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ABSTRACT

Offline preference-based reinforcement learning (PbRL) offers an effective solu-
tion to overcome the challenges associated with designing rewards and the high
costs of online interactions. Previous studies mainly focus on recovering rewards
from preferences, followed by policy optimization with an off-the-shelf offline
RL algorithm. However, given that preference labels in PbRL are inherently
trajectory-based, accurately learning transition-wise rewards from such labels can
be challenging, potentially leading to misguidance during subsequent offline RL
training. To address this issue, we introduce our method named Flow-to-Better
(FTB), which leverages the pairwise preference relationship to guide a generative
model in producing preferred trajectories, avoiding Temporal Difference (TD)
learning with inaccurate rewards. Conditioning on a low-preference trajectory,
FTB uses a diffusion model to generate a better one, achieving high-fidelity full-
horizon trajectory improvement. During diffusion training, we propose a tech-
nique called Preference Augmentation to alleviate the problem of insufficient pref-
erence data. As a result, we surprisingly find that the model-generated trajectories
not only exhibit increased preference and consistency with the real transition but
also introduce elements of novelty and diversity, from which we can derive a de-
sirable policy through imitation learning. Experimental results on several bench-
marks demonstrate that FTB achieves a remarkable improvement compared to
state-of-the-art offline PbRL methods. Furthermore, we show that FTB can also
serve as an effective data augmentation method for offline RL. Our project’s web-
site can be found at https://github.com/Zzl35/flow-to-better.

1 INTRODUCTION

In reinforcement learning (RL), agents interact with an environment and receive feedback to learn
a policy that maximizes cumulative rewards. This paradigm has demonstrated its efficacy in many
domains, including games (Silver et al., 2017; Mnih et al., 2015), robotics (Levine et al., 2018), and
large language model (Ouyang et al., 2022). However, crafting well-designed rewards that align
with the task’s objectives or human intentions presents a formidable challenge. First, we aim for the
reward function to be densely informative, like transition-wise, to facilitate task learning. Secondly,
the reward function must exhibit robustness to prevent policy exploitation loopholes that could result
in unreasonably high rewards. Therefore, reward engineering necessitates a substantial foundation
of prior knowledge and rigorous testing by human experts, making it extremely complex and even
unfeasible in some cases.

Preference-based reinforcement learning (PbRL) tackles the challenge of designing reward func-
tions by utilizing trajectory preferences (Akrour et al., 2011; 2012; Christiano et al., 2017). In this
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Figure 1: Illustration of the key idea of our method. Given a low-preference trajectory (left), the
FTB model generates a higher-preference trajectory (right).

framework, agents are provided with preferences between pairs of trajectory segments, which are
relative judgments labeled by humans. However, existing approaches still necessitate a substantial
number of queries to human experts, making it difficult to scale online preference-based RL to var-
ious applications. For instance, even in simple video games or control tasks, existing methods still
need millions of requests (Lee et al., 2021). Therefore, it becomes imperative to explore PbRL in
an offline setting, where agents have access to a fixed offline dataset with preference labels, without
concerns about safety and sample efficiency.

In offline PbRL, existing approaches (Shin & Brown, 2021; Kim et al., 2023) typically involve two
steps: reward learning and offline RL. Specifically, agents employ the Bradley-Terry model (Bradley
& Terry, 1952) in a supervised manner to learn a transition-wise reward function, followed by an
off-the-shelf offline RL algorithm for policy optimization. However, preference labels in PbRL are
trajectory-wise, posing challenges in recovering precise transition-wise rewards, which will signifi-
cantly impact offline RL training and lead to undesirable policy performance.

To address this challenge, we aim to optimize policy behaviors directly at the trajectory level, as
opposed to decomposing preferences into rewards and performing TD learning with these inaccu-
rate rewards. Our innovative method, Flow-to-Better (FTB), leverages the preference relationship to
learn a generative model capable of improving a trajectory, thereby generating more high-preference
trajectories. We employ a diffusion model to generate an improved full-horizon trajectory condi-
tioned on the less preferred one, as illustrated in Figure 1. Additionally, we introduce Preference
Augmentation to generate sufficient preference pairs for training the diffusion model. After diffusion
model training, we apply a conditional generation process in an autoregressive manner to the original
trajectories iteratively, effectively “flowing” low-preference trajectories to high-preference trajecto-
ries. With substantial high-preference trajectories generated by our model, we can extract a desirable
policy through simple imitation learning. Overall, this approach introduces a new paradigm for of-
fline PbRL to circumvent the pitfalls associated with inaccurate reward models.

We highlight the main contributions of our work below:

• We present a novel framework for offline PbRL, i.e., Flow-to-Better, which uses a trajectory
diffuser to achieve trajectory optimization, avoiding TD learning with inaccurate rewards.

• We introduce Preference Augmentation, an innovative technique designed to alleviate the
issue of insufficient preference labels in our approach.

• We demonstrate that FTB consistently outperforms previous offline PbRL methods across
various complex locomotion and manipulation tasks.

• Our results show that the proposed trajectory diffuser in our method can also be used as an
effective data augmentation method for existing offline RL approaches.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We consider environments represented as a finite Markov decision process (MDP) (Sutton & Barto,
2018; Puterman, 2014), which is described by a tuple (S,A,P, ρ, r, H), whereH is the length of an
episode, S and A are the state and action space respectively, P = {Ph(·|s, a) : (s, a) ∈ S ×A}Hh=1
and ρ represent the dynamics and the initial state distribution, r = (r1, · · · , rH) specifics the reward
function. A policy πh : S → A is a mapping from states to actions. The decision process runs as
follows: an initial state s1 is drawn from ρ as the beginning, for each time step h, the agent observes
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a state sh, selects an action ah from the distribution πh(·|sh), and subsequently, the environment
provides a reward rh(sh, ah) to the agent and transits to a new state sh+1 according to Ph(·|sh, ah).
The goal of the agent is to maximize the expected cumulative reward E[

∑H
h=1 rh(sh, ah)].

Offline preference-based reinforcement learning (Offline PbRL). In contrast to online RL, offline
PbRL (Shin et al., 2022; Kim et al., 2023) prohibits the agent from interacting with an environment,
and there is no access to the reward function. Instead, the agent is provided with two sets of offline
datasets. The first dataset, denoted as DL = {(τ0m, τ1m, ym)}Mm=1, comprises a limited number of
trajectory pairs, each associated with a preference label ym ∈ {0, 0.5, 1}, where 0 implies that
τ0m ≻ τ1m, 1 implies τ1m ≻ τ0m, and 0.5 implies τ0m ∼ τ1m. The second dataset, referred to as
DU = {τn}Nn=1, comprises a large number of unlabeled trajectories. Most previous methods try to
learn a reward function from DL and label transitions in DU for offline RL training.

2.2 DIFFUSION MODELS

Diffusion Models (DMs) are a sort of generative models that can model complex distributions and
have achieved significant success in text to image (Dhariwal & Nichol, 2021; Rombach et al.,
2022). The fundamental concept behind DMs is to progressively refine a noise-perturbed input
to generate samples that closely resemble the target distribution. The forward process of DMs
q(xt|xt−1) = N (xt;

√
αtxt−1, (1−αt)I) gradually diffuses from the target distribution to a Gaus-

sian distribution in T timesteps, while the reverse process pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σt)
starts from a Gaussian distribution and iteratively denoises samples using a trained model, ulti-
mately recovering the target distribution. The training objective of DMs is to minimize the negative
log-likelihood Ex∼q[− log pθ(x)], which can be simplified using the variational lower bound in
Equation 1.

LVLB(θ) := Et∼[1,T ],x∼q,ϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥2] (1)

Guidance Diffusion Models. Guidance DMs model the conditional distribution q(x|y). This pro-
cess can be understood through a score function∇ log p(xt|y) = ∇ log p(xt)+∇ log p(y|xt) (Song
et al., 2020). Intuitively, we need to simultaneously model both the unconditional score∇ log p(xt)
and classifier guidance score ∇ log p(y|xt). Currently, methods for guidance DMs primarily fall
into two categories: classifier-guidance (Dhariwal & Nichol, 2021) and classifier-free (Nichol
et al., 2022). The former entails training an additional classifier guidance estimator, denoted as
fϕ(y|xt), alongside the DMs. During generation, it samples perturbed noise ϵθ(xt, t) := ϵθ(xt, t)−
ω
√
1− αt∇ log fϕ(y|xt). On the other hand, the latter approach involves training both conditional

models ϵθ(xt, y, t) and unconditional models ϵθ(xt, t) throughout the DM training process. During
generation, it samples perturbed noise ϵθ(xt, t) := ϵθ(xt, t) + ω(ϵθ(xt, y, t) − ϵθ(xt, t)). Here, ω
serves as a hyperparameter to adjust the degree of conditional guidance.

3 METHOD

This section introduces our Flow-to-Better (FTB) method, which optimizes policies at the trajec-
tory level without TD learning under inaccurate learned rewards. We treat offline preference-based
reinforcement learning as a conditional generation task, where a diffusion model generates higher-
preference trajectories based on inferior trajectories (Section 3.1). Given that a significant portion of
the offline dataset lacks labels, we introduce a method called Preference Augmentation, which can
provide more preference pairs for diffusion training. (Section 3.2). Furthermore, we explain how to
derive a deployable policy (Section 3.3) and provide a full procedure of our method (Section 3.4).

3.1 OFFLINE PREFERENCE-BASED RL AS A CONDITIONAL GENERATION TASK

In offline PbRL, we have pairs of trajectories with preference labels, enabling agents to learn from
relative judgments—progressing from an inferior trajectory (low preference) to a superior one (high
preference). To accomplish this, we formulate the problem as a conditional generation task, as
depicted in Equation 2. In this task, our goal is to maximize the log-likelihood of the conditional
distribution of generating improved trajectories. Here, the condition is the less preferred trajectory
in human judgment.

min
θ

E(τ1⪰τ0)∼DL
[
− log pθ(τ

1|τ0)
]

(2)
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Figure 2: The architecture of trajectory diffuser, which is a classifier-free diffusion model.

Note that this generation task is highly challenging, as full-horizon trajectories typically have high
dimensions. Furthermore, there exist multiple diverse and distinct trajectories that outperform
the conditioned trajectory, leading to a multi-modal target distribution. Therefore, we employ a
classifier-free diffusion model, Trajectory Diffuser, as the central implementation of our generative
model. The training loss is defined as Equation 3:

LTrajDiffuser(θ) := Et,ϵ∼N (0,I),(τ1⪰τ0)∼DL,β∼Bern(p)[
∥∥ϵ− ϵθ(τ1t , (1− β)τ0 + β∅, t)

∥∥2], (3)

where t is the diffusion timestep sampled from t ∼ U{1, ..., T}, τ0 is the low-preference conditional
trajectory, and τ1t is the high-preference target trajectory in the t diffusion timestep. Note that with
probability p, we ignore the conditional information, and ∅ is a dummy value taking the place of
condition τ0.

In Figure 2, we illustrate the architecture of the trajectory diffuser in FTB, which includes several
encoders. Notably, we introduce a trajectory encoder denoted as eθ designed to embed the refer-
ence trajectory. This encoder employs a one-dimensional convolutional network to map a trajectory
τ ∈ RH×(dS+dA) to a representation ζ ∈ RH×dτ , where H represents the trajectory horizon. This
encoder compresses the dimensions of the state (dS ) and action (dA) into dτ channels. Subse-
quently, ζ is passed through an attention block with a U-Net architecture, undergoing multi-head
cross-attention. This produces intermediate representations φ(zt) ∈ RH×dτ in preceding layers.
Following a similar approach to (Ho et al., 2020), we utilize a timestep encoder denoted as tθ to
generate representations ξ ∈ Rdτ . These derived representations ξ are integrated into the temporal
block, serving as conditions alongside the intermediate representation φt(zt).

3.2 PREFERENCE AUGMENTATION

Although the method in Section 3.1 trains a generator that improves trajectories, there are still the
following issues in practice: 1) The aforementioned method requires preference labels for each pair
of trajectories to conduct training, meaning that it can only use the dataset DL in which each pair
of trajectories has a preference label while wasting the unlabeled dataset DU . 2) The performance
differences between trajectory pairs are misaligned. Some trajectory pairs may perform similarly,
while others exhibit substantial differences. This misalignment also challenges the model’s learning.

To tackle these issues, we propose Preference Augmentation, a method that uses a learned preference
model, sψ , to assign preferences to unlabeled trajectories and organize them into performance-based
blocks. This preference model takes a trajectory as input and is trained on the supervised dataset
DL following the Bradley-Terry model (Bradley & Terry, 1952) as Equation 4.

P [τ1 ≻ τ0;ψ] = exp sψ(τ
1)

exp sψ(τ0) + exp sψ(τ1)
(4)
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Remark 3.1 Equation 4 is similar to the loss function used for reward learning in previous meth-
ods. However, the significant difference is that it models trajectory-wise scores s(τ) rather than
transition-wise rewards r(s, a), reducing learning complexity. Extensive experiments in Section 4.2
have revealed that preference models can precisely forecast ground truths than reward models.

Then, we employ this preference model to score each trajectory in the unlabeled datasetDU . Finally,
we cluster the trajectories intoK blocks based on their scores, resulting in several blocks with scores
ascending in orderB1 ≺ · · · ≺ BK . The detailed process is outlined in Algorithm 2. We reformulate
the conditional generation task as Equation 5, where the pair of trajectories is randomly sampled
from neighboring blocks, and the worse one is employed as the condition while the better one serves
as the target. Not only does it provide more pairs of trajectories for training but also ensures that
the performance gap between each pair of trajectories is relatively consistent. The specific training
process is shown as Algorithm 3.

min
θ

1

K − 1

K−1∑
k=1

E t,ϵ,β∼Bern(p)

τ0∼Bk,τ1∼Bk+1

[
∥∥ϵ− ϵθ(τ1t , (1− β)τ0 + β∅, t)

∥∥2] (5)

3.3 POLICY EXTRACTION

A well-trained generative model leans to improve complete trajectories, which inspires us to gener-
ate trajectories that approach or even surpass the optimal one in the dataset. However, our ultimate
goal is to derive a policy that can be deployed in the environment. To this end, we adopt a sim-
ple yet practical policy extraction algorithm as shown in Algorithm 4. Specifically, we first select
the top k trajectories (according to preference scores) from the dataset DU and use them as inputs
for the diffusion model to improve. Then, we iteratively refine them by applying this process tflow
times, where tflow is a self-adaptive hyperparameter. In the end, we obtain a batch of trajectories
with high performance so that it is natural to employ imitation learning to derive the policy. It is
worth emphasizing that, unlike most previous algorithms that use generative models for planning,
this approach allows us to leverage the powerful capabilities of the generative model while avoiding
the resource-intensive issues associated with using the generative model during inference.

3.4 FULL PROCEDURE

In summary, our method can be divided into three parts: 1) Preference Augmentation. This in-
volves training a preference score model using the labeled dataset DL and arranging the unlabeled
dataset DU into a sequence of ascending blocks as B1 ≺ · · · ≺ BK . 2) Generative Model Train-
ing. Training a classifier-free diffusion model capable of generating better trajectories than the given
ones. 3) Policy Extraction. Applying imitation learning to derive the policy from the trajectories
generated through iterative improvement. For the complete algorithm, please refer to Algorithm 1.

Algorithm 1 Flow to Better
Require: labeled data DL = {(τ1m ⪰ τ0m)}Mm=1, unlabeled data DU = {τn}Nn=1,

block number K, number of trajectories for improvement k, flow step tflow.
1: sψ, {Bk}Kk=1 = Preference Augmentation(DL,DU ,K) (Algorithm 2).
2: pθ = Generative Model Training({Bk}Kk=1) (Algorithm 3).
3: πϕ = Policy Extraction(DU , sψ, pθ, k, tflow) (Algorithm 4).

Output: policy πϕ.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following questions:

• How well does FTB perform compared with other offline PbRL baselines? (Section 4.1)
• Is preference learning easier than reward learning? (Section 4.2)
• What about the quality of trajectories generated by FTB? Are they better than the original

datasets? (Section 4.3)
• Can FTB serve as a data augmentation method for offline RL? (Section 4.4)
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4.1 BENCHMARK RESULTS

Benchmarks. To make a comprehensive evaluation of our methods, we choose several contin-
uous control tasks from two benchmarks: D4RL (Fu et al., 2020), and MetaWorld (Yu et al.,
2020), in which D4RL can represent locomotion tasks while MetaWorld involves manipulation
tasks. As for the collection of preferences, we use synthetic preferences from scripted teach-
ers, which generates preferences based on ground-truth reward r as follows: y = i, where
i = argmaxi∈{0,1}

∑H
h=1 r(s

i
h, a

i
h). We collect 15 preference labels for locomotion tasks (D4RL)

and 30 preference labels for manipulation tasks (MetaWorld), significantly fewer than those used
in previous work (Kim et al., 2023; Hejna & Sadigh, 2023). More details about these benchmarks
and the collection of preferences are shown in Appendix A. Furthermore, we also conduct ablation
experiments, including analyses of preference sources, model architecture, hyperparameters, and the
dataset distribution (Qin et al., 2022). The results are available in Appendix C.

Baselines. We compare FTB with various algorithms, including three widely-used offline RL meth-
ods: 1) 10%BC: imitating the top 10% high-performance samples; 2) TD3+BC (Fujimoto & Gu,
2021): adopting a BC constraint when optimizing policy; 3) IQL (Kostrikov et al., 2022): us-
ing expectile regression for Q-learning; and three offline PbRL methods: 1) IQL+rψ: performing
IQL with a learned reward function; 2) OPRL (Shin et al., 2022): performing IQL with ensemble-
diversed-based reward functions; 3) PT (Kim et al., 2023): performing IQL with a reward function
learned by preference transformer; 4) IPL (Hejna & Sadigh, 2023): leveraging a soft-Bellman op-
erator which computes the mapping from Q-function to rewards to avoid reward function learning.

Table 1 shows the results based on scripted teacher preferences *. FTB consistently outperforms the
other offline PbRL algorithms by a large margin across most tasks, indicating that direct optimization
on trajectories is a better way for offline PbRL than learning proxy rewards. Remarkably, FTB is
even comparable to these offline RL algorithms, suggesting that our approach can yield competitive
policies without the need for a meticulously crafted reward function.

Table 1: Performance with preferences from scripted teachers, averaged over 5 random seeds.
Among the offline PbRL methods, we bold the highest score for each task. Among all the methods,
we mark the highest score with “*” for each task.

Task Name 10%BC TD3+BC IQL IQL+rψ OPRL PT IPL FTB (Ours)

halfcheetah-medium-replay-v2 23.6 48.1 48.3∗ 36.0 38.3 41.1 36.5 38.4±1.3
halfcheetah-medium-expert-v2 90.1 90.8 94.7∗ 85.6 82.9 85.8 76.7 85.2±0.7
hopper-medium-replay-v2 70.4 64.4 97.4∗ 20.8 86.2 31.4 21.2 89.6±4.9
hopper-medium-expert-v2 111.2∗ 101.2 107.4 88.5 95.7 77.8 91.6 111.1±2.0∗

walker2d-medium-replay-v2 54.4 85.6∗ 82.2 75.7 64.0 79.6 8.8 79.1±1.4
walker2d-medium-expert-v2 108.7 110.0 111.7∗ 110.0 109.6 109.4 78.7 109.3±0.3

D4RL-Average 76.4 83.4 90.3∗ 69.4 79.5 70.9 52.3 85.5±1.8

assembly-v2 0.02 0.00 0.17∗ 0.00 0.00 0.00 0.01 0.02±0.00
button-press-v2 0.70 0.61 0.70 0.23 0.57 0.16 0.11 1.00±0.00∗

drawer-open-v2 0.77 1.00∗ 1.00∗ 0.26 0.63 0.85 0.45 1.00±0.00∗

plate-slide-v2 0.43 0.58 0.62∗ 0.00 0.44 0.45 0.38 0.51±0.08
sweep-into-v2 0.07 0.63 0.57 0.00 0.21 0.18 0.14 0.97±0.02∗

MetaWorld-Average 0.40 0.56 0.61 0.10 0.37 0.33 0.22 0.7±0.02∗

4.2 COMPARISON OF REWARD LEARNING AND PREFERENCE LEARNING

We argue that learning an accurate reward is impractical in the offline PbRL setting, especially
when preference labels are scarce. In contrast, we can easily derive a faithful preference model.
To substantiate this claim, we evaluate both the learned reward model and the learned preference
model within the scripted teacher setting. Here, we can directly use real returns as ground truths for
preferences. Figure 3 presents a comparison between predictions and ground truths of rewards and
preferences in two tasks. Notably, learned preferences exhibit a significantly stronger correlation
with their ground truths compared to learned rewards. This suggests that modeling trajectory-wise

*The results of offline RL baselines are sourced from https://github.com/tinkoff-ai/CORL.The results of
offline PbRL baselines are reproduced by official codes, and we report the score of the last epoch over 5 seeds.
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Figure 3: Illustration of the correlation between learned rewards/preferences and their ground truths.
During training, hopper-medium-replay has 15 preference labels and assembly-v2 has 30 preference
labels. We sample data from unlabeled datasets for evaluation.

preferences is a more tractable approach in the offline PbRL setting. We provide more results on
other tasks in Appendix C.5, which is in accord with this conclusion without exception.

4.3 GENERATED TRAJECTORY ANALYSIS

In this section, our primary focus is on the quality of trajectories generated through the flow-to-better
process. Specifically, we evaluate three critical aspects: 1) Improvement: whether these generated
trajectories exhibit higher preferences compared to the original trajectories within the dataset. 2)
Validity: whether they are faithful to the underlying real transition function. 3) Generalization:
whether the generated trajectories are novel and diverse.
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Figure 4: Illustration of performance before and after improvement (left), performance with different
flow steps (center), and the dynamics error of generated trajectories (right).

Improvement: We expect that FTB can generate better trajectories. To verify this, we compare the
original trajectories (top k trajectories from the dataset) and the generated trajectories in terms of
real returns *. Note that in the scripted teacher setting, higher returns correspond to higher pref-
erences. As illustrated in Figure 4 (left), the generated trajectories exhibit a higher average return
(labeled as “i mean”) than the original trajectories (labeled as “o mean”). Meanwhile, the maximum
return (labeled as “i max”) in generated trajectories also surpasses that of the original trajectories,
indicating that FTB indeed extrapolates better samples. Furthermore, Figure 4 (center) shows more
details during the FTB process. Here, we observe that as the number of flows increases, there is a
corresponding improvement in overall performance.

Validity: We expect our generated trajectories to be faithful to the underlying real transition func-
tion. In order to assess the validity of generated trajectories, we obtain real transition (ŝh, âh, sh+1)
by means of the oracle dynamics model for each (ŝh, âh) in generated trajectories and compute
mean absolute error 1

|S| ∥sh+1 − ŝh+1∥1. To provide a comprehensive view of error magnitudes,
we additionally train an MLP-based model to predict these transitions and calculate their errors.
Figure 4 (right) illustrates model errors at different steps within these trajectories, alongside the av-
erage error of the MLP model (indicated by dashed lines) and the compounding error of the MLP
model (indicated by the orange line). Notably, the overall model error in the generated trajectories
remains consistently low and uniformly distributed across different steps, highlighting the diffusion
model’s impressive capability to generate full-horizon trajectories.

*For generated trajectories, we use the ground-truth reward function to compute each transition in them and
get the real return.
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Figure 5: Comparing L2 distance
from training data and dynam-
ics accuracy under FTB generation
and Gaussian augmentations.

Generalization: We expect our generated trajectories to be di-
verse and novel. To quantify generalization, We compute the
L2 distance distance between the generated trajectories and
the dataset as L2(τ̂) = minτ∈DU ∥τ̂ − τ∥2. We plot a joint
scatter plot about L2 distance and dynamic error in the form
of mean absolute error (MAE). We also compare our method
with Gaussian augmented N (0, 0.1) refer to Lu et al. (2023).
As shown in Figure 5, the mean and variance of the L2 distance
distribution for the samples generated by our model are signifi-
cantly higher than those of the Gaussian perturbation samples.
This indicates that our model is not merely replicating samples
from the dataset but rather generating samples that exhibit di-
versity and novelty. In summary, our approach is capable of
generating diverse and novel samples while maintaining suffi-
ciently low dynamic errors.

4.4 APPLICATION IN OFFLINE RL

Since the trajectory diffuser in our method can generate synthetic data, it has the advantage of being
able to serve as a data augmentation method for standard offline RL. We notice that there has been
some work (Lu et al., 2023) using the diffusion model for data augmentation. However, all of them
can only generate synthetic samples in accordance with the distribution of the original dataset. We
argue that data augmentation for offline RL also needs samples with better performance since this
can explicitly improve the performance bottleneck of an algorithm. With our proposed trajectory
diffuser, we can supplement more performant samples.

To verify the effectiveness of FTB as a data augmentation method, we evaluate it in combination with
2 widely-used SOTA offline RL algorithms: TD3+BC (Fujimoto & Gu, 2021) and IQL (Kostrikov
et al., 2022) on various Gym-Mujoco locomotion tasks in the D4RL benchmark. For comparison,
we also include another diffusion-based data augmentation method, SYNTHER (Lu et al., 2023).
We refer to more details about the training and augmentation process in Appendix B.5. The final
performance is shown in Table 2. We notice significant improvements across these tasks with the
data augmentation via FTB while the advantage of SYNTHER is less obvious compared with ours.

Table 2: Evaluation of our method as a data augmentation method for different offline RL algo-
rithms, averaged over 5 seeds. We highlight the highest average score for each group of algorithms.

Task Name TD3+BC IQL

Original SYNTHER TrajDiffuser (Ours) Original SYNTHER TrajDiffuser (Ours)

halfcheetah-medium-replay-v2 44.8 45.4 44.7 44.5 46.7 44.1
halfcheetah-medium-expert-v2 90.8 85.9 94.7 94.7 93.6 92.6
hopper-medium-replay-v2 64.4 54.0 80.2 97.4 102.8 100.4
hopper-medium-expert-v2 101.2 102.5 101.5 107.4 97.5 111.2
walker2d-medium-replay-v2 85.6 91.9 93.6 82.2 90.2 81.6
walker2d-medium-expert-v2 110.0 110.1 110.2 111.7 111.8 111.3

Average 82.8 81.6 87.5 89.7 90.4 90.2

5 RELATED WORK

Preference-based Reinforcement Learning. Preference-based reinforcement learning (PbRL) is a
promising paradigm that leverages human preferences to train RL agents, eliminating the need for
reward engineering. Christiano et al. (2017) pioneer deep neural networks for online PbRL, which
achieves remarkable success in solving complex control tasks. Building on this foundation, Ibarz
et al. (2018) enhance the sample efficiency of this method by incorporating expert demonstrations.
Subsequently, PEBBLE (Lee et al., 2021) introduces a novel approach by combining off-policy
learning and pre-training, resulting in substantial improvements in feedback efficiency.

With the recent advancements in offline reinforcement learning (Fujimoto & Gu, 2021; Kostrikov
et al., 2022; Jin et al., 2022; Sun et al., 2023; Luo et al., 2024), there has been a growing interest
in the offline preference-based RL (offline PbRL) setting, which holds significant practical promise
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for real-world applications by eliminating the need for an interactive environment or a predefined
reward function. OPAL (Shin & Brown, 2021) is the first offline PbRL algorithm combining a
previous online PbRL method and an off-the-shelf offline RL algorithm. PT (Kim et al., 2023)
adopts a transformer architecture to design reward models capable of generating non-Markovian
rewards. These approaches all involve reward learning and policy evaluation with imperfect reward
models. To avoid the misdirection of inaccurate rewards, OPPO (Kang et al., 2023) and IPL (Hejna
& Sadigh, 2023) construct algorithms beyond reward learning. However, in contrast to ours, OPPO
achieves this by introducing an offline hindsight information matching objective for optimizing a
contextual policy, while IPL adopts a soft-Bellman operator which computes the mapping from
Q-functions to rewards under a fixed policy to avoid learning rewards.

Generative Models in RL. Generative models have demonstrated exceptional capabilities in gener-
ating text and images (OpenAI, 2023; Saharia et al., 2022; Nichol et al., 2022; Nichol & Dhariwal,
2021). Inspired by their remarkable success in these domains, an increasing number of researchers
are applying generative models to RL. According to their structures, existing methods can be di-
vided into two categories: Transformer-based and Diffusion-based. Within the Transformer-based
methods, notable examples include Decision Transformer (Chen et al., 2021) and Trajectory Trans-
former (Janner et al., 2021), which approach Markov decision processes as a sequence modeling
problem, with the goal being to produce a sequence of actions that leads to a sequence of high
rewards. Moreover, Algorithm Distillation (Laskin et al., 2022) offers an intriguing approach by en-
coding past trajectories as contextual information and distilling the learning process of algorithms to
rapid adaptation to novel tasks. In a similar vein, Agentic Transformer (Liu & Abbeel, 2023) lever-
ages sorted historical trajectories as prompts to distill latent insights on trajectory improvement,
thereby guiding the selection of more optimal actions, which provides a practical guarantee for
achieving such improvements for our method. Within the Diffusion-based methods, Diffuser (Jan-
ner et al., 2022) uses a diffusion model as a trajectory generator and learns a separate return model
to guide the reverse diffusion process toward samples of high-return trajectories. The consequent
work, Decision Diffuser (Ajay et al., 2023) introduces conditional diffusion with reward or con-
straint guidance for decision-making tasks, further enhancing Diffuser’s performance. In a different
approach, SYNTHER (Lu et al., 2023) extends the application of diffusion models to data augmen-
tation for RL. Distinguishing itself from these methods, our work explores the untapped potential
of diffusion models in the realm of offline PbRL. To the best of our knowledge, FTB stands as the
pioneering method capable of achieving end-to-end trajectory improvement in this field.

6 CONCLUSION

Summary. In this paper, we propose a novel diffusion-based framework for offline PbRL, i.e.,
Flow-to-Better (FTB). FTB treats the offline PbRL problem as a conditional generation task and
uses a diffusion model to generate high-preference trajectories when given low-preference trajecto-
ries as conditions, achieving direct trajectory-wise improvement without TD learning under inaccu-
rate learned rewards. With large amounts of high-preference trajectories generated by FTB, we can
use imitation learning to derive a desirable policy. For better preference efficiency, we additionally
propose the Preference Augmentation method to alleviate the scarce preference labels during learn-
ing. Empirically, we find that the model-generated trajectories not only exhibit increased preference
and consistency with the real transition but also introduce elements of novelty and diversity. Exper-
imental results on several benchmarks demonstrate that FTB achieves a remarkable improvement
compared to previous offline PbRL methods. Furthermore, we show that FTB can also be used as
an effective data augmentation method for offline RL approaches.

Limitations and Future Work. Compared to previous methods, FTB has a higher demand for
computational resources. As shown in Appendix B.1, FTB requires 1-2 days to be trained on an RTX
4090 and needs more GPU memory, since the computation of the attention-based diffusion model
grows quadratically with the task’s horizon. Therefore, when the task horizon is excessively long, the
training duration of FTB will significantly increase. However, drawing inspiration from Rombach
et al. (2022), future work could look into training diffusion models in a latent space rather than the
original observation space, which may effectively reduce the computational resource overhead.
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A TASK DETAILS

In this section, we describe the details of tasks from D4RL (Fu et al., 2020) and MetaWorld (Yu
et al., 2020) as well as preference collection.

Locomotion Tasks. We choose several locomotion tasks from the D4RL benchmark. The goal
of these tasks is to control the robots to move forward while minimizing the energy cost for safe
behaviors. We select three environments (halfcheetah, hopper and walker2d) and two dataset types
(medium-replay and medium-expert) per environment. We use the normalized score provided by
D4RL as the evaluation metric. Additionally, we also consider the NeoRL (Qin et al., 2022) bench-
mark for locomotion tasks in Appendix C.3, which has a narrower data distribution.

Manipulation Tasks MetaWorld is a benchmark with simulated manipulation tasks with everyday
objects, all of which are contained in a shared, table-top environment with a simulated Sawyer arm.
We choose five tasks from this benchmark: 1) assembly: pick up a nut and place it onto a peg; 2)
button-press: press a button; 3) drawer-open: open a drawer; 4) plate-slide: slide a plate into a
cabinet; 5) sweep-into: sweep a puck into a hole. Offline datasets for these five tasks are constructed
as the same as in IPL (Hejna & Sadigh, 2023): collect 100 trajectories of expert data; collect 100
trajectories of sub-optimal data and 100 trajectories of even more sub-optimal data; and collect 100
trajectories with uniform random actions. We use the success rate for a specific task as the evaluation
metric.

Preference Collection. We generate preferences based on ground-truth reward r as follows: y = i,
where i = argmaxi∈{0,1}

∑H
h=1 r(s

i
h, a

i
h). We collect 15 preference labels for locomotion tasks

(D4RL) and 30 preference labels for manipulation tasks (MetaWorld), significantly fewer than those
used in previous work (Kim et al., 2023; Hejna & Sadigh, 2023). We also consider the preferences
given by real humans and show the results in Appendix C.4.

B IMPLEMENTATION DETAILS

B.1 COMPUTATIONAL RESUORCE

We train FTB on an RTX 4090, with approximately 2 days required for one run. Specifically,
Preference Augmentation takes only around 2 minutes, while Generative Model Training consumes
approximately 40 hours. The time needed for Policy Extraction varies depending on the specific
task, ranging from 30 minutes to 2 hours. For each task, we run our experiments on 5 seeds. We list
detailed computational consumptions in the following Table.

Table 3: Computational consumption of different algorithms.
Training time / GPU memory PT / OPRL FTB

D4RL/NeoRL 3h / 1Gb 36h / 23Gb
MetaWorld 3h / 1Gb 15h / 8Gb

B.2 PREFERENCE AUGMENTATION

The key component in Preference Augmentation is the score model sψ(τ), which is used to assign
scores to each trajectory in the unlabeled dataset. Recall that sψ(τ) takes a trajectory as input
and outputs a score. To achieve this, we can use any temporal model like Transformer or RNN to
implement it. Alternatively, we can simply reuse the MLP-based reward model in previous methods
and formulate sψ(τ) =

∑H
h=1 rψ(sh, ah). During our experiments, we found that both of them can

learn an accurate score model in large data regimes (given a large number of preference labels) while
the MLP-based model performs better in low-data regimes (given insufficient preference labels).
Therefore, we chose the MLP implementation for its robustness.

The key difference between naive improvement training and our preference augmentation is illus-
trated in Figure 6. The latter samples a pair of trajectories from neighboring blocks, aligning prefer-
ence gaps. We list the pseudocode in Algorithm 2 and relative hyperparameters in Table 4.
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Figure 6: The key difference between the naive training and our preference augmentation.

Algorithm 2 Preference Augmentation
Require: labeled data DL = {(τ1m ⪰ τ0m)}Mm=1, unlabeled data DU = {τn}Nn=1, block number K,

batch size Nbatch.
1: initialize score model sψ .
2: for i = 1, 2, · · · do
3: {(τ1j ⪰ τ0j )}

Nbatch
j=1 ∼ DL

4: ψi+1 ← ψi − α∇ψ 1
Nbatch

∑Nbatch
j=1

(
− log

exp sψ(τ
1
j )∑

k∈{0,1} exp sψ(τkj )

)
5: end for
6: label DU by score model sψ: DU ← {τn, sψ(τn)}Nn=1.
7: cluster DU based on scores: DU = B1 ∪B2 ∪ · · · ∪BK where B1 ≺ · · · ≺ BK .

Output: score model sψ , blocks B = {B1, B2, · · · , BK}.

Algorithm 3 Generative Model Training
Require: blocks B1 ⪯ B2 ⪯ · · · ⪯ BK , batch size Nbatch.

1: initialize generative model pθ.
2: for i = 1, 2, · · · do
3: for k = 1, 2, · · · ,K do
4: {τkj }

Nbatch
j=1 ∼ Bk

5: end for
6: θi+1 ← θi − α∇θ 1

K−1
1

Nbatch

∑K−1
k=1

∑Nbatch
j=1 (− log pθ(τ

k+1
j |τkj )) ▷ pθ is calculated by

Equation 3.
7: end for

Output: generative model pθ.

B.3 GENERATIVE MODEL TRAINING

After Preference Augmentation, we can sample pairs of trajectories from neighboring blocks for
training a generative model, i.e., trajectory diffuser. We have illustrated its architecture and the
training objective in the main text and we now present the detailed pseudocode in Algorithm 3 and
the according hyperparameters in Table 5.
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Table 4: Hyperparameters of Preference Augmen-
tation.

Hyperparameter Value
Number of layers 3
Hidden dimension 256
Activation relu
Batch size 256
Learning rate 1e− 4
Optimizer Adam
Number of blocks K 20
Cluster method KMeans

Table 5: Hyperparameters of Trajectory Dif-
fuser.

Hyperparameter Value
Guidance scale ω 1.2
Diffusion steps T 1000
Downsample rate [1, 2, 4, 8]
Hidden dimension 256

Batch size 64
Dropout 0.2

Learning rate 1e− 4
Optimizer Adam

Table 6: Hyperparameters of Policy Extraction.

Task Name Num trajs for improvement k Filter threshold σ Weight Decay ω

D4RL 300 1.05 2e-4

Meta-Wolrd 100 1.1 1e-3

NeoRL 300 1.05 2e-4

Algorithm 4 Policy Extraction
Require: unlabeled data DU = {τn}Nn=1, score model sψ , trajectory diffuser pθ,

num of trajectories for improvement k, filter threshold σ, flow step tflow, batch sizeNbatch.
1: label DU by score model sψ: DU ← {τn, sψ(τn)}Nn=1.
2: get top-k trajectories {τ0l }kl=1 from DU .
3: DImproved ← {τ0l }kl=1.
4: for i = 1, 2, · · · , tflow do
5: for l = 1, 2, · · · , k do
6: τ il ∼ pθ(τ

i−1
l ) ▷ sample a trajectory from trajectory-diffuser.

7: if sψ(τ il )/sψ(τ
i−1
l ) > σ then

8: DImproved ← DImproved ∪ {τ il } ▷ add a trajectory only when it is improved.
9: else

10: τ il = τ i−1
l

11: end if
12: end for
13: end for
14: DImproved ← top k trajectories of DImproved.
15: Initialize policy πϕ.
16: for i = 1, 2, · · · do
17: {(sj , aj)}Nbatch

j=1 ∼ DImproved

18: ϕi+1 ← ϕi − α∇ϕ 1
Nbatch

∑Nbatch
j=1 (πϕ(sj)− aj)2 ▷ behavioral cloning.

19: end for
Output: policy πϕ.

B.4 POLICY EXTRACTION

By means of the score model sψ and the trajectory diffuser pθ, we can perform iterative refinements
beginning with the top k trajectories in the dataset, in which the number of refinements (flow step)
is adaptive. Assuming the block number is K and the trajectory with the lowest score among the
top k trajectories is in the i-th block, then the flow step tflow = K − i. During generation, it samples
perturbed noise ϵθ(τ1t , t) := ϵθ(τ

1
t ,∅, t) + ω(ϵθ(τ

1
t , τ

0, t)− ϵθ(τ1t ,∅, t)). Here, τ1 is the sampled
target trajectory, τ0 is the conditional trajectory, and ω serves as a hyperparameter to adjust the
degree of conditional guidance. After that, we can obtain a large number of improved trajectories,
from which we can derive a desirable policy via imitation learning. For simplicity, we choose
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behavioral cloning for policy extraction, which is implemented by a simple MLP network (a 2-
layered MLP with 256 hidden units and ReLU activations). Algorithm 4 presents the full procedure
and detailed hyperparameters are listed in Table 6.

B.5 DATA AUGMENTATION FOR OFFLINE RL

When FTB is used for data augmentation for offline RL, it can be simplified since there is no need for
Preference Augmentation. Provided known rewards, we can directly cluster the trajectories into K
blocks based on real returns and then train the trajectory diffuser. Note that in this case, we also need
to generate rewards in addition to states and actions. After that, we select the top 100 trajectories
in the dataset according to returns and iteratively refine them by applying the flow-to-better process
(tflow = 5). Finally, we take the trajectories in the final flow step of generation as supplement data.

For offline RL training, we follow the default hyperparameters of TD3+BC (Fujimoto & Gu, 2021)
and IQL (Kostrikov et al., 2022). For TD3+BC, we set the BC constraint to 2.5. For IQL, we use
τ = 0.7 (expectile weight) and β = 3.0 (inverse temperature).

C OMITTED EXPERIMENTS

C.1 ABLATION STUDY ON BLOCK NUMBER

The parameter block number K determines the dataset’s partition into K blocks in ascending order.
We conduct ablation experiments on block number K for two different tasks. The experimental
results are shown below, from which it can be observed that our method exhibits robustness to the
block number K variations.

Table 7: Ablation study of Block Number K.
K = 10 K = 20 K = 30

hopper-medium-replay-v2 74.4±2.9 89.6±4.9 92.8±0.8

K = 3 K = 5 K = 10
plate-slide-v2 0.44±0.08 0.51±0.08 0.52±0.04

C.2 ABLATION STUDY ON ARCHITECTURE

Additionally, we perform ablation experiments to evaluate the influence of the diffusion model’s
structure on the experimental outcomes. The results suggest that the model structure indeed af-
fects the performance. In cases where the model’s expressive capacity is inadequate, the generated
trajectories may lack realism, consequently impacting the overall performance.

Table 8: Ablation study of Architecture of Trajectory Diffuser.
FTB shallower FTB Narrower FTB

hopper-medium-replay-v2 89.6±4.9 86.9±2.0 88.7±3.8
plate-slide-v2 0.51±0.08 0.41±0.21 0.43±0.05

C.3 ABLATION STUDY ON DATASET DISTRIBUTION

Our method involves block ranking of the dataset, hence requiring a broad distribution of data. To
assess the sensitivity of our method to dataset distribution, we conducted additional experiments on
the NeoRL benchmark (Qin et al., 2022), which takes into account the above reality gap and has
the narrower distribution of data in locomotion tasks. The results of this experiment are shown in
Table 9. Different datasets are sampled based on policies of varying quality. We observe that FTB
does exhibit performance degradation on tasks with narrower dataset distributions, however, it still
outperforms existing baselines.
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Table 9: Performance with preference from narrow data distribution, averaged over 5 random seeds.
Among the offline PbRL methods, we bold the highest score for each task. Among all the methods,
we mark the highest score with “*” for each task.

Task Name BC TD3+BC IQL IQL+rψ FTB (Ours)

Hopper-v3-L-999 15.1 15.8 16.3 17.1 17.6 ± 1.2∗

Hopper-v3-M-999 51.3 70.3 47.7 30.9 67.4± 23.4∗

Hopper-v3-H-999 43.1 75.3∗ 24.8 42.6 49.7±21.8

Average 36.5 53.8 29.6 30.2 44.9

C.4 EXPERIMENTAL RESULTS WITH HUMAN TEACHER

In line with a variety of previous work, we also evaluate FTB with human preference labels. For
the sake of fairness, we use the preference labels from PT (Kim et al., 2023), which is available at
https://github.com/csmile-1006/PreferenceTransformer/tree/main/human label. As shown in Table
10, we find that FTB also performs better than previous offline PbRL algorithms.

Table 10: Performance with preference from human teachers, averaged over 5 random seeds. Among
the offline PbRL methods, we bold the highest score for each task. Among all the methods, we mark
the highest score with “*” for each task.

Task Name 10%BC TD3+BC IQL IQL+rψ PT OPRL IPL FTB (Ours)

halfCheetah-medium-v2 42.5 48.1 48.3 46.7 48.4∗ 47.5 47.3 35.1± 4.7
hopper-medium-v2 55.5 60.4 67.5∗ 64.7 38.1 59.8 50.8 61.9±3.6
walker2d-medium-v2 67.3 82.7∗ 80.9 80.4 66.1 80.8 79.5 79.7±4.1

halfCheetah-medium-replay-v2 23.6 44.8∗ 44.5 43.2 44.4 42.3 42.5 39.0±1.0
hopper-medium-replay-v2 70.4 64.4 97.4∗ 11.6 84.5 72.8 73.6 90.8±2.6
walker2d-medium-replay-v2 54.4 85.6∗ 82.2 72.1 71.2 63.2 60.0 79.9±5.0

halfCheetah-medium-expert-v2 90.1 90.8 94.7∗ 88.8 87.5 87.7 87.0 91.3±1.6
hopper-medium-expert-v2 111.2 101.2 107.4 57.8 69.0 81.4 74.5 110.0±2.3
walker2d-medium-expert-v2 108.7 110.0 111.7∗ 108.3 110.1 109.6 108.5 109.1±0.1

Average 69.3 76.5 81.6∗ 63.7 68.8 71.7 69.3 77.4
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C.5 OMITTED COMPARISONS OF REWARD LEARNING AND PREFERENCE LEARNING IN
SECTION 4.2
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(a) halfcheetah-medium-replay-v2
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(b) halfcheetah-medium-expert-v2

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

io
n

Correlation: 0.81
Reward Correlation

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

io
n

Correlation: 0.98
Preference Correlation

(c) walker2d-medium-replay-v2
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(d) walker2d-medium-expert-v2
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(e) button-press-v2
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(f) drawer-open-v2
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(g) plate-slide-v2
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(h) sweep-into-v2

Figure 7: Illustration of the correlation between learned rewards/preferences and the ground-truth
rewards/preferences.
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C.6 OMITTED GENERATED TRAJECTORY ANALYSIS IN SECTION 4.3
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(a) walkerd-medium-replay-v2
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Figure 8: Illustration of performance before and after improvement (left), performance with different
flow steps (center), and the dynamics error of generated trajectories (right).
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