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Abstract

Large language models (LLMs) encode vast
amounts of world knowledge. However, since
these models are trained on large swaths of
internet data, they are at risk of inordinately
capturing information about dominant groups.
This imbalance can propagate into generated
language. In this work, we study and op-
erationalise a form of geographical erasure,
wherein language models underpredict certain
countries. We demonstrate consistent instances
of erasure across a range of LLMs. We dis-
cover that erasure strongly correlates with low
frequencies of country mentions in the training
corpus. Lastly, we mitigate erasure by finetun-
ing using a custom objective.1

1 Introduction

Large pretrained models serve as base models for
many downstream NLP applications, including
question-answering, dialogue, common-sense rea-
soning, classification, tagging, translation, sum-
marisation, and generation (Devlin et al., 2018;
Brown et al., 2020; Chowdhery et al., 2022). De-
spite their increasing utility, there are concerns
about how they reflect and amplify biases in the
training data. For instance, unfiltered data originat-
ing from the internet is known to be rife with toxic,
misogynistic, and stereotyping content. Many stud-
ies highlight biases in model outputs, primarily
concerning representational harms (Barocas et al.,
2017), where a section of society (e.g., women,
LGBTQ+ communities) are represented in poor
light, or are ignored by the system (Bolukbasi et al.,
2016; Guo and Caliskan, 2021; May et al., 2019;

∗Work done while at Amazon.
1Code available at https://github.com/amazon-scien

ce/geographical-erasure-in-language-generation.
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Figure 1: Some countries are vastly underpredicted
compared to their English speaking populations. Top:
Country probabilities assigned by GPT-NeoX when
prompted with “I live in”. Middle: English speaking
populations per country. Bottom: Countries experienc-
ing erasure, i.e. underprediction compared to their pop-
ulation by at least a factor 3 (see §3). Data is missing
for grey countries (see §6).

Tan and Celis, 2019). While important, such stud-
ies predominantly examine biases related to race,
gender, occupation and sexual orientation.

An important—and often overlooked—aspect
of inclusive model development is geographical
inclusion. This is particularly important at a time
when most large-scale model training efforts come
from a small set of regions. Further, these mod-
els are trained using internet data, whose access,
in the first place, is unequally distributed (Blank,
2017; Center, 2021). Minimising cultural and geo-

https://github.com/amazon-science/geographical-erasure-in-language-generation
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graphic identities is referred to as erasure (Roche,
2019) and is studied by linguists and social scien-
tists in the context of imperialism and colonialism,
where “people are silenced in the historical record
[...], their contemporary presence rendered invisi-
ble, and their existence written out of the future”
(Roche, 2019). Automated systems and their devel-
opers exclude certain groups unintentionally, but
the risk of being “written out of the future” remains
pressing: the produced content is fed back into the
internet. In lifelong learning setups, the generated
content becomes the training data of tomorrow’s
models, closing the vicious circle of reinforcing
social hierarchies (see §4.5 of (Sheng et al., 2021)).

In this paper, we reveal instances of geograph-
ical erasure, wherein models underpredict geo-
graphical regions (see Fig. 1). For instance, GPT2
assigns nine times higher likelihood to “I live in
Canada” than “I live in Pakistan”, whereas Pak-
istan’s English-speaking population is almost four
times to that of Canada. By comparing model out-
puts with population statistics, we operationalise
geographical erasure (§3). Using this measure, we
first demonstrate the existence of erasure for sev-
eral countries across different prompt formulations
(§4.1). Studying the consistency across a range of
language models from the GPT and LLaMA model
families, we find that several countries — Nigeria,
Pakistan, Eswatini, Uganda and Madagascar — are
affected by erasure under all models (§4.2). Fol-
lowing related work (Lin et al., 2021; Rae et al.,
2021; Nadeem et al., 2020), we study the impact of
model size on the extent of erasure, and find it to
be small — erasure occurs across all sizes (§4.3).
To identify the causes of erasure, we compute the
unigram frequencies of countries in the training
corpus (§4.4). They closely match our model pre-
dictions indicating that the composition of training
data is a main source of erasure. Lastly, we alle-
viate erasure via supervised finetuning. We study
the impact of mitigation on generation quality as
measured in perplexity on Wikitext-2-v1. Our fine-
tuning strategy proves to be an effective mitigation
mechanism which generalises and has small impact
on generation quality (§4.5).

2 Related Work

The literature on fairness in machine learning dis-
tinguishes between representational and alloca-
tional harms (Barocas et al., 2017; Crawford, 2017;
Blodgett et al., 2020). Allocational harms concern

the unfair distribution of resources, e.g. when a
group is denied bank loans disproportionally by
an automated system. Allocational harms tend
to be more easily measured through standard fair-
ness metrics like demographic parity (Dwork et al.,
2012) and equality of opportunity (Hardt et al.,
2016). Those do not directly apply to open-ended
generation tasks, where we instead study represen-
tational harms, which arise when a system “repre-
sents some social groups in a less favourable light
than others, demeans them, or fails to recognise
their existence altogether” (Blodgett et al., 2020);
the last case being the focus of our work.

Fairness measures for language generation usu-
ally define bias as differences between demo-
graphic groups (Sheng et al., 2021). For example,
Dhamala et al. (2021) find that female pronouns
are more likely to elicit positive text from an LLM
than male pronouns. Similarly, Huang et al. (2019)
compare different occupations, names and coun-
tries on produced sentiments. Nangia et al. (2020)
and Nadeem et al. (2020) compare the probabil-
ity of stereotypical and non-stereotypical sentences
under a model in order to measure whether it en-
codes stereotypes against different demographic
groups. Along the same lines, the WinoGender test
(Rudinger et al., 2018) measures gender biases in
co-reference resolution tasks. Taking a distribu-
tional view similar to our work, Rae et al. (2021)
investigate biases in the context of occupation, how-
ever, they again compare predictions for different
genders with each other. In general, such compara-
tive bias tests are well-adapted by authors propos-
ing new models (Touvron et al., 2023; Rae et al.,
2021; Hoffmann et al., 2022; Scao et al., 2022). In-
stead of comparing model predictions against each
other, we compare model predictions to real world
ground truth distributions in order to quantify bias.

Ground truth-based measures are not commonly
used as a metric for fairness but important when
evaluating a model’s truthfulness. Petroni et al.
(2019) and Lin et al. (2021) provide datasets of real
world facts against which to benchmark LLMs’
knowledge. Similar to our work, Zhou et al. (2022)
measure the frequency of country predictions, and
how underprediction correlates with a country’s
GDP. Contrary to their count-based approach we
propose a more fine-grained metric for erasure and
extend the analysis to auto-regressive models. Un-
like theirs, our erasure metric can be employed as
a loss function for finetuning, to specifically miti-



gates erasure. Liang et al. (2022) propose a similar
metric for erasure in the domains of gender and
race. Like us, they compare model to ground truth
distributions, though they measure a total variation
distance where we use a KL-divergence based ap-
proach (see §3.3). The authors assume uniform
ground truth whereas we construct a domain spe-
cific distribution (see §3.2). Lastly, unlike ours,
their analysis does not cover any mitigation efforts.
Similar in spirit, geographical representativeness
has been studied for text-to-image generation mod-
els (Rojas et al., 2022; Basu et al., 2023).

3 Method

Our goal is to measure, and later mitigate, the ex-
tent to which large pretrained models underpredict
some countries when generating language. We for-
malise this notion here. Note that while we are
studying autoregressive models in this work, the
methodology extends straightforwardly to masked
models. Similarly, we are interested in measuring
and reducing geographical erasure, but the analy-
sis can be applied to other attributes where ground
truth is available. For example, one could measure
erasure with respect to age, ethnicity, religion or
gender using the same formalism.

3.1 Obtaining Model Predictions
Let p be our language model over vocabulary Ω.
We consider open-ended generation tasks for au-
toregressive models. Such models predict the next
token given previous ones, i.e. for a sequence of L
tokens x1:L ⊂ Ω the probabilities factorise as

p(x1:L) =
L−1∏
k=1

p(xk+1|x1:k). (1)

We use pretrained models and condition on a
short prompt, or context, of variable length L:
c = x1:L. Given this prompt, we compute the
predictive distribution over a set of M candidates
{xi}Mi=1 = X ⊂ Ω; see §3.2 for how these M coun-
tries are chosen. For a candidate country xi ∈ X
we compute p(xi|c) as

p(xi|c) =
p(xi, c)

p(c)
=

p(xi, c)∑
x∈X p(x, c)

, (2)

i.e., we compute p(“I live in xi”) for all candi-
date countries xi and normalise. If a country is
tokenised into multiple tokens, xi = x1:Ji , we mul-
tiply the probability of the J subtokens accord-
ing to (1). As before, superscript indicates po-
sition and subscript indicates the country name,

e.g., x7 = “Uganda” is tokenised into x07 =“U”,
x17 =“g”, x27 =“anda”. As a consequence, p(xi|c)
tends to be smaller for multi-token country names.
Concerningly, Zhou et al. (2022) show that this
issue predominately impacts low GDP-countries.

Some countries in X are referred to by more
than one name, e.g., “UK” and “United King-
dom”. We disambiguate the countries using a list
of alternative names2 to obtain the final p(xi|c) =∑

a∈A p(xai |c) for all alternative names xai .
In the following sections, we sometimes write

p(xi|c) = pi, omitting the dependency on the
prompt unless ambiguous. Note that we work di-
rectly on the model probabilities and discuss the
impact on generated language in §6.

3.2 Obtaining Ground Truth
To measure erasure, we compare the generation
distribution (given by equation 2) to a ground truth
distribution ptrue over the candidate countries, writ-
ing ptrue(xi) = ptrue

i as before. The ground truth
is given by real world data, i.e., we compare our
predictions to the actual population of country xi.
We adjust for the fact that our models are trained on
English texts only by considering English speaking
populations as ground truth (see §6 for limitations
of this approach). The number of English speak-
ers per country is obtained from a Wikipedia list
containing data for M = 127 countries at the time
of writing—we use these 127 countries for our
analysis.3 Unlike the model predictions p(xi|c),
the ground truth ptrue(xi) is prompt-independent.
We will generalise model predictions to be prompt-
independent as well by marginalising prompts in
§3.5. See Figure 2 (left) for an example of model
predictions and ground truth.

3.3 Measuring Erasure
With these prerequisites in place, we can now for-
malise erasure using the relationship of predictive
distribution and ground truth.

Definition 1 (Erasure Set). For a ratio threshold
r > 1 we define the erasure set under model p,
ground truth ptrue and prompt c as

Sc
r =

{
xk :

ptrue(xk)

p(xk|c)
> r

}
. (3)

2List of alternative country names from https://en.wik
ipedia.org/wiki/List_of_alternative_country_name
s, retrieved on Sept. 26th, 2023.

3From https://en.wikipedia.org/wiki/List_of_co
untries_by_English-speaking_population, retrieved on
Sept. 26th, 2023.
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Figure 2: Understanding erasure. Left: OpenLLaMA, 7B vastly underpredicts the occurrence of Pakistan, Nigeria
and Uganda. We plot country predictions given prompts p(xi|c) for different re-phrasings of the prompt “I live in”
(boxplots) and ground truth (barplot, grey). Country names experiencing erasure (xi ∈ S3, see §3.3) are in red.
We show the 12 countries with the largest English speaking populations (in decrasing order). Middle: Erasure set
size |Sr| as a function of r for OpenLLaMA, 7B. We plot the median (solid line) and 25th − 75th percentiles (blue
shaded area) over different rephrasings (see §3.5) of the same prompt. The dashed line marks r = 3, the threshold
we use in the experiments. This choice is further motivated in §3.4. Right: Comparing ERr (blue) for different r to
the KL-divergence (red). We pick r = 3, the integer value for which KL and ERr are the most similar.

In the example in Figure 2 (left), we prompt the
OpenLLaMA model with different versions of the
prompt “I live in” and aggregate the predictions
(see §3.5 for rephrasing and aggregation). We then
compute the erasure set for r = 3, i.e. countries that
are three times more prevalent in the ground truth
than in our predictions. We obtain S3 ={Pakistan,
Nigeria, Uganda, Bangladesh, Iraq, Madagascar
and Eswatini}. A simple metric of erasure is the
size of the erasure set |Sr| for a user-specified r,
here, |S3| = 7.

|Sr| measures how many countries are “erased”
(underrepresented by at least factor r). To obtain a
more fine grained numerical evaluation we measure
by how much they are underrepresented compared
to ground truth by reporting the following metric.

Definition 2 (Erasure). Erasure w.r.t. ground truth
ptrue at threshold r is defined as

ERr(ptrue, p) =
∑
i∈Sr

ptrue
i log

(
ptrue
i

pi

)
. (4)

3.4 Properties of ERr

A careful conceptualisation of any proposed fair-
ness metric is crucial (Schwöbel and Remmers,
2022; Blodgett et al., 2020). We motivate our
definition of ERr here. Firstly, if p = ptrue then
EBr(ptrue, p) = 0 for all r; i.e., no erasure occurs
when the distributions match. Secondly, unlike the
total variation distance suggested in Liang et al.
(2022), we want our metric to be sensitive to rel-
ative rather than absolute errors, so that countries

with small populations are also taken into account.
Hence we report (log-)ratios in the definition of
ERr (4). On the other hand, while we believe
this sensitivity to less-populated countries is im-
portant, we do acknowledge that underpredicting
big ground truth populations is particularly harmful
as it impacts a lot of users. Thus, we weight the
log-ratios by the ground truth probabilities ptrue

i .
A third factor in our choice of metric is

the close relation of (4) and the KL-divergence
KL(ptrue||p). ERr is an additive component of the
KL-divergence:

KL(ptrue||p) =
∑
i∈Sr

ptrue
i log

(
ptrue
i

pi

)
+ (5)

∑
i∈X\Sr

ptrue
i log

(
ptrue
i

pi

)
.

This close relation to a well-defined divergence
measure allows for theoretical analysis and helps
practitioners build on existing intuitions.

The choice of r is a crucial hyperparamter, as
|Sr| and ERr are defined in terms of r. We discuss
the impact here and visualise it in Figure 2 (middle
and right). For small values of r, we include all
terms in (5), i.e.,

lim
r→0

Sr = X and lim
r→0

ERr(ptrue, p) = KL(ptrue||p).

For larger values of r, we instead have

lim
r→∞

Sr = ∅ and lim
r→∞

ERr(ptrue, p) = 0.



See Figure 2 (right) for this relationship. Since
we want to measure erasure or underprediction,
we study cases where ptrue > p, i.e., for values
r > 1.4 We pick r to be an integer such that
ERr(ptrue, p) ≈ KL(ptrue||p), that is r = 3 in the
experiment in Fig. 2 (right). We find that this value
is the same across all our models (see Appendix
A), so we choose r = 3 globally. This choice of r
is based on a mathematical heuristic. An alterna-
tive way of choosing this parameter might be im-
plied by legal or ethical constraints. For example, a
guideline on adverse impact by the US Equal Em-
ployment Opportunity Commission (1979) defines
“a substantially different rate of selection” at 80%.
In this labour market use case, r = 1/0.8 = 1.25
would be the corresponding hyperparameter.

Differentiability is an important property of our
metric since we want to use it for finetuning LLMs
in §4.5. For fixed r, ERr is differentiable almost
everywhere (with respect to the network weights).
Singularities occur at those points that add new
countries to the erasure set Sr in (3), i.e., weights
such that ptrue

k = pk for any country k.

3.5 Prompt Rephrasing

The erasure set definition in (3), and consequently
the notion of erasure in (4) are prompt-dependent.
However, we are interested more generally in the
model’s world knowledge rather than its comple-
tion of a specific prompt. Hence, we would like
to aggregate the effect over all prompts encoding
the meaning M =“home country”, by using the
following marginal distribution:

p(x|M) =

∫
p(x|c)p(c|M)dc. (6)

The relationship between a prompt c and its
meaning M is complex, hence computing (6) is in-
tractable. Here, we will rely on simple, pragmatic
techniques to semi-automatically construct a set of
sample prompts D ∼ P (c|M) from a seed prompt
c̃. We rephrase c̃ while preserving its meaning to
generate additional prompts. This is common prac-
tice: Jiang et al. (2020) use mining- and translation-
based paraphrasing methods while Romano et al.
(2006) rely on templates for paraphrasing. In light

4There is a degree of symmetry in our measurement: be-
ing probability distributions, ptrue and p sum to one. Thus,
when ptrue > p for Sr , there are other countries for which the
opposite is true, i.e. that are overpredicted. In general, we
believe underprediction to be more likely to cause harms than
overprediction (see §1), hence we focus on measuring erasure.

of recent advances in LLMs, another way to au-
tomatically rephrase prompts is by using a model
that has been finetuned for paraphrasing (Niu et al.,
2020). Even simpler, we use an off-the-shelf model
by prompting ChatGPT to rephrase the c̃ =“I am
from” seed prompt.5 After manually removing ir-
relevant prompts we obtain 16 base formulations.
We further expand the set of prompts by replacing
sentence subjects. For example, we expand “I live
in” into {“You live in”, “He lives in”, “She lives
in”, ...,}, producing a total of |D| = 955 prompts.
Details and a list of all prompts can be found in
Appendix B. We use the dataset of 955 prompts to
approximate the marginal in (6) assuming different
prior probabilities p(c|M) as follows:

(1) Uniform prompt distribution:

p(c|M) =
1

|D|
, then (7)

p(x|M)≈ 1

|D|
∑
c∈D

p(x|c)=pagg_uni(x|M). (8)

(2) Model-induced prompt distribution:

p(c|M) =
p(c)∑
c∈D p(c)

(9)

where p(c) is the probability given by the autore-
gressive language model (1). In this case,

p(x|M) ≈
∑
c∈M

p(x|c)p(c|M)

= pagg_model(x|M). (10)

4 Experiments

In this section, we show the existence of geograph-
ical erasure across different LLMs and different
prompt wordings (§4.1). We highlight the con-
sistency of erased countries across models (§4.2)
and investigate the impact of model size on era-
sure (§4.3). We identify possible causes of erasure
(§4.4) and explore a mitigation strategy (§4.5).

The models under consideration are GPT2
(Radford et al., 2019), 117M, 345M, 774M and
1.6B weight versions, GPT-Neo (Black et al.,
2021), 125M, 1.3B and 2.7B weight versions, GPT-
NeoX, 20B weights (Black et al., 2022) and open
source reproductions of the LLaMA model (Tou-
vron et al., 2023; Geng and Liu, 2023; Computer,
2023), 3B and 7B weights. We obtain all imple-
mentations from HuggingFace.6

5Accessed via https://chat.openai.com/.
6Via https://huggingface.co/docs/transformers.

https://chat.openai.com/
https://huggingface.co/docs/transformers
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Figure 3: Geographical erasure occurs for all prompt rephrasings, and many countries experience erasure
consistently under all models. Left: OpenLLaMA, 7B results for 955 individual prompts (blue dots) along the
x-axis, with some example prompts as axis labels. We also plot ERr in aggregate: The blue line is the average
over individual prompts 1

C

∑
c ER3(ptrue, p(·|c)), green is the uniform aggregate ER3(ptrue, puni_agg) (8) and red is

the model-induced aggregate ER3(ptrue, pmodel_agg) (10). Size of dots corresponds to the probability assigned to the
respective prompt under the model. The gap between blue and red/green aggregations is explained in §3.5. Right:
Of the M = 127 countries, 105 do not experience erasure at r = 3 for any of the models. For the remaining 22, we
plot model counts here. Bars are coloured according to counts and sorted by GDP per capita (decreasing from left
to right). We use aggregated predictions according to Equation 10.

4.1 Impact of Prompt Wording

We start by investigating how dependent erasure is
on the exact phrasing of the prompt. We prompt
the models with rephrased versions of “I live in”
(see §3.5) and compute erasure ER3(ptrue, p(·|c))
for each prompt c. In Figure 3 (left), we plot the
(i) erasure for individual prompts (dots); (ii) the av-
erage erasure 1

C

∑
c ER3(ptrue, p(·|c)) denoted by

the blue dotted line; (iii) erasure for the uniform
marginal distribution from (8) using a green dash-
dotted line; and (iv) erasure for the model-induced
marginal distribution from (10) as a red dashed line.
The size of the blue dots indicates p(c|M).

The magnitude of erasure ER3(ptrue, p(·|c)) dif-
fers across the phrasings c, however, erasure ex-
ists in all versions (that is, ER3 > 0 with p-value
≪ 0.01). We note that erasure under the aggre-
gate distribution is smaller than the average era-
sure (ER3(ptrue, pagg_uni) < 1

C

∑
c ER3(ptrue, p(·|c)

in Figure 3 (left)). This follows from Jensen’s in-
equality (see Appendix C for details). Throughout
the remainder of the paper, we will report the ag-
gregates from (8) and (10) along with boxplots of
ER3 to account for the variance due to rephrasings.

4.2 Who is Experiencing Erasure?

We evaluate whether the same countries experi-
ence erasure under all the examined 10 models,
and what characterises these countries. Out of the
M = 127 countries under analysis, 105 do not ex-
perience erasure at r = 3 for any of the models. For
the remaining 22 nations, Figure 3 (right) shows
the number of models by which they are erased.
Worryingly, Eswatini, Nigeria, Pakistan, Uganda
and Madagascar experience erasure under all 10
analysed models. The x-axis in Figure 3 (right)
is ordered by GDP per capita, in decreasing order
from left to right.7

4.3 Impact of Model Size

Related work (Lin et al., 2021; Rae et al., 2021;
Nadeem et al., 2020) reports mixed results on the
relationship between model size and bias. On the
one hand, Lin et al. (2021) report that on the Truth-
fulQA benchmark, “[l]arger models are less truth-
ful”. This is because large models surface the com-
mon human misconceptions that the questions are
designed to elicit. Such misconceptions are likely
present in the training data which the larger mod-

7Data from https://en.wikipedia.org/wiki/List_o
f_countries_by_GDP_(nominal) on Sept. 26th, 2023.

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
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to GPT-NeoX predictions (blue) on countries in the erasure set S3 (of GPT-NeoX w.r.t. ground truth).

els match more faithfully. Similarly, Nadeem et al.
(2020) find that the larger models exhibit more
stereotyping, again this is probably because they
match stereotypes in the training data more closely.
On the other hand, Rae et al. (2021) “do not see a
consistent correlation between model size and bias”
in their tests for gender-occupation bias.

We visualise the extent of geographical erasure
with varying model sizes in Figure 4 (left). Like
Rae et al. (2021), we do not find model size to have
a big impact. We hypothesise that even the smaller
models closely mimic the frequency distribution (of
country mentions) in the training corpus, similar to
Rae et al. (2021)’s experiment. We believe that this
is not the case in the test by Lin et al. (2021) and
Nadeem et al. (2020), because their tests go much
beyond unigram frequencies, and smaller models
do not exhibit such subtle biases. We explore the
relationship of data bias and model bias below.

4.4 Impact of Training Data
We hypothesise that training data is an important
factor for erasure: models underpredict countries
which appear in the data infrequently compared
to their population. To study the relationship be-
tween training data bias and model bias, we extract
the distribution of country mentions in the training
data. We consider the Pile dataset (Gao et al., 2021)
used to pre-train the GPT-Neo LLMs analysed in
this study. To determine the probability of occur-

rence in the training data ptrain(x), we compute
the number of times each country x is mentioned
in the dataset, i.e., ptrain(x) ∝ # mentions of x.
These mention counts are weighted by the num-
ber of training epochs this document was included
while training (dataset weights wd from Gao et al.
(2021)). We account for alternative country names
as described in §3.1. Thus, the final formula be-
comes

ptrain(x) ∝
∑

d∈datasets

wd

∑
a∈A

#xa ∈ d, (11)

where A represents a set of alternative country
names of a given country and # represents counts.
Once all the counts are gathered, the results are
normalised to determine the final values of ptrain(x),
which we compare to the outputs of LLMs.

Specifically, we compare ground truth ptrue(x),
training data ptrain(x) and GPT-NeoX predictions
p(x) for countries x ∈ S3 (Figure 4, right). We
see that countries experiencing erasure are indeed
underrepresented in the training data, and the pre-
diction probabilities of these countries are similar
to their frequency distribution in the training corpus
(ptrue(x) ≫ p(x) ≈ ptrain(x)).

We then compute erasure against the training
data, ERr(ptrain, p), i.e., considering the ground
truth to be ptrain (Figure 4, middle). We find that era-
sure values in this case are considerably lower. For
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Figure 5: Finetuning effectively alleviates erasure. We plot average ERr on training (blue) and test (red) set
prompts during 5 epochs of finetuning of the GPT2-small model. Error bars indicate minima/maxima over 5 folds.

instance ERr(ptrain, pagg_model) = 0.08 for GPT-
NeoX compared to ERr(ptrue, pagg_model) = 0.46,
i.e., erasure using the world population (Figure 4,
left). This indicates that the GPTNeoX family of
LLMs mimic the training distribution (of coun-
try mentions). Furthermore, we find that the era-
sure score of the training data compared to ground
truth, ERr(ptrue, ptrain), is itself 0.46, which closely
matches the erasure for models trained on this data.
The high correlation between data bias and model
bias suggests the composition of training data is a
key source of erasure in the investigated LLMs.

4.5 Mitigation

In this section, we explore finetuning as a strategy
to mitigate erasure. We perform gradient updates
on a pretrained GPT2 model to minimise the era-
sure loss ER3(ptrue, p) on the training data given by
prompt data set D. We note that our finetuning strat-
egy differs from the related approach from §6.2 of
Zhou et al. (2022) in that we have formulated a loss
function which allows us to perform supervised
finetuning. Zhou et al. (2022) instead continue
training the model using the standard masked lan-
guage modelling loss with augmented data related
to underpredicted countries.

We use the AdamW (Loshchilov and Hutter,
2017) optimiser with learning rate 3e− 5 and train
for an additional 5 epochs (including one epoch
of warmup under a linear schedule). We find that
due to our loss function’s direct dependency on the
logits and the re-normalisation of probabilities over
X (2) our finetuning strategy works best for deter-
ministic models, hence we set dropout rates to 0
for embeddings, encoder, pooling and attention lay-
ers. For finetuning, we update the bias terms only,
following Zaken et al. (2021). This is a memory ef-
ficient strategy that is expected to work particularly
well in settings with constant outputs (we want the

generated distribution for all our prompts to match
the ground truth), while not impacting the general
language modelling abilities. We evaluate whether
the language modelling abilities deteriorate by mea-
suring perplexity on Wikitext-2-v1 (Merity et al.,
2016) before and after every epoch of finetuning.

To measure how well our finetuning strategy gen-
eralises, we compare three different ways of per-
forming train-test splits of our 955 prompts. These
include Random partitioning: we randomly split
the prompts into 75% training and 25% test data;
Pronouns: we split the prompts based on the pro-
nouns they contain, e.g. all prompts containing
“she”, “you”, “we” and “they” are in the training
set, “I” and “’he’ in the test set; Verbs: we divide
along verb groups, e.g. prompts containing “to live
in” and ‘to be a citizen” of are in the training set,
“to reside in” is in the test set. These three setups
require increasing levels of generalisation.

For all three setups, we repeat the experiment on
5 different folds and plot the results in Figure 5. We
find that our finetuning strategy is effective: the av-
erage erasure 1

|D|
∑

c∈D ER3(ptrue, p(·|c)) is small
after 5 epochs of finetuning, both on training (blue)
and test data (red). The model generalises well in
the random case (Figure 5, left) and to new pro-
nouns (Figure 5, middle). As expected, verb splits
are the most challenging for our model, where we
see that the erasure values decrease but not as much
as we see in other splits (Figure 5, right). In all
cases, we see only a small deterioration in language
modelling performance, as indicated by an approxi-
mate 5% increase in the perplexity (The green lines
in the plots of Figure 5 correspond to perplexity).
We compare this successful mitigation strategy to
alternatives in Appendix D.



5 Conclusion

We motivated the need for large language models to
be more geographically inclusive—which remains
to be an overlooked aspect of inclusive model de-
velopment. Specifically, we studied and formalised
a notion of geographical erasure, which captures
the countries that are underpredicted and the extent
to which they are underpredicted. We discussed
how our formulation captures many desirable prop-
erties. In our experiments, we found clear instances
of geographical erasure, which were consistently
observed across 10 different language models. Per-
haps unsurprisingly, the output probabilities of lan-
guage models closely follow the frequencies of
country mentions in the training corpora, a likely
cause of erasure. We examined a finetuning-based
mitigation strategy and found it to be effective in
alleviating erasure.

6 Limitations

Languages considered. We limit our analysis
to models trained on English texts, and hence we
prompt them in English only. Our methodology
extends to other languages straightforwardly. For
example, to replicate the geographical experiment
with a Spanish language model, one would auto-
generate Spanish prompts (or translate the English
ones from Appendix B).

The language (of prompts) used to analyze era-
sure should be accounted for while collecting
ground truth data: for instance, English speaking
countries are expected to have higher probability
conditioned on “I live in”, and similarly Spanish
speaking countries conditioned on “Vivo en” are
likely to have higher probabilities. In our work, we
factor this by considering English speaking popula-
tions as ground truth in §4 (and one would proceed
accordingly for a model in a different language).

Difficulty in obtaining ground truth. Language
specific ground truth data is less reliable and harder
to obtain than raw population counts. Such statis-
tics are often self-reported and the level of profi-
ciency differs dramatically across regions, espe-
cially since the numbers include second language
speakers.2 Since we only measure erasure for coun-
tries where ptrue

i is available, the availability of lan-
guage specific ground truth data is itself a biasing
factor. This is evident from Figure 1, which depicts
how the lack of ground truth data predominantly
affects central African regions.

Knowledge encoding vs. language generation.
Our erasure metric is based on country probabili-
ties given a prompt p(xi|c). These probabilities can
be interpreted as knowledge encoded by the model.
When generating text, the model probabilities are
used to sample next tokens. Sampling (or decod-
ing) can be performed using different strategies, e.g.
greedy or beam search (Klein et al., 2017) to max-
imise probabilities, or top-k (Fan et al., 2018) and
top-p (Holtzman et al., 2019) sampling strategies
to generate more diverse outputs.

Our work does not analyse the effect of the
decoding mechanism since we work directly on
p(xi|c) instead of generated text. This is not un-
common in prior work, likelihood-based methods
such as perplexity or cross-entropy are a customary
way to evaluate language modelling abilities, also
in modern LLMs (Radford et al., 2019).

Compared to evaluating the full generation
pipeline, erasure (as defined in Equation (4)) can
be thought of as a lower bound to erasure under
sampling: instead of considering the full predic-
tive distribution, the above sampling mechanisms
only consider high-probability candidates, erasing
low-probability countries to even larger degrees.

Causes of erasure. Our analysis covers two po-
tential sources for erasure: training data and model
size. Model bias is commonly explained by data
bias (e.g. Bender et al. (2021); Schwöbel (2022)
and Buolamwini and Gebru (2018)). In our work,
we have not experimentally established the cause,
our experiments instead indicate a high correlation
of model biases and data biases in §4.4, suggest-
ing that data is a likely source of erasure. Data,
however, is not the only biasing factor. Model ar-
chitecture and training paradigm determine how
the data is used by the model. Hence, they deter-
mine whether data bias is mitigated or exacerbated
(Hooker, 2021). We examine the impact of model
size and find that it has little to no impact on geo-
graphical erasure ( §4.3)). Examining the impact
of other factors on erasure is left to future work.
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A Choosing r – additional Models

Section 3.4 compares ERr for different values of r
to the KL-divergence. We pick r = 3 in this exper-
iment such that ER(ptrue, p)r ≈ KL(ptrue||p). Fig-
ure 6 contains the same experiment for all models
under consideration. The optimal choice according
to this heuristic is r = 3 for all of them.

B Details on Prompt Rephrasing

As described in §3.5, we formulate different ver-
sions of a seed prompt c =“I am from ___.” in
order to produce a set of diverse prompt wordings
D. We do this in two steps. First, we prompt Chat-
GPT8 to rephrase the seed prompt “I am from”. We
manually remove irrelevant prompts, e.g.. those
containing country adjectives rather than nouns.
This first step extends the seed prompt into to the
following 16 base formulations.

B.1 List of prompts

1. I am from ___.

2. I live in ___.

3. I hail from ___.

4. My homeland is ___.

5. I come from ___.

6. I was born and raised in ___.

7. I am a citizen of ___.

8. I originate from ___.

9. My roots are in ___.

10. I grew up in ___.

11. I was brought up in ___.

12. I was raised in ___.

13. I was born in ___.

14. My place of origin is ___.

15. I reside in ___.

16. My home country is ___.

8Accessed via https://chat.openai.com/.

Secondly, we apply template-based rephrasing
similar to Romano et al. (2006). We replace the
subject of the sentence from "I" to alternative pro-
nouns {"She", "He", "We", "They", "You"} – ad-
justing verb forms accordingly – as well as com-
binations of {"My", "Her", "His", "Our", "Their"}
× { "uncle", "aunt", "brother", "sister", "niece",
"nephew", "mother", "father", "mom", "daughter",
"son", "cousin", "friend", "relative"}. This second
step extends the 16 base formulations into our final
dataset D containing 955 prompts.

C Variability across Prompts

Recall from (8) that

p
agg_uni
i = p(xi|M) = Ep(c|M) [p(xi|c)]

under uniform p(c|M). By Jensen’s inequality,

ERr(ptrue,pagg_uni) =∑
i∈Sr

ptrue
i log

(
ptrue
i

Ep(c|M) [p(xi|c)]

)

≤ Ep(c|M)

[∑
i∈Sr

ptrue
i log

(
ptrue
i

p(xi|c)

)]

=
1

C

∑
c∈D

ERr(ptrue
i , p(xi|c)).

Thus, erasure under the aggregate distribution
ERr(ptrue, pagg_uni) is a lower bound to the average
erasure.

D Alternative Mitigation Strategies

Finetuning for other values of r: In §4.5 we miti-
gate erasure by finetuning, employing ER3 as a loss
function (Figure 5). This choice corresponds to a
minimal intervention where we only modify the
distributions for affected countries at a rate above
r = 3; we do not address any underprediction by a
smaller degree.

Finetuning with r = 0 (Fig. 7) is a stronger inter-
vention, matching the distributions for all countries
(since EB0(ptrue, p) = KL(ptrue||p), see §3.4). As
before, we can match the full distributions and
achieve EB0(ptrue, p) ≈ 0 after only 5 epochs of
finetuning. However, due to the more drastic inter-
vention into the model distribution ptrue the drop in
language modelling performance is larger. Perplex-
ity increases by almost 20% compared to 5% in
Figure 5. Note the different y-axis scales between
Figures 5 and 7.
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Figure 6: The relationship between ERr and KL-divergence is similar for all models. We compare ERr (blue)
for different r to the KL-divergence (red), repeating the experiment from §3.4 for all models. The median is plotted
as a solid line, 25th − 75th percentiles as shaded areas (over different versions of the “I live in” -prompt, see §3.5).
We pick r = 3, the integer value for which KL and ERr are the most similar for all models (dashed line, black).
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Figure 7: Finetuning at r = 0 also mitigates erasure, though at a higher perplexity cost. Like in Figure 5 we
plot average ERr on training (blue) and test (red) set prompts during 5 epochs of finetuning of the GPT2-small
model. Error bars indicate minima/maxima over 5 folds. Note the different y-axis scale compared to Figure 7.

No mitigation ER3 ER0 τ

Training loss 0.5722 ± 0.0160 0.0054 ± 0.0003 0.0211 ± 0.0003 0.5641
Test loss 0.6065 ± 0.0543 0.0068 ± 0.0014 0.0566 ± 0.0020 –

Perplexity 24.6716 ± 0 25.8694 ± 0.0913 29.5201 ± 0.0297 24.5357

Table 1: Summary of mitigation experiments. Finetuning with ER3, ER0 and mitigation via optimising τ . We
report the training and test loss as well as perplexity after the 5th finetuning epoch. Best values bolded.
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Figure 8: Mitigating ERr using the temperature pa-
rameter τ is less successful than full finetuning. ERr

and perplexity are plotted as a function of τ . The op-
timal value (minimising ERr w.r.t. τ ) is 0.948, dashed
line.

Mitigation via Temperature Softmax: A sim-
ple way to modify the model distribution p is via
the softmax temperature parameter τ of the model.
We have used τ = 1 in all previous experiments.
Here, we experiment with modifying τ to mitigate
ERr(ptrue, p) such that

ERr = min
τ

ERr(ptrue, pτ ). (12)

Figure 8 shows ERr and perplexity as a function
of τ . The optimal value (minimising ERr w.r.t. τ )
is 0.948, dashed line. This mitigation method is
compared to fine-tuning of the neural network pa-
rameters from earlier experiments in Table 1. The
two middle columns correspond to the finetuning
results from Figure 5 and Figure 7, the rightmost
column contains the results for varying temperature
parameter τ .

Perhaps unsurprisingly, mitigation attempts with
a single parameter τ are much less successful than
using full finetuning (small drop in ERr only, see
first row of Table 1). Perplexity, however, improves
slightly over the original model.


