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Abstract

Federated Learning by nature is susceptible to low-quality, corrupted, or even1

malicious data that can severely degrade the quality of the learned model. Tradi-2

tional techniques for data valuation cannot be applied as the data is never revealed.3

We present a novel technique for filtering, and scoring data based on a practical4

influence approximation (‘lazy’ influence) that can be implemented in a privacy-5

preserving manner. Each agent uses his own data to evaluate the influence of6

another agent’s batch, and reports to the center an obfuscated score using differen-7

tial privacy. Our technique allows for highly effective filtering of corrupted data in8

a variety of applications. Importantly, the accuracy does not degrade significantly,9

even under really strong privacy guarantees (ε ≤ 1), especially under realistic10

percentages of mislabeled data.11

1 Introduction12

The success of Machine Learning (ML) depends to a large extent on the availability of high-quality13

data. This is a particularly important issue in Federated Learning (FL) since the model is trained14

without access to raw training data. Instead, a single center uses data held by a set of independent15

and sometimes self-interested data holders to jointly train a model. Having the ability to score and16

filter irrelevant, noisy, or malicious data can (i) significantly improve model accuracy, (ii) speed up17

training, and even (iii) reduce costs for the center when it pays for data.18

We are the first to introduce a practical approach for scoring, and filtering con-19

tributed data in a Federated Learning setting that ensures strong, worst-case privacy.20

A clean way of quantifying the effect of data point(s) on the accuracy of a model is via the notion of21

influence [20, 4]. Intuitively, influence quantifies the marginal contribution of a data point (or batch22

of points) on a model’s accuracy. One can compute this by comparing the difference in the model’s23

empirical risk when trained with and without the point in question. While the influence metric can24

be highly informative, it is impractical to compute: re-training a model is time-consuming, costly,25

and often impossible, as agents do not have access to the entire dataset. We propose a simple and26

practical approximation of the sign of the exact influence (‘lazy’ influence approximation), which is27

based on an estimate of the direction of the model after a small number of local training epochs with28

the new data.29

Another challenges is to approximate the influence while preserving the privacy of the data. Many30

approaches to Federated Learning (e.g., [27, 30]) remedy this by combining FL with Differential31

Privacy (DP) [8, 9, 10, 11], a data anonymization technique that is viewed by many researchers as the32

gold standard [29]. We show how the sign of influence can be approximated in an FL setting while33

maintaining strong differential privacy guarantees.34
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Figure 1: Data filtering procedure. See Section 1.1.

1.1 High Level Description of Our Setting35

A center C coordinates a set of agents to train a single model (Figure 1). C has a small set of36

‘warm-up’ data which are used to train an initial model M0 that captures the desired input/output37

relation. We assume that each data holder has a set of training points that will be used to improve38

the model, and a set of test points that will be used to evaluate the contributions of other agents. To39

prohibit agents from tailoring their contributions to the test data, it must be kept private. For each40

federated learning round t (model Mt), each data holder agent will assume two roles: the role of the41

contributor (A), and the role of the tester (B). As a contributor, an agent performs a small number of42

local epochs to Mt – enough to get an estimate of the gradient1 – using a batch of his training data43

zA,t. Subsequently, A sends the updated partial model, with specifically crafted noise, Mt,A to every44

other agent (which assumes the role of a tester). The noise applied protects the update gradient, while45

still retaining information on the usefulness of data. Each tester B uses its test dataset to approximate46

the empirical risk of A’s training batch (i.e., the approximate influence). This is done by evaluating47

each test point and comparing the loss. In a FL setting, we can not re-train the model to compute48

the exact influence; instead, B performs only a small number of training epochs, enough to estimate49

the direction of the model (‘lazy’ influence approximation). As such, we opt to look at the sign of50

the approximate influence (and not the magnitude). Each tester aggregates the signs of the influence51

for each test point, applies controlled noise, and sends this information to the center. Finally, the52

center decides to accept A’s training batch if the majority of Bs report positive influence, and reject53

otherwise.54

2 Related Work and Discussion55

Federated Learning Federated Learning (FL) [25, 19, 32, 22] has emerged as an alternative method56

to train ML models on data obtained by many different agents. In FL a center coordinates agents57

who acquire data and provide model updates. FL has been receiving increasing attention in both58

academia [23, 35, 16, 1] and industry [15, 2], with a plethora of real-world applications (e.g., training59

models from smartphone data, IoT devices, sensors, etc.).60

Influence functions Influence functions are a standard method from robust statistics [4] (see also61

Section 3), which were recently used as a method of explaining the predictions of black-box models62

[20]. They have also been used in the context of fast cross-validation in kernel methods and model63

robustness [24, 3]. While a powerful tool, computing the influence involves too much computation64

and communication, and it requires access to the train and test data (see [20] and Section 3).65

1The number of local epochs is a hyperparameter. We do not need to fully train the model. See Section 3.2.
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Data Filtering A common but computationally expensive approach for filtering in ML is to use66

the Shapley Value of the Influence to evaluate the quality of data [18, 14, 17]. Other work includes67

for example rule based filtering of least influential points [28], or constructing weighted data subsets68

(corsets) [5]. While data filtering might not always pose a significant problem in traditional ML, in a69

FL setting it is more important because even a small percentage of mislabeled data can result in a70

significant drop in the combined model’s accuracy. Moreover, because of the privacy requirements,71

contributed data is not directly accessible for assessing its quality. [31] propose a decentralized72

filtering process specific to federated learning, yet they do not provide any formal privacy guarantees.73

To the best of our knowledge, we are the first to provide a practical application of influence metrics74

as a filtering and scoring mechanism for FL that also ensures strong, worst-case Differential Privacy75

guarantees.76

Differential Privacy Differential Privacy (DP) [8, 9, 10, 11] has emerged as the de facto standard77

for protecting the privacy of individuals. Informally, DP captures the increased risk to an individual’s78

privacy incurred by his participation in the learning process. As a simplified intuitive example,79

consider an agent being surveyed on a sensitive topic. In order to achieve differential privacy, one80

needs a source of randomness, thus the agent decides to flip a coin. Depending on the result (heads or81

tails), an agent can reply truthfully, or at random. Now an attacker can not know if the decision was82

taken based on the agent’s actual preference, or due to the coin toss. Of course, to get meaningful83

results, we need to bias the coin towards the true data. In this simple example, the logarithm of the84

ratio Pr[heads]/Pr[tails] represent the privacy cost (also referred to as the privacy budget), denoted85

traditionally by ε. For a more comprehensive overview, we refer the reader to [29, 12].86

3 Methodology87

We aim to address two challenges: approximating the influence of a (batch of) datapoint(s) without88

having to re-train the entire model from scratch, and protecting the privacy of both the train and test89

dataset of each agent. This is important not only to protect the sensitive information of users, but also90

to ensure that malicious agents can not tailor their contributions to the test data. We first introduce91

the notion of influence [4], and our approach to approximating this value. Second, we describe a92

differentially private reporting scheme for crowdsourcing the approximate influence values from the93

testers.94

We consider a classification problem from some input space X (e.g., features, images, etc.) to an95

output space Y (e.g., labels). In a Federated Learning setting, there is a center C that wants to96

learn a model M(θ) parameterized by θ ∈ Θ, with a non-negative loss function L(z, θ) on a sample97

z = (x̄, y) ∈ X × Y . Let R(Z, θ) = 1
n

∑n
i=1 L(zi, θ) denote the empirical risk, given a set of data98

Z = {zi}ni=1. We assume that the empirical risk is differentiable in θ.The training data are supplied99

by a set of data holders.100

3.1 Exact Influence101

In simple terms, influence measures the marginal contribution of a data point on a model’s accuracy.102

A positive influence value indicates that a data point improves model accuracy, and vice-versa. More103

specifically, let Z = {zi}ni=1, Z+j = Z ∪ zj where zj ̸∈ Z, and let104

R̂ = min
θ

R(Z, θ) and R̂+j = min
θ

R(Z+j , θ)

i.e., R̂ and R̂+j denote the minimum empirical risk their respective set of data. The influence of105

datapoint zj on Z is defined as:106

I(zj , Z) ≜ R̂− R̂+j (1)

Despite being highly informative, influence functions have not achieved widespread use in Federated107

Learning (or Machine Learning in general). This is mainly due to the computational cost. Equation108

1 requires a complete retrain of the model, which is time-consuming, and very costly; especially109

for state-of-the-art, large ML models. Moreover, specifically in our setting, we do not have direct110

access to the training data. In the following section, we will introduce a practical approximation of111

the influence, applicable in Federated Learning scenarios.112
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3.2 ‘Lazy’ Influence: A Practical Influence Metric for Filtering Data in FL Applications113

The key idea is that we do not need to approximate the influence value to filter data; we only need an114

accurate estimate of its sign (in expectation). Recall that a positive influence value indicates that a115

data point improves model accuracy, and vice-versa, thus we only need to approximate the sign of116

Equation 1, and use that information to filter out data with negative sign.117

Our proposed approach works as follows (recall that each data holder agent assumes two roles: the118

role of the contributor (A), and the role of the tester (B)):119

(i) For each federated learning round t (model Mt(θt)), the contributor agent A performs a small120

number k of local epochs to Mt using a batch of his training data ZA,t, resulting in θ̃At . k is a121

hyperparameter. θ̃At is the partially trained model of Agent A, where most of the layers, except the122

last one have been frozen. The model should not be fully trained for three key reasons: efficiency,123

avoiding over-fitting, and preventing the testers (Bs) from acquiring agent A’s model update (e.g.,124

in our simulations we only performed 1 epoch). Furthermore, Agent A adds precise noise to the125

trained parameters, to ensure strong, worst-case differential privacy. Specifically, Gaussian noise,126

parametrized by σ and a clipping threshold, is added by Agent A to their partial model update, based127

on [26]. Finally, A sends θ̃At to every other agent.128

(ii) Each tester B uses his test dataset ZB
test to estimate the sign of the influence using Equation 2.129

Next, the tester applies noise to Iproposed(Z
B
test), as will be explained in the next section, to ensure130

strong, worst-case differential privacy guarantees (i.e., keep his test dataset private).131

Iproposed(Z
B
test) ≜ sign

 ∑
ztest∈ZB

test

L(ztest, θt)− L(ztest, θ
A
t )

 (2)

(iii) Finally, the center C aggregates the obfuscated Iproposed(Z
B
test) from all testers, and filters132

out data with negative total score (
∑

∀B Iproposed(Z
B
test) < 0).133

The proposed influence offers many advantages. The designer may select any optimizer to perform134

the model updates, depending on the application at hand. We do not require the loss function to be135

twice differentiable and convex; only once differentiable. It is significantly more computation and136

communication efficient; an important prerequisite for any FL application. This is because agent A137

only needs to send (a small part of) the model parameters θ, and not his training data. Moreover,138

computing a few model updates (using e.g., SGD, or any other optimizer) is significantly faster than139

computing either the exact influence 1 or an approximation [20], due to the challenges mentioned140

above. Finally, and importantly, we ensure the privacy of both the train and test dataset of every141

agent.142

3.3 Differentially Private Reporting of the Influence143

We achieve this goal by obfuscating the influence reports using RAPPOR [13], which results in an144

ε-differential privacy guarantee [11]. The obfuscation process (permanent randomized response [33])145

takes as input the agent’s true value v (binary) and privacy parameter p, and creates an obfuscated146

(noisy) reporting value v′, according to Equation 3. Subsequently, v′ is memorized and reused for all147

future reports on this distinct value v.148

v′ =


+1, with probability 1

2p

−1, with probability 1
2p

v, with probability 1− p

(3)

p is a user-tunable parameter that allows the agents themselves to choose their desired level of privacy,149

while maintaining reliable filtering. The worst-case privacy guarantee can be computed by each agent150

a priori, using the following formula [13]:151

ε = 2 ln

(
1− 1

2p
1
2p

)
(4)
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It is important to note that in a Federated Learning application, the center C aggregates the influence152

sign from a large number of agents. This means that even under really strict privacy guarantees, the153

aggregated influence signs (which is exactly what we use for filtering), will match the true value in154

expectation. This results in high quality filtering, as we will demonstrate in Section 4.155

The pseudo-code of the proposed approach is presented in Algorithm 1.156

Algorithm 1: Filtering Poor Data Using Influence Approximation in Federated Learning
1 C: The center (C) initializes the model M0(θ0)
2 for t ∈ T rounds of Federated Learning do
3 C: Broadcasts θt
4 for Agenti in Agents do
5 Agenti: Acts as a contributor (A). Performs k local epochs with ZA,t on the

partially-frozen model θ̃At .
6 Agenti: Applies precisely crafted noise to θ̃At .
7 Agenti: sends θ̃At to Agents−i.
8 for Agentj in Agents−i do
9 Agentj : Acts as a tester (B). Evaluates the loss of ZB

test on θt
10 Agentj : Evaluates the loss of ZB

test on θ̃At
11 Agentj : Calculates vote v (sign of influence), according to (Equation 2)
12 Agentj : Applies noise to v according to his privacy parameter p to get v′
13 Agentj : Sends v′ to C

14 C: Filters out Agenti’s data based on the votes from Agents−i (i.e., if∑
∀B Iproposed(Z

B
test) < 0).

15 C: Updates θt using data from unfiltered Agents;

4 Evaluation Results157

In this section we report the results of a preliminary empirical evaluation of the proposed approach.158

So far, we evaluated the method on two common datasets: MNIST and CIFAR 10. The corruption159

used for the evaluation is generated by applying a random label from the label space instead of the160

original label. For our experiments we corrupted 90% of the point per corrupted batch, while 30% of161

the total batches were corrupted.162

1. MNIST Handwritten numerical digits [6]163

2. CIFAR10 Dataset of 32x32 colour images in 10 classes. [21]164

4.1 Implementation165

We used HuggingFace’s implementation of Vision Transformers. [34] We opted to use Vision166

Transformer (ViT) for simplicity, and, importantly, because these models are on par with state of the167

art image classification models. [7] It is important to stress that our proposed influence approximation168

can be used with any gradient-descent based machine learning method.169

The center C provides a warm-up model, that has been trained for only a few epochs (3 in all our170

experiments). With the learning rate set to 2 × 10−5, and regularization set to 10−2. This model171

keeps the best result unlike agent training, where we always take the final model.172

Our evaluation involves a single round of Federated Learning. A small portion of every dataset173

(around 1%) was selected as the ‘warm-up’ data used by the center C to train the initial model M0.174

Each agent has two datasets: a training batch (ZA, see Section 3.2, step (i)) which the agent uses175

to update the model when acting as the contributor agent, and a test dataset (ZB
test, see Section 3.2,176

step (ii)), which the agent uses to estimate the sign of the influence when acting as a tester agent.177

The ratio of these datasets is 2 : 1. The training batch size is 100 (i.e., the train dataset includes 100178

points, and the test dataset 50 points). The learning rate for the agents has been increased compared179
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Table 1: Filtration performance metrics, with a 30% mislabel rate.

Accuracy Precision Recall

MNIST 100% 100% 100%
MNIST (ε = 1) 100% 100% 100%
CIFAR10 100% 100% 100%
CIFAR10 (ε = 1) 86.00% 86.36% 63%

to the center model to 10−4, to emphasize the direction of model change. We used 100 agents. This180

means that each training batch was evaluated on 50× (100− 1) test points, and that for each training181

batch (contributor agent A), the center collected (100-1) estimates on the influence sign (Equation 2).182

Finally, in a mislabeled batch, 90% of the labels have been assigned a random value from the label183

space.184

4.2 Precision and Recall185

Precision and recall are the most informative metrics to evaluate the efficiency of our filtering186

approach. Recall refers to the ratio of detected mislabeled batches aver all of the mislabeled batches.187

Meanwhile, precision represents the ratio of correctly identified mislabeled batches, over all batches188

identified as mislabeled. Table 1 shows that the proposed method performs well across all metrics,189

for both datasets, even under really strict privacy guarantees (i.e., ε = 1).190

4.3 Privacy191

Table 1 also shows the impact of the privacy guarantee on the achieved accuracy (note that ε = 1192

is the privacy guarantee on both the training set, and the agent votes). We can see that there is of193

course a trade-off between privacy and efficiency of filtration. Yet, most importantly, our approach194

can provide high accuracy, even under really strict, worst-case privacy requirements. Importantly,195

our decentralized framework allows each agent to compute his own worst-case privacy guarantee a196

priori, using the Equation 4.197

5 Conclusion198

Privacy protection is a core element of Federated Learning. However, this privacy also means that it199

is significantly more difficult to ensure that the training data actually improve the model. Mislabeled,200

corrupted, or even malicious data can result in a strong degradation of the performance of model, and201

privacy protection makes it significantly more challenging to identify the cause.202

In this work, we propose ’lazy’ influence, a practical approximation of the influence to obtain a203

meaningful score that characterizes the quality of training data and allows for effective filtering, while204

fully maintaining the privacy of both the train and test data under strict, worst-case ε-differential205

privacy guarantees.206

The score can be used to filter bad data, recognize good and bad data providers, and pay data holders207

according to the quality of their contributions. We have documented empirically that poor data have208

a significant negative impact on the accuracy of the learned model, and that our filtering technique209

effectively mitigates this, even under strict privacy requirements ε < 1.210
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