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Figure 1: An illustration of the Generalized Zero-Shot Setting (red arrow), Cross-Dataset Setting
(blue arrow) and Few-Shot Setting with examples from Pascal-Part-116 and ADE20K-234.

Abstract

Segmenting and recognizing diverse object parts is a crucial ability in applications
spanning various computer vision and robotic tasks. While significant progress
has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS),
i.e., segmenting objects with arbitrary text, the corresponding part-level research
poses additional challenges. Firstly, part segmentation inherently involves intricate
boundaries, while limited annotated data compounds the challenge. Secondly, part
segmentation introduces an open granularity challenge due to the diverse and often
ambiguous definitions of parts in the open world. Furthermore, the large-scale
vision and language models, which play a key role in the open vocabulary setting,
struggle to recognize parts as effectively as objects. To comprehensively investigate
and tackle these challenges, we propose an Open-Vocabulary Part Segmentation
(OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly
available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three
specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part
Segmentation, and Few-Shot Part Segmentation, providing insights into analogical
reasoning, open granularity and few-shot adapting abilities of models. Moreover,
we analyze and adapt two prevailing paradigms of existing object-level OVSS
methods for OV-PARTS. Extensive experimental analysis is conducted to inspire
future research in leveraging foundational models for OV-PARTS. The code and
dataset are available at https://github. com/OpenRobotLab/0V_PARTS,
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1 Introduction

The ability to identify and reason about object parts is crucial for a wide range of human activities.
For instance, when preparing a meal, we rely on specific parts of utensils such as the blade of a
knife for slicing and the handle of a spatula for stirring. Hence, developing a vision system capable
of part-level object segmentation is crucial and offers substantial benefits across applications in
vision and robotics such as image editing [14} [19], object manipulation [27]] etc. Despite dedicated
efforts in annotating fine-grained parts by previous works [4} 34]], the complex nature and diverse
granularity of object parts make it hard to create a comprehensive closed category set. Recently,
the research on Open Vocabulary Semantic Segmentation (OVSS) [22, |9, [7, [13} 133 [32]] extends
the image-text alignment ability of large-scale Vision-Language Models (VLM) like CLIP [26] to
pixel-level prediction, which shows remarkable performance in open vocabulary object segmentation.

Despite the satisfying performance on object-level OVSS, part-level OVSS raises additional chal-
lenges. Parts exhibit complex structures, often with more intricate boundaries and appearance
variations than objects. However, the available labeled data for training part segmentation models is
significantly limited compared to that of objects. Moreover, in the open-vocabulary setting, there are
further challenges to overcome. Firstly, while objects are typically well-defined entities with strict
boundaries, the granularity of parts can be flexible, posing the extra open granularity challenge that
rarely occurs in object-level OVSS. Secondly, the widely used large-scale VLM are mainly pretrained
on natural image-text pairs which are inherently biased to object words. Hence, their ability to
recognize object parts can be less proficient. This disparity is reflected in the less discriminative class
activation maps of CLIP [26]] for parts as opposed to objects, as illustrated in Figure 2] (a).

Considering these challenges, we propose to break down the complex part-level OVSS problem
into specific subtasks. One key observation is, common objects often exhibit shared characteristics
in terms of parts. For example, furniture like chair, table and sofa often have shared parts such as
legs, seats, and backrests. Humans can categorize a new object based on its part descriptions related
to a known object. Similarly, we can leverage this analogical reasoning ability to improve data
efficiency in part-level OVSS. Hence, we propose a Generalized Zero-Shot Part Segmentation setting,
focusing on assessing the transferability of part segmentation from seen objects to related unseen
objects. Additionally, we extend the related Cross-Dataset Segmentation setting, commonly used
in object-level OVSS, to part-level OVSS. This setting further emphasizes the open granularity
challenge, due to the varying part vocabularies and granularity levels across datasets, as shown in
Figure[T] Finally, concerning the weaker transferability of large-scale foundation models for the part,
we further expect a Few-Shot Part Segmentation setting to enable fast adaptation of the foundation
models to part-level OVSS. The entire benchmark, named Open-Vocabulary Part Segmentation (OV-
PARTYS), is further supplemented with carefully cleaned and reorganized versions of Pascal-Part [4]
and ADE20K-Part [34]], namely Pascal-Part-116 and ADE20K-Part-234.

Additionally, we design strong baselines for OV-PARTS based on two paradigms (i.e., two-stage and
one-stage) of existing object-level OVSS methods. The first paradigm [9, 133} 32] designs a two-stage
approach that decouples the segmentation and open vocabulary classification abilities. Applying this
paradigm to OV-PARTS involves training a class-agnostic part proposal model followed by using
CLIP for part region classification. However, it turns out that treating object part as independent
classes like objects lead to suboptimal performance. Indeed, even humans struggle to distinguish
between “cow’s leg” and “sheep’s leg” if only the region of their legs is shown. To mitigate this
problem, we propose two improvements: (1) An Object Mask Prompt strategy which introduces the
object-awareness to the first part proposal stage. (2) A Compositional Prompt Tuning strategy which
not only enhances object awareness in the second stage but also shifts CLIP’s attention from objects to
object parts. This two-stage paradigm offers the advantage of combining class-agnostic part parsing
models [[15 25]] and various finetune methods to adapt foundation models for classification [38,137,2].
However, using a class-agnostic part proposal model has limitations. It is trained on pre-defined
parts, which is not applicable to the open granularity scenario. Moreover, the mask proposal model is
inclined to overfit the training data, leading to reduced zero-shot generalization ability.

The other line of works [[7, 22] follows a one-stage paradigm that trains a unified open-vocabulary
segmentation model based on CLIP, eliminating the missing object context problem. As for the
open granularity ability, we experimentally find that CATSeg [7] and CLIPSeg [22f], which are
pretrained on COCO-Stuff[1] and PhraseCut [31]] respectively, can already achieve the first-level
granular generalization from object to some simple parts as shown in Figure [2|(b). Motivated by this,
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Figure 2: (a) Class activation maps of CLIP. The object prompt “Sheep” can activate its area while
the part prompt “Head” fails. When using “Sheep’s Head” as prompt, the activation is still biased to
“Sheep”. (b) Without finetuning on part datasets, CATSeg outputs rough part masks of “Bird” and
“Sheep” (Left) and CLIPSeg produces finer granular part masks of “Bird” and “Dog” (Right.).

we design some one-stage baselines by finetuning specific modules of CLIPSeg and also investigate
parameter-efficient finetuning strategies [12]] for OV-PARTS. However, the segmentation ability of
one-stage baselines is weaker than the two-stage baselines, mainly limited by the frozen CLIP visual
encoder which is pretrained without sufficient segmentation data.

In summary, the two-stage and one-stage baselines exhibit complementary strengths and weaknesses.
But there are no currently clear solutions about how to achieve both high-quality segmentation and
strong open vocabulary and granularity generalization ability in OV-PARTS. Hence, there remains
much to uncover in addressing OV-PARTS, particularly in unlocking the full potential of large
foundation models in vision, language and multi-modality, which can be the value of the benchmark.

2 Related Work

Open Vocabulary Semantic Segmentation. Open vocabulary semantic segmentation has recently
achieved significant progress with the help of large-scale Vision-Language Models (VLM) like
CLIP [26], which excel at recognizing objects in images. One line of research [9] combines
powerful segmentation models like MaskFormer [3]] with CLIP in a two-stage way. In the first stage,
MaskFormer [5] produces class-agnostic object mask proposals. In the second stage, CLIP [26]]
classifies the image regions of these proposals. ODISE further used a pretrained diffusion
model to enhance the proposal stage. Another one-stage approach focuses on extending CLIP [26] to
pixel-level prediction [[7,22]. They mainly train a pixel decoder on top of the CLIP image encoder.
CLIPSeg [22] adds a lightweight transformer-based pixel decoder with a FILM[10] module to fuse
the multi-modality features. CATSeg [7] designs a spatial and class aggregation network with
multi-modality guidance features for effective open vocabulary pixel classification.

Part Segmentation. Fine-grained part segmentation has been actively studied in the literature
[28]]. Most of these methods [8 adopt a supervised closed-set setting.
Tang et al. [29] designs a supervised language-driven segmentation model which allows interactive
whole-to-part segmentation. Recently, Pan et al. [25] proposes an open-world part segmentation
setting that only focuses on the class-agnostic part mask generation which is not language-driven.
The concurrent work Sun et al. [28]] tackles the open vocabulary part segmentation task with a cross-
dataset setting. However, the big performance gap compared to open vocabulary object segmentation
hasn’t been well studied. Also, their proposed method emphasizes building semantic correspondences
based on visual features. But the role of language in the open vocabulary setting as well as the
potential of vision language models has not been adequately discussed. Moreover, some existing
open-vocabulary object detection models [16} 20]] can also detect parts with bounding boxes.
Because they are trained on crowd-sourced datasets in which the texts can also include part words.
However, pixel-level understanding is more conforming to the nature of part which is ambiguous,
multi-granular and has intricate boundaries. For example, with bounding boxes, it’ll be hard to
identify a little bird’s parts accurately.



3 Dataset and Benchmark Details

In this section, we first introduce the two proposed datasets Pascal-Part-116 and ADE20K-Part-234
in section[3.1] Then we elaborate on the three task settings designed for OV-PARTS in section
The exhaustive list of object part classes, the specific data splits and the distribution of part scales and
numbers of Pascal-Part-116 and ADE20K-Part-234 are left to the supplementary material.

3.1 Datasets

Pascal-Part-116. Pascal-Part dataset [4] is an extension of the PASCAL VOC 2010 dataset [11]],
further annotating objects’ part masks. Some categories such as “cow”, are annotated with a
comprehensive list of parts, while others like “chair”, “boat”, and “dining table” only provide
silhouette annotations. Moreover, the part definition includes directional terms like "left," "right,"
"front," "back," "upper," and "lower", such as “cow’s left front lower leg”. However, in an open-
vocabulary setting, it’s unnecessary to discern between the semantics of labels such as “cow’s left
front lower leg” and “cow’s right back lower leg”. They can not only create a bottleneck in part
segmentation but also cause overfitting which hinders effective language-driven generalization. Hence,
we have manually merged some of the over-segmentation parts to create a more practical version.
Our revised Pascal-Part dataset [4] includes a total of 116 object part classes across 17 object classes,
which is the most extensive set among various versions of Pascal-Part dataset[30, 21} |3} 124]].

ADE20K-Part-234. The ADE20K dataset [34] provides open-ended annotations of 847 objects and
1000+ parts, following the WordNet hierarchy. It covers a broad range of scenes, including indoor
spaces such as “bedrooms”, and outdoor spaces like “streetscapes”. However, the part annotations in
ADE20K are extremely sparse and incomplete (less than 15% object instances have part annotations),
which poses significant challenges for both training models and evaluating their performance. Despite
attempts to reorganize the dataset [23 [29], either the revised versions have not been publicly released
or they still contain considerable noise. To get a clean version, we started with the widely used
SceneParse150 [35]] subset and only keep the objects which have more than one frequently annotated
part (over 100 occurrences) and then filter the rare parts (less than 10 occurrences). Moreover, we
manually merge some duplicated parts such as “chair arm” and “chair armrest”, “table stretcher” and
“table h-stretcher” as well as the over-segmentation parts. The resulting subset consists of 44 objects
and 234 parts, providing a cleaner dataset for improved analysis and evaluation.

3.2 Benchmark Tasks

There are two primary challenges : (1) The available pixel-level part data is limited. (2) Pretrained
features from large-scale VLM exhibits weaker transferability to parts. To evaluate the OV-PARTS
models comprehensively, we have designed three task settings: Generalized Zero-Shot Part Segmen-
tation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation.

Generalized Zero-Shot Part Segmentation. Considering the limited ability of VLMs to recognize
parts, this task aims to assess the model’s analogical reasoning ability, which is designed by selecting
novel objects that possess related parts to the base objects, rather than being completely irrelevant.
Data Split. To split the object classes in each dataset, we group the object classes into higher-level
categories (e.g. Animals, Vehicles) based on their shared attributes. Within each hyper-category, we
split the objects into base and novel classes (74/42 for Pascal-Part-116 and 176/58 for ADE20K-Part-
234). The unseen objects in the training set are set to the background. In this way, a novel object part
class may be novel at the object level (e.g., “dog’s head” is a novel class while “cat’s head” is a base
class) or both at the object level and the part level (e.g., “bird’s beak’). The complete base and novel
class set can be found in the supplementary material.

Evaluation Protocol. Following previous OVSS methods [33, 9], we first calculate the mean class-
wise Intersection over Union (mloU) on both base and novel classes. Then, to provide a balanced
assessment of the model’s performance across both base and novel classes in this setting, we use
harmonic mean IoU (hIoU) as the primary metric.

Cross-Dataset Part Segmentation. In object-level OVSS, the cross-dataset setting evaluates the
model’s ability to handle variations in data distribution and novel object vocabulary. While in OV-
PARTS, considering diverse part definitions, the model further needs to generalize between different
annotation granularity levels in addition to different vocabularies. For example, the part set of “car” is
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Figure 3: The overall frameworks of the representative two-stage (ZSseg+) and one-stage (CLIPSeg)
baselines. (a) is the modified proposal generation stage of ZSseg. (b) shows the design of Composi-
tional Prompt Tuning based on CoOp. (c) is the CLIPSeg model architecture which also indicates the
modules that can be finetuned. CLIP is fixed in both frameworks.
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[“wheel”, “headlight”, “license plate”, “mirror”, “door”, “window”, “side”, “front”, “back”, “roof™’]
in Pascal-Part-116 while is [“bumper”, “door”, “headhght” “hood”, “license plate”, “logo”, “mirror”,
“wheel”, “window”, “wiper”’] in ADE20K-Part-234 which has a finer granularity.

Data Split. Overall, ADE20K-234 covers a more diverse set of objects than Pascal-Part-116. We train
models on the full training set of ADE20K-234 and evaluate them on Pascal-Part-116’s testing set.

Evaluation Protocol. We reported mloU on both the source dataset (ADE20K-Part-234) and target

dataset (Pascal-Part-116).

Few-Shot Part Segmentation. Indeed, there’s still a big performance gap between OV-PARTS
models compared to the object-level OVSS models, mainly due to the inherent task difficulty and
data limitation. Inspired by recent advances in foundation models, we design this few-shot part
segmentation setting mainly to explore the strategies to adapt large-scale foundation models effectively
for OV-PARTS and investigate the feasibility of utilizing object-level data to achieve parameter-
efficient training and data efficiency.

Data Split. We sample 16 images for each object class. Since there may be multiple objects in an
image or each object may not have exhaustive part annotations, the exact number of sampled shots
for each object part class may be slightly over or below 16.

Evaluation Protocol. We use mloU as the main metric.

4 Methodology

Existing object-level Open Vocabulary Semantic Segmentation (OVSS) methods can be categorized
into the two-stage and one-stage paradigms. These paradigms differ in the way to apply the CLIP
model to the segmentation process. In this section, we will give a brief overview of the framework
for each paradigm. We then introduce our modifications with insights into the baselines.

4.1 Two-Stage Baseline

For the two-stage framework (Figure@ (a)), we select ZSseg as the baseline, which includes a
proposal generation stage and a zero-shot prediction stage. The proposal generation stage mainly
includes a MaskFormer [3]. Given an input image I, a backbone network extracts the image features
Z. Then a pixel decoder is used to get the mask features F' and a query-based transformer decoder
is used to get the query features S with learnable queries Q. Finally, S is fed into a mask predictor
to get the class-agnostic masks M by computing the dot product of S and F' and a fixed classifier



(initialized from CLIP text embeddings) to compute the classification score C'p:
S = TransformerDecoder(Q; Z) e))
M = MaskPredictor(S; F),Cp = Classi fier(S) )

In the zero-shot prediction stage, the mask proposals M are used to crop the original image I. The
resulting masked image is then fed into the CLIP model for zero-shot class prediction. The final
classification scores are obtained through an ensemble of both stages:

Co =CLIP(I; M),C = Ensemble(Cp; C¢) 3)

Indeed, directly transferring the zsseg method from object-level data to part-level data has limitations
and can lead to suboptimal performance. Unlike objects, which exist independently, parts are always
contextually dependent on their respective objects. Classifying part regions without considering their
object context is challenging. To address this, we propose two approaches to incorporate object
context into both stages:

Object Mask Prompt. In the first stage, we propose to incorporate object masks as a mask prompt
which can be obtained in a more cost-effective manner. This decoupling of object masks from the
part segmentation brings object awareness to the model and helps resolve the difficulty. Furthermore,
it enables interactive segmentation applications such as image editing.

In detail, as shown in Figure [3] (a), we modify the transformer decoder by replacing the cross-
attention layers with mask-guided cross-attention layers [6]. This ensures that the cross-attention
mechanism is computed only within the regions corresponding to objects, resulting in more accurate
and context-aware part proposals. Equation (1)) thus becomes:

S = MaskedTrans formerDecoder(Q; Z; M,) 4

where M, indicates the object mask. We further find that the proposals of parts are very noisy
compared to objects. Hence, we design a mask-denoising technique during testing. Instead of directly
using M for the second stage, we aggregate M € R9*"*% and Cp € R7¥¢ to get a refined set of
part mask proposals:

Cc = CLIP(I; Binary(y_ ,(Cp x M) € ReXhxwy) 5)

Here, g, ¢, h and w represent the number of learnable queries, the number of classes, the image height
and the image width respectively. In the Binary operation, we process the semantic mask into ¢
binary masks.

Compositional Prompt Tuning. In the second stage, to ensure that CLIP is not confused when pre-
sented with only partial regions of objects, we adapt CLIP’s vision encoder following MaskCLIP [36]
to obtain dense image embedding instead of the global image embedding. Then we use mask pooling
to get CLIP visual features for both the object mask and the part mask. Since we observed that objects
tend to capture most of CLIP’s attention, overshadowing the parts, we design a compositional prompt
tuning method based on CoOp [38]]. We add object tokens and part tokens for prompt tuning with a
learnable fusion weight. The modified zero-shot prediction stage is shown in Figure[3](b). We find
that this prompt tuning strategy is effective with minimal data and training cost.

4.2 One-Stage Baseline

In the one-stage framework, we employ CLIPSeg [22]] as our baseline. The overall framework of
CLIPSeg is shown in Figure[3|(c). CLIPSeg adds a parameter-efficient three-layered transformer
decoder to the original CLIP model for segmentation. It integrates visual features from the final
layer of the visual encoder and text features of all object part prompts from the text encoder through
the FiLM module, forming cross-modal input token embeddings for the decoder. Furthermore, the
features extracted from the 3rd, 6th, and 9th layers of CLIP’s visual encoder are projected and added
to the intermediate features of the corresponding decoder layers. It’s worth noting that, the visual
features extracted from the frozen CLIP visual encoder first pass through the added visual adapter,
which consists of a two-layered MLP, before reaching the decoder. CLIPSeg is originally designed
to generate binary segmentation maps conditioned on either a visual prompt or a text prompt. So
we replace the original binary segmentation head with a multi-class one and modify its loss for
multi-class segmentation using only text prompts.



By directly applying CLIP to the pixel-level prediction, we find that CLIPSeg, trained on Phrase-
Cut [31]] with object phrases as text input, shows amazing zero-shot generalization to parts. From
this finding and considering the data sparsity issue in part segmentation, our focus shifts to exploring
parameter-efficient finetuning for the one-stage baseline. Finetuning the entire CLIP model has
proven to be harmful to its generalization ability [36]]. Hence we conduct experiments to finetune
different combinations of the specific modules of CLIPSeg, including the text embedding layer in
CLIP, the pixel decoder and the extra light-weight CLIP-Adapter modules [12] (Vision-Adapter and
Text-Adaper are simple MLPs) as shown in Figure 3] (c).

S Experiments

5.1 Experimental Setup

Evaluation Setup for Three Task Settings. Since the state-of-the-art object-level OVSS models are
powerful, we design two evaluation settings to investigate the primary bottlenecks: (1) Oracle-Obj
Setting: The ground-truth mask and class of objects are assumed to be known. (2) Pred-Obj Setting:
The ground-truth mask and class of objects are not provided.

Implementation Details. The details of baselines and training are left to the supplementary material.

5.2 Results in Generalized Zero-Shot Part Segmentation

Settings. We reported results of both two-stage and one-stage baselines on Pascal-Part-116 and
ADE20K-Part-234 datasets as shown in Table (1| and Table [2| respectively. Firstly, to provide a
comprehensive comparison, we reported the results of the supervised baseline: MaskFormer [5] with
ResNet-50 backbone on the seen and unseen classes. Then for the two-stage baselines, we reported
the results of the original ZSseg [33]] and our modified ZSseg (ZSseg+) with different finetuning
methods for the second stage: Compositional Prompt Tuning based on CoOp [38] and CoCoOp [37],
abbreviated to CPT-CoOp and CPT-CoCoOp. For the one-stage baselines, we examined two
state-of-the-art methods: CAT-Seg [7]] and CLIP-Seg [22]. We used the pretrained model of CATSeg
trained on COCO-Stuff and CLIPSeg trained on PhraseCut. Then we reported their results without
any finetuning, as well as the results when adopting various finetuning strategies. For the Pred-Obj
Setting evaluation, we use ZSseg’s pretrained object model on COCO-Stuff in the two-stage baselines
while don’t adopt separate object models in one-stage baselines.

Two-Stage Baselines. We evaluated the effects of the Object Mask Prompt, Mask Denoise, and
CPTCoOp in ZSseg+ on Pascal-Part-116 as shown in Table[3] We gradually add each approach to
ZSseg to measure its individual effect under the Oracle-Obj Setting. The results indicate that the

Table 1: Zero-shot performance of the two-stage and one-stage baselines on Pascal-Part-116.
Oracle-Obj Pred-Obj

‘Seen Unseen Harmonic Seen  Unseen Harmonic

Model Backbone Finetuning

Fully-Supervised Baseline

MaskFormer [5] ResNet-50 X ‘ 5528 52.14 - 53.07 47.82 -

Two-Stage Baselines

ZSseg [33] ResNet-50 X 4935 12.57 20.04 40.80 12.07 18.63

ZSseg+ ResNet-50 CPTCoOp 5533 19.17 2848 5423 17.10 26.00

ZSseg+ ResNet-50 CPTCoCoOp | 54.43 19.04 28.21 5331 16.08 24.71

ZSseg+ ResNet-10lc ~ CPTCoOp 57.88 2193 31.81 56.87 20.29 29.91

One-Stage Baselines

CATSeg [7] ResNet-101 X 14.89 10.29 12.17 13.65 7.73 9.87
& ViT-B/16

CATSeg [[7] ResNet-101 B+D 4397 26.11 32.76 41.65 26.08 32.07
& ViT-B/16

CLIPSeg [22] ViT-B/16 X 2233 19.73 20.95 1432 10.52 12.13

CLIPSeg [22] ViT-B/16 VA+L+F+D | 48.68 27.37 35.04 44.57 27.79 34.24




Table 2: Zero-shot performance of the two-stage and one-stage baselines on ADE20K-Part-234.

Oracle-Obj Pred-Obj
Seen  Unseen Harmonic Seen  Unseen Harmonic

Model Backbone Finetuning

Fully-Supervised Baseline

MaskFormer [5] ResNet-50 X ‘ 46.25 4786 - 3552 16.56 -

Two-Stage Baselines

ZSseg+ ResNet-50 CPTCoOp 43.19 27.84 33.85 21.30 5.60 8.87

ZSseg+ ResNet-50 CPTCoCoOp | 39.67 25.15 30.78 19.52 298 5.17

ZSseg+ ResNet-10lc ~ CPTCoOp 4341 2570 32.28 2142 333 576

One-Stage Baselines

CATSeg [7] ResNet-101 X 1149 856 9.81 630 379 473
& ViT-B/16

CATSeg [7] ResNet-101 B+D 3140 25.77 28.31 20.23 8.27 11.74
& ViT-B/16

CLIPSeg [22] ViT-B/16 X 1527 18.01 16.53 5.00 336 4.02

CLIPSeg[22] ViT-B/16 VA+L+F+D | 38.96 29.65 33.67 248 624 998

Table 3: Ablations on proposed strategies in ~ Table 4: Cross-Dataset Performance.
ZSseg+ by adding each module to ZSseg on  Models are trained on the source dataset

Pascal-Part-116. ADE20K-Part-234 and tested on the tar-
Oracle-Obj get dataset Pascal-Part-116.
Model Seen  Unseen Harmonic Source ‘ Target
ZSseg [33] 4935 1257 20.04 Model Oracle Pred | Oracle Pred
+0bj Mask Prompt | 48.00 13.89 21.54 CATSeg 27.95 17.22| 16.00 14.72
+Mask Denoise 48.00 16.84 24.93 VA+L+F 35.01 21.74| 16.18 11.70
+CPTCoOp 5533 19.17 28.48 VA+L+F+D | 37.76 21.87| 19.69 13.88

Object Mask Prompt improves the performance on unseen classes (+1.32%), and adding Mask
Denoise further improves it (+2.95%). However, there is a slight performance drop (—1.35%) on
the seen classes. Moreover, finetuning the CLIP embeddings with CPTCoOp leads to significant
performance gains on both the seen (+7.33%) and unseen (+2.33%) classes. Notably, the finetuning
with CPTCoOp requires only 500 iterations and less than 128 samples per class.

One-Stage baselines. Both CATSeg and CLIPSeg employ a frozen CLIP visual encoder to extract
image features. But CATSeg further uses an extra learnable visual backbone to guide the pixel
decoder. In Table [I]and Table 2] we can see that the CATSeg and CLIPSeg models, pretrained
on object datasets, already show impressive results. Notably, CLIPSeg even outperforms ZSseg+
with a ResNet-50 backbone on the unseen classes. The comparison between CLIPSeg and CATSeg
shows that OVSS models trained with phrases of objects exhibit stronger generalization ability to
parts than sole objects. Hence, we explore alternative finetuning strategies rather than training from
scratch. We finetune three different components: language embedding layer in text encoder (L),
FiLM (F) and Decoder (D) of CLIPSeg and two added lightweight modules: CLIP-Adapter [[12] to
the visual encoder (VA) and text encoder (TA). As shown in Table El, we draw three key conclusions:
(1) Multi-modality finetuning is better than single-modality (VA+L+FiLM surpasses VA+FiLM
and L+FiLM).; (2) Finetuning language embedding performs better than the text adapter (VA+L+F
surpasses VA+TA+F); (3) Parameter-efficient finetuning can effectively transfer the knowledge from
large-scale foundation models and object-level datasets to part parsing. We can see that VA+L+F
even outperforms finetuning the entire pixel decoder on the unseen classes.

The qualitative results, which present a comparison among ZSseg+, CATSeg and CLIPSeg on the
unseen class “Bird” of Pascal-Part-116, as well as additional qualitative results on Pascal-Part-116
and ADE20K-Part-234, are available in Section C of the supplementary material.

5.3 Results in Few-Shot Part Segmentation

In the few-shot setting, the two-stage baselines have inherent limitations. Firstly, training the
MaskFormer from scratch is prone to overfitting with limited data. Secondly, the class-agnostic
proposal generation is unable to generalize from object to part, making it hard to make use of the



Table 5: Performance on finetuning various modules of CLIPSeg in both the zero-shot setting and
few-shot setting on Pascal-Part-116 and ADE20K-Part-234.

Model ‘ Pascal-Part-116 ‘ ADE20K-Part-234
Setting | Zero-Shot Setting (Oracle) | Few-Shot Setting | Few-Shot Setting
Finetuning | Seen Unseen  Harmonic| Oracle  Pred | Oracle  Pred
X 22.33 19.73 20.95 21.58 - 15.38 -

D 44.65 26.03 32.89 29.86 27.16 24.01 12.96
F 31.34 21.45 25.46 - - -

L+F 38.11 21.14 27.19 27.61 25.90 26.04 14.55
TA+F 33.13 21.70 26.23 - - - -

VA+F 45.13 22.55 30.07 29.99 26.84 23.74 12.72
VA+TA+F 44.83 24.16 31.39 - - - -
VA+LA+F 47.04 27.69 34.85 31.34 27.67 28.67 17.32
VA+L+F+D 48.68 27.37 35.04 33.13 30.70 29.36 16.12

object-level data. We reported the results of finetuning various modules in CLIPSeg as shown in
Table[5] We can draw similar conclusions regarding the different finetuning strategies as observed in
the zero-shot setting results. Besides, we observe inconsistent performance trends on Pascal-Part-116
and ADE20K-Part-234: (1) Visual modality finetuning is superior on Pascal-Part-116 while it is
inferior on ADE20K-Part-234 (L+F v.s. VA+F). (2) Finetuning decoder (D) even underperforms the
single language modality (L+F) on ADE20K-Part-234, whereas the opposite trend is observed on
Pascal-Part-116. (3) Finetuning VA+L+F+D on ADE20K-Part-234 brings 0.69% gains to VA+L+F
under the Oracle-Obj Setting but causes 1.2% performance drops (1.2%) under the Pred-Obj
Setting, which is different from the Pascal-Part-116. The cause of the inconsistencies is that,
ADE20K-Part-234 is more challenging than Pascal-Part-116 thus the transferability gap from object
to part is larger. Finetuning more parameters may cause worse performance and is biased to parts
compared to objects. Qualitative results are left to Section C of the supplementary material.

5.4 Results in Cross-Dataset Part Segmentation

We reported three baselines as shown in Table 4 CATSeg with backbone and decoder finetuned,
CLIPSeg with Visual Adapter, Language Embedding and FiLM (VA+L+F) finetuned and further
the decoder (VA+L+F+D) finetuned. Under the Oracle-Obj Setting, CLIPSeg performs better than
CATSeg on both source and target datasets. But CATSeg is less biased to the part as it performs the
best on the target dataset under the Pred-Obj Setting. Hence CATSeg is less prone to overfitting than
CLIPSeg with even more learnable parameters. We also explore the cross-dataset part segmentation
from Pascal-Part-116 to ADE20K-Part-234 for analyzing the potential failures cases in either the part
boundaries delineation or the language misunderstanding. The qualitative results are left to Section C
of the supplementary material.

6 Conclusion

In conclusion, open-vocabulary part segmentation has unique challenges: the limited availability of
labeled data, the complexity of part structures and the open granularity challenge. To inspire future
research, we proposed the OV-PARTS benchmark with newly cleaned Pascal-Part-116 and ADE20K-
Part-234 datasets. And we introduced three benchmark tasks: Generalized Zero-Shot Segmentation,
Cross-Dataset Segmentation, and Few-Shot Segmentation, which assesses the analogical reasoning,
open granularity, and few-shot adapting abilities of OV-PARTS models. Furthermore, we improved
two paradigms from existing object-level OVSS methods as the baselines. Through comprehensive
experimental analysis, we provided insights into the strengths and limitations of current approaches,
highlighting the potential of leveraging large foundation models for OV-PARTS.
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Table A.1: Model complexity analysis on Pascal-Part-116. ZSseg+ 1/2st is first/second stage.

Model Backbone Image Size Trainable Params (M) FLOPs (G)
ZSseg+ st ResNet-101c 512 x 704 61.1 103.9
ZSseg+ 2st ViT-B/16 384 x 384 0.004 58.9

CATSeg ResNet-101 & ViT-B/16 384 x 384 30.9 139.0
CLIPSeg ViT-B/16 352 x 352 1.5 97.9

A Implementation Details

Two-Stage Baselines. Except for the Object Mask Prompt and Compositional Prompt Tuning designs,
we follow the default architecture in the original ZSseg paper. The number of part queries is set to 50.
All the two-stage baselines are trained with AdamW optimizer with the initial learning rate of le-4
and weight decay of le-4. A poly learning rate policy with a power of 0.9 is adopted. The total batch
size is 16 and the total training iteration is 20k. For the training of Compositional Prompt Tuning, a
SGD optimizer with the initial learning rate of 2e-2 and weight decay of Se-4 is used. And we adopt
a warm-up cosine learning rate policy with 100 warm-up iterations. The total batch size is 32 and the
total training iteration is 3k. We sample 128 training samples for each object part class. The length
of the learnable object and part prompt tokens are 4. The object tokens are initialized from the text
embedding of the template “a photo of”’. The initial value of the learnable fusion weight is 0.5.

One-Stage Baselines. We adopt the original architecture of both CATSeg and CLIPSeg as described
in their respective papers. For finetuning CATSeg, we utilize their pretrained model with a ResNet-101
backbone. However, while CATSeg achieves the best performance by finetuning the attention layers
of CLIP’s visual encoder in open vocabulary object segmentation, we observe poor performance
with the same finetuning strategy in OV-PARTS. In our experiments, we only finetune the backbone
with a backbone multiplier of 0.1 and the swin transformer based decoder. We employ an AdamW
optimizer with an initial learning rate of 2e-4, weight decay of 1e-4, and a cosine learning rate policy.
The total batch size is 8, and the training iterations amount to 40k. For CLIPSeg, we utilize the same
optimizer settings and learning rate policy as CATSeg. The training iterations are set to 20k for
the zero-shot/cross-dataset part segmentation setting and 3k for the few-shot part segmentation setting.

Model Complexity. We analyze the computational complexity of these two types of baselines
and summarize the number of trainable parameters and FLOPs in Table [A.1] The complexity
is evaluated on Pascal-Part-116. It’s evident that the one-stage CLIPSeg, which solely refines a
lightweight transformer decoder and employs parameter-efficient modules, showcases the fewest
trainable parameters and the lowest FLOPs. In contrast, the two-stage ZSseg+ approach, involving
the training of a complete maskformer with a larger resolution, leads to the highest count of trainable
parameters and FLOPs.

B Benchmark Datasets Details

B.1 Pascal-Part-116

Pascal-Part-116 contains 8431 training images and 850 testing images. Compared to the original
version of Pascal-Part, we discard the directional indicator for some part classes and merge them to
avoid overly intricate part definitions. The category vocabulary and merging details are as follows:

aeroplane [body, stern, left/right wing, tail, engine, wheel]
bicycle [front/back wheel, saddle, handlebar, chainwheel, headlight]

bird [left/right wing, tail, head, left/right eye, beak, torso, neck,
left/right leg, left/right foot]

bottle [body, capl]

bus [wheel, headlight, front, left/right side, back, roof, left/right
mirror, front/back license plate, door, window]
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Figure A.1: The number of object masks that have corresponding part masks in Pascal-Part-116.
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Figure B.2: The number of part masks for each object class in Pascal-Part-116. Each horizontal bar
is color-coded to represent a specific part class belonging to the object. The colors of the bars are
ordered from left to right based on the part sequence in the list of objects with parts.
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car [wheel, headlight, front, left/right side, back, roof, left/right
mirror, front/back license plate, door, window]

cat [tail, head, left/right eye, torso, neck, left-front/right-front
/left-back/right-back leg, nose, left-front/right-front/left-back/right-back
paw, left/right ear]

cow [tail, head, left/right eye, torso, neck, left-front-upper/left-front-lower
/right-front-upper/right-front-lower/left-back-upper/left-back-lower/right-back-upper
/right-back-lower leg, left/right ear, muzzle, left/right horn]

dog [tail, head, left/right eye, torso, neck, left-front/right-front
/left-back/right-back leg, nose, left-front/right-front/left-back/right-back
paw, left/right ear, muzzle]

horse [tail, head, left/right eye, torso, neck, left-front-upper/left-front-lower
/right-front-upper/right-front-lower/left-back-upper/left-back-lower/right-back-upper
/right-back-lower leg, left/right ear, muzzle, left-front/right-front/left-back
/right-back hoof]

motorbike [front/back wheel, saddle, handlebar, headlight]

person [head, left/right eye, torso, neck, left-lower/right-lower/left-upper/right-upper
leg, foot, nose, left/right ear, left/right eyebrow, mouth, hair,
left/right lower arm, left/right upper arm, left/right hand]

pottedplant [pot, plant]

sheep [tail, head, left/right eye, torso, neck, left-front-upper/left-front-lower
/right-front-upper/right-front-lower/left-back-upper/left-back-lower/right-back-upper
/right-back-lower leg, left/right ear, muzzle, left/right horn]

train [headlight, head, front, left/right side, back, roof, coach]
tvmonitor [screen]

The unseen objects are colored blue and the removed terms are colored purple.

B.2 ADE20K-Part-234

The original subset of SceneParse150 comprises 20,210 training images and 2,000 validation images.
After filtering out less frequent parts, the subset is reduced to 7,347 training images and 1,016
validation images. In ADE20K, most object parts have sparse mask annotations, and only a subset
of object instances have part annotations. Hence, ADE20K-Part-234 provides the instance-level
object mask annotations along with their part mask annotations. To maximize the use of labeled
data and ensure authentic evaluations, different data splits are designed for the three task settings.
(1) Generalized Zero-Shot Part Segmentation: Models are trained on the seen object instances from
the 7,347 training images. Testing is performed on both unseen object instances from the same
7,347 training images and all object instances from the 1,016 validation images. (2) Few-Shot
Part Segmentation: For each object class, 16 training images are sampled following the approach
in Pascal-Part-116. we adapt the validation set from the generalized zero-shot part segmentation
setting by removing the images that occur in the sampled 16-shot training set. (3) Cross-Dataset Part
Segmentation: The original data split (7347/1016 training/validation images) is used since we mainly
test on the Pascal-Part-116 dataset. The annotated objects with their parts are listed as follows:

person [arm, back, foot, gaze, hand, head, leg, neck, torso]

door [door frame, handle, knob, panel]

clock [face, frame]

toilet [bowl, cistern, 1id]

cabinet [door, drawer, front, shelf, side, skirt, top]

sink [bowl, faucet, pedestal, tap, top]

lamp [arm, base, canopy, column, cord, highlight,light source, shade,tube]
sconce [arm, backplate, highlight, light source, shade]

chair [apron, arm, back, base, leg, seat, seat cushion, skirt, stretcher]
chest of drawers [apron, door, drawer, front, 1eg]
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Figure B.3: The statistics for the number of object masks with part masks on ADE20K-Part-234.

chandelier [arm, bulb, canopy, chain, cord, highlight, light source, shadel
bed [footboard, headboard, leg, side raill

table [apron, drawer, leg, shelf, top, wheell

armchair [apron, arm, back, back pillow, leg, seat, seat base,seat cushion]
ottoman [back, leg, seat]

shelf [door, drawer, front, shelf]

swivel chair [back, base, seat, wheel]

fan [blade, canopy, tube]

coffee table [leg, top]

stool [leg, seat]

sofa [arm, back, back pillow, leg, seat base, seat cushion, skirt]
computer [computer case, keyboard, monitor, mouse]

desk [apron, door, drawer, leg, shelf, top]

wardrobe [door, drawer, front, leg, mirror, top]

car [bumper, door, headlight, hood, license plate, logo, mirror, wheel,
window, wiper]

bus [bumper, door, headlight, license plate, logo, mirror, wheel, window,
wiper]

oven [button panel, door, drawer, top]

cooking stove [burner, button panel, door, drawer, oven, stove]

microwave [button panel, door, front, side, top, window]

refrigerator [button panel, door, drawer, side]

kitchen island [door, drawer, front, side, top]

dishwasher [button panel, handle, skirt]

bookcase [door, drawer, front, side]

television receiver [base, buttons, frame, keys, screen, speaker]

glass [base, bowl, opening, stem]

pool table [bed, leg, pocket]

van [bumper, door, headlight, license plate, logo, mirror, taillight, wheel,
window, wiper]

airplane [door, fuselage, landing gear, propeller, stabilizer, turbine
engine, wing]

truck [bumper, door, headlight, license plate, logo, mirror, wheel,
windshield]

minibike [license plate, mirror, seat, wheell
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Figure B.4: The number of part masks for each object class in ADE20K-Part-234. Each horizontal
bar is color-coded to represent a specific part class belonging to the object. The colors of each bar are
ordered from bottom to top according to the part sequence in the list of objects with parts.

. D

Figure B.5: Qualitaive results on ZSseg+, CATSeg and CLIPSeg concerning the challenging unseen
“bird” class in Pascal-Part-116, as shown in the first row. The second row shows the corresponding
ground truth. We can observe that CATSeg and CLIPSeg can generalize to the more novel parts:
“Bird’s Beak” and “Bird’s Wing”

washer [button panel, door, front, side]

bench [arm, back, leg, seat]

traffic light [housing, pole]

light [aperture, canopy, diffusor, highlight, light source, shade]

B.3 Data Statistics Analysis.

We report the statistics for the number of object masks that have part annotations in Pascal-Part-116
(see Figure[A-T) and ADE20K-Part-234 (see Figure[B.3). The total number of part masks for each
object and the proportion of each part are shown in Figure [B.2] (Pascal-Part-116) and Figure [B.4]
(ADE20K-Part-234). In Figure the color sequence from left to right corresponds to the part word
sequence as listed in Sectionﬂ Figure[B.4] the color sequence from bottom to up corresponds to
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Figure B.6: Qualitative results on CATSeg’s multi-granular generalization ability. From the left to the
middle image, the model generalizes from “head” to the more fine-grained “beard”. From the middle

99 9

to the right image, the model generalizes from [“hair”, “eyebrow”, “eye”] to the coarse-grained “head”
and also from “neck” to “torso”.

Figure B.7: More qualitative results of generalized zero-shot part segmentation on Pascal-Part-116
are in the first row. The ground truth is in the second row. The seen classes are “cat” and “horse”
while the unseen classes are “dog” and ““sheep”.

the part word sequence as listed in Section Additionally, we report the scale distribution for the
part masks of each object as shown in Figure

C Qualitative Results

The qualitative results on the comparison among ZSseg+, CATSeg and CLIPSeg for the challenging
case “bird” are shown in Figure[B.5] Figure[B.6|shows the multi-granular generalization ability of the
one-stage baselines. The adopted model is CATSeg. The visualization sample is from the “person”
class in Pascal-Part-116. We give more qualitative results on Pascal-Part-116 and ADE20K-Part-234
on the three proposed task settings. The adopted model is CLIPSeg with finetuning (VA+L+F+D).
The visualization results for the Generalized Zero-Shot Part Segmentation on Pascal-Part-116 and

(0,0.01]

0.0.01]

{0.07,1]

0.07,1] (0.05,0.07]

(0.03,0.05]
{0.05,0.07]
(0.01,0.03] (0.03,0.05] (0.01,0.03]

Figure B.8: The scale ratio (number of pixels in the object part mask out of all pixels in an image.)
distribution of all part masks of Pascal-Part-116 (Left) and ADE20K-Part-234 (Right).
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Figure B.9: Qualitative results of generalized zero-shot part segmentation on ADE20K-Part-234. The
first and second rows show the generalize from the seen classes [chair, armchair, sofa] to the unseen
classes [swivel chair, ottoman, stool]. The third row shows the generalize from the seen classes [lamp,
chandelier] to the unseen class [fan]. Notably, “fan’s blade” is novel at the object and part level.

Figure B.10: Qualitative results of few-shot part segmentation on Pascal-Part-116. We display the

9%

segmentation map of four classes: “bird”, “aeroplane”, “car” and “bicycle”.
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Figure B.11: Qualitative results of few-shot part segmentation on ADE20K-Part-234. We display the

9% ¢

segmentation map of four classes: “lamp”, “sink”, “toilet” and “cooking stove”.

Figure B.12: Qualitative results of cross-dataset part segmentation on Pascal-Part-116. Pascal-Part-
116 provides more fine-grained part annotations for the "person" category, such as “hair” and “upper
arm”. The model trained on ADE20K-Part-234 demonstrates the ability to recognize “hair” but
struggles to generalize from “arm” to “upper arm” and “lower arm” accurately. Moreover, the model
exhibits potential in generalizing parts of the “airplane” category. Although ADE20K-Part-234
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annotates the parts as “door”, “fuselage”, “landing gear”, “propeller”, “stabilizer”, “turbine engine”,
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and “wing”, the model can generalize them to Pascal-Part-116’s parts, including “body”, “stern”,
“wing”, “tail”, “engine”, and “wheel”, despite the differences in vocabulary and granularity. Notably,
ADE20K-Part-234 does not contain related classes to "bird", "sheep", and "potted plant", but the

model demonstrates a certain level of generalization ability to segmenting these categories.

Figure B.13: Qualitative results of cross-dataset part segmentation on ADE20K-Part-234. For the
categories “car” and “bus”, the part annotations in Pascal-Part-116 are more coarse-grained. When
tested on ADE20K-Part-234, the model trained on Pascal-Part-116 can predict novel parts like “logo”,
“wiper”, “hood”, and “bumper”. However, the segments and part labels don’t align accurately. For
example, the model still segments the “bus’s roof”, which is annotated in Pascal-Part-116, but wrongly
assigns it to “bus’s bumper” in ADE20K-Part-234. This showcases the challenge of generalizing
across different granular part definitions. For the novel object “swivel chair”, the model adeptly
delineates part boundaries even without relevant objects in Pascal-Part-116. But the category errors
are still present. In the case of the “person” category, the model only segments the “upper arm”,
which demonstrates the difficulty of generalizing from “upper/lower arm” to “arm”.
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ADE20K-Part-234 are shown in Figure and Figure [B.9|respectively. We report the qualitative
results for the Few-Shot Part Segmentation on Pascal-Part-116 in Figure[B.10|and on ADE20K-Part-
234 in Figure And the results for the Cross-Dataset Part Segmentation on Pascal-Part-116
are shown in Figure [B.12] Furthermore, we present the qualitative results for models trained on
Pascal-Part-116 and then tested on ADE20K-Part-234 are shown in Figure[B.T3]

D Future Works and Negative Societal Impacts

Although part-level OVSS indeed presents more challenges compared to object-level OVSS, the
OV-PARTS benchmark datasets have lower quality than existing object-level OVSS benchmark
datasets. The original version of Pascal-Part and ADE20K-Part are annotated without considering
the open vocabulary scenario especially the analogical reasoning ability and open granularity ability
that we care about in a part-level OVSS model. The benchmark datasets need to be continuously
expanded and improved to encompass more diverse and complex object-part annotations. There may
be potential negative societal impacts associated with the OV-PART benchmark. The deployment
of fine-grained part segmentation models in various real-world applications may lead to unintended
consequences. We must ensure that the predictions be reliable and accurate in critical applications,
such as medical diagnosis or autonomous vehicles. Also, there is a possibility of misuse of part
segmentation technology for malicious purposes, such as creating deepfake images or spreading
misinformation. Ensuring security measures and appropriate regulations to prevent such misuse is
vital in the development and deployment process.
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