
Representing Positional Information in
Generative World Models for Object Manipulation

Anonymous Author(s)
Affiliation
Address
email

Abstract: The ability to predict outcomes of interactions between embodied1

agents and objects is paramount in the robotic setting. While model-based control2

methods have started to be employed for tackling manipulation tasks, they have3

faced challenges in accurately manipulating objects. As we analyze the causes4

of this limitation, we identify the cause of underperformance in the way current5

world models represent crucial positional information, especially about the target’s6

goal specification for object positioning tasks. We propose two solutions for7

generative world models: position-conditioned (PCP) and latent-conditioned (LCP)8

policy learning. In particular, LCP employs object-centric latent representations9

that explicitly capture object positional information for goal specification. This10

naturally leads to the emergence of multimodal capabilities.11

1 Introduction12

Among RL algorithms, model-based approaches aim to provide greater data efficiency compared13

to their model-free counterparts [1, 2]. With the advent of world models (WM) [3], model-14

based agents have demonstrated impressive performance across various domains [4–7], including15

Figure 1: The world model compresses input obser-
vations into a single or per object latent state repre-
sentation. The compressed representation serves as
input to the policy for action selection. (top) Goal
information is provided through the input state vec-
tor. (bottom): Both single and object-centric rep-
resentations can be paired to a target-conditioned
policy.

real-world robotic applications [8, 9].16

When considering robotic object manipulation17

tasks, it seems natural to consider an object-18

centric approach to world modeling. Object-19

centric world models, like FOCUS [10] learn20

a distinct dynamical latent representation per21

object. This contrasts with the popular Dreamer22

method [6], where a single flat representation,23

referring to the whole scene is extracted.24

Model-based generative agents, like Dreamer25

and FOCUS, learn a latent model of the envi-26

ronment dynamics by reconstructing the agent’s27

observations and use it to generate latent se-28

quences for learning a behavior policy in imagi-29

nation [4, 11, 6]. However, these kinds of agents30

have shown consistent issues in succeeding in31

object manipulation tasks, both from proprio-32

ceptive/vector inputs [12] and from images [13].33

After analyzing the causes of failure of generative agents, we propose two solutions to improve34

performance:35

• a simpler solution, where the target is expressed as a vector of spatial coordinates, that36

presents no major changes to the model architecture and minimal changes to policy learning;37

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

• a tailored solution employing an object-centric approach that integrates positional informa-38

tion about the objects into the latent space of the world model. This approach enables the39

possibility to specify goals through multimodal targets, e.g. vector inputs or visual goals.40

2 Analysis of the Current Limitations41

Figure 2: (left): examples of virtual targets. (top-
right): Dreamer’s success rate and reconstruction
performance over target and entity position (end-
effector position for reacher and cube position for
the cube environment). (bottom-right): Equiva-
lent for the FOCUS object-centric model.

To provide insights into the limitations of42

current world model-based agents in object-43

positioning tasks, we consider the performance44

of Dreamer and FOCUS on a pose-reaching and45

an object-positioning task. For pose-reaching,46

we opted for the Reacher environment from the47

DMC suite [14]. In this task, we consider the48

end-effector of the manipulator as the entity to49

be positioned at the target location. For the more50

complex object positioning task, we opted for51

a cube-manipulation task from Robosuite [15].52

The given cube has to be placed at the specified53

target location to succeed in the task.54

In both environments, the target position is uni-55

formly sampled within the workspace at every56

new episode. We test the environments in two57

different scenarios: first, with a virtual visual58

target that is rendered in the environment, and second, without a visual target, where the target59

location is provided only as a vector in the agent’s inputs. Training details are provided in appendix60

G. Based on Fig. 2, we highlight the significant gap in performance between the tasks with the virtual61

visual targets rendered in the environment and the tasks using only spatial coordinates as a target. The62

agents struggle to solve the tasks without a virtual target. It can also be noticed a negative correlation63

between the agents’ ability to reconstruct positional information and the performance on the task.64

There is a significant difference in the relative significance of the target information compared to65

the entire observation, in terms of their dimensionality. The information pertaining to a positional66

target comprises a maximum of three values (i.e., the xyz coordinates of the target). Conversely, when67

considering a visual cue, there are three values (i.e., RGB values) for each pixel that represents the68

target cue. Consequently, the relative significance of the target information is, at least, greater in69

the case of a large visual target, i.e. larger than a single pixel. This difference in the dimensionality70

affects the computation of the loss, and thus the weight of each component in the decoder’s loss.71

For the entity, the agents have access to this information in the visual observation. Indeed, it’s not72

surprising that both agents reconstruct the entity position accurately. To confirm our hypothesis that73

the improved predictions are due to the greater significance of the visual targets in the overall loss,74

we provide additional experiments in appendix C.75

Discussion. A concurrent work [16] conducted an extensive study between the interplay of the reward76

and the observation loss in a world model. Our analysis provides an additional insight, as we identify77

within the observation loss, an unbalance between the different decoded components. In this work,78

rather than focussing on how to balance the losses (Appendix D), we consider different approaches79

to alleviate this issue. The central idea is to find alternative ways to provide positional information80

about the target directly to the reward computation and policy learning modules, rather than relying81

on the reconstruction of the targets obtained by the model.82

3 Conditioned Policy83

Position Conditioned Policy (PCP). The first declination of our proposed solutions is the condition-84

ing of the policy directly on the positional coordinates of the desired target. By default, the world85

2

model encodes the target’s positional information in the latent states, which are then fed to the policy86

for behavior learning. Instead, as shown in the bottom of Fig. 1, we propose to concatenate the object87

positional coordinates pobjg to the latent states st as an input to the policy network. We refer to this88

strategy as Position-Conditioned Policy (PCP): πPCP (at|st, pobjg)89

When employing PCP, the policy has direct access to the target’s positional information pobjg . This90

can also be leveraged for reward computation. Rather than learning a reward head, we can use the91

world model’s decoder to predict the object’s position at time t, obtaining p̂objt . Then, the reward92

rPCP can be estimated as the distance between the target given to the policy and the reconstructed93

position of the entity of interest: rPCP = dist(p̂objt − pobjg)94

Figure 3: LCP leverages an object-centric represen-
tation. With the latent position encoder network,
the agent learns to predict the latent of each object
in the scene given the sole object position. The
policy is then conditioned on an object latent target
obtained from the target goal observation. Distance
functions are expressed as cosine similarities.

Latent Conditioned Policy (LCP). Condition-95

ing the policy on explicit features has its lim-96

itations, particularly when extending features97

beyond positional ones, or when working with98

different goal specifications, e.g. visual ones.99

Therefore, expressing features implicitly could100

represent a more robust approach. To address101

this, we propose a latent conditioned method102

for behavior learning. This approach is anal-103

ogous to the one adopted in LEXA [17] for104

goal-conditioned behavior learning. However,105

we tailor our strategy for object manipulation106

by designing an object-centric approach. We107

refer to our novel implementation as Latent-108

Conditioned Policy (LCP).109

In LEXA, policy conditioning occurs on the110

entire (flat) latent state, using either cosine or111

temporal distance methods. However, in manipulation tasks involving small objects, the cosine112

approach is inadequate because it prioritizes matching the robot’s position over visually smaller113

aspects of the scene, such as an object’s position, rather than on bigger visual components of the114

scene, e.g. the robot pose. The temporal approach was introduced to mitigate this issue. However,115

this approach generally requires a larger amount of data to converge, as the training signal is less116

informative, being based only on the temporal distance from the goal [17]. We argue that object-117

centric latent representations offer greater flexibility to condition the policy, thanks to the disentangled118

latent information. With LCP, we can condition the policy solely on the object’s latent states, enabling119

fine-grained target conditioning focused exclusively on the entity of interest.120

Latent Positional Encoder. To obtain object latent features for a given target position, we introduce121

the Latent Positional Encoder model, as shown in Fig. 3. This model enables inferring an object’s122

latent state directly from the object’s positional information, namely p(ŝobjt |pobjt).123

During training, the latent positional encoder is trained to minimize the negative cosine distance124

between the predicted and the reference object latent state: Lpos = − ŝobjt ·sobjt

∥ŝobjt ∥∥sobjt ∥
125

Compared to the original loss function of FOCUS (defined in Appendix E), the world model loss126

becomes: Locwm = LFOCUS + Lpos127

Latent-Conditioned Policy Learning. The introduction of the latent positional encoder enables128

the conditioning over the target object’s latent. By encoding a desired target position pobjg , the target129

object’s latent state sobjg is inferred. The latter serves as the conditioning factor for the policy network:130

πLCP (at|st, sobjg). To incentivize the policy to move the entity of interest to the target location, we131

maximize the negative latent distance between ŝobjt and sobjg . The distance function used is cosine132

similarity. rLCP becomes then: rLCP =
ŝobjt ·sobjg

∥ŝobjt ∥∥sobjg ∥
133

3

Visual targets. Additionally with respect to PCP, LCP enables conditioning the policy on visual134

targets. In this case, the agent does not use the latent position encoder. Instead, given a visual135

observation representing the goal target position for the object, the world model can infer the136

corresponding world model state, using the encoder and the posterior. Then given such a state, the137

object extractor allows extracting the target latent state sobjg , which is used in the reward computation.138

Dreamer FOCUS Dreamer
w/ PCP

LEXA
(cosine)

LEXA
(temporal)

FOCUS
w/ LCP

Reacher 0.26 ± 0.19 0.29 ± 0.19 0.8 ± 0.14 0.92 ± 0.04 0.42 ± 0.2 0.91 ± 0.04
Cube move 0.35 ± 0.08 0.35 ± 0.15 0.54 ± 0.08 0.37 ± 0.03 0.39 ± 0.1 0.61 ± 0.12
Shelf place 0.4 ± 0.14 0.3 ± 0.18 0.58 ± 0.13 0.4 ± 0.11 0.4 ± 0.11 0.65 ± 0.14
Pick&Place 0.26 ± 0.21 0.21 ± 0.2 0.48 ± 0.26 0.34 ± 0.24 0.34 ± 0.25 0.45 ± 0.29

Table 1: Average score for 100 goal points equally dis-
tributed over the workspace. Performance is averaged over
3 seeds, ± indicates the std. error.

139

4 Results140

We now present the evaluation of the141

trained models (training details in Ap-142

pendix G) for a set of 4 environments143

(Appendix F). The score function considered is presented in Appendix, Eq. 2 .144

Spatial-coordinates goal specification. By providing the different agents with goals uniformly145

distributed in the workspace we extract the overall performance of each method. Results are presented146

in Table 1. Overall, the FOCUS agent equipped with PCP or LCP gives the best performance,147

followed by Dreamer + PCP. In the "Shelf place" environment, the latent representation of LCP148

represents best. Given that the camera is further away from the scene, we believe the agent is149

better able to deal with the inaccuracies that come from the inaccurate position readings (bigger150

segmentation mask → better granularity in position).151

Figure 4: The mean score was achieved over 10
episodes with goal observations for latent condi-
tioning. The performance of our method with
spatial-coordinate goals (pos) is shown as a ref-
erence. Performance is averaged over 3 seeds.

Visual goal specification. An emergence prop-152

erty of FOCUS + LCP is the possibility to define153

goals via different modalities. The policy πLCP154

can be conditioned on the goal object latent ŝobjg155

coming from the encoding of the visual goal xg .156

We compare our method with visual goal con-157

ditioning against LEXA cosine and temporal.158

The goal locations are provided to the simulator159

which renders the corresponding goal observa-160

tions by "teleporting" the object to the correct161

location. The agent is then asked to matched162

the visual goal, after resetting the environment.163

Results are shown in Fig. 4, where the positional conditioning results are shown for reference.164

LEXA matches the flat latent vector to the goal one. This proves helpful in the Reacher environment,165

where the only part that moves is the agent, and thus LEXA cosine achieves the best performance.166

LEXA cosine fails in the other tasks, given the presence of multiple entities in the observations and167

visual goals, i.e. the robotic arm and the object. where the model focuses on matching the visually168

predominant features i.e. the robotic arm. FOCUS+LCP performs better than both LEXA with cosine169

and temporal distance in all environments but the Reacher. When compared to the performance of170

FOCUS+LCP with spatial-coordinates goals, there is a decrease of ∼10% in performance.171

5 Conclusion172

We analyzed the challenges in solving visual robotic positional tasks using generative world model-173

based agents. We found these systems suffer from information bottleneck issues when considering174

positional information for task resolution (i.e. goal position). The approaches we presented overcome175

this issue by providing the policy network with more direct access to the target information. Positional176

Conditioning Policy (PCP), allows direct conditioning on the target spatial coordinates. We showed177

PCP improves performance for any class of world models, including Dreamer-like "flat" world178

models and FOCUS-like object-centric world models. Latent Conditioning Policy (LCP), is an179

object-centric approach that we implement on top of FOCUS. This allows the conditioning of the180

policy on object-centric latent targets, enabling multimodal goal definition.181

4

References182

[1] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic183

methods, 2018.184

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy185

deep reinforcement learning with a stochastic actor, 2018.186

[3] D. Ha and J. Schmidhuber. World models. 2018. doi:10.5281/ZENODO.1207631. URL187

https://zenodo.org/record/1207631.188

[4] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent189

imagination. 2020. URL https://arxiv.org/pdf/1912.01603.pdf.190

[5] S. Rajeswar, P. Mazzaglia, T. Verbelen, A. Piché, B. Dhoedt, A. Courville, and A. Lacoste.191

Mastering the unsupervised reinforcement learning benchmark from pixels. 2023.192

[6] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world193

models. arXiv preprint arXiv:2301.04104, 2023.194

[7] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models195

for real-world robot manipulation, 2024.196

[8] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. Daydreamer: World models for197

physical robot learning, 2022.198

[9] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for199

visual robotic manipulation, 2023.200

[10] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt. Focus: Object-centric world models for201

robotics manipulation, 2023.202

[11] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.203

In ICLR, 2021.204

[12] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous205

control, 2024.206

[13] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for207

visual control, 2022.208

[14] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,209

N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software210

Impacts, 6:100022, 2020. ISSN 2665-9638. doi:https://doi.org/10.1016/j.simpa.2020.100022.211

URL https://www.sciencedirect.com/science/article/pii/S2665963820300099.212

[15] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu. robo-213

suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint214

arXiv:2009.12293, 2020.215

[16] H. Ma, J. Wu, N. Feng, C. Xiao, D. Li, J. Hao, J. Wang, and M. Long. Harmonydream: Task216

harmonization inside world models, 2024. URL https://arxiv.org/abs/2310.00344.217

[17] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving218

goals via world models, 2021.219

[18] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.220

[19] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent221

dynamics for planning from pixels. In ICML, pages 2555–2565, 2019.222

5

http://dx.doi.org/10.5281/ZENODO.1207631
https://zenodo.org/record/1207631
https://arxiv.org/pdf/1912.01603.pdf
http://dx.doi.org/https://doi.org/10.1016/j.simpa.2020.100022
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/2310.00344

[20] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A223

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on224

Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.225

[21] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,226

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. A. Tezak, J. Tworek, P. Welinder, L. Weng,227

Q. Yuan, W. Zaremba, and L. M. Zhang. Solving rubik’s cube with a robot hand. ArXiv,228

abs/1910.07113, 2019.229

[22] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark230

reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.231

[23] J. Fan. A review for deep reinforcement learning in atari:benchmarks, challenges, and solutions,232

2023. URL https://arxiv.org/abs/2112.04145.233

[24] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore234

via self-supervised world models. In ICML, 2020.235

6

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/2112.04145

Appendix236

A Preliminaries237

The agent is a robotic manipulator that, at each discrete timestep t receives an input xt from the238

environment. The goal of the agent is to move an object in the environment from its current position239

pobjt to a target goal position pobjg .240

In this work, we focus on observations composed of both visual and vector entities. Thus, xt = (ot, vt)241

is composed of the visual component ot and of the vector vt. The latter is a concatenation of242

proprioceptive information of the robotic manipulator qt, the object’s position pobjt , and the target243

position pobjg . The target position can also be expressed through a visual observation xg , from which244

the agent should infer the corresponding pobjg to succeed in the positioning task.245

A.1 Generative World Models246

Generative world models learn a latent representation of the agent inputs using a variational auto-247

encoding framework [18]. Dreamer-like agents [11, 6] implement the world model as a Recurrent248

State-Space Model (RSSM) [19]. The encoder f(·) is instantiated as the concatenation of the249

outputs of a CNN for high-dimensional observations and an MLP for low-dimensional proprioception.250

Through the encoder network, the input xt is mapped to an embedding et, which then is integrated251

with dynamical information with respect to the previous RSSM state and the action taken at, resulting252

in st features.253

Encoder: et = f(xt)

Posterior: pϕ(st+1|st, at, et+1),

Prior: pϕ(st+1|st, at),
Decoder: pθ(x̂t|st).

Generally, the system either learns to predict the expected reward given the latent features [4], using a254

reward predictor pθ(r̂t|st). Alternatively, some world-model based methods adopt specialized ways255

to compute rewards in imagination, as the goal-conditioned objectives in LEXA [17].256

Rewards are computed on rollouts of latent states generated by the model and are used to learn the257

policy π and value network v in imagination [4, 11, 6].258

In our experiments, we consider a world model with a discrete latent space [11]. We also implement259

advancements of the world model representation introduced in DreamerV3 [6], such as the application260

of the symlog transform to the inputs, KL balancing, and free bits to improve the predictions of the261

vector inputs and the robustness of the model.262

A.2 Object-centric World Models263

Compared to Dreamer-like flat world models, the world model of FOCUS [10] introduces the264

following object-centric components:265

Object latent extractor: pθ(s
obj
t |st, cobj),

Object decoder: pθ(x̂
obj
t , m̂obj

t |sobjt).

Here, xobj
t = (oobjt , pobjt) represents the object-centric inputs and it is composed of segmented RGB266

images oobjt and object positions pobjt . The variable cobj indicates which object is being considered.267

Thanks to the object latent extractor unit, object-specific information is separated into distinct268

latent representations sobjt . Two decoding units are present. The introduced object-centric decoder269

pθ(x̂
obj
t , m̂obj

t |sobjt) reconstructs each object’s related inputs xobj
t and segmentation mask mobj

t . The270

original Dreamer-like decoder takes care of the reconstruction of the remaining vector inputs, i.e.271

proprioception qt and given goal targets pobjg .272

7

We provide additional descriptions of the world model and policy learning losses, hyperparameters,273

and training details in the Appendix.274

A.3 Object Positioning Tasks275

In general terms, we consider positioning tasks the ones where an entity of interest has to be moved276

to a specific location. Two positioning scenarios are considered in this analysis: pose reaching and277

object positioning. Pose-reaching tasks can be seen as simplified positioning tasks where the entity278

of interest is part of the robotic manipulator itself. Pose-reaching tasks are interesting because these279

only require the agent to have knowledge of the proprioceptive information to infer their position in280

space and reach a given target. When interacting with objects instead, there is the additional necessity281

of knowing the position of the object entity in the environment. Then, the agent needs to be able to282

manipulate and move the entity to the provided target location.283

For object positioning tasks, especially when considering a real-world setup, there is a significant284

advantage in relying mainly on visual inputs. It is convenient because it avoids the cost and difficulty285

associated with tracking additional state features, such as the geometrical shape of objects in the286

scene or the presence of obstacles. Some synthetic benchmarks additionally make use of "virtual"287

visual targets for positioning tasks [14, 20], which strongly facilitates the learning of these tasks,288

leveraging rendering in simulation. However, applying such "virtual" targets in real-world settings is289

not often feasible. Non-visual target locations can be provided as spatial coordinates. Alternatively,290

an image showing the target location could be used to specify the target’s position.291

Rewards and evaluation criteria. When applying RL algorithms to a problem, a heavily engineered292

reward function is generally necessary to guide the agent’s learning toward the solution of the task293

[21]. The object positioning setup allows us to consider a natural and intuitive reward definition294

that scales across different agents and environments. We define the reward as the negative distance295

between the position of the entity of interest and the goal target position:296

rt = −distance(object, target) = −∥pobjt − pobjg ∥2. (1)

In the spirit of maintaining a setup that is as close as possible to a real-world one, to retrieve positional297

information pt of the objects we rely on image segmentation information, rather than using the298

readings provided from the simulator. For each entity of interest, the related position is extracted by299

computing the centroid of the segmentation mask and subsequently transformed according to the300

camera extrinsic and intrinsic matrices to obtain the absolute position with respect to the workspace.301

For evaluation purposes, we use the goal-normalized score function:302

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(2)

As detailed in the Appendix, the above function allows us to rescale performance between 0 and 1,303

where 1 = expert performance, a common evaluation strategy in RL [22, 23].304

B Normalized score305

Scaling performance using expert performance is a common evaluation strategy in RL [22, 23]. In306

our problem, we define the reward as the negative distance:307

rt = −r(pobjt) = −∥pobjt − pobjg ∥2. (3)

For a given goal pobjg , rt ∈] − inf, 0]. In order to compare different tasks, where distances may308

have different magnitudes, we divide the rewards rt by the typical reward range. This is given by309

rmax − rmin, where rmin = r(pobj0), with p0 being the initial position of the object (this is normally310

around the origin, and rmax = r(pobjg) = 0.311

8

Figure 5: Dreamer virtual visual goal modulation experiments on the Reacher environment. Value
prediction from the value network is shown to highlight the policy’s awareness of the lack of
information with respect to the target goal.

Thus, we obtain:312

st = rt/(rmax − rmin) (4)

= r(pobjt)/(0− r(pobj0)) = (5)

= −∥pobjt − pobjg ∥2/(0 + ∥0− pobjg ∥2) (6)

= −∥pobjt − pobjg ∥2/∥pobjg ∥2 (7)

Finally, we apply the exp operator, to make values positive and bring them in the [0, 1] range, where313

1 is the expert score:314

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(8)

C Target size ablation315

In Figure 5, we present a study where the Dreamer model is trained on the Reacher environment with316

varying visual target sizes.317

We observe that the reduction in pixel information regarding the target adversely affects the target318

representation within the model, resulting in a deficiency of this information being conveyed to the319

policy network. The policy struggles to learn to position the entity at the correct location, and we320

observe that this is correctly reflected in the value function’s predictions. This means the policy321

is aware that is not being able to reach the goal. With small targets (< 5 pixels diameters), the322

representation tends to put more attention on other visually predominant aspects of the environment,323

struggling to predict the position of the target. In the case of a single pixel target, the amount of target324

information equals the one of a positional vector and, as expected, the task performance is equally325

low.326

Figure 6: Dreamer trained with goal scaling modulation on the Reacher and Cube move environments.

9

D Loss rescaling ablation327

To overcome the identified information bottleneck, different strategies can be considered. The328

simplest one is the re-scaling of the loss components in the decoder to incentivize the model’s329

encoding of the target information. This approach requires finding the optimal scaling factor between330

the different decoding components, given the complexity of the environment at hand (i.e. 2D or 3D)331

and the amount of relevant pixels. In Figure 6, we present supporting experiments based on Dreamer,332

where we vary the importance of the target in the loss of the world model, using different coefficients.333

We observe that very high coefficients improve the target’s reconstruction and thus allow the agent to334

learn the task. However, the optimal loss coefficient may vary, depending on the complexity of the335

environment and the presence of information-rich observations. As this naive solution may require336

extensive hyperparameter tuning for each new scenario, we aim to find more robust strategies for337

overcoming this issue.338

E FOCUS objective339

Training of the FOCUS architecture is guided by the following loss function:340

LFOCUS = Ldyn + Lstate + Lobj. (9)

Ldyn refers to the dynamic component of the RSSM, and equals too:341

Ldyn = DKL[pϕ(st+1|st, at, et+1)||pϕ(st+1|st, at)]. (10)

the backpropagation is balanced and clipped below 1 nat as in DreamerV3 [6].342

The object loss component is instantiated as the composition of NLL over the mask and RGB mask343

reconstructions:344

Lobj = − log p(m̂t)︸ ︷︷ ︸
mask

− log

N∑
obj=0

mobj
t pθ(x̂t

obj|sobj
t)︸ ︷︷ ︸

masked reconstruction

(11)

Finally, the decoder learns to reconstruct the rest of vector state information vt by minimization of345

the negative log-likelihood (NLL) loss:346

Lstate = − log pθ(q̂t, p
obj
g |st) (12)

F Baselines and Environments347

For the evaluation of the proposed method we consider several manipulation environments (Figure 7):348

• Reacher (DMControl): which, as described previously, represents a pose-reaching position-349

ing task.350

• Cube move (Robosuite): where considered target locations are on the 2D plane of the table,351

no height placement is considered.352

Figure 7: Simulation environments with relative workspace, delimited by an orange dotted line, and
the reference frames indicated with arrows.

10

• Shelf place and Pick&Place (Metaworld): The robotic manipulator has to place the cube353

at the given target location. Considered target locations are on the 2D space in front of the354

robotic arm.355

In all environments, the reward signal is defined as the distance between the entity of interest (in the356

Reacher environment, this is the end-effector) and the target location. All considered environments357

lack any visual target; the target is provided as an input vector containing spatial coordinates.358

We benchmark our methods against various baselines:359

• Dreamer: based on a PyTorch DreamerV2 implementation, but integrated with input vector360

symlog transformation and KL balancing of the latent dynamic representation, from the361

DreamerV3 paper.362

• FOCUS: An object-centric world model implementation based on DreamerV2, also inte-363

grated with input vector symlog transformation and KL balancing of the latent dynamic364

representation.365

• LEXA: Based on DreamerV2, this is a latent goal-conditioned method. The conditioning is366

based on the full latent target. Both proposed distance methods (cosine and temporal) are367

considered. We adopted our own PyTorch implementation for LEXA.368

G Training details and Hyperparameters369

All methods are trained following an offline RL training scheme. The offline datasets contain 1M370

steps in the environment, which are collected using the object-centric exploration strategy proposed371

in [10]. The datasets are loaded in the replay buffer of the offline agents, and the training is conducted372

for 250K steps. Both world model and agent are updated at every training step. V100-16GB GPUs373

have been used for all experiments. Our proposed methods (i.e. Dreamer/FOCUS + PCP, FOCUS +374

LCP) took roughly 18 hours to complete each training run.375

The hyperparameters used for the main implementation of the world models and agent are the same376

used in DreamerV2 [11] official implementation. Symlog function is applied at every input. KL377

balancing as in DreamerV3 [6] is implemented.378

With reference to FOCUS model, we have the following additional parameters:379

• Object-extractor: MLP composed of 2 layers, 512 units, ReLU activation;380

With reference to FOCUS + LCP model, we have the following additional parameters:381

• Object-encoder: MLP composed of 4 layers, 400 units, ReLU activation;382

• Distance method object-encoder objective: Cosine similarity (also tested MSE)383

• Distance method actor policy objective: Cosine similarity (also tested MSE)384

H Heatmaps positioning tasks385

To highlight the performance distribution over the different goals in the environment, in Fig. 8 we386

present heatmaps with the score function for each target location in the workspace. Results are387

presented for all the different tasks. As expected, both Dreamer and FOCUS have poor performances,388

resulting in only a few positions being reached with a high score. All the proposed methods have a389

similar distribution, reaching goals spread all over the environment.390

11

Figure 8: Heatmaps of the mean achieved score for uniformly spread targets in the workspace.
References frames refers to the one presented in the figures of Table 1. The score notation is
expressed as the notation presented in Eq. 2. Results are averaged over 3 seeds.

I Offline Training Curves391

Offline training curves are presented in Figure 9. In general FOCUS + PCP/LCP have faster392

convergence when compared to all other methods. Only for the Reacher environment, LEXA cosine393

converge faster.394

Figure 9: Offline training curves. Standard deviation is omitted for graphical reasons. Mean score
refers to eq. 2 and is computed over 5 evaluation episodes, performed during the offline training. For
each episode, a random goal is selected out of a pool of 10 manually engineered ones.

J Explorations strategies395

In the presented work each model is trained offline from a pre-recorded dataset. The dataset of396

choice is obtained from pure exploration behavior. In Fig. 10 we compare the general performance397

12

of LCP when trained on datasets acquired using different exploration strategies. We consider the398

object-centric entropy maximization method proposed by Ferraro et al. [10] and Plan2Explore [24].399

Figure 10: Mean score achieved over 10 episodes for models trained with both datasets obtained
from FOCUS exploration method (Object-Centric entropy maximization) and Plan2Explore. The
score is expressed according to equation 2.

Overall exploring by maximizing the entropy over the object’s latent, gives better performance in400

the downstream task. We hypothesize this is related to the focus the exploration strategy puts on the401

object of interest while disregarding background aspects in the scene.402

13

	Introduction
	Analysis of the Current Limitations
	Conditioned Policy
	Results
	Conclusion
	Preliminaries
	Generative World Models
	Object-centric World Models
	Object Positioning Tasks

	Normalized score
	Target size ablation
	Loss rescaling ablation
	FOCUS objective
	Baselines and Environments
	Training details and Hyperparameters
	Heatmaps positioning tasks
	Offline Training Curves
	Explorations strategies

