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Abstract

Segmenting ultra high-field MR images is an important first step in many applications.
Segmentation methods based on machine learning have been shown to be valuable tools for
this purpose. However, for ultra high-field MR images (> 7 Tesla), the lack of training data
is a problem. Therefore, in this work we propose to use super-resolution for augmenting
the training set. Specifically, we describe an efficient super-resolution model based on
Generative Adversarial Network(GAN)1. It produces synthetic images that simulate MR
data at ultra high isotropic resolutions of 0.6mm. We present the first results that show
an improvement in segmentation accuracy of imaging data acquired at a 9.4 Tesla MRI
scanner.

Keywords: Super-resolution, Ultra high field, Magnetic Resonance Imaging, Generative
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1. Introduction

Ultra-high resolution Magnetic Resonance Imaging(MRI) reveals detailed information about
brain anatomy and facilitates neuroscience research. However, data acquision at ultra high-
fields is costly and therefore the implementation of deep learning to ultra high-field MRI
data suffers from a lack of training data. Here we propose to augment the training set
using super-resolution. Specifically, we make use of the fact that MR images at lower
resolutions (3 Tesla) are abundant and can be used for as a resource for simulating ultra
high-resolution images via super-resolution. It is possible to use super-resolution scheme to
produce thousands of high resolution images with realistic perceptual image quality. Our
model produces samples at the same resolution as a real 9.4T image, e.g. 0.6mm isotropic.
Subsequently, the generated samples can be fed to the segmentation training set to improve
the segmentation accuracy.

1. Our python source code is available at here
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2. Methods

The design of our super-resolution model is close to that of (Wang et al., 2018). The
upsampling process was done by a generator network which is made of residual blocks using
dense skip connection (Huang et al., 2017). The feature extractor of the network uses a
ResNet-10 network, which was pre-trained on a large set of 1.5T and 3T brain MR images
(Chen et al., 2019). To stabilize the training process, the discriminator embeds instance
normalization layers between each strided convolutional layers and LeakyReLU layers. The
loss functions are modifications of the ones described in (Wang et al., 2018).

For training, we used T1w structural MRI data of a healthy subject acquired at 3T,
downloaded from Human Connectom Project (Van Essen et al., 2013). The original reso-
lution was 0.8mm isotropic. As pre-processing, we downsampled the image to 1.2mm by
linear interpolation. The entire image was patched to size of 64× 64× 64, downsampled to
resolution of 2.4mm(32× 32× 32). Then we pair the corresponding low resolution patches
with its reference patches of 1.2mm resolution to train the model. The model was trained
for 50 epochs, with 1360 steps per epoch, batch size of 4 and learning rate of 0.0002, using
Adam optimizer. The results obtained from super-resolution were then assembled to a new
synthetic MRI image.

To compare segmentation results with and without augmentation, we used a T1w struc-
tural image acquired at a 9.4T scanner at the Max Planck Institute for Biological Cybernet-
ics, Tübingen. We used the segmentation method described in (Steiglechner et al., 2022) for
this purpose. Here, 30 images were extrapolated to ultra-high resolution(0.6mm) via the
generator trained on resolution of 1.2mm images. The ground truth labels were produced
from Freesurfer (Fischl, 2012), manually corrected, and verified by neuroradiology experts.

Figure 1: Super-resolution results comparison on a 3T image. From left to right : Ground
truth, trilinear interpolated data, ×2 super resolved data, ×4 super resolved data.

3. Results

Figure 1 shows that results of the super-resolution applied to a 3T image. We observed that
our model is resolution independent. Namely, it is possible to extrapolate the resolution
beyond the trained ones preserving meaningful image content. For example, here we trained
our model to upscale from 2.4mm to 1.2mm, but used it to obtain resolutions of 0.6mm.
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Super-Resolution for data Augmentation

Figure 2 compares segmentation results with and without training data augmentation. Note
that the segmentation of frontal cortex clearly benefits from augmentation.

(a) (b)

Figure 2: Segmentation results of 9T image before(a) and after(b) augmentation. Cortical
grey matter is shown in red, white is in blue.

4. Conclusion

Here we have shown super-resolution can address the lack of training data in ultra high-field
segmentation tasks. A novelty in our approach is that our super-resolution model can be
used to generate images of higher resolution than the ones used in the training phase.
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