNs (Chen et al., 2022). To investi-
gate the reason further, we need to study the gradients of these normalizations in GNNs. We leave
this future work.

REFERENCES

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. 10

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time and space complexity of graph convolutional
networks. Accessed on: Dec, 31:2021, 2021. 4, 12

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. In ICML Graph
Representation Learning and Beyond (GRL+) Workshop, 2020. 1

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 1407–1418. PMLR, 18–24 Jul 2021. 1, 2

Yihao Chen, Xin Tang, Xianbiao Qi, Chun-Guang Li, and Rong Xiao. Learning graph normalization
for graph neural networks. Neurocomputing, 493:613–625, 2022. 10

Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph neural
networks motivated by partial differential equations. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, Los Alamitos,
CA, USA, jun 2016. IEEE Computer Society. 3, 4

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Inter-
national Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org, 2015.
10

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing. In
The First Learning on Graphs Conference, 2022. 2

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017. 2, 5

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI Press, 2018. 1, 2, 4

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020. 1, 2

Moonjeong Park, Jaeseung Heo, and Dongwoo Kim. Mitigating oversmoothing through reverse
process of GNNs for heterophilic graphs. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 39667–39681. PMLR, 21–27 Jul 2024. 2, 5

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023. 15

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020. 2

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In International Conference on Machine Learning, pp.
18888–18909. PMLR, 2022. 2

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023a. 3, 9

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

T. Konstantin Rusch, Benjamin Paul Chamberlain, Michael W. Mahoney, Michael M. Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In The Eleventh
International Conference on Learning Representations, 2023b. 2

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered GNN: Ordering mes-
sage passing to deal with heterophily and over-smoothing. In The Eleventh International Confer-
ence on Learning Representations, 2023. 2

Matthew Thorpe, Tan Minh Nguyen, Heidi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher,
and Bao Wang. Grand++: Graph neural diffusion with a source term. In International Conference
on Learning Representation (ICLR), 2022. 2

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 3

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023a. 1, 2, 3, 6, 13

Xinyi Wu, Zhengdao Chen, William Wei Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023b. 2

Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin
Cui. Model degradation hinders deep graph neural networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022. 2

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020. 2

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. 2

A MISSING PROOFS IN SECTION 4.1

In this section, we provide missing proofs in Section 4.1.

A.1 PROOF OF LEMMA 1

Proof. We recap the derivation of the gradient of LGN, which is originally shown in Blakely et al.
(2021). Using the chain rule, we can compute:

∂LLGN

∂W(ℓ)
=

∂LLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂W(ℓ)

=
∂LLGN

∂X(ℓ+1)

∂

∂W(ℓ)

(
ÂX(ℓ)W(ℓ)

)
= (ÂX(ℓ))⊤

∂LLGN

∂X(ℓ+1)
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Again, by using the chain rule, we have:

∂LLGN

∂X(ℓ)
=

∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

∂X(ℓ+1)

∂X(ℓ)

=

(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

)
∂

∂X(ℓ)
ÂX(ℓ)W(ℓ)

= Â⊤
(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+2)

∂X(ℓ+1)

)
(W(ℓ))⊤

= (Â⊤)2
(
∂LLGN

∂X(L)

∂X(L)

∂X(L−1)
· · · ∂X

(ℓ+3)

∂X(ℓ+2)

)
(W(ℓ+1))⊤(W(ℓ))⊤

= · · ·

= (Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤ .

A.2 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we recap and use the following definitions and lemmas from Wu et al.
(2023a).

Definition 1 (Ergodicity). Let B ∈ R(N−1)×N be the orthogonal projection onto the space orthog-
onal to span{1}. A sequence of matrices {M (n)}∞n=1 is ergodic if

lim
t→∞

B

t∏
n=0

M(n) = 0.

By using the projection matrix B, we can express µ(X) as ∥BX∥F . We want to show that {Â}∞n=1

is ergodic. Since Â = D̃− 1
2 ÃD̃− 1

2 and D̃−1Ã have a same spectrum, {Â}∞n=1 is ergodic if
{D̃−1Ã}∞n=1 is ergodic. Using Lemma 3 in (Wu et al., 2023a), {D̃−1Ã}∞n=1 is ergodic.

Next, we need notion of joint spectral radius to show the convergence rate.

Definition 2 (Joint Spectral Radius). For a collection of matricesA, the joint spectral radius JSR(A)
is defined to be

JSR(A) = lim sup
k→∞

sup
A1,A2,...,Ak∈A

∥A1A2 · · ·Ak∥
1
k

and it is independent of the norm used.

By the definition, it is straight forward that if JSR(A) < 1, for any JSR(A) < q < 1, there exists a
C for which satisfies ||A1A2 · · ·Aky|| ≤ Cqk||y|| for A1,A2, · · · ,Ak ∈ A. Let Â = {Â} and
Ã = {D̃−1Ã}. Similar to Ergodicity, we can get JSR(Â) < 1 if JSR(Ã) < 1. Using Lemma 6 in
(Wu et al., 2023a), JSR(Ã) < 1.

Now, we can derive:

µ

(
∂LLGN

∂X(ℓ)

)
= ∥B∂LLGN

∂X(ℓ)
∥F

= ∥B(Â⊤)L−ℓ ∂LLGN

∂X(L)

L−ℓ∏
i=1

(W(L−i))⊤∥F

≤ ∥∂LLGN

∂X(L)
∥F ∥B(Â⊤)L−ℓ∥2∥W(∗)∥L−ℓ

2 ,

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ. By
using JSR(Â) < 1, we can result in to Theorem 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 PROOF OF LEMMA 2

Proof. By applying the chain rule, we can obtain:

∂LresLGN

∂W(ℓ)
=

∂LresLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂W(ℓ)

=
∂LresLGN

∂X(ℓ+1)

∂

∂W(ℓ)

(
X(ℓ) + ÂX(ℓ)W(ℓ)

)
=
(
ÂX(ℓ)

)⊤ ∂LresLGN

∂X(ℓ+1)
.

We have:
∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)

∂X(L)

∂X(L−1)

∂X(L−1)

∂X(L−2)
· · · ∂X

(ℓ+1)

∂X(ℓ)
. (7)

We will show Equation (5) holds inductively. First two components of Equation (7) can be derived
as follows:

∂LresLGN

∂X(L)

∂X(L)

∂X(L−1)
=

∂LresLGN

∂X(L)

∂

∂X(L−1)
(X(L−1) + ÂX(L−1)W(L−1))

=
∂LresLGN

∂X(L)
+ (Â)⊤

∂LresLGN

∂X(L)
(W(L−1))⊤ , (8)

which satisfies Equation (5) with ℓ = L− 1. Suppose we have ∂LresLGN

∂X(ℓ+1) which satisfies Equation (5).
We can derive:

∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(ℓ+1)

∂X(ℓ+1)

∂X(ℓ)

=
∂LresLGN

∂X(ℓ+1)

∂

∂X(ℓ)
(X(ℓ) + ÂX(ℓ)W(ℓ))

=
∂LresLGN

∂X(ℓ+1)
+ Â⊤ ∂LresLGN

∂X(ℓ+1)
(W(ℓ))⊤

=
∂LresLGN

∂X(L)
+ Â⊤ ∂LresLGN

∂X(L)
(W(ℓ))⊤

+

L−ℓ−1∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+

L−ℓ−1∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p+1 ∂LresLGN

∂X(L)

(
p−1∏
k=0

(
W(ip−k)

)⊤)
(W(ℓ))⊤

=

∂LresLGN

∂X(L)
+ Â⊤ ∂LresLGN

∂X(L)
(W(ℓ))⊤ +

∑
ℓ+1≤i1<L

Â⊤ ∂LresLGN

∂X(L)
(W(i1))⊤

+

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+

L−ℓ−2∑
p=1

 ∑
{i1:i1≥ℓ+1}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p+1 ∂LresLGN

∂X(L)

(
p−1∏
k=0

(
W(ip−k)

)⊤)
(W(ℓ))⊤

+
(
Â⊤
)L−ℓ ∂LresLGN

∂X(L)

(
L−ℓ∏
i=1

(W(L−i))⊤

)
.

The fourth term and the fifth term can be merged into:

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤ ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

since
(
L−ℓ−1
p+1

)
+
(
L−ℓ−1

p

)
=
(
L−ℓ
p+1

)
. Therefore,

∂LresLGN

∂X(ℓ)
=

∂LresLGN

∂X(L)
+

∑
ℓ≤i1<L

Â⊤ ∂LresLGN

∂X(L)
(W(i1))⊤

+

L−ℓ−1∑
p=2

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
+
(
Â⊤
)L−ℓ ∂LresLGN

∂X(L)

(
L−ℓ∏
i=1

(W(L−i))⊤

)

=
∂LresLGN

∂X(L)
+

L−ℓ∑
p=1

 ∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤ ,

which satisfies Equation (5).

A.4 PROOF OF THEOREM 2

Proof. We can obtain:

µ

(
∂LresGNN(W)

∂X(ℓ)

)
= ∥B∂LresGNN(W)

∂X(ℓ)
∥F

≤ ∥B∂LresLGN

∂X(L)
∥F

+

L−ℓ∑
p=1

∑
{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

∥B
(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
∥F .

Since there are
(
L−ℓ
p

)
sets of (i1, ...ip) which satisfies ℓ ≤ i1 < i2 < · · · < ip < L,∑

{i1:i1≥ℓ}

· · ·
∑

{ip:ip−1<ip<L}

∥B
(
Â⊤
)p ∂LresLGN

∂X(L)

p−1∏
k=0

(
W(ip−k)

)⊤
∥F

≤
(
L− ℓ

p

)
∥∂LLGN

∂X(L)
∥F ∥B(Â⊤)L−ℓ∥2∥W(∗)∥L−ℓ

2 ,

where ∥W(∗)∥2 is the maximum spectral norm, i.e., ∗ = argmaxi∥W(i)∥2 for 1 ≤ i ≤ L− ℓ. By
using JSR(Â) < 1, there exists 0 < q < 1 and Cq > 0 such that

µ

(
∂LresGNN(W)

∂X(ℓ)

)
≤ µ

(
B
∂LresLGN

∂X(L)

)
+

L−ℓ∑
p=1

Cq

(
L− ℓ

p

)
(q∥W(∗)∥2)L−ℓ

= µ

(
B
∂LresLGN

∂X(L)

)
+ Cq

((
1 + q∥W(∗)∥2

)L−ℓ

− 1

)
.

B DATASET STATISTICS

Statistics of datasets used in our experiments can be found in Table 1. We note that the filtering
process proposed by Platonov et al. (2023) was adopted in the case of Chameleon and Squirrel
datasets.

C SUPPLEMENTARY VISUALIZATIONS OF GRADIENT SIMILARITY
EVALUATIONS

Supplementary visualizations for the analysis in Section 4.2 are provided below. We did not plot
gradient similarity measure of 128-layer GAT, as the measures yielded ”NaN” values in all layers
except on last layer because of expansion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset Type # nodes # edges # classes avg degree

Cora homophilic 2,708 5,278 7 3.90
CiteSeer homophilic 3,327 4,552 6 2.74

Squirrel heterophilic 2,223 46,998 5 42.28
Chameleon heterophilic 890 8,854 5 19.90

Table 1: Statistics of the dataset utilized in the experiments.

1 2 4 8 16 32 64

10 15

10 12

10 9

10 6

10 3

(X
)

Cora GCN

1 2 4 8 16 32 64
layer number

10 20

10 16

10 12

10 8

10 4

(X
)

Cora GAT
1 2 4 8 16 32 64

10 15

10 12

10 9

10 6

10 3

CiteSeer GCN

1 2 4 8 16 32 64
layer number

10 20

10 16

10 12

10 8

10 4

100
CiteSeer GAT

1 2 4 8 16 32 64

10 17

10 14

10 11

10 8

10 5

10 2

Chameleon GCN

1 2 4 8 16 32 64
layer number

10 19

10 15

10 11

10 7

10 3

Chameleon GAT

ReLU
GeLU
LeakyReLU (0.8)

Figure 8: Gradient similarity measure µ
(

∂LGNN(W)
∂X(ℓ)

)
over different layers and activation functions.

We report the oversmoothing measures of 64-layer GCN and GAT over three datasets: Cora, Cite-
Seer, and Chameleon.

1 2 4 8 16 32 64 128
layer number

100

104

108

1012

1016

(X
)

Cora resGCN

1 2 4 8 16 32 64 128
layer number

100

104

108

1012

1016

CiteSeer resGCN

1 2 4 8 16 32 64 128
layer number

100

104

108

1012

1016

Chameleon resGCN

ReLU
GeLU
LeakyReLU (0.8)

Figure 9: Gradient similarity measure µ
(

∂LresGNN(W)
∂X(ℓ)

)
over different layers of 128-layer GCN with

residual connections.

D VISUALIZATIONS OF TRAINING CURVES

Supplementary visualizations for the 4-, 16-, 64- layer GCN, GAT, resGCN and resGAT are provided
below.

E SUPPLEMENTARY SCATTER PLOTS

Scatter plots for the analysis in Section 5.1 are provided below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

25

50

75

100

tra
in

in
g

ac
cu

ra
cy

Cora

0 200 400 600 800 1000

25

50

75

100
CiteSeer

0 200 400 600 800 1000

25

50

75

100
Chameleon

0 200 400 600 800 1000
epoch

10 2

100

102

104

106

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

10 1

101

103

105

107

0 200 400 600 800 1000
epoch

10 3

10 1

101

103

105

107 4
16
64

Figure 10: Training curves 4-, 16-, 64- layer GCN and resGCN over three datasets: Cora, Citeseer,
and Chameleon with learning rate 0.001. The dashed lines represent the existence of residual con-
nection while solid lines represent the vanilla model.

0 200 400 600 800 1000

25

50

75

100

tra
in

in
g

ac
cu

ra
cy

Cora

0 200 400 600 800 1000

25

50

75

100
CiteSeer

0 200 400 600 800 1000

25

50

75

100
Chameleon

0 200 400 600 800 1000
epoch

10 2

100

102

104

106

108

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

10 1

101

103

105

107

0 200 400 600 800 1000
epoch

10 3

10 2

10 1

100

4
16
64

Figure 11: Training curves 4-, 16-, 64- layer GAT and resGAT over three datasets: Cora, Citeseer,
and Chameleon with learning rate 0.001. The dashed lines represent the existence of residual con-
nection, while solid lines represent the vanilla model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10 15 10 8 10 1 106

(X(1))

10 5

10 2

101

104

107

1010

1013

(X
(L

))

(a)

10 3 102 107 1012

(X(L))

20

30

40

50

60

70

te
st

 a
cc

ur
ac

y
(%

)

(b)

10 15 10 8 10 1 106

(X(1))

20

30

40

50

60

70

te
st

 a
cc

ur
ac

y
(%

)

(c)
GAT
resGAT
GCN
resGCN

20

40

60

80

100

120

th
e

nu
m

be
r o

f l
ay

er
s

Figure 12: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the CiteSeer dataset.

10 14 10 7 100 107

(X(1))

10 4

100

104

108

1012

1016

(X
(L

))

(a)

10 2 104 1010 1016

(X(L))

25

30

35

40

45

te
st

 a
cc

ur
ac

y
(%

)
(b)

10 14 10 7 100 107

(X(1))

25

30

35

40

45

te
st

 a
cc

ur
ac

y
(%

)

(c)

GAT
resGAT
GCN
resGCN

20

40

60

80

100

120

th
e

nu
m

be
r o

f l
ay

er
s

Figure 13: Scatter plots between (a) representation similarity vs gradient similarity (b) test accuracy
and representation similarity, (c) test accuracy and gradient similarity on the Chameleon dataset.

0 200 400 600 800 1000

25

50

75

100

tra
in

in
g

ac
cu

ra
cy

 (%
)

Cora resGCN

0 200 400 600 800 1000

25

50

75

100
CiteSeer resGCN

0 200 400 600 800 1000

25

50

75

100
Chameleon resGCN

0 200 400 600 800 1000
epoch

101

105

109

1013

1017

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

100

102

104

106

0 200 400 600 800 1000
epoch

10 3

10 1

101

103

105

107 ||W||F 4.0
||W||F 1.0
||W||F 0.25

Figure 14: Training curves with Lipschitz upper bound constraint applied 128-layer resGCN over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.

F SUPPLEMENTARY VISUALIZATIONS OF TRAINING CURVES WITH
LIPSCHITZ UPPER BOUND CONSTRAINT

Supplementary visualizations of training curves with Lipschitz upper bound constraint for Section 6
are provided below.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

25

50

75

100
tra

in
in

g
ac

cu
ra

cy
 (%

)
Cora resGAT

0 200 400 600 800 1000

25

50

75

100
CiteSeer resGAT

0 200 400 600 800 1000

25

50

75

100
Chameleon resGAT

0 200 400 600 800 1000
epoch

10 2

100

102

104

106

108

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

10 1

101

103

105

107

0 200 400 600 800 1000
epoch

10 3

10 1

101

103

||W||F 4.0
||W||F 1.0
||W||F 0.25

Figure 15: Training curves with Lipschitz upper bound constraint applied 64-layer resGAT over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.

0 200 400 600 800 1000

25

50

75

100

tra
in

in
g

ac
cu

ra
cy

 (%
)

Cora resGAT

0 200 400 600 800 1000

25

50

75

100
CiteSeer resGAT

0 200 400 600 800 1000

25

50

75

100
Chameleon resGAT

0 200 400 600 800 1000
epoch

10 2

10 1

100

101

tra
in

in
g

lo
ss

0 200 400 600 800 1000
epoch

100

102

104

106

108

0 200 400 600 800 1000
epoch

10 2

101

104

107

1010

||W||F 4.0
||W||F 1.0
||W||F 0.25

Figure 16: Training curves with Lipschitz upper bound constraint applied 128-layer resGAT over
three datasets: Cora, Citeseer and Chameleon with learning rate 0.001.

19

	Introduction
	Related Work
	Preliminary
	Graph convolutional networks
	Similarity measure

	Gradient Oversmoothing and Expansion
	Theoretical Analysis
	Empirical Studies

	Analysis on Gradient Similarity
	Which similarity measure better represents test performance?
	How does the gradient similarity change over training?

	Effectiveness of Liptschitz upper bound on deep GNNs
	Conclusion
	Missing Proofs in subsec:gdos-theory
	Proof of lemma:gradient
	Proof of theorem1
	Proof of lemma:gradientreslgn
	Proof of theorem2

	Dataset Statistics
	Supplementary Visualizations of Gradient Similarity Evaluations
	Visualizations of Training Curves
	Supplementary Scatter Plots
	Supplementary Visualizations of Training Curves with Lipschitz Upper Bound Constraint

