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Abstract
Graph Neural Networks (GNNs) have achieved
state-of-the-art results in tasks like node classifi-
cation, link prediction, and graph classification.
While much research has focused on their abil-
ity to distinguish graphs, fewer studies have ad-
dressed their capacity to differentiate links, a com-
plex and less explored area. This paper introduces
SLRGNN, a novel, theoretically grounded GNN-
based method for link prediction. SLRGNN en-
sures that link representations are distinct if and
only if the links have different structural roles
within the graph. Our approach transforms the
link prediction problem into a node classifica-
tion problem on the corresponding line graph,
enhancing expressiveness without sacrificing effi-
ciency. Unlike existing methods, SLRGNN com-
putes link probabilities in a single inference step,
avoiding the need for individual subgraph con-
structions. We provide a formal proof of our
method’s expressiveness and validate its superior
performance through experiments on real-world
datasets. The code is publicly available1.

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2008;
Micheli, 2009; Kipf & Welling, 2016a) have proven to be a
powerful tool, consistently achieving state-of-the-art perfor-
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Figure 1. Links (u, v) and (u′, v) are not set-isomorphic. Never-
theless, if we use a GNN to learn individual node representations
and then aggregate them to represent a link, both (u, v) and (u′, v)
will receive identical predictions. Indeed, a GNN that is as power-
ful as the WL test will assign the same output (denoted by colors)
to nodes u and v. Therefore, no matter how powerful the aggrega-
tion function g is, since the inputs are identical, the representations
of the two links will collapse.

mance in several tasks such as node classification (Hamil-
ton et al., 2017; Veličković et al., 2017; Kipf & Welling,
2016a; Gasteiger et al., 2018; Wu et al., 2019), link predic-
tion (Zhang & Chen, 2018; Zhang et al., 2021), subgraph
classification (Alsentzer et al., 2020; Besta et al., 2022; Liu
et al., 2022), and graph classification (Errica et al., 2019; Xu
et al., 2019; Samoaa et al., 2022). Driven by the increasing
application of GNNs across various domains, significant
theoretical research has been conducted on their expressive
power (Sato, 2020). In literature, the term expressiveness
of GNNs refers to their ability to distinguish different in-
puts. The first challenge in this direction is understanding
when inputs are different. Indeed, when dealing with graph-
structured data, the underlying topological structure makes
it non-trivial to assess whether two nodes, two links, or
two graphs are different. Most research has focused on
the ability of GNNs to distinguish between entire graphs,
a well-studied problem known as graph isomorphism prob-
lem (Grohe & Schweitzer, 2020). Determining if two graphs
are isomorphic is a problem for which a polynomial-time so-
lution is still lacking (Babai, 2016). An efficient alternative
is the Weisfeiler-Lehman (WL) test (Weisfeiler & Leman,
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1968), an iterative algorithm that approximates graph iso-
morphism testing. It has been shown that GNNs are at most
as poweful as the WL test in distinguishing graphs (Xu et al.,
2019; Morris et al., 2019; Bianchi & Lachi, 2024). Addition-
ally, many alternatives have been proposed to go beyond the
WL test’s capabilities, and several methods to enhance the
expressive power of GNNs have been suggested (Abboud
et al., 2020; Bevilacqua et al., 2021; Morris et al., 2019;
Lachi et al., 2023).

Far fewer studies have been conducted on the ability of
GNNs to distinguish between pairs or, more generally, sub-
sets of nodes (Srinivasan & Ribeiro, 2019; Zhang et al.,
2021). Intuitively, the ideal scenario would be for a GNN to
produce identical outputs if and only if subsets of nodes are
structurally equivalent. However, the concept of structural
equivalence is less intuitive and less studied compared to
graph isomorphism, deserving thorough investigation and
formalization. Specifically, subsets of nodes within the same
graph share the same structural role if an automorphism of
the graph maps one onto the other. Our paper begins by
revisiting the basic concepts and definitions necessary for
comparing subsets of nodes based on their structural roles in
the graph. These definitions are fundamental for assessing
the expressive capabilities of methods that produce repre-
sentations for graph subsets.

Among all problems related to node subsets classification,
link prediction is undoubtedly the most popular. GNN-based
methods for link prediction have been widely used in many
applications, such as friend recommendation in social net-
work (Adamic & Adar, 2003), movie recommendation (Ben-
nett et al., 2007) and protein-protein interaction (Jha et al.,
2022). There are two main classes of such approaches: pure
GNN methods like Graph AutoEncoder (GAE) and Varia-
tional AutoEncoder (VGAE) (Kipf & Welling, 2016b) and
Labeling Trick (LT) methods like SEAL (Zhang et al., 2021).
Pure GNN methods first apply a GNN to the entire network
to compute a representation for each node. The candidate
link is then predicted based on the aggregated representa-
tion of its two end nodes. While efficient, as prediction can
be made for any potential link in a single inference step,
pure GNN methods fail to distinguish pairs of links that
are not structurally identical, like links (u, v) and (u′, v) in
Figure 1. To address this issue, LT methods apply a GNN to
an enclosing subgraph around each link, where nodes in the
subgraph are labeled differently according to their distances
to the two end nodes before applying the GNN. Methods
in this category are more expressive than pure GNN meth-
ods (Zhang et al., 2021), but they have a drawback: a new
subgraph must be constructed for each link whose existence
is to be predicted, leading to efficiency problems.

In this article, we propose a GNN-based method, called
SLRGNN, that is intuitive, theoretically grounded, and more

expressive than pure GNN methods, meaning it produces
identical outputs for two links if and only if they have the
same structural role. It is also more efficient than LT meth-
ods, because it allows to compute predictions for any pair
of nodes in a single inference step, avoiding the need to cal-
culate a subgraph for each link. Our proposed method relies
on transforming a link prediction problem on a graph into a
node classification problem on the corresponding line graph.
As demonstrated by a formal proof, using an expressive
GNN for node classification on the line graph results in link
representations that are distinct if and only if their structural
roles within the graph differ. Furthermore, leveraging the
inductiveness of GNNs, predictions can be made for any
new node on the line graph, corresponding to any possible
link in the original graph. Our main contributions are the
following:

• We provide a theoretical framework with formal con-
cepts and definitions necessary to understand the prob-
lem of the expressive power of GNNs regarding distin-
guishing links or, more generally, subsets of nodes;

• We analyze existing GNN-based link prediction meth-
ods, highlighting their strengths and weaknesses;

• We propose a new method, SLRGNN, based on the
construction of the line graph that is simple and allows
to perform link prediction on any pair of nodes in a
single inference step;

• We formally prove the expressiveness of SLRGNN;

• We show through a set of experiments that SLRGNN
achieves better performance than competitors on most
real-world datasets.

2. Preliminaries
This section outlines basic definitions and foundational con-
cepts that will be used in the rest of the paper, including node
permutation, set-isomorphism and structural representation.

Definition 2.1 (graph). A graph is a tuple G =
(VG, EG,AG,X

0
G) where VG = {1, . . . , n} is a set of

nodes, EG ⊆ VG × VG is a set of m = |EG| edges,
AG ∈ {0, 1}n×n is the adjacency matrix, with AGi,j = 1
if and only if (i, j) ∈ EG and X0

G ∈ Rn×d is the node
features matrix. In our analysis, we consider just simple and
undirected graphs.

For ease of understanding, we restrict ourselves to analysis
within a single graph G; however, the following definitions
and considerations can be easily extended to comparisons
between different graphs.

Definition 2.2 (node permutation). A node permutation
π : {1, . . . , n} → {1, . . . , n} is a bijective function that
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assigns a new index to each node of the graph. All the
n! possible node permutations constitute the permutation
group Πn. Given a subset of nodes S ⊆ VG, we define the
permutation π on S as π(S) := {π(i)|i ∈ S}. Additionally,
we define π(AG) as the matrix AG with rows and columns
permutated based on π, i.e., π(AG)π(i),π(j) = AGi,j

.

Definition 2.3 (automorphism). An automorphism on the
graph G = (VG, EG,AG,X

0
G) is a permutation π ∈ Πn

such that π(AG) = AG. All the possible automorphisms
on a graph constitute the automorphism group Σn.

Generally, not all node permutations are also automor-
phisms. This is exclusively true for complete graphs, where
every permutation of nodes maintains the graph’s adjacency
relationships and so, Σn is isomorphic to the symmetry
group.

Definition 2.4 (set-isomorphism). Given a graph G =
(VG, EG,AG,X

0
G), two node subsets S, S′ ⊆ VG are set-

isomorphic (S ≃G S′) if there exists an automorphism
σ ∈ Σn such that σ(S) = S′.

The concept of set-isomorphism is pivotal for analyzing
the discriminative power of functions that generate repre-
sentations of node subsets. In graph learning, a desirable
property for learned functions is their ability to produce
distinct outputs for different inputs. However, assessing the
diversity of inputs with a topological structure is challeng-
ing. When it comes to comparing graphs, this is precisely
the issue of graph isomorphism, which has been extensively
studied (Grohe & Schweitzer, 2020; Babai, 2016; Babai
& Kucera, 1979; Kobler et al., 2012). In contrast, when
comparing nodes or subsets of nodes, the problem is less
clear and less explored (Morris et al., 2023; Srinivasan &
Ribeiro, 2019; Zhang et al., 2021). Thanks to Definition 2.4,
we can assert that a function that learns representations for
subsets (of any cardinality) of nodes should ideally gener-
ate identical representations if and only if the subsets are
set-isomorphic.

Definition 2.5 (structural representation). Let S ⊆ VG

and f(S,G) be a permutation invariant function that aims
at learning a representation for the node set S, given G.
f(S,G) is said to be a structural representation if, for all
S, S′ ⊆ VG f(S,G) = f(S′, G) if and only if S ≃G S′.

The definition applies generally to any cardinality of S.
However, a particularly relevant case for graph represen-
tation learning is link prediction, where |S| = 2. Here,
we refer to it as structural link representation. Addition-
ally, the scenario |S| = 1, corresponding to node feature
learning, is also significant for this paper and will be called
structural node representation.

3. Link Prediction with GNNs
3.1. Link Prediction Task Formulation

Link prediction aims to predict the likelihood of a link ex-
isting between two nodes given the structural and feature
information. The link prediction task can be formalized as
learning a function that maps a node pair to a probability
score, i.e.,

fLP ({u, v}, G) = p ∈ [0, 1]. (1)

Traditionally, p was estimated via non-learnable heuris-
tic methods (Liben-Nowell & Kleinberg, 2003; Menon &
Elkan, 2011). More recently, methods that use learnable
parameters have gained popularity (Zhang & Chen, 2018;
Chamberlain et al., 2022). These methods attempt to esti-
mate p via a learnable function

fLPΘ
({u, v}, G; Θ) = p ∈ [0, 1]. (2)

where Θ represents a set of learnable parameters. A com-
mon choice of fLPΘ

are GNN-based methods.

A model for link prediction is effective if it learns a function
that is a structural link representation, as defined in the
Definition 2.5.
In the following subsections, we first recall how GNNs
work; then, different ways of using GNNs for link prediction
are discussed, with a particular focus on whether they learn
structural link representations.

3.2. Graph Neural Networks

GNNs are a class of neural network architectures specifi-
cally designed to process and analyze graphs structured data;
GNNs rely on the so called message passing mechanism,
which implements a local computational scheme to process
graphs (Gilmer et al., 2017). Specifically, each feature vec-
tor of each node is updated by combining the features of the
neighboring nodes. After l iterations, xl

v embeds both the
structural information and the content of the nodes in the
l-hop neighborhood of v. More rigorously, the output of the
l-th layer of a GNN is:

xl
v = COMB(l)(xl−1

v ,AGG(l)({xl−1
u , u ∈ N [v]})) (3)

where AGG(l) is a function that aggregates the node features
from the neighborhood N [v] at the (l − 1)–th iteration, and
COMB(l) is a function that combines the own features with
those of the neighbors. The initial feature is the v-th row of
the node feature matrix, i.e., x0

v = X0
v,:.

This type of GNN implements permutation-invariant feature
aggregation functions and the information propagation is
isotropic (Tailor et al., 2021).
In node classification/regression tasks, a readout function
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typically transforms the feature vector from the last layer L
to produce the final output:

ov = READ(xL
v ). (4)

Depending on the specific task, the READ function can be
the identity function, a sigmoid function, or a more sophisti-
cated function (Buterez et al., 2022).
In graph classification/regression tasks, a global readout
function transforms the output vectors to produce the final
global output:

o = READ({ov, v ∈ VG}). (5)

The READ is implemented as the sum, mean, or the max-
imum of all node features, or by more elaborated func-
tions (Bruna et al., 2013; Yuan & Ji, 2020; Khasahmadi
et al., 2020).

Expressive Power of GNNs In the literature, studying the
expressive power of GNNs refers to evaluating their abil-
ity to distinguish between different graphs. This capability
is inherently linked to the graph isomorphism problem, a
widely studied issue believed to lack a polynomial-time solu-
tion (Babai, 2016). The WL test (Weisfeiler & Leman, 1968)
provides a computationally efficient and effective method
for distinguishing a broad range of graphs. The algorithm
assigns a color to each node based on the multiset of features
of its neighbors and its own color. At each iteration, the
colors of the nodes are updated until convergence is reached.
If the color multisets of two graphs differ, the graphs are not
isomorphic. Conversely, if the color multisets are identical,
there are no guarantees that the two graphs are isomorphic.
It has been proven that GNNs are at most as effective as the
WL test in distinguishing between graphs (Xu et al., 2019).
Thus, we can readily identify as failures of GNNs those
cases where non-isomorphic graphs receive the same output
from the WL test. From now on, we will refer to GNN
models which are as powerful as the WL test as WL-GNNs.
Relatively few studies have focused on the expressive ca-
pabilities of GNNs concerning representations of subsets
of nodes and, particularly, links, which are of significant
interest due to the widespread application of GNNs in link
prediction. Ideally, a GNN must generate the same repre-
sentation for two subsets of nodes if and only if they are
set-isomorphic, but, as shown in the following, this is not
always the case.

3.3. GNN-based approaches for link prediction

There are two fundamental approaches for performing link
prediction using methods based on GNNs. In this section,
we will explore these two categories, identifying the meth-
ods that fall into each one and discussing if they learn struc-
tural link representation along with their strengths and weak-
nesses.

Pure GNN Methods In the pure GNN Methods, a GNN is
first applied to the entire graph to learn an embedding vector
for each node. Then, the embeddings of pairs of nodes are
aggregated. Formally, these methods learn a function:

fLPΘ({u, v}, G; Θ) = g(GNN(u,G; Θ),GNN(v,G; Θ))
(6)

where g is an aggregation function. In principle, any type
of GNN can be used, and the function g can be modeled
using an MLP over any aggregation function over the fea-
ture vectors. In practice, the most commonly used pure
GNN model is GAE (Kipf & Welling, 2016b). This method
employs a GCN (Kipf & Welling, 2016a) to generate node
representations. These representations are then aggregated
using the inner product, followed by the application of a
sigmoid function to produce the final output.
As proved in (Zhang et al., 2021), pure GNN Methods can-
not learn a structural link representation, even equipped with
a GNN that learns a structural node representation. As an ex-
ample of failure of pure GNN Methods, consider the graph
in Figure 1. Node u and u′ have identical structural roles
within the graph, meaning there exists an automorphism that
maps one to the other. As a result, a GNN that learns struc-
tural node representations will produce identical outputs for
these nodes (as shown by the colors in the figure). Thus,
when aggregating the representations to form link represen-
tations, even with a very powerful aggregation function, the
representation of the link (u, v) will be identical to that of
the link (u′, v). Thus, pure GNN methods assign the same
probability to these two potential links, even though {u, v}
is not set-isomorphic to {u′, v}.

Labeling Trick Methods Another category of GNN-
based approaches comprises models that employ the so-
called Labeling Trick (LT) (Zhang et al., 2021). The most
frequently used model in this category is SEAL (Zhang &
Chen, 2018; Li et al., 2020). This method labels nodes
according to their relationship to the target link, followed
by applying a GIN (Xu et al., 2019) to the labeled graph.
The representations of the target nodes generated within the
labeled graph are then aggregated to form the link repre-
sentation. This mechanism has been shown to significantly
enhance the link discrimination capability of the models, as
they learn structural link representations effectively.
In particular, the SEAL model operates by extracting an
h-hop enclosing subgraph centered around the two target
nodes and bases its link prediction on the topology of this
subgraph. Consequently, the task of link prediction is trans-
formed into a graph classification problem, with the model
treating the enclosing subgraph as the input to determine
the presence of a link between the nodes.
While this approach offers substantial improvements to the
link discrimination power of GNNs, it also presents certain
challenges. It requires repeatedly applying GNNs to the la-
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beled subgraph for each link prediction, unlike approaches
like GAE, which can process the entire graph in a single
step and simultaneously learn representations for all target
links. Consequently, methods that use the LT are less effi-
cient because they cannot generate all link predictions in a
single GNN inference step.
Inspired by the SEAL approach, (Cai et al., 2021) suggests
to directly learning the features of the target link rather
than extracting features from the entire enclosing subgraph.
Specifically, they transform the original enclosing subgraph
into its corresponding line graph, allowing graph convolu-
tion layers to be directly applied to learn the node embed-
dings within the line graph. These embeddings are then
used as features for the edges in the original graph to predict
the existence of a link. Thus, the link prediction task is
effectively viewed as a node classification problem.
However, this method encounters the same limitation as
the SEAL model: it necessitates applying GNNs to a line
graph for each link prediction, preventing it from gener-
ating all link predictions in a single GNN inference step.
Furthermore, while the use of line graphs is effective for
achieving a structural representation of links as demon-
strated in Section 4.2, constructing line graphs solely for
subgraphs may not be sufficient to capture the structural role
of links, as shown in the example in Figure 2. Indeed, usu-
ally the chosen hop length is h = 2. The 2-hop subgraphs
centered around links (u, v) and (u′, v′) are identical, and
their corresponding line graphs are also equal; however
(u, v) ̸≃G (u′, v′). Thus, the two links will have the same
representations despite not being set-isomorphic.

Figure 2. Links (u, v) and (u′, v′) are not set-isomorphic. How-
ever, their 2-hop subgraphs are identical, resulting in their line
graphs also being identical.

4. Structural Link Representation using Line
Graphs

4.1. Method

The aim of our approach is to learn a structural link repre-
sentation while efficiently processing the entire graph in a
single step to simultaneously learn representations for all
potential target links.
We propose a new GNN-based method, called SLRGNN,
which not only provides structural link representation but
also boosts efficiency by generating all link predictions in a
single GNN inference step. The proposed method consists
of three steps, which are explained in detail below.

Line Graph Construction The initial step of SLRGNN
entails constructing the line graph of the graph for which
link prediction is desired. The formal definition of a line
graph is as follows:
Definition 4.1 (line graph). Given a graph G =
(VG, EG,AG,X

0
G), its line graph is the graph LG =

(VLG
, ELG

,ALG
,X0

LG
) such that uv ∈ VLG

if and only if
(u, v) ∈ EG and (uv,wz) ∈ ELG

if and only if (u, v) and
(w, z) are incident edges in G. Moreover, X0

LG
∈ Rm×m is

obtained starting from X0
G using some node features aggre-

gation method.

Contrary to the LGLP approach proposed in (Cai et al.,
2021), SLRGNN constructs the line graph for the entire
graph rather than for individual subgraphs centered around
each link of interest. This methodology enables the simul-
taneous learning of representations for all potential target
links. Furthermore, as proved in Section 4.2, SLRGNN
effectively learns a structural representation of the links.
The line graph construction method serves as a preprocess-
ing step that is performed only at the beginning of the
method. The computational cost of constructing the en-
tire line graph is O(m2) where m is the number of edges in
the original graph. This complexity arises from the need to
check every possible pair of edges to establish connections
in the line graph; this step is the most computationally in-
tensive, thereby defining the overall complexity.
While the topological structure of a line graph is uniquely
defined by the line graph’s definition, the node features can
be constructed using different approaches. We detail our
chosen methodology in the subsequent section.

Features Aggregation Once a line graph is constructed,
the new features of the nodes in the line graph need to be
determined based on the features of the nodes in the original
graph. Some aggregation function must be used to aggre-
gate the features of pairs of nodes that form a node in the
line graph. In (Zaheer et al., 2017), it has been proven that
there exists a function which, if applied to the addends of a
sum, makes the sum injective. In practice, this function can
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Figure 3. The 4 graphs out of 202,579 in the Alchemy dataset where the WL test and the automorphism group induce different partitions
on the node set. Node colors represent the WL test output, while the orbits are indicated below each graphs.

be approximated using an MLP, as done in (Xu et al., 2019),
since it has been shown that MLPs are universal approxi-
mators (Hornik et al., 1989). Using a similar approach, for
each node uv ∈ VLG, the initial feature x0

uv is calculated
as:

x0
uv = MLPθ(x

0
v) + MLPθ(x

0
u), (7)

where x0
u and x0

v are respectively the u-th and v-th rows of
the original feature matrix X0

G ∈ Rn×d.
The presence of the MLP guarantees the injectivity of the
sum; therefore, two nodes uv, u′v′ ∈ VLG in the line
graph will have different features if and only if {x0

u,x
0
v} ≠

{x0
u′ ,x0

v′}. In the case where the original dataset does not
have initial node features, it is possible to use node topolog-
ical features such as the degree, the clustering coefficient
or some centrality measure. An in-depth discussion on the
selection of initial features is provided in Appendix D.

Training and Testing Once the input graph is transformed
into its corresponding line graph, the link prediction prob-
lem can be formulated as a node classification one, i.e.,

fLP ({u, v}, G) = fNC(uv, LG). (8)

In our approach, this function is learned by training a GNN:

ouv = GNN(uv, LG; Θ). (9)

Specifically as GNN layer, GIN (Xu et al., 2019) is em-
ployed, which is the most used WL-GNN:

xl
uv = MLP(l)

((
1 + ϵl

)
· xl−1

uv +
∑

wz∈N(uv)

xl−1
wz

)
. (10)

In the context of link prediction, negative sampling is used
to introduce edges to the graph that the network should
learn to classify as negative. Specifically, in SLRGNN, the
negative links are added in the original graph between nodes
that are at most h-hops apart, where h is an hyperparameter
of the model. Negative edges are then transformed into

negative nodes in the line graph. Consequently, the model
is trained on the line graph to differentiate between nodes
labeled as 0 (representing negative edges in the original
graph) and nodes labeled as 1 (representing existing edges
in the original graph). The training process employs the
Binary Cross-Entropy loss function:

LBCE = −(yuv log(ouv) + (1− yuv) log(1− ouv)),
(11)

where yuv is the label of node uv, i.e., yuv = 1 if the link
(u, v) exists, yuv = 0 otherwise.

The MLP employed to ensure the injectiveness of the fea-
tures aggregation and the GNN are trained in an end-to-end
fashion.
After training, the GNN can be evaluated on unseen nodes
by leveraging its inductive capabilities. Specifically, nodes
representing links to be predicted are added to the line graph,
connecting them to the existing nodes based on their topolog-
ical relationships in the original graph. The trained model is
then tested on these new nodes.
Formally, given the optimized parameters Θ∗, the likelihood
of the target link (u∗, v∗) is:

ou∗v∗ = GNN(u∗v∗, LG∪(u∗,v∗); Θ
∗), (12)

in which G ∪ (u∗, v∗) := (VG, EG ∪ (u∗, v∗), AG +
A(u∗,v∗),X

0
G), where A(u∗,v∗) is a n× n matrix such that

A(u∗,v∗)u∗,v∗ = A(u∗,v∗)v∗,u∗ = 1 and all the other entries
are equal to zero. Thus, the proposed method addresses
the issue of (Cai et al., 2021; Zhang et al., 2021), enabling
link prediction for any pair of nodes in a single inference
step. Furthermore, as proved in the following section, the
proposed method learns a structural link representation.

4.2. Theoretical Analysis

The following theorem shows that, under certain sufficient
conditions, SLRGNN learns a structural link representation.
These sufficient conditions are detailed in the subsequent
discussion and in the theorem’s proof.
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Figure 4. According to Beineke’s theorem, a graph is a line graph if and only if it does not contain any of these specific graphs as induced
subgraphs.

Before presenting the theorem, we recall that Kn denotes
the complete graph with n nodes, and Kn,k denotes the
complete bipartite graph with n nodes in the first partition
and k nodes in the second partition. For example, K3 is
a triangle, while K1,3 is a complete bipartite graph, also
known as a star graph. It consists of two sets of nodes,
where one set has one node (the center) and the other set
has three nodes. The center node is connected to each of the
three outer nodes, but the outer nodes are not connected to
each other. K1,3 is the first graph in Figure 4.

Theorem 4.2. Let G = (VG, EG,AG,X
0
G),

LG = (VLG
, ELG

,ALG
,X0

LG
) its line graph and

fLP ({u, v}, G) = GNN(uv, LG∪(u,v); Θ). If

1. G ∪ (u, v) is connected and G ∪ (u, v) ̸= K3,K1,3

∀(u, v) /∈ EG with u, v ∈ VG,

2. GNN is a node structural representation,

then fLP ({u, v}, G) is a structural link representation.

Theorem 4.2 guarantees that, when the two conditions are
met, the method proposed in Section 4.1 learns a structural
link representation. Condition 1 is widely satisfied in most
real and synthetic graph datasets, as it is met by all con-
nected graphs with more than three nodes. On the other
hand, Condition 2 is more complex and requires a more
detailed analysis. This condition imposes that the employed
GNN must be a node structural representation, meaning that
for any two nodes, the GNN produces identical outputs if
and only if there is an automorphism between the two nodes,
i.e., if and only if the nodes are set-isomorphic. While the
definition of set-ismorphism (Def. 2.4) can be applied to
node sets of any cardinality, there is a specific definition for
the case when |S| = 1:

Definition 4.3 (similar nodes). Given a graph G =
(VG, EG,AG,X

0
G) two nodes u, v ∈ VG are similar if

there exists an automorphism σ ∈ Σn such that σ(u) = v.

Node similarity induces an equivalence relation on VG,
where each equivalence class is an orbit.

Definition 4.4 (orbit). The orbit of a vertex v ∈ VG under
the action of the automorphism group Σn is defined as

the set of nodes of VG to which v can be mapped via an
automorphism σ ∈ Σn. Formally:

Orb(v) = {σ(v) | σ ∈ Σn}. (13)

The set of all the orbits of VG with respect to the action of
Σn is the partition of VG in equivalence classes induced by
Σn, i.e.,

VG/Σn
= {Orb(v) | v ∈ VG}. (14)

A natural question that arises is whether a WL-GNN, such
as GIN, is a node structural representation, i.e., whether it
produce different outputs if and only if the nodes are not
similar. The answer is provided in the following.

Proposition 4.5. If WL-GNN assigns different outputs to
u, v ∈ VG, then u, v are non-similar.

The proof can be found in (Morris et al., 2023). The
converse implications is not true, i.e., there exist non-
similar nodes for which the WL-GNN assigns the same
output. Some examples are reported in Figure 3. In-
deed, in each of these graphs, the set of the or-
bits is not equal to the partition of nodes induced by
the WL test. For example, in graph 1), VG/Σn

=
{{0, 2}, {4, 6, 8, 10}, {3, 7}, {5, 9}, {1}} while the parti-
tion induced by the WL test (denote by the colors in the
figure) is VG/WL

= {{3, 7}, {0, 2, 4, 6, 8, 10}, {1, 5, 9}}.
Therefore, the output of a WL-GNN for node 1 is equal to
the one for node 9, but these nodes are not similar. Thus,
while a WL-GNNs ensure that similar nodes always have
the same representation, they can fail in providing different
representations for non-similar nodes.
Although there is no characterization of the failures of WL-
GNNs in distinguishing nodes, these failures are fewer and
less well-known compared to the failures of WL-GNNs
in distinguishing graphs. It is said that WL-GNNs can
give different representations to almost all non-similar
nodes (Babai & Kucera, 1979). For instance, among the
202,579 graphs in the Alchemy dataset (Chen et al., 2019),
WL test fails to distinguish similar nodes just in the four
graphs of Figure 3.
Furthermore, in the context of our method, the WL-GNN is
applied not to any arbitrary graph but specifically to a line
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BUP C.ele USAir SMG EML NSC YST Power KHN ADV LDG HPD GRQ ZWL

Katz 87 85 92 86 88 98 81 74 88 94 95 90 93 97
PR 90 89 94 89 89 98 81 75 92 94 96 91 93 98
SR 85 76 79 78 87 97 74 71 77 83 89 84 93 95
N2V 80 80 85 78 83 96 77 77 83 79 92 81 94 94
NRI 95 90 96 91 92 100 92 82 93 95 96 92 97 97
GAE 90 84 92 86 87 99 77 70 84 91 94 85 91 95
SEAL 93 87 95 92 92 100 91 84 93 95 97 93 98 98
LGLP 95 90 97 93 92 100 92 85 94 96 97 94 98 98
SLRGNN 97 96 94 95 98 83 92 84 94 98 96 97 98 99

Table 1. Averaged AUC results of proposed model and baselines. Best results are in bold. For standard deviations check Table 3 Appendix
B

graph. According to Beineke’s theorem (Beineke & Wil-
son, 2004), a graph is a line graph if and only if it does not
contain any of the graphs shown in Figure 4 as induced sub-
graphs. Among these, the first one, i.e., K1,3 is a structure
commonly found in graphs. For instance, all four examples
of WL-GNN failures depicted in Figure 3 contain K1,3 as
an induced subgraph, and thus cannot be line graphs.
To conclude, in practice, there are currently no known exam-
ples of graphs where WL-GNNs fail to distinguish similar
nodes while also being line graphs, making condition 2 a
reasonable assumption in real-world settings.

5. Experiments
We evaluate SLRGNN on 14 real-world datasets, namely
BUP, Celegans, HPD, YST, SMG, NSC, KHN, GRQ, LDG,
ZWL, USAir, EML, Power, and ADV (Watts & Strogatz,
1998; Newman, 2001). These datasets span various applica-
tion domains and differ in the number of nodes and links, as
detailed in Table 2 (Appendix B). We compare our results
with three high-order heuristic methods: Katz (Katz, 1953),
PageRank (PR) (Brin & Page, 2012), and SimRank (SR)
(Jeh & Widom, 2002). Additionally, we benchmark against
the graph embedding method node2vec (N2V) (Grover &
Leskovec, 2016), neural relational inference (NRI) (Kipf
et al., 2018) and the gnn-based methods (GAE) (Kipf &
Welling, 2016b), SEAL (Zhang & Chen, 2018) and LGLP
(Cai et al., 2021).

5.1. Experimental setting

To assess the performance of SLRGNN, we generated nega-
tive links in the original graph to ensure a balance between
positive and negative links. The maximum number of hops
between any two nodes selected for negative links in the
original graph is set to h = 4. For graphs without node
features, we created feature vectors using the clustering
coefficients, the betweenness centrality, and the closeness
centrality. The use of such topological features is valid be-
cause, if two nodes are similar, their topological features
will be the same. Further elaboration on this is provided in

Appendix D.
To optimize model performance, we explored a range of
hyperparameters using grid search. Specifically learning
rates ranging from 0.0001 to 0.01, weight decay from 10−6

to 10−5, number of GNN layers from 1 to 4, embedding
dimensions from 16 to 64 and number of MLP layers from
1 to 3. SLRGNN is trained on a NVIDIA GeForce GTX
TITAN X gpu.

5.2. Experimental results

Table 1 presents the AUC results for SLRGNN and the
baseline methods across various datasets. For the complete
results with Standard Deviations see Table 3 in Appendix C.
SLRGNN, consistently outperforms other methods, achiev-
ing the highest AUC scores on most datasets. Notably,
SLRGNN achieves an AUC of 97 or higher on datasets such
as BUP, C.ele, EML, ADV, HPD, GRQ, and ZWL, show-
casing its robustness and generalization capability across
different domains. LGLP and SEAL methods also demon-
strate strong performance, with LGLP achieving a perfect
AUC score of 100 on the NSC dataset and high scores on
others. However, these methods require the computation
of line graphs or subgraphs for each link prediction task,
which can be computationally intensive and reduce effi-
ciency. Heuristic methods and embedding-based methods,
while performing well in certain cases, generally exhibit
lower AUC scores compared to gnn-based methods. Over-
all, SLRGNN not only achieves superior performance in
terms of AUC compared to other methods but also balances
performance and efficiency, making it an effective method
for link prediction tasks across diverse datasets.

6. Conclusions
This paper presents a novel and theoretically grounded ap-
proach for link prediction using GNNs, which consists of
transforming the link prediction problem on a graph into
a node classification task on the corresponding line graph.
Our method ensures that link representations are distinct if
and only if the links have different structural roles within
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the graph, thereby addressing a significant limitation of ex-
isting GNN-based link prediction techniques. By avoiding
the need for constructing individual subgraphs for each link
and enabling single-step inference for link probabilities, our
approach combines efficiency with enhanced expressive-
ness. The formal proof of expressiveness and the superior
performance on real-world datasets underscore the effec-
tiveness of our proposed method. Future research can build
on this foundation to explore how to build theoretically
grounded expressive GNNs for motif and subgraphs classifi-
cation/regression, contributing to the broader field of graph
representation learning.
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Appendix

A. Proof
Theorem A.1. Let G = (VG, EG,AG,X

0
G), LG = (VLG

, ELG
,ALG

,X0
LG

) its line graph and fLP ({u, v}, G) =
GNN(uv, LG∪(u,v); Θ). If

1. G ∪ (u, v) is connected and G ∪ (u, v) ̸= K3,K1,3 ∀(u, v) /∈ EG with u, v ∈ VG,

2. GNN is a node structural representation,

then fLP ({u, v}, G) is a structural link representation.

Proof. Let u, v, u′, v′ ∈ VG and (u, v), (u′, v′) /∈ EG. In order to prove that f({u, v}, G) is a structural link representation,
by definitions 2.2,2.5,2.4 we need to prove:

f({u, v}, G) = f({u′, v′}, G)

⇐⇒
∃π ∈ Πn s.t. {u′, v′} = π({u, v}) and AG = π(AG).

Let f({u, v}, G) = GNN(uv, LG∪(u,v); Θ) as stated in the theorem statement. Then:

GNN(uv, LG∪(u,v); Θ) = GNN(u′v′, LG∪(u′,v′),Θ)

⇐⇒ Cond. 2
∃π2 ∈ Πm s.t. u′v′ = π2(uv) (15)

and
ALG∪(u′,v′) = π2(ALG∪(u,v)

). (16)

Equations 15 and 16 indicate that the two line graphs LG∪(u,v) and LG∪(u′,v′) are isomorphic, and, in particular, the
isomorphism send node uv ∈ VLG∪(u,v)

to node u′v′ ∈ VLG∪(u′,v′) . Clearly, an isomorphism between two graphs always
induces an isomorphism between the respective line graphs (Cuypers, 2021). The converse is not always true as the
Whitney’s theorem states: two connected graphs with isomorphic line graphs are isomorphic unless one is K3 and the other
one is K1,3 (Jung, 1966). Following these results, we have:

∃π2 ∈ Πm s.t. u′v′ = π2(uv)

and
ALG∪(u′,v′) = π2(ALG∪(u,v)

)

⇐⇒(Harary, 2018) and Cond. 1
∃π ∈ Πn s.t. AG∪(u,v) = π(AG∪(u′,v′))

with
π2(ab) = π(a)π(b) ∀ab ∈ ELG∪(u,v)

and

π−1
2 (a′b′) = π−1(a′)π−1(b′) ∀a′b′ ∈ ELG∪(u′,v′) .
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From this and from Equation 15, it follows that:

u′v′ = π2(uv) = π(u)π(v)

⇐⇒
u′ = π(u) and v′ = π(v)

or
v′ = π(u) and u′ = π(v)

⇐⇒
{u′, v′} = π({u, v}).

Thus, it holds:

∃π ∈ Πn s.t. {u′, v′} = π({u, v})
and

AG∪(u,v) = π(AG∪(u′,v′)),

meaning that the graphs G∪ (u, v) and G∪ (u′, v′) are isomorphic. Additionally, when given two isomorphic graphs, adding
or removing corresponding edges will result in graphs that remain isomorphic through the same isomorphism. Therefore,
we can conclude:

∃π ∈ Πn s.t. {u′, v′} = π({u, v})
and

AG∪(u,v) = π(AG∪(u′,v′)),

⇐⇒
∃π ∈ Πn s.t. {u′, v′} = π({u, v})

and
AG = π(AG),

which concludes the proof.

B. Datasets
The number of nodes, links and average node degree are provided for each dataset.

Name # nodes # links Degree

BUP 105 441 8.4
C.ele 297 2148 14.46
USAir 332 2126 12.81
SMG 1024 4916 9.6
EML 1133 5451 9.62
NSC 1461 2742 3.75
YST 2284 6646 5.82
Power 4941 6594 2.669
KHN 3772 12718 6.74
ADV 5155 39285 15.24
GRQ 5241 14484 5.53
LDG 8324 41532 9.98
HPD 8756 32331 7.38
ZWL 6651 54182 16.29

Table 2. Datasets Summary for experiments
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C. Results
The AUC results with standard deviation calculated on 5 different seeds are reported in the following Table.

BUP C.ele USAir SMG EML NSC YST

Katz 87 ± 03 85 ± 02 92 ± 01 86 ± 01 88 ± 01 98 ± 00 81 ± 01
PR 90 ± 02 89 ± 01 94 ± 01 89 ± 01 89 ± 01 98 ± 00 81 ± 01
SR 85 ± 03 76 ± 02 79 ± 02 78 ± 01 87 ± 01 97 ± 00 74 ± 01
N2V 80 ± 06 80 ± 02 85 ± 01 78 ± 12 83 ± 01 96 ± 01 77 ± 00
NRI 95 ± 01 90 ± 01 96 ± 00 91 ± 00 92 ± 00 100 ± 00 92 ± 00
GAE 90 ± 02 84 ± 01 92 ± 01 86 ± 01 87 ± 01 99 ± 00 77 ± 00
SEAL 93 ± 01 87 ± 01 95 ± 01 92 ± 00 92 ± 00 100 ± 00 91 ± 00
LGLP 95 ± 01 90 ± 01 97 ± 03 93 ± 02 92 ± 03 100 ± 00 92 ± 00
SLRGNN 97 ± 01 96 ± 03 94 ± 02 95 ± 02 98 ± 01 83 ± 10 92 ± 03

Power KHN ADV LDG HPD GRQ ZWL

Katz 74 ± 01 88 ± 00 94 ± 00 95 ± 00 90 ± 00 93 ± 00 97 ± 00
PR 75 ± 01 92 ± 00 94 ± 00 96 ± 00 91 ± 00 93 ± 00 98 ± 00
SR 71 ± 01 77 ± 01 83 ± 00 89 ± 01 84 ± 00 93 ± 00 95 ± 00
N2V 77 ± 01 83 ± 01 79 ± 01 92 ± 01 81 ± 01 94 ± 00 94 ± 00
NRI 82 ± 01 93 ± 00 95 ± 00 96 ± 00 92 ± 00 97 ± 00 97 ± 00
GAE 70 ± 01 84 ± 01 91 ± 00 94 ± 00 85 ± 00 91 ± 00 95 ± 00
SEAL 84 ± 01 93 ± 00 95 ± 00 97 ± 00 93 ± 00 98 ± 00 98 ± 00
LGLP 85 ± 01 94 ± 00 96 ± 00 97 ± 00 94 ± 00 98 ± 00 98 ± 00
SLRGNN 84 ± 01 94 ± 01 98 ± 00 96 ± 01 97 ± 01 98 ± 00 99 ± 00

Table 3. AUC results with std deviation calculated on 5 different seeds.

D. Features Aggregation
For each node uv ∈ VLG, the initial feature x0

uv is calculated as:

x0
uv = MLPθ(x

0
v) + MLPθ(x

0
u), (17)

where x0
u and x0

v are respectively the u-th and v-th rows of the original features matrix X0
G ∈ Rn×d.

The presence of the MLP guarantees the injectivity of the sum; therefore, two nodes uv, u′v′ ∈ VLG in the line graph
will have different features if and only if {x0

u,x
0
v} ̸= {x0

u′ ,x0
v′}. However, many datasets, including those used in our

experimental setting reported in Section 5, do not have initial node features. Therefore, it is necessary to assign initial
features to the nodes. The choice of how to assign these initial features is crucial as it is strictly related to the model’s
expressiveness. For example, it has been shown that using random node features can increase expressiveness (Abboud
et al., 2020). However, the use of random features can cause similar nodes to have different representations. Consequently,
this undermines the GNN’s inductive learning ability to map nodes and links with identical neighborhoods to the same
representation, leading to a significant loss of generalization capability. As a result, the model loses its permutation
invariance/equivariance, violating the fundamental design principle of GNNs.
In contrast, LT methods (see Section 3.3) use node features based on their distance from the nodes of the links for which
they aim to make predictions. This technique has been shown to allow for structural link representation while maintaining
inductive learning ability. However, as explained in the Section 3.3, the dependency of these features on the nodes for which
predictions are made implies that these features must change each time a different link is to be predicted.
In this work, we have chosen to use topological features as initial features, specifically clustering coefficient, closeness
centrality, and betweenness centrality (Wasserman & Faust, 1994). These measures are informative, enable better learning,
are independent of the link whose existence is to be predicted, and are identical for similar nodes. This is a direct consequence
of the fact that automorphisms, by definition, preserve adjacencies and they also preserve distances between nodes. Indeed,
the distance between nodes is defined as the length of the shortest path connecting them. Given two nodes u, v ∈ VG with
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distance d(u, v) = k and an automorphism σ ∈ Σn, let P = (u0 = u, u1, ..., uk = v) be the shortest path connecting them.
Since σ P ′ = (σ(u0), σ(u1), ..., σ(uk)) will be a path of the same length k between σ(u) and σ(v). This length is also the
minimum: if there were a path of length k − 1, applying σ−1 to the nodes of this path would yield a path of length k − 1
between u and v, leading to a contradiction.
The fact that automorphisms preserve distances ensures that similar nodes have the same centrality measures. Analogous
arguments based on the preservation of adjacencies lead to the conclusion that similar nodes also have the same clustering
coefficient. This guarantees that using these features as initial features does not break the intrinsic symmetries of the graph’s
topological structure.
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