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Abstract001

Recent research has delved into Retrieval-based002
In-Context Learning (RetICL), leveraging the003
power of large language models (LLMs) for004
text classification. Despite its promise, a persis-005
tent challenge lies in effectively retrieving rele-006
vant demonstrations from a support set. Many007
existing approaches have overlooked the essen-008
tial role of linguistic label information in guid-009
ing this retrieval process. To bridge this gap, we010
present Contrastive Linguistic Label Retrieval-011
based In-Context Learning (CLL-RetICL), a012
novel framework designed to identify the most013
relevant and impactful sentences without al-014
tering the model parameters. Our approach015
uniquely integrates sentence-query similarity016
with sentence-label similarity, enabling a more017
nuanced and comprehensive evaluation of rele-018
vance. We tested CLL-RetICL across diverse019
text classification tasks and evaluated its perfor-020
mance on various LLMs. Experimental results021
demonstrate that CLL-RetICL consistently out-022
performs previous retrieval methods that do not023
incorporate linguistic label information. These024
findings highlight the critical importance of lin-025
guistic label-aware selection in enhancing text026
classification accuracy.1027

1 Introduction028

Recently, researchers have begun exploring few-029

shot in-context learning (ICL) using LLMs for030

text classification tasks. (Luo et al., 2024; Yu031

et al., 2023; Chae and Davidson, 2023; Rouzegar032

and Makrehchi, 2024). A significant advantage033

of ICL is particularly valuable in scenarios where034

fine-tuning is impractical, such as when access to035

model parameters is restricted, computational re-036

sources are limited, or available data is insufficient.037

(Loukas et al., 2023; Cahyawijaya et al., 2024;038

Wang et al., 2024; Milios et al., 2023). Instead of039

selecting static, pre-defined demonstration sets for040

1Our code is available: http://acl-org.github.io/
ACLPUB/formatting.html

Figure 1: An illustration of CLL-RetICL with N = 2
and k = 3, demonstrating a prediction between Positive
and Negative classes. Here, y0 and y1 represent the
vector representations of the linguistic labels "Negative"
and "Positive", respectively, in a pre-trained sentence
embedding model. Similarly, s0, s1, . . . represent the
vector representations of the sentences in a support set
within the same pre-trained sentence embedding model.

ICL, RetICL adopts a dynamic, context-sensitive 041

approach. At its core, adaptive demonstration se- 042

lection leverages a specialized retriever to intelli- 043

gently curate tailored demonstrations for each task 044

input. RetICL has gained popularity because prior 045

research suggests that context-insensitive demon- 046

strations can limit the full potential of LLMs (Luo 047

et al., 2024; Wu et al., 2022). Despite RetICL con- 048

sistently surpassing approaches based on random 049

or static demonstrations, it still remains an open 050

challenge to retrieve relevant demonstrations. 051

To address the problem, previous researchers 052

have proposed various strategies, including k- 053

nearest neighbors (KNN), NwayKshot, and 054

clustering-based RetICL (Li et al., 2024; Pecher 055

et al., 2024; Zhang et al., 2022a). However, these 056

methods suffer from various challenges, as shown 057

in Figure 2. To identify the most effective demon- 058
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(a) KNN (b) NwayKshot (c) Clustering-Based (d) Ours

Figure 2: A comparison of four different approaches to RetICL strategies. (a) KNN suffers from two key weaknesses:
the copying effect and misleading by similarity. (b) NwayKshot always ignores any linguistic cues conveyed through
the labels. (c) Clustering-based approaches are hindered by the difficulty in estimating category centers and the
neglect of query similarity. (d) Our method avoids the copying effect, prevents misleading similarity, incorporates
linguistic label information, utilizes fixed label category centers, and integrates query similarity.

strations, we analyzed failure cases. Our investi-059

gation revealed that always existing a particular060

combination of demonstrations can enable LLMs061

to classify accurately. Additionally, our analysis062

uncovered that failure cases are error-prone: they063

often lie closer to the linguistic representation of064

an opposing label or near the center of an incor-065

rect label cluster, despite their similarity to the066

query. In contrast, when the demonstrations are067

correctly combined, they align more closely with068

the intended label. A detailed discussion of these069

findings is presented in Section 3.070

Building on these observations, we present071

a novel RetICL framework, CLL-RetICL (Con-072

trastive Linguistic Label Retrieval-based In-073

Context Learning) as illustrated in Figure 1.074

Our approach introduces a trade-off method that075

computes a relevance score by integrating both076

sentence–query and sentence–label similarities,077

thereby effectively leveraging label information.078

Furthermore, to optimize the effectiveness of CLL-079

RetICL, we developed a universal N-way K-shot080

prompt structure applicable to all text classification081

tasks. This prompt design mitigates the copying082

effect and prevents LLMs from being misled by083

overly similar examples. Moreover, we demon-084

strate that the sentence embeddings of linguistic085

labels can serve as clustering centers—generated086

by a pre-trained sentence embedding model—to087

address the challenge of estimating clustering cen-088

ters. Additionally, we initiate four variations for089

integrating the linguistic label style into RetICL090

and evaluate their effectiveness on four text classifi-091

cation datasets. Finally, to assess the generalizabil-092

ity of CLL-RetICL, we conduct experiments using093

Gemini (Team et al., 2024), Llama (Dubey et al.,094

2024), and Mistral (Jiang et al., 2024). Empirical095

experiments show that CLL-RetICL consistently096

outperforms both previous RetICL baselines and097

other variants across multiple datasets and LLMs. 098

Ablation studies further reveal several key findings: 099

(1) Effectiveness across variations: CLL-RetICL 100

maintains strong performance across different k- 101

shot settings, various pre-trained sentence embed- 102

ding models, and multiple similarity functions. (2) 103

Component dependency: The proposed method 104

relies on the original component responsible for 105

calculating sentence-query similarity; omitting this 106

component degrades performance. (3) Impact of 107

hyperparameters: Trade-off hyperparameters have 108

a minor influence on the final classification accu- 109

racy. The following summarizes our main contri- 110

butions: 111

• We present a novel perspective in which sen- 112

tence embeddings of linguistic labels serve as 113

highly accurate clustering centers, free from 114

the biases introduced by limited support data 115

and independent of data-driven constraints. 116

• We propose an innovative method, CLL- 117

RetICL, which employs a rigorous relevance 118

scoring metric that leverages linguistic label 119

information to select high-quality demonstra- 120

tions for improving LLMs in text classifica- 121

tion tasks. Our approach does not require 122

fine-tuning the pre-trained weights of either 123

the sentence embedding models or LLMs. 124

• We conduct extensive experiments to evaluate 125

the proposed method, achieving better perfor- 126

mance on most datasets compared to existing 127

RetICL methods. 128

2 Related Work 129

Text Classification via LLMs. Text classifica- 130

tion via LLMs has recently demonstrated excep- 131

tional generalizability and reasoning capabilities, 132

attracting significant research interest in their ap- 133

plication to text classification tasks (Zhang et al., 134
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2024; Wang et al., 2024; Fields et al., 2024). Ex-135

isting methods can be broadly divided into two136

groups, depending on whether they involve adapt-137

ing the parameters of LLMs or not. The first138

group concentrates on fine-tuning the parameters139

of LLMs to excel in custom text classification tasks140

(Chae and Davidson, 2023; Zhang et al., 2024;141

Yu et al., 2023; Jin et al., 2023). However, this142

approach generally demands significant compu-143

tational resources to load the full LLM model144

parameters, and fine-tuning these models can of-145

ten diminish their generalizability. The other cat-146

egory is known as ICL, or prompt engineering147

(Guo et al., 2024; Luo et al., 2024; Fan et al.,148

2024). While this method avoids the need to up-149

date LLM model parameters, it heavily depends150

on well-designed prompts, making it challenging151

to guide LLMs to consistently meet human expec-152

tations (Shi et al., 2023; Mavromatis et al., 2023;153

Edwards and Camacho-Collados, 2024).154

RetICL. RetICL can generally be divided into155

two categories: approaches that retrain or fine-tune156

a retriever for specific text classification tasks, and157

approaches that utilize pre-trained language models158

without additional fine-tuning. An intuitive strategy159

for RetICL involves directly selecting a few similar160

sentences, leveraging readily available demonstra-161

tion retrievers like those based on sentence em-162

beddings. Existing methods include KATE (Liu163

et al., 2021), Z-ICL (Lyu et al., 2022) and ICL-164

ML (Milios et al., 2023). However, recent research165

has shown that selecting the most similar demon-166

strations can lead to the copying effect and mis-167

leading by similarity, degrading performance in168

text classification tasks (Olsson et al., 2022; Zhang169

et al., 2022b). To mitigate the issue of homogeneity170

in retrieval, clustering retrieval approaches ensure171

the selection of a diverse and representative set of172

demonstrations, which is critical to its effectiveness173

(Luo et al., 2024). Several methods exist, includ-174

ing NwayKshot (Li et al., 2024), Votek (Su et al.,175

2022) and SelfPrompt (Li et al., 2022). While176

these approaches leverage label information and177

offer improvements, accurately estimating the clus-178

tering center for each category remains challenging.179

This difficulty arises because clustering center esti-180

mation is a data-driven process that depends on a181

support set.182

The second category of RetICL involves fine-183

tuning or retraining a retriever model to rank rel-184

evant sentences using either in-domain or out-of-185

Figure 3: A comparison of the correct and incorrect
demonstration combinations is presented. On the left,
NwayKshot retrieves the top-k sentences most similar
to the query from each group; however, this approach
fails to classify the query correctly. In contrast, on the
right, RetICL does not rely solely on proximity to the
query, resulting in an accurate classification.

domain datasets for text classification tasks. There 186

are established methods, such as PEFT(Tunstall 187

et al., 2022), UDR(Li et al., 2023) and Ambig- 188

ICL(Gao et al., 2023). These methods utilize label 189

information and feedback to optimize model pa- 190

rameters, highlighting the essential role of labeled 191

data in yielding valuable insights for text classifica- 192

tion tasks. However, they often demand substantial 193

computational resources and considerable time to 194

construct a retriever. 195

3 Linguistic Label Retrieval Hypothesis 196

Previous studies have shown that retrieving sen- 197

tences closest to the query and applying a 198

clustering-based selection method can enhance the 199

diversity of demonstrations while mitigating the 200

risk of misleading results due to similarity (Li et al., 201

2020; Luo et al., 2024). Therefore, a question 202

arises: are the clustering centers reliable? To ex- 203

plore this further, we analyze the distribution of 204

clustering centers, as shown in Figure 2 and Ap- 205

pendix C. By varying the proportion of fully sup- 206

ported data from 10% to 100%, we observe that 207

the clustering center distribution shifts based on 208

the number of sentences in the support set. No- 209

tably, negative-labeled clustering centers tend to 210

be less distinct within a certain range compared 211

to positive-labeled ones. These findings suggest 212

that clustering center estimation is inherently data- 213

driven and prone to bias, making it difficult to accu- 214

rately identify true clustering centers. On the other 215

hand, by analyzing failure cases, we find that, for a 216

given query, there is often an optimal combination 217
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of demonstrations that can effectively guide LLMs218

to classify the query correctly. However, relying219

solely on the top-ranked closest demonstrations re-220

trieved does not always yield accurate results. An221

example of this limitation is illustrated in Figure 3.222

To further investigate, we compared cases where223

the top-k closest demonstrations led to incorrect re-224

sults versus cases where randomly selected demon-225

strations produced correct outcomes. We provide226

five examples of such instances in Appendix C. We227

found that incorrect nearest-neighbor demonstra-228

tions often exhibit an error-prone tendency, being229

either closer to the linguistic representation of an230

opposite label, closer to the center of an incorrect231

label cluster, or both—despite being similar to the232

query. Conversely, in correct combinations, the se-233

lected demonstrations exhibit a stronger alignment234

with the correct tendency. For example, sentences235

with a Negative label tend to show higher similar-236

ity to the linguistic word "Negative" and the same237

holds for "Positive" label. Although most correct238

demonstrations align closely with their respective239

cluster centers, we observe exceptions where a cor-240

rect output contains sentences that are nearer to241

the center of an incorrect label cluster. Further-242

more, even sentences closest to their correct cluster243

centers can still lead to classification errors due to244

inaccurate estimation of those centers.245

Based on these observations, we hypothesize246

that the vector representations of linguistic labels247

should be explicitly incorporated into the retrieval248

process rather than relying on cluster center esti-249

mation. Compared to traditional clustering center250

estimation, this approach offers two advantages: (1)251

Independence from data Bias – The linguistic la-252

bel clustering center is not data-driven, preventing253

bias introduced by the support set. (2) Leveraging254

linguistic information – Linguistic labels play a255

crucial role in zero-shot ICL, as LLMs rely entirely256

on these labels for text classification tasks.257

4 Our Method: CLL-RetICL258

Preliminary. Let the query set Q represent a task,259

where q ∈ Q denotes a sample query for which we260

aim to find an answer via an LLM. In the context of261

RetICL, multiple demonstrations (d1, . . . , dk) are262

retrieved from a support set C. Each demonstration263

di consists of a sentence and its label, (si, yi) ∈ C,264

where yi belongs to the label set Y .265

Overview. We present CLL-RetICL, a novel Ret-266

ICL approach leveraging information extraction267

between demonstrations and linguistic labels to 268

predict the correct label for a given query input qi 269

(Wang et al., 2023). Unlike earlier methods (Liu 270

et al., 2021; Su et al., 2022; Li et al., 2022; Milios 271

et al., 2023) that create input-label pairs by retriev- 272

ing sentences closest to a given query, CLL-RetICL 273

selects demonstrations that balance a trade-off by 274

augmenting the corresponding label while penaliz- 275

ing others. 276

CLL-RetICL involves three key steps, as illus- 277

trated in Figure 1: (1) Retrieving more relevant 278

sentences by integrating sentence-query similarity 279

with sentence-label similarity (detailed in Section 280

4.1), (2) Forming demonstrations by organizing 281

the retrieved demonstrations into an N-way K-shot 282

format (discussed in Section 4.2), and (3) Making 283

inferences through ICL (explained in Section 4.3). 284

4.1 Linguistic Label Retriever 285

RetICL employs a retrieval mechanism to iden- 286

tify k examples from C that are most relevant to a 287

given query q. This process is guided by a similar- 288

ity function, sim, which quantifies the relationship 289

between a sentence si and a query q. The corre- 290

sponding formula is as follows: 291

scoreRetICL = sim(q, si) (1) 292

To build on this hypothesis, CLL-RetICL incor- 293

porates sentence-query similarity with sentence- 294

label similarity. Rather than solely considering 295

the similarity distance between a sentence si and 296

the query q, CLL-RetICL employs the following 297

formula: 298

scorec-RetICL = sim(q, si)

+ w1 ∗ log
expsim(si,yi)

1
n−1

∑y ̸=yi
y∈Y expsim(si,y)

(2)

299

where w1 is a trade-off hyperparameter that bal- 300

ances the relative importance of the corresponding 301

terms in the objective function. 302

CLL-RetICL considers the relationship between 303

sentences and linguistic labels by utilizing a simi- 304

larity function. It increases the score based on the 305

similarity between a sentence and its assigned cor- 306

rect label (referred to as the positive label) while 307

decreasing the score based on the similarity be- 308

tween the sentence and other labels (referred to as 309

negative labels). Additionally, we propose several 310

variations and evaluate their performance through 311
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experiments. These include Positive Label Aug-312

ment (PLA), Negative Label Penalty (NLP), and313

Contrastive Label (CTL). The corresponding for-314

mulas are provided below:315

scorePLA = sim(q, xi) + w1 ∗ sim(xi, yi) (3)316

317

scoreNLP = sim(q, xi)− w1 ∗ 1
n−1

∑y ̸=yi
y∈Y sim(xi, y)

(4)318

319
scoreCTL =sim(q, xi) + w1 ∗ sim(xi, yi)

− w2 ∗
1

n− 1

y ̸=yi∑
y∈Y

sim(xi, y)
(5)320

where w1 and w2 are trade-off hyperparameters.321

Our methods ensure that the selected sentences322

(1) maintain a safe distance from q to prevent the323

copying effect (Olsson et al., 2022; Zhang et al.,324

2022b), (2) incorporate the information between325

sentences and linguistic labels and (3) align closely326

with the requirements of the custom text classifica-327

tion task.328

4.2 N-way K-shot329

We adopt a clustering-based retrieval method, as330

prior research suggests that N-way K-shot effec-331

tively addresses the issue of homogeneity (Li and332

Qiu, 2023). Here, we partition all sentences into N333

sub-groups, aiming to cluster sentences that share334

the same label. Our retriever selects top K high335

demonstrations according to above score formula336

from each sub-group, resulting in a final set of337

N ×K demonstrations.338

4.3 Inference339

Finally, CLL-RetICL constructs a prompt by340

concatenating N-way K-shot input-label pairs341

(x1, y1), (x2, y2), . . . , (xk, yk) for each N-way la-342

bel, along with the query input q. This prompt343

is then fed into a LLM, which generates a predic-344

tion using argmaxy∈Y P (y|prompt). The univer-345

sal prompt template for each text classification task346

is outlined in Table 5 in Appendix B.347

5 Experimental Analysis348

5.1 Experimental Setup349

We evaluate multiple LLMs to identify factors af-350

fecting classification accuracy across four tasks.351

Key results are summarized in the main text, with352

additional details presented in the Appendix D.353

5.1.1 Datasets 354

We conduct experiments on four widely recognized 355

text classification tasks: SST2 (Socher et al., 2013), 356

CoLA (Warstadt et al., 2018), CARER (Saravia 357

et al., 2018) and BBCnews (Greene and Cunning- 358

ham, 2006). Similar to conventional text classifi- 359

cation methodologies, we treat the training sets as 360

support sets and the test sets as query sets, while 361

disregarding development sets if they exist. The 362

detailed data statistics are provided in Appendix A 363

and summarized in Table 3. 364

5.1.2 Baselines 365

We compare CLL-RetICL with the zero-shot ap- 366

proach as well as various RetICL methods. 367

Zero-shot predicts argmaxy∈Y P (y|q) without 368

using any demonstrations (Radford et al., 2019; 369

Brown et al., 2020). This method utilizes LLMs 370

and linguistic label information to enhance text 371

classification. 372

Z-ICL leverages physical neighbors to avoid se- 373

lecting demonstrations that are overly similar to 374

the query. Furthermore, it introduces the use of 375

synonymous labels to mitigate the copying effect, 376

highlighting the potential for effectively utilizing 377

the linguistic meaning of labels (Lyu et al., 2022). 378

KATE employs a standard KNN approach to 379

retrieve demonstrations, which remains the most 380

widely used method in RetICL (Liu et al., 2021). 381

NwayKshot is a clustering-based retrieval 382

method designed to tackle the challenge of 383

homogeneity in demonstrations (Li et al., 2024). 384

SelfPrompt builds on NwayKshot but applies k- 385

means clustering to identify the cluster centers. It 386

then selects the demonstration closest to the center 387

from each sub-group (Li et al., 2022). 388

Votek selects k representatives from N sub- 389

groups through a voting mechanism to best rep- 390

resent the group (Su et al., 2022). 391

5.1.3 Experimental Details 392

LLMs. We conduct experiments using three 393

LLMs: Gemini (Team et al., 2024), Llama (Dubey 394

et al., 2024) and Mistral (Jiang et al., 2024). Specif- 395

ically, we utilize fixed versions of these models, 396

namely Gemini 1.5 Flash, Llama 3.2-90b-Vision, 397

and Mistral Large. These recently developed mod- 398

els demonstrate strong performance and excep- 399

tional generalization across a variety of tasks. 400
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LLM
Zero-shot Z-ICL KATE SelfPrompt Votek Nwaykshot CLL-RetICL

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
SST2

Gemini 93.29 0.933 92.31 0.923 94.17 0.941 94.93 0.950 94.16 0.942 94.67 0.947 95.17 0.952
Llama 94.83 0.948 96.21 0.962 94.78 0.948 93.61 0.936 94.77 0.948 90.82 0.908 95.06 0.951
Mistral 90.08 0.901 90.72 0.906 93.78 0.938 94.88 0.949 94.34 0.943 94.34 0.943 95.60 0.956
Avg. 92.73 0.927 93.08 0.930 94.24 0.942 94.47 0.945 94.42 0.944 93.27 0.933 95.28 0.953

CoLA
Gemini 68.26 0.663 60.21 0.583 70.08 0.641 80.32 0.765 81.43 0.783 82.74 0.795 83.60 0.801
Llama 61.74 0.585 52.34 0.511 68.36 0.650 71.62 0.711 61.42 0.607 74.52 0.686 77.66 0.742
Mistral 74.30 0.697 71.52 0.666 78.71 0.752 84.29 0.811 84.48 0.821 85.23 0.816 85.52 0.828
Avg. 68.10 0.648 61.36 0.587 72.38 0.681 78.74 0.762 75.78 0.737 80.83 0.766 82.26 0.790

CARER
Gemini 59.20 0.493 65.85 0.607 70.85 0.621 61.65 0.533 59.95 0.541 66.25 0.596 72.65 0.669
Llama 56.75 0.488 65.70 0.594 61.95 0.537 57.35 0.499 59.50 0.526 64.25 0.579 69.15 0.635
Mistral 56.50 0.506 67.10 0.617 68.89 0.601 60.25 0.515 58.75 0.498 72.10 0.670 76.85 0.717
Avg. 57.48 0.495 66.22 0.606 67.23 0.586 59.75 0.516 59.40 0.521 67.53 0.615 72.88 0.674

BBCNews
Gemini 87.00 0.869 87.70 0.872 90.99 0.909 85.30 0.850 86.20 0.858 88.60 0.884 91.50 0.912
Llama 94.89 0.948 93.43 0.933 94.70 0.946 93.60 0.935 96.00 0.960 96.10 0.960 96.80 0.967
Mistral 91.70 0.915 90.60 0.903 92.99 0.929 83.10 0.826 83.00 0.825 87.20 0.872 92.10 0.919
Avg. 91.20 0.910 90.57 0.902 92.89 0.928 87.33 0.870 88.40 0.881 90.63 0.905 93.46 0.932

Table 1: Text classification results evaluated on four datasets using three LLMs. Bold indicates the best result and
underline indicates the result worse than the best result.

Gemini Llama Mistral Avg.

Method ACC F1 ACC F1 ACC F1 ACC F1
SST2

Baseline 94.67 0.947 90.82 0.908 94.34 0.943 93.27 0.932
PLA 95.44 0.954 93.46 0.934 94.34 0.943 94.41 0.943
NLP 95.38 0.954 92.31 0.922 96.37 0.963 94.68 0.946
CTL 95.44 0.954 91.65 0.916 95.11 0.951 94.06 0.940
Ours 95.17 0.952 95.06 0.951 95.60 0.956 95.28 0.953

CoLA
Baseline 82.74 0.795 64.52 0.586 85.23 0.816 77.49 0.732
PLA 83.31 0.798 73.53 0.656 85.31 0.832 80.72 0.762
NLP 82.45 0.791 64.05 0.579 85.04 0.823 77.18 0.731
CTL 82.74 0.794 62.79 0.579 85.04 0.824 76.86 0.732
Ours 83.60 0.801 77.66 0.742 85.52 0.828 82.26 0.790

CARER
Baseline 66.25 0.596 64.25 0.579 72.10 0.670 67.53 0.615
PLA 65.75 0.598 61.65 0.556 65.55 0.596 64.32 0.583
NLP 67.35 0.619 64.40 0.583 70.00 0.644 67.25 0.615
CTL 66.90 0.605 65.40 0.586 67.80 0.615 66.70 0.602
Ours 72.65 0.669 69.15 0.635 76.85 0.717 72.88 0.673

BBCNews
Baseline 88.60 0.884 96.10 0.960 87.20 0.872 90.63 0.905
PLA 89.40 0.891 96.70 0.966 89.50 0.895 91.86 0.917
NLP 89.00 0.889 96.40 0.964 88.40 0.883 91.20 0.875
CTL 90.30 0.901 96.50 0.964 89.40 0.893 92.06 0.919
Ours 89.50 0.892 96.80 0.967 88.10 0.879 91.47 0.912

Table 2: A comparative analysis of various linguistic
label retrieval methods across four datasets.

Similarity function. We define a similarity func-401

tion, sim, as the cosine similarity between two402

sentence embeddings. These embeddings are gen-403

erated using the all-MiniLM-L6-v2 model from the404

SBERT (Reimers and Gurevych, 2019).405

Implementation details. For all LLMs, we use406

two random seeds and report the average results.407

Unless otherwise specified, we set the default num-408

ber of demonstrations k as 3 for per class for all409

experiments. We adopt the typical prompt design410

methodology proposed by (Luo et al., 2024). To411

ensure accurate and consistent results in text clas-412

sification tasks, we employ fixed hyperparameters 413

for LLMs, thereby minimizing variability and lim- 414

iting creative outputs. Further details are provided 415

in Appendix B. 416

5.2 Experimental Results 417

5.2.1 Main results 418

Table 1 presents the results obtained using vari- 419

ous retrieval strategies across three LLMs. The 420

zero-shot approach, which does not rely on retriev- 421

ing relevant demonstrations from the support set, 422

leverages only the semantic understanding of la- 423

bels. This strategy enables LLMs to achieve a base- 424

line level of accuracy without additional context. 425

Although Z-ICL mitigates the Copying Effect by 426

leveraging physical neighbors and synonym labels, 427

it only marginally outperforms the zero-shot base- 428

line. However, it lags behind other methods, likely 429

due to the inherent complexity and challenges as- 430

sociated with selecting appropriate synonym labels. 431

KATE achieves better performance than zero-shot 432

and Z-ICL by utilizing the most similar demon- 433

strations to the query. However, it is susceptible 434

to errors caused by misleading similarities. As a 435

result, KATE still struggles to perform well on the 436

CoLA and CARER datasets. To mitigate the effects 437

of misleading similarities, NwayKshot generally 438

outperforms KATE in most scenarios. However, as 439

noted earlier, NwayKshot still struggles to identify 440

an optimal combination of demonstrations. VoteK 441

attempts to further select more effective and rele- 442

vant demonstrations from the support set. However, 443
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Figure 4: A comparison of the performance of various
shot configurations is presented across a baseline and
four linguistic label retrieval strategies. Evaluations for
the SST2 task (using Llama) are on the left, while results
for the CARER task (using Mistral) appear on the right.

Figure 5: A comparison of the performance of various
sentence embedding models is presented, with evalua-
tions conducted on SST2 on the left and CARER on the
right.

this method still fails to utilize label information ef-444

fectively. On the other hand, SelfPrompt leverages445

label information from a distributional perspective446

but does not account for the linguistic meaning447

of the labels. While both VoteK and SelfPrompt448

show improvements in accuracy for certain tasks,449

they fall short in addressing a fundamental issue:450

the importance of linguistic label meaning in text451

classification tasks. This oversight leads to incon-452

sistent performance and highlights their inherent453

weaknesses. Finally, our proposed method, CLL-454

RetICL, significantly outperforms all baseline ap-455

proaches. On average, CLL-RetICL improves Ret-456

ICL’s performance by an absolute margin of 2–15%457

over the zero-shot strategy and by 0.57–13.48%458

over existing RetICL-based methods. These results459

demonstrate consistent performance gains across460

all datasets and LLMs by effectively leveraging461

the relationships between linguistic labels and their462

corresponding sentences.463
Comparison to Variants of Label-Related Ret-464

ICL. We use the NwayKshot method as our base-465

line, a retrieval-based approach that does not uti-466

lize linguistic label information. To enhance per-467

formance, we evaluate four proposed strategies468

that incorporate linguistic label related retrieval469

methods, with the results summarized in Table 2.470

All four strategies outperform the baseline across471

all datasets and LLMs, demonstrating the bene-472

fits of leveraging label information. Among these,473

CLL-RetICL consistently delivers the best perfor-474

mance, achieving an average absolute improvement 475

of 0.8–5.3% over the NwayKshot method. While 476

PLA, NLP, and CTL also surpass the baseline, they 477

show minor performance drops on certain tasks. In 478

contrast, CLL-RetICL not only outperforms these 479

methods in most tasks but also achieves consistent 480

gains in classification accuracy. 481

5.3 Ablation Study 482

We conduct detailed ablation studies to analyze the 483

significance of each component in CLL-RetICL. In 484

our ablation study, the NwayKshot approach serves 485

as the baseline, as shown in the following tables 486

and figures. 487

Effect of the number of shots. The number 488

of shots significantly impacts the performance of 489

LLMs. We explore experiments comparing four 490

different shot configurations for each label class: 491

1-shot, 3-shot, 5-shot, and 8-shot. Figure 4 presents 492

partial results, while the complete results are pro- 493

vided in Appendix D.1. The results in Figure 4 494

demonstrate that CLL-RetICL consistently outper- 495

forms the baseline methods across different values 496

of k. While some alternative strategies occasionally 497

achieve better performance than CLL-RetICL, they 498

lack robustness and often fall short of both CLL- 499

RetICL and the baselines. This indicates that CLL- 500

RetICL delivers more stable performance across a 501

range of scenarios. Based on the experimental re- 502

sults, we selected k = 3 as the hyperparameter for 503

the number of shots, as CLL-RetICL demonstrated 504

higher improvement with a 3-shot configuration. 505

Effect of sentence embedding model. Pre- 506

trained sentence embeddings play a crucial role 507

in ICL. The objective is to evaluate the effective- 508

ness of the proposed methods by comparing them 509

against four off-the-shelf sentence embedding mod- 510

els. Figure 5 illustrates the average performance 511

of three LLMs across two datasets. CLL-RetICL 512

consistently outperforms the baseline and the other 513

three strategies across all sentence embedding mod- 514

els, with the exception of SimCSE (Gao et al., 515

2021) in the CARER dataset. We attribute the 516

relatively lower performance of our method with 517

SimCSE to the fact that SimCSE has already em- 518

ployed contrastive learning to fine-tune the pre- 519

trained sentence embedding model. This suggests 520

that our approach is generally more effective for 521

pre-trained sentence embeddings that do not uti- 522

lize contrastive learning strategies. Compared to 523

other sentence embedding models, MiniLM demon- 524
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Figure 6: A comparison of the performance of various
similarity functions is presented, with evaluations con-
ducted on CoLA on the left and CARER on the right.

strates the greatest improvement over the baseline;525

therefore, we have chosen it as our default. Full526

results are presented in Appendix D.2.527

Effect of similarity function. To evaluate the528

effect of the similarity function in our CLL-RetICL529

model, we compare its performance using another530

similarity function, L1, as described in (Winata531

et al., 2023). The results are presented in Figure 6532

with detailed results provided in Appendix D.3.533

CLL-RetICL performs effectively with both co-534

sine and L1 similarity functions. However, ex-535

periments show that cosine similarity outperforms536

the L1 function, suggesting that it better leverages537

CLL-RetICL’s potential. Consequently, we use co-538

sine similarity as the default.539

Because our proposed additional component can540

serve as a scoring criterion for selecting demon-541

strations, the question arises whether the similarity542

score between demonstrations and the query should543

be included in CLL-RetICL.544

We evaluate the problem and present the results545

in Figure 7. Our findings indicate that the per-546

formance without the component addressing the547

similarity between queries and sentences is con-548

sistently lower than that of linguistically labeled549

RetICL. In fact, it performs even worse than the550

baseline. These results highlight that the similarity551

component between queries and sentences is an es-552

sential part of the retrieval process. Detailed results553

are presented in Appendix D.4.554

Effect of trade-off hyperparameters.555

Effect of w/o similarity between demonstration556

and query. We use a trade-off approach to bal-557

ance the impact between sentences and their label558

set. Based on the results of the previous experi-559

ment, sentence-query similarity remains a crucial560

factor in selecting relevant demonstrations. This561

raises an important question: how should we trade562

off between the original method, which retrieves563

the closest demonstrations to the query, and our ap-564

Figure 7: A comparison of the retrieval process with
and without incorporating the similarity score between
the query and the sentence is illustrated on BBCNews
dataset. The baseline is represented by a dashed line.

proach? To address this question, we evaluate the 565

effects of various hyperparameter settings. Specifi- 566

cally, we focus on hyperparameters lower than 1.0, 567

as previous research has consistently shown that 568

closer demonstrations generally outperform those 569

that are further away. We maintain the principle 570

that proximity to the query remains a core factor 571

in our approach. Based on these observations in 572

Appendix D.5, we found that the trade-off hyper- 573

parameter has some influence on the final results. 574

However, their impact on PLA, NLP, and CTL 575

methods is relatively small. Interestingly, we ob- 576

served that a trade-off hyperparameter value of 1.0 577

yields the best performance for our CLL-RetICL 578

method. Consequently, we adopt 1.0 as the default 579

hyperparameter. 580

6 Conclusion 581

This paper introduces a new paradigm Contrastive 582

Linguistic Label Retrieval-based In-Context Learn- 583

ing. Unlike existing approaches that universally 584

sample demonstrations without considering the lin- 585

guistic label information, we propose a general 586

framework for identifying more effective and rel- 587

evant demonstrations. This framework enhances 588

the capabilities of LLMs to produce more accu- 589

rate text classification results. Additionally, we 590

design a universal prompt that is adaptable to all 591

text classification tasks. Empirical evaluation on 592

four datasets demonstrates that CLL-RetICL sig- 593

nificantly outperforms conventional practices in 594

RetICL by incorporating the similarity between lin- 595

guistic labels and sentences. This highlights the 596

promising performance of CLL-RetICL and opens 597

up several intriguing research opportunities for fur- 598

ther methodological exploration. 599
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7 Limitations600

Requiring Semantic Labels. Our approach fo-601

cuses exclusively on the semantic label text clas-602

sification task. Certain text classification scenar-603

ios, however, may involve ambiguous label classes,604

such as class0, class1, . . . . Ambiguities in labeling605

could introduce additional challenges, and address-606

ing these issues remains an area for future research.607

Better Descriptive Labels In some classification608

tasks, explanations are provided for the meaning609

of each label. In this work, we did not utilize those610

explanations. Incorporating these explanations into611

the classification process is left as a direction for612

future work.613

Enhance prompt clarity. In previous work, re-614

searchers observed that well-crafted prompts can615

lead to better results. However, in this study, we did616

not compare the effects of different prompt formats.617

Determining how to construct optimal prompts to618

leverage the potential of our CLL-RetICL frame-619

work fully remains an open question and is left for620

future exploration.621
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