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Abstract
Model extraction is to obtain a cloned model that
replicates the functionality of a black-box victim
model solely through query-based access. Present
defense strategies exhibit shortcomings, manifest-
ing as: (1) computational or memory inefficien-
cies during deployment; or (2) dependence on
expensive defensive training methods that man-
date the re-training of the victim model; or (3)
watermarking-based methods only passively de-
tect model theft without actively preventing model
extraction. To address these limitations, we intro-
duce an innovative Bayesian active watermark-
ing technique to fine-tune the victim model and
learn the watermark posterior distribution con-
ditioned on input data. The fine-tuning process
aims to maximize the log-likelihood on water-
marked in-distribution training data for preserving
model utility while simultaneously maximizing
the change of model’s outputs on watermarked
out-of-distribution data, thereby achieving effec-
tive defense. During deployment, a watermark is
randomly sampled from the estimated watermark
posterior. This watermark is then added to the
input query, and the victim model returns the pre-
diction based on the watermarked input query to
users. This proactive defense approach requires
only slight fine-tuning of the victim model with-
out the need of full re-training and demonstrates
high efficiency in terms of memory and compu-
tation during deployment. Rigorous theoretical
analysis and comprehensive experimental results
demonstrate the efficacy of our proposed method.

1. Introduction
Training deep learning models as commercial products de-
mands significant computational resources and expensive
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labeled data, thus these deep learning models are considered
as a form of intellectual property (IP) (Sun et al., 2023; Hong
et al., 2024). Model extraction or stealing is to replicate
the functionality of the pre-trained commercial black-box
model (victim model) solely through query access. Attack-
ers may utilize these cloned models for financial gain or
other purposes. Consequently, there is a pressing need for
defense against model extraction. However, safeguarding
against model extraction to preserve model IP is challeng-
ing, due to the requirements for efficiency, effectiveness,
and the preservation of model utility.

Despite the plethora of defense methods developed to safe-
guard against model extraction, the existing approaches are
riddled with several limitations. On one hand, current active
defense methods exhibit either computation inefficiency dur-
ing deployment due to the many times of backpropagation
during test time (Orekondy et al., 2020; Mazeika et al., 2022)
or memory inefficiency due to ensemble of multiple models
(Kariyappa et al., 2021b), hindering their practical viability.
Alternatively, they may demand costly defensive training
with distributionally robust optimization (Wang et al., 2023),
necessitating alterations to the original training procedure
for re-training. This, in turn, leads to a substantial increase
in additional training costs. On the other hand, existing
watermark-based methods (Jia et al., 2021a), while offering
a form of defense, are passive in nature. These methods
can only furnish evidence of model theft after the fact but
lack the proactive capability to prevent the extraction of the
model from occurring in the first place.

To tackle the aforementioned challenges, we propose a novel
probabilistic Bayesian active watermarking technique de-
signed to fine-tune the pre-trained victim model to prevent
model extraction. We choose a probabilistic approach for its
multiple benefits: (1) Adding a probabilistic watermark dur-
ing deployment increases uncertainty for attackers, making
it harder to determine the model’s parameters. (2) Introduc-
ing inconsistent or incorrect gradient information compli-
cates model extraction for attackers. (3) The method en-
hances resilience against various adaptive model extraction
techniques by introducing significant randomness, increas-
ing the difficulty of reverse engineering. Specifically, in
the fine-tuning phase, our primary goal is to make minimal
adjustments to the victim model while obtaining a water-
mark posterior based on observed data. We maximize the
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log-likelihood on watermarked in-distribution (ID) training
data to sustain model utility. Simultaneously, we aim to
maximize the KL-divergence between the model outputs on
watermarked/non-watermarked out-of-distribution (OOD)
data, thereby significantly altering the model output to en-
hance defense against model extraction, illustrated in Figure
1. However, determining the exact watermark posterior is a
formidable task due to the intractable nature of analytically
computing the watermark posterior probability distribution.
Additionally, as the watermark posterior distribution cal-
culation is datapoint-specific, i.e., q(w|x), computing the
approximate distribution for each datapoint proves computa-
tionally intensive. To overcome this challenge, we propose
an efficient amortized variational inference algorithm to re-
duce computation costs, utilizing Wasserstein gradient flow
(Ambrosio et al., 2008) in probability measure space. In the
deployment phase, with every query to the victim model, a
watermark is randomly sampled from the posterior distribu-
tion and included in the query as input to the victim model.
This eliminates the necessity for test-time backpropagation,
ensemble methods, or re-training the model from scratch.

In contrast to existing defense mechanisms, our method
boasts several key advantages. Firstly, the probabilistic and
dynamic nature of our defense strategy, which varies each
time, further complicates the attacker’s ability to discern the
specific added defenses, substantially enhancing the overall
resilience of our approach. Secondly, in contrast to state-
of-the-art (SOTA) defensive training approach (Wang et al.,
2023) which requires full re-training, our method accom-
plishes the same objective with only a minimal need for fine-
tuning the victim model, thereby eliminating the necessity
for re-training. Thirdly, compared to (Orekondy et al., 2020;
Mazeika et al., 2022; Kariyappa et al., 2021b), our method
exhibits superior memory and computation efficiency during
deployment without the necessity for backpropagation and
ensemble techniques. Lastly, our watermark-based method
is characterized as an active defense, effectively thwarting
attempts at model extraction. In contrast, conventional wa-
termarking defense methods are passive, limited to verifying
model theft after the fact.

We systematically conduct extensive experiments across
various model extraction settings and datasets to protect the
victim model, which is trained using either supervised learn-
ing or self-supervised learning. The outcomes reveal that,
in contrast to the SOTA defensive training method (Wang
et al., 2023), our approach necessitates only minimal fine-
tuning of the victim model, resulting in a noteworthy reduc-
tion in re-training costs by 87%. Additionally, it achieves
17× ∼ 172× speed up compared to (Orekondy et al., 2020;
Mazeika et al., 2022) during inference. Furthermore, our
approach surpasses other SOTA defense methods by up to
12% across various query budgets. Meanwhile, we conduct
theoretical analysis to provide the performance guarantee

for our proposed method.

Our contributions can be summarized in four key aspects:
• We introduce a novel Bayesian active watermarking

framework for model extraction defense, requiring only
minimal fine-tuning of the pre-trained victim model.

• We propose an efficient amortized variational infer-
ence algorithm designed for calculating the watermark
posterior distribution.

• Rigorous theoretical analysis is derived to guarantee
the effectiveness of our proposed method.

• Comprehensive experiments conducted on various
model extraction settings and datasets demonstrate the
SOTA performance of our proposed method.

2. Related Work
2.1. Model Extraction Attack

According to the output information provided by the vic-
tim model, model extraction attacks (Lowd & Meek, 2005;
Tramèr et al., 2016; Wang & Gong, 2018; Oh et al., 2018;
Orekondy et al., 2019; Jagielski et al., 2020; Li et al., 2023;
Pal et al., 2020; Juuti et al., 2019; Wang, 2021; Kariyappa
et al., 2021a; Truong et al., 2021; Sanyal et al., 2022) can
be classified into two settings: soft-label and hard-label.
In the soft-label setting, the victim model offers softmax
probability outputs over the prediction classes to users. In
contrast, in the hard-label setting, the victim model only
provides the top-1 class prediction to users.

According to the query data used by attacker, model ex-
traction techniques can be classified into two categories:
data-based and data-free model extraction. (1) Data-based
Model Extraction (DBME): DBME focuses on extracting
the victim model using real dataset (Papernot et al., 2017;
Orekondy et al., 2019; Pal et al., 2020). (2) Data-free Model
Extraction (DFME): DFME, on the other hand, aims to
extract the victim model using synthetic data exclusively
(Wang, 2021; Kariyappa et al., 2021a; Truong et al., 2021;
Sanyal et al., 2022; Hu et al., 2023). These approaches re-
duce the dataset requirement for stealing the victim model.

2.2. Model Extraction Defense

We categorize existing defense methods into active and
passive defense approaches.

Active Defense against model extraction seeks to prevent
the extraction process. Current such defense strategies can
be classified into three classes: (1) Output-perturbation-
based methods: P-poison (Orekondy et al., 2020), Adap-
tive Misinformation (Kariyappa & Qureshi, 2020), GRAD
(Mazeika et al., 2022) and ModelGuard (Tang et al., 2024)
involve either computation-intensive optimization or more
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Figure 1. The fine-tuning objective for in-distribution (ID) data is to learn a watermark posterior that maximizes the likelihood on
watermarked ID data, thereby maintaining model utility. Conversely, the fine-tuning objective for out-of-distribution (OOD) data is to
learn a watermark posterior that maximizes the change in outputs on watermarked OOD data, achieving effective defense.

memory consumption during testing. (2) Ensemble-based
methods (Kariyappa et al., 2021b) trains a varied collection
of models with a discontinuous decision boundary to in-
crease resistance against extraction. However, this approach
is memory inefficient due to the storage requirements for
multiple pre-trained models. (3) Defensive training: While
MeCo (Wang et al., 2023) provides memory and compu-
tation efficiency by employing defensive training with dis-
tributionally robust optimization (Rahimian & Mehrotra,
2019), it does require re-training, which results in a sig-
nificant additional training cost. In contrast, our method
ensures computational and memory efficiency and avoids
re-training the victim model from scratch, leading to a sub-
stantial reduction in training cost.

Passive Defense can only detect or verify model theft but
could not prevent model extraction from happening. Ex-
isting methods can be categorized into two classes: (1)
Detection-based methods: (Juuti et al., 2019; Pal et al., 2021)
aim to differentiate between attack queries and benign ones.
However, they rely on assuming a known prior distribution
of attack query data, leaving them vulnerable to adaptive
changes in the attacker’s query distribution. Attacker can
always change their query data distribution and easily evade
these detection, rendering these defenses ineffective. (2)
Verification-based methods: watermark-based (Adi et al.,
2018) methods (Jia et al., 2021a; Szyller et al., 2021), proof-
of-learning (Jia et al., 2021b), and dataset inference (Maini
et al., 2021) can only verify model theft but could not pre-
vent it. Unlike conventional passive watermark methods
that merely indicate whether a model has been stolen, our
innovative approach is active, going beyond detection to
actively thwart attempts at model theft.

Our approach falls under the category of active defense,
demonstrating the ability to significantly diminish the ac-
curacy of clone models extracted by attackers. In contrast,
passive defense methods lack this capability.

3. Preliminary
3.1. Model Extraction Attack

In the presence of a black-box victim model V(x;θV ),
parameterized by θV , the attacker leverages an unlabeled
dataset {xi}i=N

i=1 to query the victim model, acquiring cor-
responding outputs yi = V(xi;θV ). Subsequently, the
attacker utilizes this labeled dataset, {xi,yi}i=N

i=1 , to train a
clone model C(x;θC), which is parameterized by θC . The
attacker’s objective is to make the clone model’s perfor-
mance close to that of the victim model. In the hard-label
setting, the victim model provides only the top-1 class label,
whereas in the soft-label setting, it outputs class probabil-
ities. Due to space constraints, we include the details of
existing model extraction methods in Appendix E.

3.2. Model Extraction Defense

The objective of model extraction defense is to minimize
the accuracy of the cloned model while preserving its use-
fulness for legitimate users. In line with the assumptions
presented in existing model extraction defense (Kariyappa
& Qureshi, 2020; Kariyappa et al., 2021b; Dziedzic et al.,
2022b; Wang et al., 2023), it is presumed that the attack
query data consist of out-of-distribution (OOD) samples.
This assumption is attributed to several reasons. (1) Limited
Information Exposure: APIs provide limited information to
users, typically only offering access to input-output pairs.
This lack of transparency hampers the attacker’s ability to
gain insights into the specific in-distribution (ID) data used
for training (Wang, 2021). (2) Confidentiality Measures:
APIs do not grant access to their ID training data, which is
kept confidential for reasons such as privacy, security, and
intellectual property protection. Furthermore, it is crucial to
highlight that the majority of data-based (Orekondy et al.,
2019; Pal et al., 2020) and all data-free model extraction
(Truong et al., 2021; Kariyappa et al., 2021a; Wang, 2021;
Sanyal et al., 2022) methods utilize OOD data to extract the
victim model.
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4. Method
In this section, we introduce our Bayesian active watermark-
ing method. Specifically, we outline our framework and
optimization objective in Section 4.1. Following that, we
detail our efficient algorithm for learning the watermark
posterior in Section 4.2.

4.1. Bayesian Active Watermarking Framework

Below, we introduce our Bayesian active watermarking
framework designed to prevent model extraction while main-
taining model utility for legitimate users.

Attack Query Simulation According to the assumptions
and reasons presented in Section 3.2, we consider the attack
queries to be OOD data. We employ a pseudo-data generator
to synthesize OOD data. The OOD data is generated as x =
G(ϵ;θG), where ϵ ∼ N (0, I). θG denotes the parameters
of the data generator. Due to space limitations, we put the
details about OOD data generation in Appendix D.

Watermark Posterior Learning Objective We propose a
BAyesian aCtive waTermarking (ACT) defense method to
prevent model extraction attack from happening. We opt
for a probabilistic approach due to its various advantages:
(1) Increased Uncertainty: Probabilistic watermark on input
queries during deployment adds uncertainty to the extracted
model, making it more difficult for attackers to precisely
determine the model’s parameters. (2) Complexity for At-
tackers: The approach makes the model extraction task more
complex by introducing inconsistent/ incorrect information.
This complexity can act as a deterrent, requiring attackers to
account for the randomness and potentially increasing the
difficulty of reverse engineering. (3) Adaptive Resilience:
The variability introduced by the probabilistic approach can
enhance adaptive resilience against different adaptive model
extraction techniques. Attackers often rely on consistent pat-
terns/gradients in the model’s behavior, which are disrupted
by the randomization.

More precisely, given a pre-trained victim model with pa-
rameters θ0

V , the goal is to fine-tune the victim model ini-
tialized with θ0

V by optimizing the following objective:

max
q(w|x),θV

Ld = Ex∼Did
Eq(w|x) logP (y|x+w;θV ) (1)

+ Ex∼Dood
Eq(w|x)KL(V(x;θV )||V(x+w;θV ))

Here, Did denotes the ID training data, while Dood rep-
resents synthetic OOD data generated using the method
presented earlier. y denotes the ID training data label. The
pre-trained model soft-label outputs on synthetic OOD data,
denoted as y′, are obtained through y′ = V(x;θV ). The wa-
termark, denoted by w and matching the input image’s size,
is treated as a random latent variable. q(w|x) denotes the ex-
act watermark posterior distribution. The objective involves

maximizing Ex∼Did
Eq(w|x) logP (y|x+w;θV ) to ensure

model utility on benign queries. Simultaneously, it max-
imizes Ex∼Dood

Eq(w|x)KL(V(x;θV )||V(x + w;θV )) to
induce maximal changes in model outputs on OOD queries,
providing a defense against model extraction. The optimiza-
tion goal is to find the optimal q(w|x) and θV , illustrated in
Figure 1. However, computing the exact posterior, q(w|x),
poses a challenge due to the intractable nature of analytically
calculating the watermark posterior distribution. Addition-
ally, as the watermark posterior distribution is datapoint-
specific (i.e., q(w|x)), approximating the distribution for
each datapoint is computationally intensive.

To address this issue, we propose a novel and efficient amor-
tized variational inference algorithm to significantly alle-
viate computation costs. Specifically, the watermark pos-
terior is modeled using a stochastic inference neural net-
work, denoted as zΦ(w|x,γ). This network is structured
as an implicit distribution, with Φ serving as its parame-
ters. The choice of an implicit distribution allows for the
representation of a flexible and intricate watermark poste-
rior distribution. This enhances its efficacy in safeguarding
against model extraction, primarily attributed to the poten-
tial for significantly increased randomness. Specifically, the
watermark posterior is represented as the following:

w ∼ zΦ(x,γ),where,γ ∼ N (0, I) (2)

This implicit posterior enables efficient handling of the com-
plexity associated with the posterior density for individual
datapoints. The primary objective is to attain an approx-
imate posterior distribution, denoted as zΦ(w|x,γ), that
closely aligns with the exact posterior q(w|x). This close-
ness is measured through the KL divergence, with the aim
of minimizing the discrepancy between the approximate and
exact posterior distributions as the following:

min
Φ

KL(zΦ(w|x,γ)||q(w|x)) (3)

It is important to emphasize that this inference network is a
small-scale convolutional network with less than 1% of the
total parameters when compared to the backbone network.

4.2. Efficient Watermark Posterior Learning Algorithm

In this section, we propose an efficient amortized varia-
tional inference algorithm for learning the watermark poste-
rior distribution within the probability measure space, i.e.,
zΦ(w|x,γ). Before delving into the details, we first intro-
duce some preliminary definitions as follows:

Definition 4.1 (Wasserstein Gradient Flow (Ambrosio et al.,
2008)). Consider a Wasserstein space W2 = (P2(Rd),W2)
(Defined in Appendix B). A curve (µt)t ≥ 0 of probability
measures is identified as a Wasserstein gradient flow for the
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functional F if it adheres to the following equation:

∂tµt = ∇W2
F (µt) := div

(
µt∇

δF

δµ
(µt)

)
, (4)

where := denotes definition, and div(r) :=
∑d

i=1 ∂ziri(z)
represents the divergence operator of a vector-valued func-
tion r : Rd → Rd, with zi and ri denoting the i-th ele-
ment of z and r, respectively. The symbol ∇ represents
the gradient of a scalar-valued function. The expression
∇W2

F (µt) := div(µt∇ δF
δµ (µt)) defines the Wasserstein

gradient of the functional F at the probablity measure µt,
where δF

δµ (µt) stands for the first variation of F at µt (de-
fined in Appendix B).

In essence, the Wasserstein Gradient Flow (WGF) can be
understood as the trajectory of the probability measure µt

along the steepest curve of the functional F (µ) within the
Wasserstein space of probability measures (function space).
This trajectory initiates at the initial probability measure µ0

and progressively navigates towards the desired target prob-
ability measure π. We choose WGF for learning the water-
mark posterior for several reasons: (1) Inference Parameters
Efficiency : WGF can substantially reduce the number of
trainable parameters by amortizing the cost across differ-
ent training data points with only a single set of variational
parameters. (2) Computation Efficiency and Posterior Com-
plexity : Traditional variational inference needs to trade-off
between computation efficiency and posterior complexity.
On the contrary, we employ WGF to effectively backpropa-
gate the KL divergence directly into the parameters of the
watermark posterior inference network. This network can be
selected as arbitrarily complex, thereby preserving the com-
plexity of the watermark posterior while ensuring efficient
inference. (3) Theoretical Guarantees : WGF is supported
by solid theoretical foundations. This provides a principled
framework for designing variational inference algorithms
and understanding their properties.

To learn the parameters of the approximate watermark pos-
terior distribution Φ, we proceed to calculate the gradient
of the KL divergence with respect to Φ using the chain rule,
as outlined below:

∇ΦKL(zΦ(w|x,γ)||q(w|x)) = (5)

∇wKL(zΦ(w|x,γ)||q(w|x))∂w
∂Φ

Following (Wibisono, 2018), we define the watermark pos-
terior distribution as an energy function q(w|x) ∝ e−U

U(w) =Ex∼Did
logP (y|x+w;θV ) (6)

+ Ex∼Dood
KL(V(x;θV )||V(x+w;θV ))

To improve computational efficiency, we calculate the
Wasserstein gradient ∇wKL(zΦ(w|x,γ)||q(w|x)) within

the reproducing kernel Hilbert space (RKHS). This
choice is motivated by the faster convergence of par-
ticles in RKHS compared to MCMC-based sampling
methods (Liu et al., 2019; Feng et al., 2017), attributed
to the consideration of particle interaction. More pre-
cisely, we transform the Wasserstein gradient ∇W2

F (µt)
using the integration transformation Kµ∇W2

F (µt) =∫
K(w,w′)∇W2F (µt)(w

′)dµ(w′); where K(w,w′) de-
notes a kernel function and the RKHS space induced by
kernel K is denoted as H. In this context, watermark pos-
terior in the kernelized Wasserstein space conforms to the
following kernelized WGF: (Liu, 2017):

∂tµt = div(µtKµt
∇δF

δµ
(µt)). (7)

F (µ) := KL(µ||π) = KL(zΦ(w|x,γ)||q(w|x)) (8)

Where µ denotes the distribution of zΦ(w|x,γ) and π de-
notes the exact watermark posterior distribution q(w|x). Eq.
(7) can be interpreted as the WGF in RKHS. This kernelized
formulation serves as a deterministic approximation of the
WGF in Eq. (4) (Liu & Wang, 2016). By discretizing Eq. (7)
and treating each watermark sampled from zΦ(w|x,γ) as
a particle, we derive the following Wasserstein gradient for
the watermark posterior. Detailed derivations are provided
in Appendix C.

∇wKL(zΦ(w|x,γ)||q(w|x)) = (9)
Ew∼zΦ(w|x,γ)[k(w, ·)∇wU(w)︸ ︷︷ ︸

smoothed gradient

+∇wk(w, ·)︸ ︷︷ ︸
repulsive term

]

where we use samples w ∼ zΦ(x,γ),γ ∼ N (0, I) to
calculate the expectation in the above equation. The first
term in Eq. (9) guides the watermark posterior distribution
to simultaneously preserve model utility and resist model
extraction. It achieves this by maximizing the energy func-
tion of log-likelihood on ID training data and maximizing
the change of model outputs on OOD synthetic data. The
update is influenced by the kernel-weighted sum of gradi-
ents from the watermark sampled from the posterior distri-
bution, resulting in a smoothing effect on the watermark
gradients. The second term acts as a repulsive force, pre-
venting the watermark from collapsing into a single mode
and thereby promoting diversity in the watermark posterior
distribution. In this work, we employ the Gaussian kernel
k(wi,wj) = exp

(
− (wi−wj)

2

2σ2

)
.

In summary, Algorithm 1 presents our Bayesian active water-
marking algorithm. In lines 3 to 5, the computation involves
calculating the gradient with respect to the parameters Φ of
the watermark posterior network. Then, lines 6 to 7 update
the parameters Φ and victim model parameters θV .

Bayesian Active Watermarking Deployment During de-
ployment, the watermark w is sampled from the posterior
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distribution zΦ(w|x,γ) and is incorporated into each query,
resulting in y′ = V(x+w;θV ) being delivered to users.

Algorithm 1 Active watermarking for model extraction
defense.
1: REQUIRE: Pre-trained victim model parameters θ0

V , OOD
data generator, learning rate η, number of iterations M , ran-
domly initialized watermark posterior network parameters Φ.

2: for m = 1 to M do
3: Sample a mini-batch ID training data and generate synthetic

OOD data as x = G(ϵ;θG), where ϵ ∼ N (0, I).
4: Sample watermark from the posterior for x with w =

zΦ(x,γ),where,γ ∼ N (0, I)
5: Calculate ∇ΦKL(zΦ(w|x,γ)||q(w|x)), according to Eq.

(5) and (9).
6: Update the watermark posterior network parameters

Φm+1 = Φm − η∇ΦKL(zΦ(w|x,γ)||q(w|x))
7: Update the victim model parameters by gradient descent

θm+1
V = θm

V − ∂Ld
∂θV

, where Ld is calculated by Eq. (1)
8: end for

5. Theoretical Analysis
In this section, we provide theoretical analysis for
why Bayesian active watermarking can defend
against model extraction. First, we prove that
Ex∼Dood

Eq(w|x)KL(V(x;θV )||V(x + w;θV )) on
OOD data will decrease the clone model quality on ID test
data (Theorem 5.1) and impact of query budget on the clone
model generalization error (Theorem 5.2).

Given two distributions P , Q and the their probability den-
sity p(x) and q(x), the total variation distance between P
and Q is defined as: TV(P,Q) = 1

2Ex[|p(x)− q(x)|]. De-
note by l(C(x,θC),y) the non-negative learning objective
used by attacker, which aims at increasing the similarity be-
tween C(x,θC) and y. During the model extraction attack,
the attacker optimizes the following objective:

min
θC

E(x,y)∼Dood
[l(C(x,θC),y)]. (10)

where y = V(x,θV ). Under our active watermarking set-
tings, the attacker minimizes the following objective:

LDood
(C) :=Ex∼Dood

Ew∼q(w|x)[l(C(x,θC), (11)
V(x+w,θV ))].

The goal of model extraction is to attain high test accuracy
with clone model on the ID data. To measure the effective-
ness of model extraction, we utilize the disparity in loss
between victim model and clone model on the ID data as:

Q(C,V) := E(x,y)∼Did
[l(C(x,θC),y)− l(V(x,θV ),y)],

larger Q(C,V) indicates worse clone model quality.

Theorem 5.1. Assuming attacker uses cross entropy loss l,
we have:

Q(C,V) ≥ −4ATV(Dood,Did)−B+

Ex∼Dood
Eq(w|x)KL(V(x;θV )||V(x+w;θV ))

(12)

where B = Ex∼Dood
[V(x;θV ) · log(V(x;θV ))] is a con-

stant only related to the victim model V .

Theorem 5.1 asserts that maximizing Ex∼Dood
Eq(w|x)

KL(V(x;θV )||V(x + w;θV )) leads to an increase in
Q(C,V). Consequently, this will result in a decrease in
the quality of the clone model.

Impact of query budget on the clone model general-
ization In this part, we study the relation between the
generalization error of clone model and the number of
queries. Attacker employs a set of n examples S :=
(xi,V(xi + wi;θV ))

n
i=1 sampled from Dood to optimize

Eq. 11. The optimization goal is expressed as follows:

LS(C) :=
1

n

n∑
i=1

[l(C(xi,θC),V(xi +wi,θV ))] (13)

Let k be the dimension of C(x,θC) and V(x + w,θV )),
i.e., number of classes. Usually the loss l is independently
applied to each entry (denoted by Ci and Vi, i ∈ [k]) i.e.,

l(C(x,θC),V(x+w,θV )) =

k∑
i=1

li(Ci(x,θC),Vi(x+w,θV ))

We follow the commonly used assumption, K-Lipschitz
parametrization (Bubeck & Sellke, 2021; Wu et al., 2023),
for studying the generalization of clone model. Denote by
Cp
i := {Ci(x,θC) : θC ∈ Rp, ||θC ||∞ ≤ W, i ∈ [k]} the

parameterized hypothesis space, we say Cp
i is K-Lipschitz

parameterized if and only if ∀Ci(·,θC), Ci(·,θ′
C) ∈ Cp

i ,

||Ci(·,θC)− Ci(·,θ′
C)||F ≤ K||θC − θ′

C ||2,

Theorem 5.2. Denoted by Cp := Cp
1 × Cp

2 × · · · × Cp
k .

Given an input space [0, 1]d. Assume the error functions
li(s, y), i ∈ [k] are C-Lipschitz w.r.t. s and sup |li| ≤
a, i ∈ [k]. Then, with probability at least 1 − δ, one has
simultaneously for all C ∈ Cp:

LDood(C)− LS(C) ≤
8akC√

n
(1 +

√
p ln(K2W 2pn/a2))

+ 4ak

√
2 ln(2k/δ)

n
This theorem indicates that clone model’s generalization
error on the OOD dataset is limited by O(

√
ln(n)/

√
n),

where n denotes the number of queries. Within the range
[c,∞),

√
ln(n)/

√
n decreases as n increases, suggesting

that more queries result in the clone model’s performance
alignment with the watermarked OOD distribution. How-
ever, attacker aims to enhance the clone model’s accuracy
on the ID dataset. Overfitting to watermarked OOD data
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can lead to poorer performance on non-watermarked OOD
dataset since our active watermarking aims to maximize the
KL-divergence between the scores of watermarked and non-
watermarked OOD data. Furthermore, Theorem A.1 states
that a decline in the clone model’s effectiveness on original
OOD distribution correlates with an increase in Q(C,V),
thereby undermining the performance of clone model. Due
to the space limitation, we put detailed theorem proof in
Appendix A.

6. Experiments
6.1. Setup

Baselines: We compare with the following SOTA model
extraction attack and defense baselines. Attack baselines
: Soft-label attack: MAZE (Kariyappa et al., 2021a) and
DFME (Truong et al., 2021). Hard-label attack: DFMS-HL
(Sanyal et al., 2022). We do not compare with ZSDB3KD
(Wang, 2021) due to its substantial query requirements
and notably slow performance. Defense baselines : Ran-
dom output perturbation (RandP), Prediction-poisoning (P-
poison) (Orekondy et al., 2020), GRAD (Mazeika et al.,
2022) and MeCo (Wang et al., 2023). Following (Wang
et al., 2023), we set an output-perturbation budget of 1.0,
i.e., ||y − y⃗||1 ≤ 1.0, where y and y⃗ represent unperturbed
and perturbed model outputs, respectively. This is applied
to RandP, P-poison, and GRAD to enhance their defense by
inducing more substantial output perturbations.

Datasets We assess various defense methods using datasets
such as MNIST, CIFAR10, CIFAR100 (Krizhevsky, 2009),
MiniImageNet (Vinyals et al., 2016).

Implementation Details The watermark posterior inference
network is a small-scale two-block residual network, similar
to the noise2net structure (Hendrycks et al., 2021) but with
a much smaller number of parameters, which only accounts
for less than 1% parameters of the pre-trained victim model.
For soft-label setting, following (Truong et al., 2021), we
set the attack query budget to be 20M for CIFAR10, 200M
for CIFAR100 and 200M for Mini-ImageNet, respectively.
For hard-label setting, following (Sanyal et al., 2022), we
set the attack query budget to be 8M for CIFAR10, 10M
for CIFAR100 and 10M for Mini-ImageNet. We conduct
each experiment for five runs and report the mean and the
standard deviation of the results.

6.2. Results of Defensive Performance against DFME

Defense Effectiveness Evaluation To assess the efficacy of
various defense methods, we compare the test accuracy of
the clone model across different defense strategies, aiming
for lower clone model accuracy as an indication of improved
defense performance. For CIFAR10, CIFAR100 and Mini-
ImageNet datasets, we employ the ResNet34-8x (He et al.,

Table 1. Accuracy of clone model following the application of
defense methods on CIFAR-10 and CIFAR-100 using ResNet34-8x
as the victim model, which provides soft labels to users.

Attack Defense CIFAR10 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%

DFME
RandP ↓ 84.28± 1.37% 70.56± 2.23% 70.03± 2.38%
P-poison ↓ 78.06± 1.73% 66.32± 1.36% 68.75± 1.40%
GRAD ↓ 79.33± 1.68% 65.82± 1.67% 69.06± 1.57%
MeCo ↓ 51.68 ± 1.96% 46.53 ± 2.09% 61.38 ± 2.41%
ACT(Ours) ↓ 46.57 ± 2.83% 40.32 ± 2.96% 49.25 ± 2.67%

undefended ↓ 45.17± 0.73% 23.28± 1.67% 20.03± 1.79%

MAZE
RandP ↓ 28.76± 2.38% 22.03± 1.50% 18.79± 1.38%
P-poison ↓ 26.81± 2.19% 20.89± 1.58% 17.08 ± 2.28%
GRAD ↓ 26.06± 1.81% 21.18± 1.58% 18.09± 1.72%
MeCo ↓ 21.89 ± 2.07% 18.75 ± 2.11% 17.95± 1.46%
ACT(Ours) ↓ 18.09 ± 2.31% 16.57 ± 2.06% 17.21 ± 1.97%

Attack Defense CIFAR100 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 58.72± 2.82% 28.36± 1.97% 27.28± 2.08%

DFME
RandP ↓ 41.69± 2.91% 22.75± 2.19% 23.61± 2.70%
P-poison ↓ 38.72± 3.06% 20.87± 2.61% 21.89± 2.93%
GRAD ↓ 39.07± 2.72% 20.71± 2.80% 22.08± 2.78%
MeCo ↓ 29.57 ± 1.97% 12.18 ± 1.05% 10.79 ± 1.36%
ACT(Ours) ↓ 23.95 ± 2.38% 10.09 ± 2.53% 6.26 ± 2.38%

2016) as the victim model, while utilizing ResNet18-8x
(He et al., 2016), MobileNetV2 (Sandler et al., 2018), and
DenseNet121 (Huang et al., 2017) as diverse clone model
architectures. For the MNIST dataset, LeNet5 (LeCun et al.,
1998) serves as the victim model, with LeNet5, LeNet5-Half,
and LeNet5-1/5 serving as distinct clone model architec-
tures. LeNet5-Half and LeNet5-1/5 have half and one-fifth
of the number of convolutional filters in each layer com-
pared to LeNet5, respectively. The defense performance of
various methods on CIFAR10 and CIFAR100 with soft-label
is presented in Table 1. We do not compare various defense
methods w.r.t the MAZE attack on CIFAR100 due to the
low clone model accuracy achieved by MAZE, which is less
than 6%. Additionally, the defense performance with hard-
label is shown in Table 2. The results on Mini-ImageNet
is shown in Table 8 in Appendix. Notably, our method
(ACT) exhibits a significant improvement over the SOTA
defense method by 6% to 12%, showing the superiority of
our approach.

This superiority stems from our method’s ability to learn
watermark posteriors that maximally alter model outputs on
OOD data. In contrast, the SOTA method, MeCo (Wang
et al., 2023) lacks explicit optimization on OOD query data,
resulting in inferior performance. On the other hand, (1)
RandP, P-poison, and GRAD typically preserve the hard-
label for most benign and attack queries, rendering these
defense methods ineffective as attackers can still extract
valuable information. (2) P-poison requires a randomly
initialized surrogate attacker model, functioning as an adver-
sary model. (3) GRAD necessitates knowledge of the attack
query set to train the surrogate model, resulting in surro-
gates with significant gaps compared to the attacker model.
These methods exhibit worse performance because the dis-
tribution of attack query data and the attacker model remain
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Table 2. Accuracy of clone model by applying various defense
methods on CIFAR-10 and CIFAR-100 with ResNet34-8x serving
as the victim model, providing users with hard labels.

Attack Defense CIFAR10 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 84.67± 1.90% 79.28± 1.87% 68.87± 2.08%
RandP ↓ 84.02± 2.31% 78.71± 1.93% 68.16± 2.23%

DFMS-HL P-poison ↓ 84.06± 1.87% 79.02± 1.96% 68.05± 2.17%
GRAD ↓ 84.28± 1.95% 78.83± 1.91% 68.11± 1.93%
MeCo ↓ 76.86 ± 2.09% 71.22 ± 1.87% 62.33 ± 2.01%
ACT(Ours) ↓ 73.93 ± 2.67% 71.97 ± 2.08% 61.08 ± 2.39%

Attack Defense CIFAR100 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 72.57± 1.28% 62.71± 1.68% 63.58± 1.79%
RandP ↓ 72.43± 1.43% 62.06± 1.82% 63.16± 1.73%

DFMS-HL P-poison ↓ 71.83± 1.32% 61.83± 1.79% 62.73± 1.91%
GRAD ↓ 71.89± 1.37% 62.60± 1.71% 62.57± 1.80%
MeCo ↓ 59.30 ± 1.70% 55.32 ± 1.65% 56.80 ± 1.86%
ACT(Ours) ↓ 55.38 ± 1.97% 51.46 ± 1.89% 52.29 ± 2.03%

unknown to the defender in DFME. In contrast, ACT excels
without the need for a surrogate model. (1) Our method
includes a probabilistic watermark on input queries during
deployment introduces uncertainty to the extracted model,
rendering it more challenging for attackers to precisely dis-
cern the functionality of the victim model. (2) Bayesian
active watermarking complicates the model extraction task
by introducing inconsistent or incorrect gradient informa-
tion for attackers. They must contend with randomness,
potentially heightening the difficulty of reverse engineering.

Model Utility Evaluation. To assess the utility of the victim
model incorporating various defense methods, we evaluate
the benign test accuracy using various defense strategies, as
presented in Table 3. It is noted that ACT maintains compa-
rable model utility compared to other defense methods.

Table 3. Evaluation of victim model’s utility through test accuracy.
Method MNIST CIFAR10 CIFAR100

undefended(upper bound) 98.91± 0.16% 94.91± 0.37% 76.71± 1.25%

RandP ↑ 98.52± 0.19% 93.98± 0.28% 75.23± 1.39%
P-poison ↑ 98.87 ± 0.35% 94.58± 0.61% 75.42± 1.21%
GRAD ↑ 98.73± 0.31% 94.65 ± 0.67% 75.60 ± 1.45%
MeCo ↑ 98.63± 0.28% 94.17± 0.56% 75.36± 0.68%
ACT(Ours) ↑ 98.90 ± 0.37% 94.31± 0.75% 75.78 ± 0.73%

Legitimate Use in Edge Case We perform a set of exper-
iments to evaluate the edge case where the benign data is
different from the ID data. Specifically, the pre-trained vic-
tim model is trained on CIFAR10. After adding defense,
the protected model is tested on CINIC-10 (Darlow et al.,
2018), which consists of images from both CIFAR10 and
ImageNet. The images from ImageNet are resized to the
same size as CIFAR10. Since the test images consist of
images from ImageNet and the pre-trained victim model
is trained on CIFAR10, this naturally simulates the natural
distribution shift. These queries represent the benign queries
that are similar to the ID training data but different from it,
representing the edge cases in real applications. The results

are presented in table 9 in Appendix. We can observe that
our approach only slightly affects those edge cases.

6.3. Results of Defensive Performance against DBME

We utilize traditional Knockoff Nets (Orekondy et al., 2019)
and Jacobian-Based Dataset Augmentation (JBDA) (Paper-
not et al., 2017) with real dataset for data-based model
extraction (DBME). The employed attack query dataset
is similar to the training data used for training the victim
model. The results are presented in Table 10 in Appendix
and show that our method outperforms baselines by more
than 6% in many cases when defending against DBME.

6.4. Robustness to Adaptive Attack

To assess the robustness of our approach against adaptive
attacks performed by potential adversaries, we conduct two
distinct types of adaptive attack scenarios. In the first sce-
nario, we consider an adversary who possesses knowledge
of the defender’s strategy. In this setting, the attacker not
only has insight into the defender’s approach but also incor-
porates watermarking into their input data as an adaptive
countermeasure. In the second scenario, the attacker adopts
a strategy where they solely rely on the top-1 class label
(hard-label) instead of using soft-label information to carry
out model stealing. The results are presented in Table 11
and 12 in Appendix, respectively. The findings affirm the
robustness of our approach against these adaptive attacks.
This resilience can be attributed to two key factors: (1) our
principled Bayesian approach, introducing significant un-
certainty and randomness to confound attackers, and (2) our
watermark learning objective, which maximally alters model
outputs on OOD queries, generating a wealth of misleading
and inconsistent gradient information for attackers.

Stronger Adaptive Attack We opt to diversify the archi-
tectures of the surrogate models by training a collection
of surrogate models A1, A2, · · · , A10, including ResNet-
18, ResNet-34, ResNet-50, MobileNetV2 and DenseNet121
network. We train two surrogate models for each network ar-
chitecture and have 10 surrogate models. For each surrogate
model, we randomly sample a subclasses of labeled data
from ImageNet (Deng et al., 2009). The surrogate model is
trained on the ImageNet subset with the same learning objec-
tive and training procedure as our victim model fine-tuning
objective for learning the watermark posterior.

During model extraction, the attacker samples a watermark
from each watermark posterior inference network associated
with each surrogate model. They then utilize the expectation
of these sampled watermarks and combine them with the
query inputs to form the inputs to the clone model. Sub-
sequently, the attacker engages in the same clone model
optimization procedure to extract the victim model. We re-
fer to this adaptive attack as the Ensemble Adaptive Attack.
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This adaptive attack is substantially stronger since the at-
tacker knows all the details about our defense strategy in-
cluding fine-tuning objective and watermark posterior in-
ference network architecture. By utilizing an ensemble
adaptive attack strategy, the attacker can achieve a more
precise estimation of the watermark posterior. Empirically,
it significantly increases the clone model accuracy by more
than 8% in Table 4. However, ACT still significantly outper-
forms these adaptive attacks since our probabilistic active
watermarking varies with input. We can sample different
watermark samples from different posterior. It is difficult
for attacker to correctly restore the victim model outputs.

Table 4. Accuracy of clone model following the application of
the ensemble adaptive attack by attacker on CIFAR-10, using
ResNet34-8x as the victim model.
Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%
DFME ACT ↓ 46.57 ± 2.83% 40.32 ± 2.96% 49.25 ± 2.67%

Ensemble Adaptive ↑ 52.68 ± 2.91% 45.19 ± 3.07% 57.83 ± 2.82%

6.5. Ablation Study

Impact of query budget on clone model performance To
assess the impact of varying query budgets on the perfor-
mance of clone model, we experiment with different query
budgets adopted by the attacker. The results are visualized
in Figure 2 in Appendix, showing that ACT significantly
outperforms SOTA defenses across different query budgets.

Impact of victim model architecture To assess the influ-
ence of various victim model architectures, we modified the
victim model to be GoogLeNet (Szegedy et al., 2015). The
results can be found in Table 6 in Appendix.

Training Efficiency Evaluation To assess the training cost
in comparison to the SOTA method, MeCo (Wang et al.,
2023), we conduct an efficiency evaluation presented in
Table 14 with A6000 GPU. It is evident that our method
significantly reduces the training cost by more than 87%.

Table 5. Efficiency evaluation (seconds) during deployment
Algorithm CIFAR10 CIFAR100

P-poison 223.68± 2.78 1126.83± 8.71
GRAD 107.29± 1.66 317.83± 4.29
MeCo 6.06 ± 0.80 6.53 ± 0.82
ACT (Ours) 6.03 ± 0.91 6.42 ± 0.87

Test-time Efficiency Evaluation To assess the test-time
efficiency of various defense methods, we conduct an evalu-
ation on test data. The results, presented in Table 5, show
that our method achieves 17× ∼ 172× speed up compared
to P-poison and GRAD while maintaining comparable ef-
ficiency to MeCo. For memory efficiency, we provide the
results in Table 15 in Appendix.

7. Conclusion
We introduce an innovative Bayesian active watermarking
framework designed to thwart model extraction. We also
present an efficient amortized variational inference algo-
rithm for learning the watermark posterior distribution. The
method only requires minimal fine-tuning of the victim
model. Notably, in contrast to existing watermark-based ap-
proaches employing passive defense strategies, our method
can actively prevent model extraction. Through rigorous the-
oretical analysis and extensive experiments encompassing
diverse model extraction scenarios and datasets, our method
demonstrates remarkable effectiveness and efficiency.

Limitations A limitation of our current work is that the
victim model is not sufficiently large. In future work, we
plan to address this by integrating a mixture of experts
(MoE) (Chowdhury et al., 2023) to upscale the victim model.
This enhancement will increase the model’s capacity and
expand its applicability in real-world scenarios. We will
leave the detailed and deeper exploration of this expansion
for future research efforts.

Developing defense methods for model extraction can po-
tentially serve as a foundation for attackers to devise new
attack strategies. By enhancing the complexity and flexibil-
ity of the watermark posterior distribution, we aim to fortify
our defense against these potential threats. Specifically, we
plan to propose the design of a hierarchical Bayesian model,
where the global component remains fixed, encapsulating
the invariant active watermarking defense that serves as
the defense mechanism foundation. Meanwhile, the local
components are designed to be more flexible, adapting over
time to counter new emerging attacks while preserving the
core defense strategy. This hierarchical Bayesian active
watermarking mechanism will facilitate minimal yet effi-
cient adaptations of our defense strategy, ensuring robust
protection against novel attacks.

Impact Statement
Positive Impact: This paper proposes a method to prevent
API from extraction. Many organizations invest significant
resources in developing advanced machine learning models.
By defending against model extraction, they can safeguard
their intellectual property and proprietary algorithms. Fur-
thermore, defending against model extraction helps prevent
unauthorized access to the sensitive information contained
in API. Negative Impact: These model extraction defenses
can make it difficult for researchers to study and improve
upon existing black-box pre-trained models. This can slow
down the overall progress of AI research. Furthermore, Lim-
iting the ability to extract the victim model can reduce the
dissemination of knowledge, making it harder to learn from
and build upon existing pre-trained models.
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A. Theorem Proofs
Theorem A.1. If sup l ≤ A

Q(C,V) ≥ E(x,y)∼Dood
[l(C(x,θC),y)]− 4ATV(Dood,Did)

Proof. First we consider |E(x,y)∼Did
[l(C(x,θC),y)]− E(x,y)∼Dood

[l(C(x,θC),y)]|

|E(x,y)∼Did
[l(C(x,θC),y)]− E(x,y)∼Dood

[l(C(x,θC),y)]| (14)
= |E(x,y)[l(C(x,θC),y)pid(x,y)]− E(x,y)[l(C(x,θC),y)pood(x,y)|] (15)
= |E(x,y)[l(C(x,θC),y)(pid(x,y)− pood(x,y))]| (16)
≤ E(x,y)[|l(C(x,θC),y)||pid(x,y)− pood(x,y)|] (17)
≤ AE(x,y)[|pid(x,y)− pood(x,y)|] (18)
= 2ATV(Dood,Did). (19)

Analogously, we have

|E(x,y)∼Did
[l(V(x,θV ),y)]− E(x,y)∼Dood

[l(V(x,θV ),y)]| ≤ 2ATV(Dood,Did).

With the above derivation, we have

Q(C,V) = E(x,y)∼Did
[l(C(x,θC),y)− l(V(x,θC),y)]

≥ E(x,y)∼Dood
[l(C(x,θC),y)]− 2ATV(Dood,Did)− E(x,y)∼Dood

[l(C(x,θC),y)]− 2ATV(Dood,Did)
(20)

Notice when y = V(x,θV ), E(x,y)∼Dood
[l(V(x,θV ),y)] = 0. Thus,

Q(C,V) ≥ E(x,y)∼Dood
[l(C(x,θC),y)]− 4ATV(Dood,Did) (21)

A.1. Proof of Theorem 5.1.

Recall with the active watermarking, the attacker will optimize the objective Eq. 11. Assuming the attacker utilizes
cross-entropy loss as the learning objective l, we have
Lemma A.2. The optimal solution of Eq. 11 with cross-entropy objective is ∀x,

C(x,θC) = Ew∼q(w|x)[V(x+w,θV )].

Proof. If the learning objective is cross-entropy loss, Eq. 11 becomes

min
θC

E(x,y)∼Dood,w∼q(w|x)[−V(x+w,θV ) · log C(x,θC)],

where · represent dot product of two vectors. Assuming the representation capability of the clone model is large enough, we
have

min
θC

E(x,y)∼Dood,w∼q(w|x)[−V(x+w,θV ) · log C(x,θC)]

= E(x,y)∼Dood
[min
θC

Ew∼q(w|x)[−V(x+w,θV ) · log C(x,θC)]]

= E(x,y)∼Dood
[min
θC

− log C(x,θC) · Ew∼q(w|x)[V(x+w,θV )]]

The solution of minθC
− log C(x,θC) · Ew∼q(w|x)[V(x+w,θV )] is C(x,θC) = Ew∼q(w|x)[V(x+w,θV )].
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Lemma A.3. Assuming the attacker achieve optimal model extraction solution (Lemma A.2), we have

E(x,y)∼Dood
[l(C(x,θC),y)]

≥E(x,y)∼Dood
Eq(w|x)KL(V(x;θV )||V(x+w;θV ))−B,

(22)

where B = E(x,y)∼Dood
[V(x;θV ) · log(V(x;θV ))] is a constant only related to the victim model V .

Proof. Given the optimal solution
C(x,θC) = Ew∼q(w|x)[V(x+w,θV )].

E(x,y)∼Dood
[l(C(x,θC),y)] = E(x,y)∼Dood

[l(C(x,θC),V(x;θV ))]
= E(x,y)∼Dood

[−V(x;θV ) · log(C(x,θC))]
= E(x,y)∼Dood

[−V(x;θV ) · log(Ew∼q(w|x)[V(x+w,θV )])].

(23)

by Jensen’s inequality we have

E(x,y)∼Dood
[l(C(x,θC),y)]

= E(x,y)∼Dood
[−V(x;θV ) · log(Ew∼q(w|x)[V(x+w,θV )])]

≥ E(x,y)∼Dood
[−V(x;θV ) · Ew∼q(w|x)[logV(x+w,θV )]]

= E(x,y)∼Dood
Ew∼q(w|x)[−V(x;θV ) · logV(x+w,θV )

= E(x,y)∼Dood
Ew∼q(w|x)KL(V(x;θV )||V(x+w,θV ))− E(x,y)∼Dood

[V(x;θV ) log(V(x;θT ))]

(24)

Based on Theorem A.1 and Lemma A.3, we can derive the present theorem.

A.2. Proof of Theorem 5.2.

We first introduce some preliminary knowledge about the complexity bound. Rademacher complexity (Bartlett, 1996)
measures the richness of a function class. For a set of vectors A ⊂ Rn, the Rademacher complexity is defined as
R(A) := 1

nEσ1,...,σn∈{−1,1} [supa∈A
∑n

i=1 σiai] . Given a loss function l, a hypothesis class F , and a training set S =
{(x1, y1), ..., (xn, yn)}, denote by l◦F := {l(f(·), ·) : f ∈ F} and l◦F ◦S := {(l(f(x1), y1), ..., l(f(xn), yn)) : f ∈ F}.
The Rademacher complexity of the set l◦F◦S is given byR(l◦F◦S) := 1

nEσ1,...,σn∈{−1,1}
[
supf∈F

∑n
i=1 σil(f(xi), yi))

]
.

For an arbitrary function f ∈ F , the generation gap between the population error LD(f) and the training error LS(f) is
bounded by the Rademacher complexity of the function space l ◦ F ◦ S. Assume that ∀f ∈ F ,∀x ∈ X , |l(f(x), y)| ≤ a.
According to Theorem 26.5 of (Shalev-Shwartz & Ben-David, 2014), with probability at least 1− δ, for all f ∈ F ,

LD(f)− LS(f) ≤ 2R(l ◦ F ◦ S) + 4a

√
2 ln(2/δ)

n
. (25)

The contraction lemma of Rademacher complexity (Lemma 26.9 of (Shalev-Shwartz & Ben-David, 2014)) shows that for a
given space A and a L-lipschitz function h : A → R, we have R(h ◦ A) ≤ L ·R(A). Thus, if the error function l(s, y) is
C-Lipschitz w.r.t. ∀s ∈ {f(x) : f ∈ F , x ∈ X}, we have

R(l ◦ F ◦ S) ≤ C ·R(F ◦ S). (26)

Notice, many popular error functions l(s, y), e.g. cross-entropy loss with softmax activation and mean squared loss, is
Θ(1)-Lipschitz w.r.t. ∀s ∈ {f(x) : f ∈ F , x ∈ X}.

To estimate the Rademacher complexity, we rely on another complexity measure named covering number. Given a space
A, denote by N (A, ϵ, || · ||) the minimum number of || · ||-norm balls with radius ϵ needed to completely cover A. With
Dudley’s integral, (von Luxburg & Bousquet, 2004; Srebro et al., 2010) showed that the Rademacher complexity of a given
set is upper bounded by a function related to the number of covering of the set. Based on their results, we have the following
generalization gap:
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Lemma A.4 (Theorem 16 of (von Luxburg & Bousquet, 2004)). Denote by X = [0, 1]d the input space, given a hypothesis
space F = {f : X → [0, 1]} and the norm || · ||F : ||f ||F = supx∈X |f(x)|. If l(s, y) is C-Lipschitz w.r.t. s for all
y ∈ [0, 1] and sup |l| < a. With probability 1− δ, we have for all f ∈ F ,

LD(f)− LS(f) ≤ 4a

√
2 ln(2/δ)

n
+ C inf

ϵ>0

{
8ϵ+

4
√
2√
n

∫ 2a

ϵ

√
lnN (F , u, || · ||F ) du

}
, (27)

where n is the number of training samples.
Lemma A.5 (Covering number of Cp

i ). Given an input space [0, 1]d and a K-Lipschitz parameterized hypothesis space Cp
i ,

we have for every ϵ > 0,

N (Cp
i , ϵ, || · ||F ) ≤ (

KW
√
p

ϵ
)p,

where W is the ℓ∞ bound of model parameters, i.e., ||θ||∞ ≤W

where ||f ||F := supx |f(x)| is the norm of the function.

Proof.

Lemma A.6 (Theorem 14.2 of (Wu & Yang, 2016) ). Given a space V ∈ Rd. Denote by N (V, ϵ, || · ||p) the ϵ-covering of
V with norm || · ||p, p ≥ 1, we have

N (V, ϵ, || · ||p) ≤ (
3

ϵ
)d

vol(V )

vol(Bp)
,

where vol(V ) is the volume of V and Bp is a unit || · ||p-norm ball.

Denote by Wϵ the ϵ/K-covering of the parameter space W := {θ ∈ Rp, ||θ||∞ ≤ W} under ℓ2-norm. We will show
Fϵ := {fθ : θ ∈ Wϵ} is an ϵ-covering of Cp

i .

Given Ci(·, θ) ∈ Cp
i , we can find θ′ ∈ Wϵ such that ||θ − θ′||2 ≤ ϵ/K. By K-Lipschitz parametrization we can immediately

get
||Ci(·, θ)− fθ′ ||F ≤ K||θ − θ′||2 ≤ ϵ.

Because fθ′ ∈ Fϵ, Fϵ is an ϵ-covering of Cp
i , which yields

N (Cp
i , ϵ, || · ||F ) ≤ |Fϵ| = N (W, ϵ/K, || · ||2).

By Lemma A.6, we have N (W, ϵ/K, || · ||2) ≤ (
KW

√
p

ϵ )p, thus

N (Cp
i , ϵ, || · ||F ) ≤ (

KW
√
p

ϵ
)p

.

We show that an ϵ/K-covering of the parameter space is an ϵ-covering of Cp
i . In this way, we successfully find an

upper bound of the covering number of Cp
i . Combining Lemma A.4 and Lemma A.5, we can derive the generalization

gap of the clone model. Now we start our proof, we first focus on the space Cp
i , i ∈ [k]. By Lemma A.5 we have

∀i ∈ [k],N (Cp
i , ϵ, || · ||F ) ≤ (

KW
√
p

ϵ )p. So

8ϵ+
4
√
2√
n

∫ 2a

ϵ

√
lnN (Cp

i , u, || · ||F ) du

≤8ϵ+
4
√
2√
n

∫ 2a

ϵ

√
p ln(KW

√
p/u) du

≤8ϵ+ a
8
√
2√
n

√
p ln(KW

√
p/ϵ),
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Denote by LDood
(Ci) := EDood

Eq(w|x)[li(Ci(x,θC),Vi(x + w,θV ))] and LS(Ci) :=
∑n

i=1 li(Ci(xi,θC),Vi(xi +
wi,θV )). Taking ϵ = a√

n
and combining it with Lemma A.4, we have with probability 1− δ, for all Ci ∈ Cp

i ,

LDood
(Ci)− LS(Ci) ≤

8aC√
n
(1 +

√
p ln(K2W 2pn/a2))

+ 4a

√
2 ln(2/δ)

n
.

(28)

Given C = (C1, ..., Ck) ∈ Cp, we have LDood
(C) =

∑k
i=1 LDood

(Ci) and LS(C) =
∑k

i=1 LS(Ci). By applying the union
bound over the function space Cp

i , i ∈ [k], we have with probability 1− kδ, for all C ∈ Cp

LDood
(C)− LS(C) =

k∑
i=1

(LDood
(Ci)− LS(Ci))

≤ 8akC√
n

(1 +
√
p ln(K2W 2pn/a2)) + 4ak

√
2 ln(2/δ)

n
.

(29)

Taking δ = δ
k yields the result.

B. Preliminary Definition
In this section, we establish the definition of the Wasserstein space. We represent P2(Rd) as the space comprising probability
measures on Rd with finite second-order moments. Each element µ ∈ P2(Rd) is a probability measure, characterized by
its density function µ : Rd → R, relative to the Lebesgue measure dx. The Wasserstein distance between two probability
measures µ1 and µ2 in P2(Rd) is defined as the following:

W2(µ1, µ2) =

(
min

ω∈
∏

(µ1,µ2)

∫
||x− x′||2dω(x,x′))

)1/2

,

where
∏
(µ1, µ2) = {ω|ω(A × Rd) = µ1(A), ω(Rd × B) = µ2(B)}. ω represents the joint probability measure with

marginal measures µ1 and µ2 respectively. Consequently, W2 = (P2(Rd),W2) constitutes a metric space.
Definition B.1 (First Variation). The first variation of a functional F (µ) at the probability measure µ is defined as:

δF

δµ
(µ) = lim

ϵ→0

F (µ+ ϵψ)− F (µ)

ϵ
, (30)

where ψ could be chosen as an arbitrary function.

C. Derivations of Watermark Posterior Distribution Evolution
The Wasserstein gradient flow (WGF) is defined as the following:

∂tµt = ∇W2F (µt) := ∇ ·
(
µt∇

δF

δµ
(µt)

)
, (31)

According to (Ambrosio et al., 2008), the first variation of KL divergence, δKL(µ||π)
δµ is equal to the following:

δKL(µ||π)
δµ

= log
µ

π
+ 1; (32)

In accordance with (Wibisono, 2018), we define the watermark posterior distribution as an energy function q(w|x) ∝ e−U

U(w) =Ex∼Did
logP (y|x+w) + Ex∼Dood

KL(V(x;θV )||V(x+w;θV )) (33)
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We transform the Wasserstein gradient ∇W2
F (µt) in Eq. (31) through the application of the transformation Kµ∇W2

F (µt),
employing the integral operator Kµf(w) =

∫
K(w,w′)f(w′)dµ(w′), where H denotes the RKHS induced by the kernel

K. Subsequently, we express the WGF in Eq. (31) in terms of the kernelized WGF (Liu, 2017) as the following:

∂tµt = div(µtKµt
∇δF

δµ
(µt)). (34)

The above Eq. (34) implies that the random variableWt, representing the posterior distribution of the watermark zΦ(w|x,γ)
and describing the evolved watermark w for the data point x at time t, follows according to the following differential
equation (Liu, 2017; Chewi et al., 2020):

dW

dt
= −[Kµ∇

δF

δµ
(µt)](W ). (35)

The kernelized Wasserstein gradient can be expressed by the following equation:

Kµt
∇δKL(µ||π)

δµ
= Kµt

∇ log
µt

π
(w) :=

∫
K(w, ·)∇ log

µt

π
=

∫
K(w, ·)∇Udµt −

∫
∇2K(w, ·)dµt (36)

In Eq. (36), we apply the technique of integration by parts in the third identity. Here, ∇2 denotes the gradient of the kernel
with respect to the second argument.

Substituting the expression from Eq. 36 into Eq. 35, we derive the following differential equation, which describes the
continuous evolution of the watermark posterior distribution:

dW

dt
= −

∫
K(w, ·)∇Udµt +

∫
∇2K(w, ·)dµt (37)

We proceed to discretize the aforementioned equation in Eq. (37), treating each sampled watermark from the posterior
distribution as an individual particle. This process leads us to the following expression for the Wasserstein gradient of the
watermark posterior:

∇wKL(zΦ(w|x,γ)||q(w|x)) = Ew∼zΦ(w|x,γ)[k(w, ·)∇wU(w)︸ ︷︷ ︸
smoothed gradient

+∇wk(w, ·)︸ ︷︷ ︸
repulsive term

] (38)

D. OOD Data Generation
To ensure comprehensive coverage of OOD data, we treat the parameters of the pseudo-data generator, denoted as θG, as
random variables. Specifically, for the i-th layer of the generator network, θi

G, we sample the parameters from a normal
distribution, i.e., θi

G ∼ N (0, I). The OOD data is generated as x = G(ϵ;θG), where ϵ ∼ N (0, I). The underlying rationale
is that a fixed set of parameters can generate a specific data distribution, whereas introducing a distribution over the generator
parameters can produce an infinite set of OOD data distributions, thereby aiding in the coverage of a broader range of OOD
scenarios.

E. Model Extraction Method Description
E.1. Soft-Label DFME

In the soft-label setting (Truong et al., 2021; Kariyappa et al., 2021a), the black-box API offers softmax probabilities outputs
corresponding to input queries. Employing a synthetic data generator x = G(ϵ,θG), where ϵ ∼ N (0, I), the attacker
utilizes synthetic data x to query the black-box victim model, obtaining soft-labels yV = V(x;θV ) and acquiring outputs
from the clone model yC = C(x,θC). Attacker then minimizes the following loss function to train the clone model and
data generator:

LC = KL(yV ,yC), LG = −KL(yV ,yC) (39)
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E.2. Decision-based DFME (DFMS-HL)

DFMS-HL (Sanyal et al., 2022) employs 10 unrelated classes for pre-training the Generative Adversarial Network (GAN)
(Goodfellow et al., 2014). Considering a random noise variable z ∼ N (0, I), pseudo data is generated through x =
G(z;θG), where z ∼ N (0, I), and θG represents the generator parameters. Subsequently, the generated pseudo data is
utilized to query the victim model, with y(x) = argmaxi Vi(x;θV ) denoting the predicted label by the victim model on
the pseudo data. The clone model then minimizes the following loss function to learn its parameters:

L(C(x,θC), y(x)) (40)

Rather than training the pseudo-data generator from scratch, DFMS-HL learns the data generator from a set of unrelated
classes of images using the following loss function, akin to the one used in GAN (Goodfellow et al., 2014):

Lreal = Ex∼Preal(x)[logD(x)] (41)

Lfake = Ez∼N (0,I)[log(1−D(x))] (42)

where D(x) denotes the discriminator function. To enhance the diversity of the generated data, DFMS-HL introduces a
diversity loss as follows:

Ldiv =

j=K∑
j=0

αj logαj ; (43)

αj =
1

N

i=N∑
i=1

softmax(C(x,θC)) (44)

The pseudo-data generator and discriminator respectively optimize the following loss function:

LG = Lfake + λLdiv (45)
LD = Lreal + Lfake (46)

E.3. Defense against Hard-Label DFME

We denote the ground-truth label for the query data x as y(x). The predicted label by the victim model with parameters
θV is determined as y(x) = argmaxi Vi(x,θV ). Active watermarking aims to maximize the change in model outputs on
simulated out-of-distribution (OOD) data, significantly increasing the likelihood of incorrect prediction labels on this OOD
data. Let the wrongly predicted label be denoted as y′(x) = argmaxi Vi(x,θV ), where y′(x) ̸= y(x). Consequently,
minimizing the loss L(C(x,θC), y′(x)) leads to the attacker learning incorrect information from the victim model.

F. Additional Experimental Results
F.1. Model Extraction Defense Baselines

• RandP (Orekondy et al., 2020): This defense method involves the random perturbation of the victim model output.
Specifically, we introduce random noise âV to the prediction logits, where aV represents the victim model output logit.
The perturbed victim model output logit, denoted as âV , is obtained by adding the random noise vector λT to aV . To
recover this perturbed logit from the probability outputs y, we use the expression a = log y

1−y . The random noise
vector is denoted as λT . The logits undergo renormalization, resulting in ŷ = 1

1+e−â , which is then presented to the
users.

• Prediction Poisoning (Orekondy et al., 2020): They introduce an objective for perturbing the outputs of the victim
model, termed Maximizing Angular Deviation (MAD). The aim of MAD is to modify the prediction probabilities yV

of the victim model in a way that generates an adversarial perturbed gradient with maximal deviation from the original
gradient of the victim model.
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• GRAD (Mazeika et al., 2022): This defense mechanism utilizes gradient redirection to enable the adversary to update
the clone model gradient in any arbitrary direction.

• MeCo (Wang et al., 2023) is the SOTA model extraction defense method which employees the distributionally robust
defensive training.

F.2. Data-Based Model Extraction Baselines

We employ Knockoff Nets (Orekondy et al., 2019) and Jacobian Based Dataset Augmentation (JBDA) (Papernot et al.,
2017) to extract the target victim model, and the results are presented in Table 10.

• Knockoff Nets (Orekondy et al., 2019): This method extracts the target black-box model using a relevant surrogate
dataset to query the target model. Subsequently, the attacker trains a clone model with the surrogate dataset and
incorporates the target model predictions on the surrogate dataset as the corresponding data labels.

• Jacobian Based Dataset Augmentation (JBDA) (Papernot et al., 2017): In this approach, the attacker initially queries
the target model with a small subset of in-distribution data examples to construct a labeled dataset. Subsequently,
the attacker trains the clone model on the constructed labeled dataset. Additionally, the dataset is augmented with
additional synthetic examples generated by perturbing the raw data input using the Jacobian of the loss function.

F.3. Modify the victim model to be GoogLeNet

Table 6. Clone model accuracy after applying different defense methods on CIFAR10 against existing DFME methods with GoogLeNet
as the target model

Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 61.38± 1.93% 60.23± 1.82% 58.37± 2.19%

DFMS-HL RandP ↓ 61.06± 2.18% 59.82± 1.87% 58.03± 2.31%
P-poison ↓ 60.73± 1.95% 59.07± 1.93% 58.09± 2.33%
GRAD ↓ 59.41± 1.90% 58.72± 1.91% 58.18± 1.98%
MeCo ↓ 53.77 ± 2.21% 53.89 ± 1.96% 53.28 ± 2.20%
ACT(Ours) ↓ 51.32 ± 2.38% 52.51 ± 2.53% 51.07 ± 2.75%

undefended ↓ 74.67± 1.35% 75.23± 1.51% 70.96± 0.78%

DFME
RandP ↓ 70.05± 1.97% 70.54± 1.72% 66.78± 2.07%
P-poison ↓ 67.32± 1.89% 69.28± 1.82% 64.90± 2.01%
GRAD ↓ 69.32± 1.91% 66.32± 1.97% 65.73± 1.77%
MeCo ↓ 54.53 ± 2.17% 50.28 ± 2.32% 59.42 ± 2.51%
ACT(Ours) ↓ 49.38 ± 2.83% 46.53 ± 3.06% 55.26 ± 3.16%

undefended ↓ 23.18± 2.37% 19.01± 1.09% 21.28± 3.16%

MAZE
RandP ↓ 22.03± 2.16% 17.24± 1.16% 19.23± 1.38%
P-poison ↓ 21.28± 2.33% 17.28± 1.22% 17.76 ± 1.16%
GRAD ↓ 20.79± 2.07% 16.96± 1.27% 18.09± 1.34%
MeCo ↓ 19.65 ± 2.61% 14.16 ± 2.30% 18.31± 2.75%
ACT(Ours) ↓ 17.81 ± 2.93% 15.35 ± 2.09% 17.06 ± 2.18%

F.4. DFME Defense on MNIST and MiniImageNet

We also assess the performance of the DFME defense on MNIST, as presented in Table 7.
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Table 7. Accuracy of the clone model following the application of various defense methods on the MNIST dataset using LeNet5 as the
target model.

Attack Defense Clone Model Architecture

LeNet5 LeNet5-Half LeNet5-1/5

undefended ↓ 98.76± 0.27% 96.65± 0.43% 94.62± 0.69%

DFME
RandP ↓ 92.25± 0.32% 91.86± 0.49% 90.37± 0.73%
P-poison ↓ 88.34± 0.78% 86.09± 0.96% 84.98± 1.07%
GRAD ↓ 87.22± 0.70% 85.38± 0.91% 84.23± 1.16%
MeCo ↓ 85.07 ± 0.87% 82.93 ± 1.27% 82.57 ± 1.53%
ACT ↓ 81.67 ± 0.96% 80.18 ± 1.38% 80.09 ± 1.76%

undefended ↓ 98.09± 0.26% 95.91± 0.36% 89.41± 0.38%

MAZE
(RandP, C) ↓ 92.77± 0.41% 88.71± 0.90% 86.38± 0.95%
P-poison ↓ 85.34 ± 0.78% 87.05± 0.86% 86.18± 0.97%
GRAD ↓ 85.63± 0.91% 87.31± 0.75% 86.42± 0.78%
MeCo ↓ 88.57± 0.87% 86.99 ± 0.78% 85.03 ± 0.68%
ACT ↓ 83.56 ± 0.93% 83.32 ± 0.91% 82.53 ± 0.82%

Table 8. Accuracy of clone model following the application of various defense methods on MiniImageNet, using ResNet34-8x as the
victim model.

Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 46.72± 4.86% 40.35± 4.97% 38.71± 3.85%

DFMS-HL
RandP ↓ 45.09± 4.93% 39.51± 4.83% 38.08± 3.95%
P-poison ↓ 45.16± 5.03% 39.06± 4.72% 37.78± 4.26%
GRAD ↓ 45.32± 5.21% 39.17± 4.85% 37.85± 4.32%
MeCo ↓ 39.23 ± 4.83% 35.81 ± 4.69% 32.30 ± 4.56%
ACT(Ours) ↓ 33.28 ± 4.57% 31.61 ± 4.38% 27.32 ± 4.75%

undefended ↓ 35.89± 3.97% 28.71± 3.25% 25.05± 3.68%

DFME
RandP ↓ 30.76± 4.09% 22.06± 3.83% 20.23± 3.97%
P-poison ↓ 29.36± 4.23% 21.83± 3.77% 20.01± 3.89%
GRAD ↓ 29.87± 3.76% 21.65± 3.75% 19.82± 3.77%
MeCo ↓ 23.29 ± 3.83% 17.83 ± 3.67% 16.73 ± 3.88%
ACT(Ours) ↓ 19.81 ± 3.57% 15.36 ± 3.56% 12.95 ± 3.28%

F.5. Legitimate Use in Edge Case

Table 9. Evaluation of victim model’s utility through test accuracy in edge cases on CINIC-10.
Method CINIC-10

undefended(upper bound) 75.28%

RandP ↑ 74.31%
P-poison ↑ 74.17%
GRAD ↑ 74.69%
MeCo ↑ 73.72%
ACT(Ours) ↑ 74.56%

F.6. Defense against DBME

Table 10. Clone model accuracy after applying defense methods against DBME on CIFAR-10 comparing to EDM (Kariyappa et al.,
2021b)

Dataset KnockoffNets JBDA

undefended EDM EDM + ACT undefended EDM EDM + ACT

MNIST 90.18 51.34 45.78 88.48 79.04 65.82
CIFAR10 85.39 68.50 60.21 22.03 22.01 21.65
CIFAR100 53.04 41.16 34.67 4.09 3.69 3.75
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F.7. Results of Adaptive Attack

Table 11. Accuracy of clone model following the application of the adaptive attack by attacker on CIFAR-10, using ResNet34-8x as the
victim model.

Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%
DFME ACT ↓ 46.57 ± 2.83% 40.32 ± 2.96% 49.25 ± 2.67%

Adaptive ↓ 23.97 ± 1.65% 18.72 ± 1.56% 21.08 ± 1.95%

Table 12. Accuracy of clone model when the attacker solely utilizes the hard label provided by the victim model, instead of output
probabilities, on CIFAR-10.

Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%
DFME ACT, soft label ↓ 46.57 ± 2.83% 40.32 ± 2.96% 49.25 ± 2.67%

ACT, hard label ↓ 40.09 ± 1.08% 38.59 ± 1.23% 39.82 ± 1.97%

F.8. Defending Self-Supervised Learning Model

To assess the effectiveness of our method against self-supervised learning pre-trained model, we perform model extraction
and defense on the encoder trained with SimSiam (Chen & He, 2021) on ImageNet-1K. Following the procedure in (Dziedzic
et al., 2022a), we evaluate the quality of the extracted encoder by various downstream task performance on CIFAR10,
CIFAR100 and SVHN. The results are shown in Table 13. We can observe that under various defense strategies, our method
substantially outperforms the SOTA defense method by up to 5.6%. More details can be found in the following.

Table 13. Downstream task performance by performing different defenses on self-supervised learning encoder on ImageNet-1K
Method CIFAR10 CIFAR100 SVHN

undefended ↓ 71.2 ± 0.8% 48.6 ± 0.5% 73.6 ± 0.6%
RandP ↓ 69.6 ± 0.9% 47.6 ± 0.8% 72.4 ± 0.5%
P-poison ↓ 69.1 ± 0.5% 46.9 ± 0.9% 71.8 ± 0.9%
GRAD ↓ 68.9 ± 0.5% 46.2 ± 0.4% 70.2 ± 0.7%
MeCo ↓ 69.8 ± 0.6% 46.5 ± 0.5% 70.7 ± 0.3%
ACT (Ours) ↓ 66.1 ± 0.7% 40.6 ± 0.6% 65.2 ± 0.5%

Following (Dziedzic et al., 2022a), we perform model extraction on the encoder which is pre-trained on ImageNet-1K
dataset (Deng et al., 2009) with the self-supervised learning method, SimSiam (Chen & He, 2021).

To train a stolen model, we employ comparable hyperparameters to those used in training the victim models, including a
batch size of either 64 or 256, an initial learning rate of 0.0001, and the Adam optimizer. In instances of stealing from the
ImageNet victim model, we opt for a larger learning rate of 0.1 or 1.0 and a batch size ranging from 256. The query budget
is set to be 50000.

In downstream tasks, we assess the performance of the stolen model against the victim model by evaluating their performance
on CIFAR10, SVHN, STL-10, and Fashion MNIST datasets. The standard linear evaluation protocol is employed, involving
the addition of an extra linear layer to the representation model while keeping all other layers frozen. Subsequently, the
network is optimized using labeled data specific to the downstream task. For models stolen from a CIFAR10 or SVHN
victim model, we utilize a learning rate of 0.0001 with the SGD optimizer during linear evaluation, adjusting the parameters
based on the victim model. These tuned parameters remain constant when evaluating models stolen from the same victim
model. In the case of the ImageNet victim model, a learning rate of 1.0 and a batch size of 256 are employed. Attacker
uses the InfoNCE loss (Oord et al., 2018) to extract the encoder. In all instances, the top-1 test accuracy on the particular
downstream task is reported and serves as the benchmark for comparing the performance between the victim and stolen
models.

The energy function is defined as the following:
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U(w) = −Ex∈Did

[
log

exp(sim(x,x+w)/τ)∑
j exp(sim(x,xj +wj)/τ)

]
+ Ex∈Dood

[
log

exp(sim(x,x+w′)/τ)∑
j exp(sim(x,xj +w′

j)/τ)

]
(47)

The notation x+w represents a randomly watermarked data point on x, while xj+wj denotes other negatively watermarked
instances. The function sim(u,v) = u·v

||u||||v|| signifies the normalized cosine similarity, and τ represents the temperature
constant. The rationale behind optimizing this objective is to minimize the disparity between the feature representations
of watermarked ID data and non-watermarked ID data, ensuring that benign users can effectively utilize the valuable
representations generated by the victim model. Conversely, the second term in Equation (47) encourages maximizing the
distance between the feature representation of watermarked OOD data and non-watermarked OOD data, aiming for an
effective defense mechanism.

Subsequently, the parameters of the watermark posterior network are updated using the same methodology as in the
supervised learning process outlined in Algorithm 1 in the main text.

F.9. Impact of query budget on clone model performance

Figure 2. The test accuracy of the clone model on CIFAR10, where lower values are preferable, shows fluctuations with varying query
budgets following the application of different defense methods to the victim model. Notably, our defense method, ACT, outperforms a
range of other defense methods significantly.

F.10. Training Efficiency Evaluation

We perform training efficiency evaluation compared to the SOTA defense method, MeCo (Wang et al., 2023). We can
observe that our method significantly reduces the training cost of MeCo by more than 87%.

Table 14. Training Time on CIFAR10
Algorithm total training time (hours)

MeCo 5.68
ACT (Ours) 0.72

F.11. Test Time Memory Consumption Evaluation

To assess test-time memory efficiency in comparison to baseline defense methods, the results are presented in Table 15.
It is evident that ACT exhibits lower memory usage than P-poison, as P-poison requires multiple forward and gradient
computations during test time. Furthermore, ACT demonstrates significantly superior memory efficiency compared to
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GRAD, given that GRAD involves memory-intensive double backpropagation. ACT maintains a comparable level of
memory consumption to MeCo.

Table 15. Evaluation of memory efficiency during test time.
Algorithm CIFAR10

P-poison 2.2 GB
GRAD 10.83 GB
MeCo 2.03 GB
ACT 2.03 GB

F.12. Effect of Fine-Tuning Victim Model

We assess performance through a comparison of fixed and fine-tuned victim models, with the results presented in Table
16. It is evident that fixing the victim model leads to a decrease in model utility. Therefore, fine-tuning the victim model
becomes essential to preserve its utility.

Table 16. Model utility comparisons with fixed and updating the victim model.
Algorithm CIFAR10 CIFAR100

fix victim model 89.76 ± 0.87% 65.32 ± 0.68%
update victim model 94.25 ± 0.75% 75.65 ± 0.73%

F.13. l1 Norm Utility Evaluation

We additionally assess the l1 norm output perturbation magnitude denoted by ||y− y⃗||1 (lower values are preferable), where
y and y⃗ represent the original and perturbed output probabilities, respectively. The outcomes are detailed in Table 17. The
findings indicate that our approach provides enhanced defense with a reduced magnitude of output perturbation. This is
advantageous for benign users as they may require meaningful output logits to analyze valuable knowledge within the model
outputs.

Table 17. victim model utility measured by the l1 norm of the model output probability with/without perturbation
Method MNIST CIFAR10 CIFAR100

RandP ↓ 1.0 1.0 1.0
P-poison ↓ 1.0 1.0 1.0
GRAD ↓ 1.0 1.0 1.0
MeCo ↓ 0.0126 0.099 0.312
ACT ↓ 0.0117 0.093 0.328
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